Vegetation indices’ spatial prediction based novel algorithm for determining tsunami risk areas and risk values

This paper aims to propose a new algorithm to detect tsunami risk areas based on spatial modeling of vegetation indices and a prediction model to calculate the tsunami risk value. It employs atmospheric correction using DOS1 algorithm combined with k -NN algorithm to classify and predict tsunami-aff...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 8; p. e935
Main Authors Hartomo, Kristoko Dwi, Nataliani, Yessica, Hasibuan, Zainal Arifin
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 28.03.2022
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text
ISSN2376-5992
2376-5992
DOI10.7717/peerj-cs.935

Cover

Abstract This paper aims to propose a new algorithm to detect tsunami risk areas based on spatial modeling of vegetation indices and a prediction model to calculate the tsunami risk value. It employs atmospheric correction using DOS1 algorithm combined with k -NN algorithm to classify and predict tsunami-affected areas from vegetation indices data that have spatial and temporal resolutions. Meanwhile, the model uses the vegetation indices ( i.e ., NDWI, NDVI, SAVI), slope, and distance. The result of the experiment compared to other classification algorithms demonstrates good results for the proposed model. It has the smallest MSEs of 0.0002 for MNDWI, 0.0002 for SAVI, 0.0006 for NDVI, 0.0003 for NDWI, and 0.0003 for NDBI. The experiment also shows that the accuracy rate for the prediction model is about 93.62%.
AbstractList This paper aims to propose a new algorithm to detect tsunami risk areas based on spatial modeling of vegetation indices and a prediction model to calculate the tsunami risk value. It employs atmospheric correction using DOS1 algorithm combined with k-NN algorithm to classify and predict tsunami-affected areas from vegetation indices data that have spatial and temporal resolutions. Meanwhile, the model uses the vegetation indices (i.e., NDWI, NDVI, SAVI), slope, and distance. The result of the experiment compared to other classification algorithms demonstrates good results for the proposed model. It has the smallest MSEs of 0.0002 for MNDWI, 0.0002 for SAVI, 0.0006 for NDVI, 0.0003 for NDWI, and 0.0003 for NDBI. The experiment also shows that the accuracy rate for the prediction model is about 93.62%.
This paper aims to propose a new algorithm to detect tsunami risk areas based on spatial modeling of vegetation indices and a prediction model to calculate the tsunami risk value. It employs atmospheric correction using DOS1 algorithm combined with -NN algorithm to classify and predict tsunami-affected areas from vegetation indices data that have spatial and temporal resolutions. Meanwhile, the model uses the vegetation indices ( ., NDWI, NDVI, SAVI), slope, and distance. The result of the experiment compared to other classification algorithms demonstrates good results for the proposed model. It has the smallest MSEs of 0.0002 for MNDWI, 0.0002 for SAVI, 0.0006 for NDVI, 0.0003 for NDWI, and 0.0003 for NDBI. The experiment also shows that the accuracy rate for the prediction model is about 93.62%.
This paper aims to propose a new algorithm to detect tsunami risk areas based on spatial modeling of vegetation indices and a prediction model to calculate the tsunami risk value. It employs atmospheric correction using DOS1 algorithm combined with k -NN algorithm to classify and predict tsunami-affected areas from vegetation indices data that have spatial and temporal resolutions. Meanwhile, the model uses the vegetation indices ( i.e ., NDWI, NDVI, SAVI), slope, and distance. The result of the experiment compared to other classification algorithms demonstrates good results for the proposed model. It has the smallest MSEs of 0.0002 for MNDWI, 0.0002 for SAVI, 0.0006 for NDVI, 0.0003 for NDWI, and 0.0003 for NDBI. The experiment also shows that the accuracy rate for the prediction model is about 93.62%.
This paper aims to propose a new algorithm to detect tsunami risk areas based on spatial modeling of vegetation indices and a prediction model to calculate the tsunami risk value. It employs atmospheric correction using DOS1 algorithm combined with k-NN algorithm to classify and predict tsunami-affected areas from vegetation indices data that have spatial and temporal resolutions. Meanwhile, the model uses the vegetation indices (i.e., NDWI, NDVI, SAVI), slope, and distance. The result of the experiment compared to other classification algorithms demonstrates good results for the proposed model. It has the smallest MSEs of 0.0002 for MNDWI, 0.0002 for SAVI, 0.0006 for NDVI, 0.0003 for NDWI, and 0.0003 for NDBI. The experiment also shows that the accuracy rate for the prediction model is about 93.62%.This paper aims to propose a new algorithm to detect tsunami risk areas based on spatial modeling of vegetation indices and a prediction model to calculate the tsunami risk value. It employs atmospheric correction using DOS1 algorithm combined with k-NN algorithm to classify and predict tsunami-affected areas from vegetation indices data that have spatial and temporal resolutions. Meanwhile, the model uses the vegetation indices (i.e., NDWI, NDVI, SAVI), slope, and distance. The result of the experiment compared to other classification algorithms demonstrates good results for the proposed model. It has the smallest MSEs of 0.0002 for MNDWI, 0.0002 for SAVI, 0.0006 for NDVI, 0.0003 for NDWI, and 0.0003 for NDBI. The experiment also shows that the accuracy rate for the prediction model is about 93.62%.
ArticleNumber e935
Audience Academic
Author Hasibuan, Zainal Arifin
Hartomo, Kristoko Dwi
Nataliani, Yessica
Author_xml – sequence: 1
  givenname: Kristoko Dwi
  orcidid: 0000-0003-0237-851X
  surname: Hartomo
  fullname: Hartomo, Kristoko Dwi
  organization: Department of Information System, Faculty of Information Technology, Satya Wacana Christian University, Salatiga, Indonesia
– sequence: 2
  givenname: Yessica
  surname: Nataliani
  fullname: Nataliani, Yessica
  organization: Department of Information System, Faculty of Information Technology, Satya Wacana Christian University, Salatiga, Indonesia
– sequence: 3
  givenname: Zainal Arifin
  surname: Hasibuan
  fullname: Hasibuan, Zainal Arifin
  organization: Faculty of Computer Science, University of Dian Nuswantoro, Semarang, Indonesia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35494821$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAQxyNURMvSG2cUiQtIZLGTOIkvlaqKj5UqIfF1tSb2JPXi2Fs7WeiN1-D1eBLcppRuBTgHOzO_-Y89Mw-TPessJsljSpZ1TeuXG0S_zmRY8oLdSw7yoq4yxnm-d-u8nxyGsCaEUEbj4g-S_YKVvGxyepCcf8YeRxi1s6m2SksMP7__SMMmmsCkG4_RduVtIaBKrduiScH0zuvxbEg751OFI_pBW237dAyThUGnXocvKXiEkIJV8-8WzIThUXK_AxPw8HpfJJ9ev_p48jY7ffdmdXJ8mklW8zFrWpCcqbJRqpWNqpEhIm-kZF0NtGLQVlJFH3SEyKpiLRQd6SQFKLDKEYtFspp1lYO12Hg9gL8QDrS4MjjfC_CjlgaFrGSrKlY1pO5KTppG0TImJXXBi5iMRK1s1prsBi6-gjE3gpSIy06Iq04IGUTsROSPZn4ztQMqiXb0YHYuseux-kz0bis4Kcu8LKPAs2sB785j0UYx6CDRGLDopiDyijUVo5zwiD69g67d5G0sbaTKknJGm_oP1UN8sLadi3nlpag4rklT1rSIa5Es_0LFT-GgZRy9Tkf7TsDznYDIjPht7GEKQaw-vN9ln9wuyk01fg9jBPIZkN6F4LETUs-jGW-hzb9K_eJO0H878wtnjgeV
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3541878
Cites_doi 10.11591/eei.v9i3.1916
10.5539/mas.v4n5p162
10.1016/j.agrformet.2009.03.004
10.1109/LGRS.2014.2314617
10.1155/2017/1353691
10.1175/2009JCLI2900.1
10.1080/01431160600589179
10.1016/j.isprsjprs.2019.04.015
10.1117/12.411533
10.4028/www.scientific.net/KEM.467-469.19
10.1080/01431160304987
10.1515/itms-2015-0009
10.3390/s18082580
10.1007/s11069-015-1595-z
10.1016/S0034-4257(96)00067-3
10.1109/TGRS.2007.895835
10.30536/j.ijreses.2017.v14.a2820
10.1016/j.jag.2011.10.013
10.1016/j.isprsjprs.2020.04.007
10.3390/geosciences10050177
10.1080/01431161.2018.1433343
10.1080/01431160903124682
10.1109/TGRS.2009.2038274
10.1016/0034-4257(88)90106-X
10.3923/ajar.2016.144.153
10.5721/EuJRS20144726
10.1016/j.ejrs.2020.08.003
10.3390/rs10050802
10.47253/jtrss.v4i2.615
10.1155/2017/6824051
10.17014/ijog.v5i3.103
ContentType Journal Article
Copyright 2022 Hartomo et al.
COPYRIGHT 2022 PeerJ. Ltd.
2022 Hartomo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Hartomo et al. 2022 Hartomo et al.
Copyright_xml – notice: 2022 Hartomo et al.
– notice: COPYRIGHT 2022 PeerJ. Ltd.
– notice: 2022 Hartomo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Hartomo et al. 2022 Hartomo et al.
DBID AAYXX
CITATION
NPM
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.7717/peerj-cs.935
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed

CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_c6cbd656807f49088d14bc8073937a10
10.7717/peerj-cs.935
PMC9044244
A708471333
35494821
10_7717_peerj_cs_935
Genre Journal Article
GeographicLocations Indonesia
GeographicLocations_xml – name: Indonesia
GrantInformation_xml – fundername: Education and Culture Ministry Republic Indonesia
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RPM
3V.
ARCSS
M0N
NPM
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c579t-8bac95d48ddbc8d7e5eee98cc5f7a165ab6cdddbaf00c665ba3f0fc1aa3e62ee3
IEDL.DBID UNPAY
ISSN 2376-5992
IngestDate Fri Oct 03 12:52:16 EDT 2025
Sun Oct 26 03:49:00 EDT 2025
Tue Sep 30 17:00:37 EDT 2025
Thu Oct 02 06:43:45 EDT 2025
Mon Jul 14 10:33:46 EDT 2025
Mon Oct 20 21:56:58 EDT 2025
Mon Oct 20 16:12:52 EDT 2025
Thu Oct 16 14:15:05 EDT 2025
Thu Jan 02 22:54:08 EST 2025
Thu Apr 24 23:11:13 EDT 2025
Wed Oct 01 03:09:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tsunami
Risk values
Risk areas
Vegetation index
Spatial
Language English
License https://creativecommons.org/licenses/by/4.0
2022 Hartomo et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-8bac95d48ddbc8d7e5eee98cc5f7a165ab6cdddbaf00c665ba3f0fc1aa3e62ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0237-851X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.7717/peerj-cs.935
PMID 35494821
PQID 2644195187
PQPubID 2045934
PageCount e935
ParticipantIDs doaj_primary_oai_doaj_org_article_c6cbd656807f49088d14bc8073937a10
unpaywall_primary_10_7717_peerj_cs_935
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9044244
proquest_miscellaneous_2658651909
proquest_journals_2644195187
gale_infotracmisc_A708471333
gale_infotracacademiconefile_A708471333
gale_incontextgauss_ISR_A708471333
pubmed_primary_35494821
crossref_citationtrail_10_7717_peerj_cs_935
crossref_primary_10_7717_peerj_cs_935
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-28
PublicationDateYYYYMMDD 2022-03-28
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2022
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Karnieli (10.7717/peerj-cs.935/ref-14) 2010; 23
Ma (10.7717/peerj-cs.935/ref-17) 2019; 152
Mallick (10.7717/peerj-cs.935/ref-18) 2009; 149
Zhang (10.7717/peerj-cs.935/ref-38) 2010; 31
Prasetyo (10.7717/peerj-cs.935/ref-24) 2020; 9
Zha (10.7717/peerj-cs.935/ref-37) 2003; 24
Inoue (10.7717/peerj-cs.935/ref-13) 2015; 12
Xie (10.7717/peerj-cs.935/ref-33) 2010
Min (10.7717/peerj-cs.935/ref-21) 2016; 4
Amri (10.7717/peerj-cs.935/ref-2) 2018; 9
Hu (10.7717/peerj-cs.935/ref-10) 2008
Liu (10.7717/peerj-cs.935/ref-16) 2010; 4
Singh (10.7717/peerj-cs.935/ref-27) 2014; 47
Xu (10.7717/peerj-cs.935/ref-34) 2006; 27
Ghebrezgabher (10.7717/peerj-cs.935/ref-7) 2020; 23
Brunner (10.7717/peerj-cs.935/ref-4) 2010; 48
Mustaqim (10.7717/peerj-cs.935/ref-22) 2019
Rendana (10.7717/peerj-cs.935/ref-26) 2016; 10
Stepchenko (10.7717/peerj-cs.935/ref-28) 2016; 18
Verstappen (10.7717/peerj-cs.935/ref-30) 2010; 5
Holzman (10.7717/peerj-cs.935/ref-9) 2014; 11
Zhao (10.7717/peerj-cs.935/ref-39) 2017; 2017
National Disaster Management Agency (10.7717/peerj-cs.935/ref-23) 2012
Xue (10.7717/peerj-cs.935/ref-35) 2017; 2017
Yang (10.7717/peerj-cs.935/ref-36) 2011; 467–469
Wang (10.7717/peerj-cs.935/ref-32) 2020; 164
Mehrotra (10.7717/peerj-cs.935/ref-20) 2015; 77
Regional Disaster Management Agency (10.7717/peerj-cs.935/ref-25) 2019
Gao (10.7717/peerj-cs.935/ref-6) 1996; 58
Bovolo (10.7717/peerj-cs.935/ref-3) 2007; 45
Acharya (10.7717/peerj-cs.935/ref-1) 2018; 18
Koshimura (10.7717/peerj-cs.935/ref-15) 2020; 10
Volpi (10.7717/peerj-cs.935/ref-31) 2012; 20
Corner (10.7717/peerj-cs.935/ref-5) 2000; 4115
U.S. Geological Survey (10.7717/peerj-cs.935/ref-29) 2021
Huete (10.7717/peerj-cs.935/ref-11) 1988; 25
Ilham (10.7717/peerj-cs.935/ref-12) 2017; 14
Havivi (10.7717/peerj-cs.935/ref-8) 2018; 10
Maxwell (10.7717/peerj-cs.935/ref-19) 2018; 39
References_xml – volume: 9
  start-page: 1149
  issue: 3
  year: 2020
  ident: 10.7717/peerj-cs.935/ref-24
  article-title: Satellite imagery and machine learning for aridity disaster classification using vegetation indices
  publication-title: Bulletin of Electrical Engineering and Informatics
  doi: 10.11591/eei.v9i3.1916
– volume: 4
  start-page: 508
  issue: 5
  year: 2010
  ident: 10.7717/peerj-cs.935/ref-16
  article-title: Application of Markov chains to analyze and predict the time series
  publication-title: Modern Applied Science
  doi: 10.5539/mas.v4n5p162
– volume: 149
  start-page: 1327
  issue: 8
  year: 2009
  ident: 10.7717/peerj-cs.935/ref-18
  article-title: Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2009.03.004
– volume: 11
  start-page: 1951
  issue: 11
  year: 2014
  ident: 10.7717/peerj-cs.935/ref-9
  article-title: Subsurface soil moisture estimation by VI-LST method
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2014.2314617
– start-page: 1
  year: 2008
  ident: 10.7717/peerj-cs.935/ref-10
  article-title: Spatial-temporal pattern of GIMMS NDVI and its dynamics in Mongolian Plateau
– volume: 2017
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.7717/peerj-cs.935/ref-35
  article-title: Significant remote sensing vegetation indices: a review of developments and applications
  publication-title: Journal of Sensors
  doi: 10.1155/2017/1353691
– volume: 23
  start-page: 618
  issue: 3
  year: 2010
  ident: 10.7717/peerj-cs.935/ref-14
  article-title: Use of NDVI and land surface temperature for drought assessment: merits and limitations
  publication-title: Journal of Climate
  doi: 10.1175/2009JCLI2900.1
– volume: 27
  start-page: 3025
  issue: 14
  year: 2006
  ident: 10.7717/peerj-cs.935/ref-34
  article-title: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160600589179
– year: 2021
  ident: 10.7717/peerj-cs.935/ref-29
  article-title: What are the best landsat spectral bands for use in my research?
– volume: 152
  start-page: 166
  issue: 4
  year: 2019
  ident: 10.7717/peerj-cs.935/ref-17
  article-title: Deep learning in remote sensing applications: a meta-analysis and review
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2019.04.015
– year: 2019
  ident: 10.7717/peerj-cs.935/ref-22
  article-title: 40 Villages in DIY are prone to tsunami disasters
– volume: 4115
  start-page: 1
  issue: 4
  year: 2000
  ident: 10.7717/peerj-cs.935/ref-5
  article-title: Noise reduction in remote sensing imagery using data masking and principal component analysis
  publication-title: Applications of Digital Image Processing XXIII
  doi: 10.1117/12.411533
– volume: 467–469
  start-page: 19
  year: 2011
  ident: 10.7717/peerj-cs.935/ref-36
  article-title: Post classification comparison change detection of Guangzhou Metropolis
  publication-title: China Key Engineering Materials
  doi: 10.4028/www.scientific.net/KEM.467-469.19
– year: 2012
  ident: 10.7717/peerj-cs.935/ref-23
  article-title: Towards a resilient Indonesia to face the tsunami
– volume: 24
  start-page: 583
  issue: 3
  year: 2003
  ident: 10.7717/peerj-cs.935/ref-37
  article-title: Use of normalized difference built-up index in automatically mapping urban areas from TM imagery
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160304987
– volume: 12
  start-page: 1
  year: 2015
  ident: 10.7717/peerj-cs.935/ref-13
  article-title: Observation of tsunami damage to coastal forest using middle spatial resolution satellite data
  publication-title: Journal of Integrated Field Science
– volume: 18
  start-page: 57
  issue: 1
  year: 2016
  ident: 10.7717/peerj-cs.935/ref-28
  article-title: Applying Markov Chains for NDVI time series forecasting of Latvian Regions
  publication-title: Information Technology and Management Science
  doi: 10.1515/itms-2015-0009
– volume: 18
  start-page: 1
  issue: 8
  year: 2018
  ident: 10.7717/peerj-cs.935/ref-1
  article-title: Evaluation of water indices for surface water extraction in a landsat 8 scene of Nepal
  publication-title: Sensors
  doi: 10.3390/s18082580
– volume: 77
  start-page: 367
  issue: 1
  year: 2015
  ident: 10.7717/peerj-cs.935/ref-20
  article-title: Detection of tsunami-induced changes using generalized improved fuzzy radial basis function neural network
  publication-title: Natural Hazards
  doi: 10.1007/s11069-015-1595-z
– volume: 9
  volume-title: Indonesia’s disaster risk (RBI)
  year: 2018
  ident: 10.7717/peerj-cs.935/ref-2
– volume: 58
  start-page: 257
  issue: 3
  year: 1996
  ident: 10.7717/peerj-cs.935/ref-6
  article-title: NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(96)00067-3
– volume: 45
  start-page: 1658
  issue: 6
  year: 2007
  ident: 10.7717/peerj-cs.935/ref-3
  article-title: A split-based approach to unsupervised change detection in large-size SAR images
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2007.895835
– volume: 14
  start-page: 159
  issue: 2
  year: 2017
  ident: 10.7717/peerj-cs.935/ref-12
  article-title: Machine learning-based mangrove land classification on Worldview-2 satellite image in Nusa Lembongan island
  publication-title: International Journal of Remote Sensing and Earth Sciences
  doi: 10.30536/j.ijreses.2017.v14.a2820
– volume: 20
  start-page: 77
  issue: 1
  year: 2012
  ident: 10.7717/peerj-cs.935/ref-31
  article-title: Supervised change detection in VHR images using contextual information and support vector machines
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2011.10.013
– volume: 164
  start-page: 61
  issue: 7
  year: 2020
  ident: 10.7717/peerj-cs.935/ref-32
  article-title: Unsupervised change detection between SAR images based on hypergraphs
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2020.04.007
– year: 2019
  ident: 10.7717/peerj-cs.935/ref-25
  article-title: Implementation of local government affairs
– volume: 10
  start-page: 1
  issue: 5
  year: 2020
  ident: 10.7717/peerj-cs.935/ref-15
  article-title: Tsunami damage detection with remote sensing: a review
  publication-title: Geosciences
  doi: 10.3390/geosciences10050177
– volume: 39
  start-page: 2784
  issue: 9
  year: 2018
  ident: 10.7717/peerj-cs.935/ref-19
  article-title: Implementation of machine-learning classification in remote sensing: an applied review
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2018.1433343
– volume: 31
  start-page: 2837
  issue: 11
  year: 2010
  ident: 10.7717/peerj-cs.935/ref-38
  article-title: A practical DOS model-based atmospheric correction algorithm
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160903124682
– volume: 48
  start-page: 2403
  issue: 5
  year: 2010
  ident: 10.7717/peerj-cs.935/ref-4
  article-title: Earthquake damage assessment of buildings using VHR optical and SAR imagery
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2009.2038274
– volume: 25
  start-page: 295
  issue: 3
  year: 1988
  ident: 10.7717/peerj-cs.935/ref-11
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(88)90106-X
– volume: 10
  start-page: 144
  issue: 3–4
  year: 2016
  ident: 10.7717/peerj-cs.935/ref-26
  article-title: Mapping nutrient status in oil palm plantation using geographic information system
  publication-title: Asian Journal of Agricultural Research
  doi: 10.3923/ajar.2016.144.153
– volume: 47
  start-page: 461
  issue: 1
  year: 2014
  ident: 10.7717/peerj-cs.935/ref-27
  article-title: Detection of 2011 Tohoku tsunami inundated areas in Ishinomaki city using generalized improved fuzzy Kohonen clustering network
  publication-title: European Journal of Remote Sensing
  doi: 10.5721/EuJRS20144726
– volume: 23
  start-page: 249
  issue: 3
  year: 2020
  ident: 10.7717/peerj-cs.935/ref-7
  article-title: Assessment of NDVI variations in responses to climate change in the Horn of Africa
  publication-title: Egyptian Journal of Remote Sensing and Space Science
  doi: 10.1016/j.ejrs.2020.08.003
– start-page: 1
  year: 2010
  ident: 10.7717/peerj-cs.935/ref-33
  article-title: Calculating NDVI for landsat7-ETM data after atmospheric correction using 6S model: a case study in Zhangye City, China
– volume: 10
  start-page: 1
  issue: 5
  year: 2018
  ident: 10.7717/peerj-cs.935/ref-8
  article-title: Combining TerraSAR-X and landsat images for emergency response in urban environments
  publication-title: Remote Sensing
  doi: 10.3390/rs10050802
– volume: 4
  start-page: 98
  year: 2016
  ident: 10.7717/peerj-cs.935/ref-21
  article-title: Landslide assessment using Normalized Difference Vegetation Index (NDVI)
  publication-title: Journal of Tropical Resources and Sustainable Science
  doi: 10.47253/jtrss.v4i2.615
– volume: 2017
  start-page: 1
  issue: 3
  year: 2017
  ident: 10.7717/peerj-cs.935/ref-39
  article-title: Land cover information extraction based on daily NDVI time series and multiclassifier combination
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2017/6824051
– volume: 5
  start-page: 197
  issue: 3
  year: 2010
  ident: 10.7717/peerj-cs.935/ref-30
  article-title: Indonesian landforms and plate tectonics
  publication-title: Indonesian Journal on Geoscience
  doi: 10.17014/ijog.v5i3.103
SSID ssj0001511119
Score 2.1944795
Snippet This paper aims to propose a new algorithm to detect tsunami risk areas based on spatial modeling of vegetation indices and a prediction model to calculate the...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e935
SubjectTerms Algorithms
Algorithms and Analysis of Algorithms
Atmospheric correction
Atmospheric models
Classification
Climate change
Comparative analysis
Data Mining and Machine Learning
Disasters
Earthquakes
Machine learning
Methods
Neural networks
Prediction models
Remote sensing
Risk
Risk areas
Risk values
Spatial
Spatial and Geographic Information Systems
Support vector machines
Tsunami
Tsunamis
Vegetation
Vegetation index
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL3ABym9oQQbxc0Ch3k3sOMeCqAoSHICi3ixn7GxbhWTZJCBuvAavx5Mwk2TDBgRcOO56IiUzY89M8s03jN33ymYusiLUWkosUIQIMx1DCBQgXOxVDPRq4NVrdXgUvzyWxxujvggT1tMD94rbAwWZw6RDiyTvQDluFmegeyY32zdXCZ1uFFN9fzAdBWmPdE-wZNlber86C6F-knaT3X7GoI6q__cDeSMi_YqWPN-WS_vlsy2KjVB0cJldHHJIvt_f-zY758sr7NJ6PgMftutV9vG9XwxoQk6fpvFI-P71G68JRI3XL1f0kaZbpVjmeFl98gW3xaJanTYnHzjms9wNcBmMcLypWxpfzwmOzi2h2bktXf-TSMN9fY0dHTx_9-wwHEYshCCTtAl1ZiGVLtbOoVJd4qX3PtUAMkflKmkzBQ7XbC4EKCUzG-Uih5m1kVdz76PrbKusSn-TccBEDewsVxaLnJwyD5coEUcOAJMqnwTs8VrpBgb-cRqDURisQ8hEpjORgdqgiQL2YJRe9rwbf5B7SvYbZYgtu_sDfcgMPmT-5UMBu0fWN8SHURLgZmHbujYv3r4x-4mg-B1FUcAeDUJ5hfcNduhfwKcnCq2J5O5EEjcsTJfXTmaGA6M2XV6K2a5GPd0dl-lKAsGVvmpJRmqFGbdIA3aj98nxuSNJPD_zWcCSibdOFDNdKU9POjrxVMTU7Riwh6Nf_1Xlt_6HynfYhTk1kogonOtdttWsWn8b07smu9Pt5B_V3lPv
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAX3o9AQQbxOKBQZxM7zgGhFrUqSKxQoag3yxk7W1BItptdEDf-Bn-PX4IncXYbED0mM5Fiezwztj9_Q8hjK3RuYs1CKTl3CxTGwlwmEAIGCJNYkQBuDbybiIOj5O0xP94gk_4uDMIqe5_YOmpTA-6Rb7eB26UDMn01Ow2xahServYlNLQvrWBethRjF8jmGJmxRmRzd2_y_nC968LRRWQdAj51S5ntmbXzLyE0L7K24ts6NrUU_v866jOR6m8U5cVlNdM_vuuyPBOi9q-Syz63pDudMVwjG7a6Tq70dRuon8Y3yOknO_UoQ4pH1s5V_P75izYIrnbfz-Z4eNNKMcYZWtXfbEl1OXX9sTj5Sl2eS42H0bjIRxfNEsvaU4SpU40od6or0z0imbhtbpKj_b2Prw9CX3ohBJ5mi1DmGjJuEmlMDtKklltrMwnAi1RHgutcgHEyXTAGQvBcxwUrINI6tmJsbXyLjKq6sncIBZfAgY4Kod3ip8CMxKSCJbEBcMmWTQPyvO90BZ6XHMtjlMqtT3CIVDtEChrlhiggT1bas46P4z96uzh-Kx1k0W5f1POp8pNSgYDcuIRWsrRoAV8mSlxzO5ZAHbGAPMLRV8iTUSEQZ6qXTaPefDhUOynDuB7HcUCeeaWidv8N2t9rcK1Haq2B5tZA001kGIp7I1PekTRqbfYBebgS45cIjqtsvUQdLoXLxFkWkNudTa7aHXPk_xlHAUkH1jromKGk-nzS0oxnLMFbkAF5urLrc7v87vn_f49cGuPVERaHY7lFRov50t53Cd0if-Bn6R_ZGFLy
  priority: 102
  providerName: ProQuest
Title Vegetation indices’ spatial prediction based novel algorithm for determining tsunami risk areas and risk values
URI https://www.ncbi.nlm.nih.gov/pubmed/35494821
https://www.proquest.com/docview/2644195187
https://www.proquest.com/docview/2658651909
https://pubmed.ncbi.nlm.nih.gov/PMC9044244
https://doi.org/10.7717/peerj-cs.935
https://doaj.org/article/c6cbd656807f49088d14bc8073937a10
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: 8FG
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFL3a2gd4YXwTGJVBAx5QitPETvLYoZaBRDUNhsaT5dhONyhpaRIQPPE3-Hv8EnyTtGo28fHY-lqKb659j-PjcwH2DJeJ9iV1o4gxu0Gh1E2iQLkKE4QODA8Ufhp4PeEHx8GrE3ayBXuruzAb5_eh3Wk8Wxiz_OCqvB_7bBu6nFnE3YHu8eRw-L6qGxdyl8XxoOa0X-jSyjaVKP_FpXcj95znRV4qs4X89lXOZhtJZ7wDo9Xj1lyTj_2ySPrq-zklx3-N5ypcaVAnGdZhcg22THYddlYVHUgzwW_A53dm2vAPCR5m20Xk14-fJEfate2_WOKxTtWK2U-TbP7FzIicTefLs-L0E7EImOiGYGNzIinyEgveEySwE4n8dyIzXf9EmXGT34Tj8ejt8wO3KcrgKhbGhRslUsVMB5HWiYp0aJgxJo6UYmkoPc5kwpW2bTKlVHHOEumnNFWelL7hA2P8W9DJ5pm5A0RZaKekl3Jpt0UpYhUdchr4WikLw0zowNPVyxOqUSzHwhkzYXcu6E1ReVOoXFhvOvBobb2olTr-YLePcbC2QX3t6g_7mkQzXYXiKtEW6kY0TCsqmPYCO9xaP1B61IGHGEUCFTQypOhMZZnn4uWbIzEMKWZ83_cdeNIYpXP73Eo2Nx7s6FF0q2W527K0U1y1m1fBKpolJhcVkrX4OLJ-erBuxp5Im8vMvEQbFnGL0WnswO06ttfj9hkqAw08B8JW1Lcc027Jzk4rAfKYBng_0oHH6_nxV5ff_V_De3B5gNdLqO8Ool3oFMvS3Legr0h6sB2NX_Sguz-aHB71qk8nvWYd-A1vkmDE
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeygX3o9AAYMoHFCos0mc5FChFlrt0odQaVFvxrGdbdE22W52qXrjb_Bn-DH8EmYSZ7cB0VuPiSdR7JnMw_5mhpCXhstU-5K5cRyGEKAw5qZxoFyFBkIHhgcKtwZ2dnn3IPh4GB7OkV9NLgzCKhudWClqXSjcI1-pDDe4A3H0bnjqYtcoPF1tWmhI21pBr1Ylxmxix5Y5P4MQrlztfQB-L3c6mxv777uu7TLgqjBKxm6cSpWEOoi1TlWsIxMaY5JYqTCLpMdDmXKlYUxmjCnOw1T6GcuUJ6VveMcYH957jSwEfpBA8LewvrH7aW-2yxOiSkpqxH0EodPK0JjRN1eVb5Oqw9zMFlYtA_41DBcs49-ozcVJPpTnZ3IwuGASN2-RG9aXpWu18N0mcya_Q242fSKoVRt3yekX07eoRopH5KCafv_4SUsEc8PzwxEeFlWjaFM1zYvvZkDloA_rPz46oeBXU21hO2Bp6bic5PLkmCIsnkpE1VOZ6_oSi5eb8h45uBIm3CfzeZGbh4QqcBiV9DIuIdjK0APSEWeBr5UC585EDnnTLLpQtg46tuMYCIiHkEWiYpFQpQAWOWR5Sj2s63_8h24d-Telward1Y1i1BdWCQjFVarBgY5ZlFUAM-0FMN26KqH0mENeIPcF1uXIEfjTl5OyFL3Pe2ItYuhH-L7vkNeWKCvgu5W0eRQweyzl1aJcalGC4lDt4UbIhFVcpZj9Zg55Ph3GJxGMl5tigjRhzMHzZ4lDHtQyOZ23H2K9oY7nkKglra2FaY_kx0dVWfOEBZh16ZBXU7m-dMkfXf79z8hid39nW2z3drcek-sdTFthvtuJl8j8eDQxT8CZHKdP7R9LyderVhJ_AL-KlJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL70eggEEUDiis87CTHBAqlKVLoUJAUW_GsZ1t0TbZbnapeuNv8Ff4OfwSZvLYbUD01uPGk1XsGc_D_maGkEdWqNQEirlxzDkEKIy5aRxqV6OBMKEVocajgfdbYmM7fLvDd5bIrzYXBmGVrU6sFLUpNJ6R9yrDDe5AHPWyBhbxYb3_YnzgYgcpvGlt22nUIrJpjw4hfCufD9aB16u-33_9-dWG23QYcDWPkqkbp0on3ISxMamOTWS5tTaJteZZpDzBVSq0gTGVMaaF4KkKMpZpT6nACt_aAP73DDkbYRV3zFLvv1mc73BURkmNtY8gaOqNrZ18c3X5LKl6yy2sYNUs4F-TcMwm_o3XPD_Lx-roUI1Gx4xh_zK52HixdK0WuytkyeZXyaW2QwRtFMY1cvDFDhs8I8XLcVBKv3_8pCXCuOH98QSviapRtKaG5sV3O6JqNITVnu7uU_CoqWkAO2Bj6bSc5Wp_jyIgnirE01OVm_onli235XWyfSosuEGW8yK3twjV4Cpq5WVCQZiVoe9jIsHCwGgNbp2NHPK0XXSpmwro2IhjJCESQhbJikVSlxJY5JDVOfW4rvzxH7qXyL85Ddbrrh4Uk6Fstr_UQqcGXOeYRVkFLTNeCNOt6xEqjznkIXJfYkWOHGV7qGZlKQefPsq1iKEHEQSBQ540RFkB361Vk0EBs8ciXh3KlQ4lqAzdHW6FTDYqq5SLDeaQB_NhfBNheLktZkjDYwE-P0sccrOWyfm8A46VhnzPIVFHWjsL0x3J93arguYJCzHf0iGP53J94pLfPvn775NzoBrku8HW5h1ywcd8FRa4frxClqeTmb0LXuQ0vVdtV0q-nrZ--APpMpI2
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXK9gAXyjeBggwqcEBZnE3sJMcFtSpIVAhYVE6WM3a2hSW7bBIQnPgb_D1-CTNJdtW04uO467EUT8ae5_j5DWM7TpnMhkb4SSIlblCE8LMkAh8oQdjIqQjo08DLA7U_iV4cysMNtrO6C3Pi_D7GncaThXPLDz6UwzSU59imkoi4B2xzcvBq_L6pGxcrX6bpqOW0n-nSyzaNKP_ZpfdE7jnNizxfFwvz7auZzU4knb0ttrt63JZr8nFYV9kQvp9ScvzXeC6xix3q5OM2TC6zDVdcYVurig68m-BX2ed3btrxDzkdZuMi8uvHT14S7Rr7L5Z0rNO0UvazvJh_cTNuZtP58rg6-sQRAXPbEWwwJ_KqrKngPScCOzfEf-emsO1Pkhl35TU22dt9-2zf74oy-CDjtPKTzEAqbZRYm0FiYyedc2kCIPPYBEqaTIHFNpMLAUrJzIS5yCEwJnRq5Fx4nQ2KeeFuMg4I7cAEuTK4LcoJq9hYiSi0AAjDXOyxx6uXp6FTLKfCGTONOxfypm68qaHU6E2PPVhbL1qljj_YPaU4WNuQvnbzB74m3U1XDQoyi1A3EXHeUMFsEOFwW_1AEwiP3aco0qSgURBFZ2rqstTP37zW41hQxg_D0GOPOqN8js8NprvxgKMn0a2e5XbPEqc49JtXwaq7JabUDZJFfJygn-6tm6kn0eYKN6_JRiYKMbpIPXajje31uENJykCjwGNxL-p7jum3FMdHjQB5KiK6H-mxh-v58VeX3_pfw9vswoiul4jQHyXbbFAta3cHQV-V3e3m_G8K911P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vegetation+indices%27+spatial+prediction+based+novel+algorithm+for+determining+tsunami+risk+areas+and+risk+values&rft.jtitle=PeerJ.+Computer+science&rft.au=Hartomo%2C+Kristoko+Dwi&rft.au=Nataliani%2C+Yessica&rft.au=Hasibuan%2C+Zainal+Arifin&rft.date=2022-03-28&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=8&rft.spage=e935&rft_id=info:doi/10.7717%2Fpeerj-cs.935&rft.externalDocID=A708471333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon