Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial

We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial ( NCT04000...

Full description

Saved in:
Bibliographic Details
Published inNature medicine Vol. 27; no. 5; pp. 815 - 819
Main Authors Yao, Xiaoxi, Rushlow, David R., Inselman, Jonathan W., McCoy, Rozalina G., Thacher, Thomas D., Behnken, Emma M., Bernard, Matthew E., Rosas, Steven L., Akfaly, Abdulla, Misra, Artika, Molling, Paul E., Krien, Joseph S., Foss, Randy M., Barry, Barbara A., Siontis, Konstantinos C., Kapa, Suraj, Pellikka, Patricia A., Lopez-Jimenez, Francisco, Attia, Zachi I., Shah, Nilay D., Friedman, Paul A., Noseworthy, Peter A.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.05.2021
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1078-8956
1546-170X
1546-170X
DOI10.1038/s41591-021-01335-4

Cover

Abstract We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial ( NCT04000087 ), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults ( N  = 11,573 intervention; N  = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF (≤50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01–1.61), P  = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08–1.91), P  = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P  = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P  < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care. In a pragmatic, cluster-randomized clinical trial, use of an AI algorithm for interpretation of electrocardiograms in primary care practices increased the frequency at which impaired heart function was diagnosed.
AbstractList We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial ( NCT04000087 ), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF (≤50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01-1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08-1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care.We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial ( NCT04000087 ), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF (≤50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01-1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08-1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care.
We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial (NCT04000087), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF (≤50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01–1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08–1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care.In a pragmatic, cluster-randomized clinical trial, use of an AI algorithm for interpretation of electrocardiograms in primary care practices increased the frequency at which impaired heart function was diagnosed.
We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial ( NCT04000087 ), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults ( N  = 11,573 intervention; N  = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF (≤50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01–1.61), P  = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08–1.91), P  = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P  = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P  < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care. In a pragmatic, cluster-randomized clinical trial, use of an AI algorithm for interpretation of electrocardiograms in primary care practices increased the frequency at which impaired heart function was diagnosed.
We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial (NCT04000087), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF ([less than or equal to]50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01-1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08-1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care.
We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial (NCT04000087), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF ([less than or equal to]50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01-1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08-1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care. In a pragmatic, cluster-randomized clinical trial, use of an AI algorithm for interpretation of electrocardiograms in primary care practices increased the frequency at which impaired heart function was diagnosed.
We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial ( NCT04000087 ), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF (≤50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01-1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08-1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care.
Audience Academic
Author Molling, Paul E.
Friedman, Paul A.
Thacher, Thomas D.
McCoy, Rozalina G.
Bernard, Matthew E.
Siontis, Konstantinos C.
Barry, Barbara A.
Attia, Zachi I.
Misra, Artika
Kapa, Suraj
Rosas, Steven L.
Lopez-Jimenez, Francisco
Inselman, Jonathan W.
Yao, Xiaoxi
Behnken, Emma M.
Akfaly, Abdulla
Noseworthy, Peter A.
Krien, Joseph S.
Foss, Randy M.
Rushlow, David R.
Shah, Nilay D.
Pellikka, Patricia A.
Author_xml – sequence: 1
  givenname: Xiaoxi
  orcidid: 0000-0001-9906-7106
  surname: Yao
  fullname: Yao, Xiaoxi
  email: yao.xiaoxi@mayo.edu
  organization: Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Department of Cardiovascular Medicine, Mayo Clinic
– sequence: 2
  givenname: David R.
  surname: Rushlow
  fullname: Rushlow, David R.
  organization: Department of Family Medicine, Mayo Clinic
– sequence: 3
  givenname: Jonathan W.
  surname: Inselman
  fullname: Inselman, Jonathan W.
  organization: Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic
– sequence: 4
  givenname: Rozalina G.
  surname: McCoy
  fullname: McCoy, Rozalina G.
  organization: Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Division of Community Internal Medicine, Department of Medicine, Mayo Clinic
– sequence: 5
  givenname: Thomas D.
  orcidid: 0000-0002-7644-8173
  surname: Thacher
  fullname: Thacher, Thomas D.
  organization: Department of Family Medicine, Mayo Clinic
– sequence: 6
  givenname: Emma M.
  surname: Behnken
  fullname: Behnken, Emma M.
  organization: Knowledge and Evaluation Research Unit, Mayo Clinic
– sequence: 7
  givenname: Matthew E.
  surname: Bernard
  fullname: Bernard, Matthew E.
  organization: Department of Family Medicine, Mayo Clinic
– sequence: 8
  givenname: Steven L.
  surname: Rosas
  fullname: Rosas, Steven L.
  organization: Department of Family Medicine, Mayo Clinic Health System
– sequence: 9
  givenname: Abdulla
  surname: Akfaly
  fullname: Akfaly, Abdulla
  organization: Department of Community Internal Medicine, Mayo Clinic Health System
– sequence: 10
  givenname: Artika
  surname: Misra
  fullname: Misra, Artika
  organization: Department of Family Medicine, Mayo Clinic Health System
– sequence: 11
  givenname: Paul E.
  surname: Molling
  fullname: Molling, Paul E.
  organization: Department of Family Medicine, Mayo Clinic Health System
– sequence: 12
  givenname: Joseph S.
  surname: Krien
  fullname: Krien, Joseph S.
  organization: Department of Family Medicine, Mayo Clinic Health System
– sequence: 13
  givenname: Randy M.
  orcidid: 0000-0003-3898-7317
  surname: Foss
  fullname: Foss, Randy M.
  organization: Department of Family Medicine, Mayo Clinic Health System
– sequence: 14
  givenname: Barbara A.
  surname: Barry
  fullname: Barry, Barbara A.
  organization: Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic
– sequence: 15
  givenname: Konstantinos C.
  surname: Siontis
  fullname: Siontis, Konstantinos C.
  organization: Department of Cardiovascular Medicine, Mayo Clinic
– sequence: 16
  givenname: Suraj
  surname: Kapa
  fullname: Kapa, Suraj
  organization: Department of Cardiovascular Medicine, Mayo Clinic
– sequence: 17
  givenname: Patricia A.
  orcidid: 0000-0001-6800-3521
  surname: Pellikka
  fullname: Pellikka, Patricia A.
  organization: Department of Cardiovascular Medicine, Mayo Clinic
– sequence: 18
  givenname: Francisco
  surname: Lopez-Jimenez
  fullname: Lopez-Jimenez, Francisco
  organization: Department of Cardiovascular Medicine, Mayo Clinic
– sequence: 19
  givenname: Zachi I.
  orcidid: 0000-0002-9706-7900
  surname: Attia
  fullname: Attia, Zachi I.
  organization: Department of Cardiovascular Medicine, Mayo Clinic
– sequence: 20
  givenname: Nilay D.
  surname: Shah
  fullname: Shah, Nilay D.
  organization: Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic
– sequence: 21
  givenname: Paul A.
  orcidid: 0000-0001-5052-2948
  surname: Friedman
  fullname: Friedman, Paul A.
  organization: Department of Cardiovascular Medicine, Mayo Clinic
– sequence: 22
  givenname: Peter A.
  orcidid: 0000-0002-4308-0456
  surname: Noseworthy
  fullname: Noseworthy, Peter A.
  organization: Department of Cardiovascular Medicine, Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33958795$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1qFDEUxwep2Hb1BbyQgCAKTk0m8-ndUvwoFAp-4V3IZk52UzLJNslQ9cp3EHxAn8Szuy11y1JkCHNIfv-TnHP-h9me8w6y7DGjR4zy9lUsWdWxnBa4GOdVXt7LDlhV1jlr6Nc9jGnT5m1X1fvZYYznlFJOq-5Bts95V7VNVx1kv6chGW2UkZYYl8BaMwen4M_PX-DkzEJPwIJKwSsZeuPnQQ6RaB-I6cGtpTIZ74jXZIkR7kVyadKCWH9J4Bylq1Md5Dp4TSRZBjkfEFUvSZCu94P5gbcoaxzmsiQFfMvD7L6WNsKjq_8k-_z2zafj9_np2buT4-lprqqmS3nDWqlhpqCjla77Sha9LJUExfmsoLTmhe6amlGgZde1stAlzCjXPVY_47KifJI93-RdBn8xQkxiMFFhF6QDP0ZRVEXJa1rTBtGnt9BzPwaHr1tRDVKMdTfUXFoQxmmfsPRVUjGta9ZyxnBWkyzfQWHjIUiLQ9YGt7f4ox08fj0MRu0UvNgSIJPgW5rLMUZx8vHD_7NnX7bZZ_-wC5A2LaK342q2cRt8ctWtcTZAL5bBDDJ8F9fOQ6DdACr4GANooUxaWwlLM1YwKlYmFxuTCzS5WJtclCgtbkmvs98p4htRRNjNIdyM7w7VX6cFDYk
CitedBy_id crossref_primary_10_1093_ehjdh_ztab078
crossref_primary_10_1016_S2589_7500_24_00158_4
crossref_primary_10_3390_businesses4030028
crossref_primary_10_1016_j_cpcardiol_2023_101750
crossref_primary_10_1093_jamia_ocad180
crossref_primary_10_1016_j_cjca_2024_05_027
crossref_primary_10_1161_CIRCOUTCOMES_123_010404
crossref_primary_10_1001_jamacardio_2021_2878
crossref_primary_10_1016_S2589_7500_21_00281_8
crossref_primary_10_1186_s13063_022_06430_6
crossref_primary_10_26442_00403660_2022_09_201843
crossref_primary_10_1093_eurheartj_ehab649
crossref_primary_10_1093_ehjdh_ztac033
crossref_primary_10_1093_ehjdh_ztad001
crossref_primary_10_1093_eurheartj_ehac733
crossref_primary_10_2196_37188
crossref_primary_10_1097_TP_0000000000005023
crossref_primary_10_1161_HCG_0000000000000097
crossref_primary_10_1093_eurheartj_ehae475
crossref_primary_10_1016_j_cpcardiol_2025_103004
crossref_primary_10_5694_mja2_52401
crossref_primary_10_1038_s41591_024_02970_3
crossref_primary_10_1038_s41591_022_02053_1
crossref_primary_10_1016_j_hfc_2024_06_008
crossref_primary_10_3349_ymj_2023_0341
crossref_primary_10_1016_j_mcpdig_2023_03_005
crossref_primary_10_1097_SCS_0000000000010826
crossref_primary_10_1001_jamanetworkopen_2024_32990
crossref_primary_10_3389_fpubh_2023_1328918
crossref_primary_10_3390_jcm10225284
crossref_primary_10_1016_S0140_6736_23_00875_9
crossref_primary_10_1093_eurheartj_ehab678
crossref_primary_10_1016_S2589_7500_21_00256_9
crossref_primary_10_1093_ehjdh_ztac028
crossref_primary_10_17849_insm_51_2_64_76_1
crossref_primary_10_1253_circj_CJ_22_0827
crossref_primary_10_1002_joa3_13052
crossref_primary_10_7759_cureus_59661
crossref_primary_10_1016_j_mayocp_2022_04_008
crossref_primary_10_3390_applbiosci3010002
crossref_primary_10_3390_children12010025
crossref_primary_10_1177_10892532221100660
crossref_primary_10_3390_ejihpe14030045
crossref_primary_10_1093_eurheartj_ehac758
crossref_primary_10_1016_j_mayocp_2023_02_019
crossref_primary_10_1136_bmjhci_2021_100466
crossref_primary_10_1097_JS9_0000000000000088
crossref_primary_10_1186_s12933_023_01985_3
crossref_primary_10_1016_j_jjcc_2023_07_019
crossref_primary_10_1016_j_jacep_2025_02_003
crossref_primary_10_2459_JCM_0000000000001663
crossref_primary_10_1038_s41598_025_90615_x
crossref_primary_10_1161_CIRCULATIONAHA_122_062646
crossref_primary_10_1093_jamia_ocae119
crossref_primary_10_3389_fvets_2024_1395934
crossref_primary_10_1016_j_hjc_2024_07_003
crossref_primary_10_1016_j_mcpdig_2024_10_001
crossref_primary_10_3390_info15110725
crossref_primary_10_1063_5_0176850
crossref_primary_10_1016_j_cej_2022_140459
crossref_primary_10_1016_j_jcmg_2021_09_004
crossref_primary_10_17802_2306_1278_2023_12_3_109_125
crossref_primary_10_1088_1361_6579_ad9ce5
crossref_primary_10_26442_20751753_2023_1_202095
crossref_primary_10_1177_20552076221143249
crossref_primary_10_1007_s12170_023_00723_4
crossref_primary_10_1093_eurheartj_ehae794
crossref_primary_10_3389_fcvm_2022_853614
crossref_primary_10_1038_s41586_023_05947_3
crossref_primary_10_1093_cvr_cvac006
crossref_primary_10_1016_j_cjca_2023_11_044
crossref_primary_10_1016_j_mayocp_2022_10_001
crossref_primary_10_3389_fcvm_2023_1070641
crossref_primary_10_1016_j_mayocpiqo_2022_08_003
crossref_primary_10_1093_eurheartj_ehab874
crossref_primary_10_1093_ehjdh_ztac065
crossref_primary_10_1161_CIRCRESAHA_121_319876
crossref_primary_10_1007_s11936_023_01032_0
crossref_primary_10_1038_s41598_022_18640_8
crossref_primary_10_1016_j_jjcc_2023_04_020
crossref_primary_10_1016_j_mser_2025_100971
crossref_primary_10_1016_j_jacc_2021_08_043
crossref_primary_10_1016_j_xcrm_2022_100869
crossref_primary_10_1016_j_jacadv_2024_101202
crossref_primary_10_56294_dm2024_356
crossref_primary_10_1016_j_ccl_2023_06_001
crossref_primary_10_2139_ssrn_4001822
crossref_primary_10_1016_j_jacc_2022_05_034
crossref_primary_10_1016_j_jacadv_2023_100632
crossref_primary_10_1007_s11936_023_01029_9
crossref_primary_10_1161_CIRCULATIONAHA_123_067750
crossref_primary_10_1161_JAHA_123_031671
crossref_primary_10_1093_ehjacc_zuac156
crossref_primary_10_1007_s10741_022_10283_1
crossref_primary_10_1016_j_jjcc_2021_11_017
crossref_primary_10_3389_fcvm_2022_829553
crossref_primary_10_1016_j_xcrm_2024_101746
crossref_primary_10_1007_s10554_023_02941_8
crossref_primary_10_1016_j_jelectrocard_2024_06_046
crossref_primary_10_2196_56774
crossref_primary_10_3389_fcvm_2024_1323918
crossref_primary_10_1093_eurheartj_ehad553
crossref_primary_10_1016_j_medj_2021_06_003
crossref_primary_10_1016_j_cardfail_2024_03_001
crossref_primary_10_1186_s40001_023_01065_y
crossref_primary_10_1016_j_jacc_2024_08_036
crossref_primary_10_1007_s12265_022_10260_x
crossref_primary_10_1016_j_cvdhj_2021_08_002
crossref_primary_10_1161_CIRCULATIONAHA_123_065489
crossref_primary_10_1038_s41591_024_03243_9
crossref_primary_10_1038_s41746_023_00934_4
crossref_primary_10_1093_ehjdh_ztab101
crossref_primary_10_1093_europace_euae070
crossref_primary_10_1016_j_ahjo_2025_100528
crossref_primary_10_1161_CIRCOUTCOMES_124_011504
crossref_primary_10_15420_aer_2022_31
crossref_primary_10_2147_VHRM_S279337
crossref_primary_10_1161_CIRCULATIONAHA_121_057869
crossref_primary_10_1016_j_jacadv_2025_101619
crossref_primary_10_1016_j_ijcard_2022_03_002
crossref_primary_10_3390_bioengineering11111069
crossref_primary_10_1093_eurjpc_zwac098
crossref_primary_10_1007_s12265_022_10232_1
crossref_primary_10_1016_j_mayocp_2022_06_003
crossref_primary_10_1080_1061186X_2024_2448711
crossref_primary_10_1016_j_jacc_2024_05_062
crossref_primary_10_3390_jpm12020315
crossref_primary_10_1001_jamanetworkopen_2022_33946
crossref_primary_10_1016_j_cjca_2024_07_026
crossref_primary_10_1093_ehjdh_ztad081
crossref_primary_10_1002_adfm_202423264
crossref_primary_10_1016_j_cjca_2024_11_031
crossref_primary_10_1038_s41746_022_00690_x
crossref_primary_10_1016_j_jjcc_2021_10_016
crossref_primary_10_1016_j_mayocp_2023_04_013
crossref_primary_10_1007_s11936_023_01004_4
crossref_primary_10_1016_j_ibmed_2022_100070
crossref_primary_10_1038_d41586_024_02675_0
crossref_primary_10_1016_j_ahjo_2024_100479
crossref_primary_10_3390_jcm13164792
crossref_primary_10_1016_j_hfc_2023_03_001
crossref_primary_10_1186_s12891_022_05126_x
crossref_primary_10_1016_j_isci_2022_105434
crossref_primary_10_1016_j_cardfail_2022_12_016
crossref_primary_10_1038_s41591_024_02961_4
crossref_primary_10_1016_j_cvdhj_2024_03_005
crossref_primary_10_2215_CJN_0000000000000483
crossref_primary_10_1161_HYPERTENSIONAHA_124_22349
crossref_primary_10_7143_jhep_51_229
crossref_primary_10_1038_s41591_024_03206_0
crossref_primary_10_3390_jcm14020653
crossref_primary_10_1016_j_echo_2022_04_005
crossref_primary_10_1093_eurheartj_ehae415
crossref_primary_10_1016_j_cvdhj_2022_06_001
crossref_primary_10_1186_s40959_022_00151_0
crossref_primary_10_1016_j_cjca_2024_06_011
crossref_primary_10_1056_AIoa2400190
crossref_primary_10_1016_j_jacc_2024_08_069
crossref_primary_10_1093_eurheartj_ehae651
crossref_primary_10_1007_s10439_023_03343_6
crossref_primary_10_1016_j_cpcardiol_2023_102097
crossref_primary_10_15212_CVIA_2023_0024
crossref_primary_10_1016_S2589_7500_24_00115_8
crossref_primary_10_1038_s41591_022_02079_5
crossref_primary_10_1136_bmjmed_2022_000193
crossref_primary_10_1007_s11936_024_01059_x
crossref_primary_10_2174_0118749445181059240201054546
crossref_primary_10_2196_41940
crossref_primary_10_1016_j_ebiom_2023_104462
crossref_primary_10_3390_jcm11226767
crossref_primary_10_1016_j_repc_2024_08_009
crossref_primary_10_1016_j_jelectrocard_2023_08_014
crossref_primary_10_1093_jamia_ocac052
crossref_primary_10_1016_j_cvdhj_2022_09_001
crossref_primary_10_1016_j_jcct_2024_04_006
crossref_primary_10_1136_bmjopen_2024_084398
crossref_primary_10_1038_s41591_024_03094_4
crossref_primary_10_1016_j_jacc_2024_03_400
crossref_primary_10_1016_j_jacc_2024_03_401
crossref_primary_10_3390_diagnostics13223479
crossref_primary_10_1056_AIcs2300176
crossref_primary_10_1016_j_ahj_2023_03_008
crossref_primary_10_1016_j_mayocp_2023_07_011
crossref_primary_10_1212_WNL_0000000000013200
crossref_primary_10_1016_j_cmpb_2023_107359
crossref_primary_10_1016_j_mcpdig_2024_06_010
crossref_primary_10_1093_infdis_jiae348
crossref_primary_10_1161_CIR_0000000000001201
crossref_primary_10_1016_j_ijcha_2024_101361
crossref_primary_10_31083_j_rcm2204121
crossref_primary_10_1038_s41440_023_01469_7
crossref_primary_10_1186_s43044_024_00551_w
crossref_primary_10_3389_fcvm_2024_1397921
crossref_primary_10_3390_jimaging10080193
crossref_primary_10_4330_wjc_v15_i6_284
crossref_primary_10_1016_j_jacadv_2023_100682
crossref_primary_10_1016_j_hrthm_2023_07_001
crossref_primary_10_1002_ehf2_14263
crossref_primary_10_46871_eams_1438927
crossref_primary_10_2196_52073
crossref_primary_10_3389_fphys_2022_1089343
crossref_primary_10_1038_s41467_024_45355_3
crossref_primary_10_1093_europace_euae007
crossref_primary_10_1016_j_jacadv_2022_100153
crossref_primary_10_1093_ehjqcco_qcad009
crossref_primary_10_1093_eurheartj_ehae737
crossref_primary_10_1016_j_jncc_2022_11_004
crossref_primary_10_3389_fcvm_2022_945726
crossref_primary_10_1016_j_ahjo_2022_100129
crossref_primary_10_1016_j_cvdhj_2022_07_074
crossref_primary_10_1016_S2589_7500_24_00151_1
crossref_primary_10_1136_bmjopen_2022_065845
crossref_primary_10_1016_j_jacadv_2024_101179
crossref_primary_10_1016_j_cjca_2024_07_003
Cites_doi 10.1056/NEJM199209033271003
10.1136/bmj.312.7025.222
10.1161/01.CIR.0000130845.38133.8F
10.1016/0002-9149(95)80023-L
10.1038/s41591-018-0240-2
10.1001/jama.289.2.194
10.1056/NEJMp1915448
10.1016/S0140-6736(97)03033-X
10.1136/bmj.318.7180.368
10.1016/j.jacc.2013.05.019
10.7326/0003-4819-138-11-200306030-00012
10.1136/heart.84.4.440
10.1136/bmj.320.7229.220
10.1016/j.dib.2019.104894
10.1093/eurheartj/ehl406
10.1111/j.1751-7133.2008.08283.x
10.1161/01.CIR.0000085166.44904.79
10.1016/S0140-6736(03)13501-5
10.1136/bmj.320.7240.985
10.1111/jce.13889
10.1038/s41746-019-0208-8
10.1038/s41591-020-1034-x
10.1016/j.ahj.2019.10.007
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
COPYRIGHT 2021 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/s41591-021-01335-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Research Library (via ProQuest)
ProQuest Central Science Database (via ProQuest)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Research Library Prep



MEDLINE




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1546-170X
EndPage 819
ExternalDocumentID A661831101
33958795
10_1038_s41591_021_01335_4
Genre Randomized Controlled Trial
Multicenter Study
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery
GroupedDBID ---
.-4
.55
.GJ
0R~
123
1CY
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABUWG
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IEA
IH2
IHR
IHW
INH
INR
IOF
IOV
ISR
ITC
J5H
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
MK0
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
UQL
X7M
XJT
YHZ
ZGI
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
AETEA
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
ACMFV
AGSTI
AEIIB
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c579t-718afebce905f6d5a2da4caec33b200632f97610e04998a2f4eb03fd958b3a503
IEDL.DBID BENPR
ISSN 1078-8956
1546-170X
IngestDate Thu Oct 02 08:43:32 EDT 2025
Mon Oct 06 17:16:49 EDT 2025
Mon Oct 20 22:21:04 EDT 2025
Thu Jun 12 23:36:23 EDT 2025
Mon Oct 20 16:34:08 EDT 2025
Thu Oct 16 15:12:48 EDT 2025
Thu Oct 16 14:44:41 EDT 2025
Thu May 22 20:58:25 EDT 2025
Thu Apr 03 07:04:32 EDT 2025
Wed Oct 01 04:32:40 EDT 2025
Thu Apr 24 23:10:19 EDT 2025
Fri Feb 21 02:37:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-718afebce905f6d5a2da4caec33b200632f97610e04998a2f4eb03fd958b3a503
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-9906-7106
0000-0002-7644-8173
0000-0002-4308-0456
0000-0001-6800-3521
0000-0002-9706-7900
0000-0003-3898-7317
0000-0001-5052-2948
PMID 33958795
PQID 2527360119
PQPubID 33975
PageCount 5
ParticipantIDs proquest_miscellaneous_2524360607
proquest_journals_2527360119
gale_infotracmisc_A661831101
gale_infotracgeneralonefile_A661831101
gale_infotracacademiconefile_A661831101
gale_incontextgauss_ISR_A661831101
gale_incontextgauss_IOV_A661831101
gale_healthsolutions_A661831101
pubmed_primary_33958795
crossref_citationtrail_10_1038_s41591_021_01335_4
crossref_primary_10_1038_s41591_021_01335_4
springer_journals_10_1038_s41591_021_01335_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature medicine
PublicationTitleAbbrev Nat Med
PublicationTitleAlternate Nat Med
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Wang (CR1) 2003; 108
Yao (CR23) 2019; 28
Morgan (CR5) 1999; 318
Attia (CR18) 2019; 30
Landray, Lehman, Arnold (CR11) 2000; 320
Hetmanski, Sparrow, Curtis, Cowley (CR10) 2000; 84
Liu (CR24) 2020; 26
Attia (CR17) 2019; 25
Yancy (CR8) 2013; 62
Kaggal (CR19) 2016; 8
Rihal, Davis, Kennedy, Gersh (CR15) 1995; 75
Simon, Platt, Hernandez (CR20) 2020; 382
Redfield (CR3) 2003; 289
Davie (CR16) 1996; 312
Wen (CR21) 2019; 2
McDonagh, McDonald, Maisel (CR4) 2008; 14
Goetze (CR12) 2006; 27
Redfield (CR13) 2004; 109
Nielsen, Hansen, Hilden, Larsen, Svanegaard (CR14) 2000; 320
Jong, Yusuf, Rousseau, Ahn, Bangdiwala (CR6) 2003; 361
McDonagh (CR2) 1997; 350
Wang, Levy, Benjamin, Vasan (CR9) 2003; 138
Yusuf, Pitt, Davis, Hood, Cohn (CR7) 1992; 327
Yao (CR22) 2019; 219
TA McDonagh (1335_CR4) 2008; 14
MM Redfield (1335_CR3) 2003; 289
P Jong (1335_CR6) 2003; 361
CW Yancy (1335_CR8) 2013; 62
TJ Wang (1335_CR1) 2003; 108
TJ Wang (1335_CR9) 2003; 138
AP Davie (1335_CR16) 1996; 312
ZI Attia (1335_CR18) 2019; 30
ZI Attia (1335_CR17) 2019; 25
VC Kaggal (1335_CR19) 2016; 8
CS Rihal (1335_CR15) 1995; 75
X Yao (1335_CR22) 2019; 219
MM Redfield (1335_CR13) 2004; 109
S Morgan (1335_CR5) 1999; 318
S Yusuf (1335_CR7) 1992; 327
TA McDonagh (1335_CR2) 1997; 350
GE Simon (1335_CR20) 2020; 382
OW Nielsen (1335_CR14) 2000; 320
A Wen (1335_CR21) 2019; 2
X Yao (1335_CR23) 2019; 28
X Liu (1335_CR24) 2020; 26
MJ Landray (1335_CR11) 2000; 320
JP Goetze (1335_CR12) 2006; 27
DJ Hetmanski (1335_CR10) 2000; 84
35590216 - Med (N Y). 2021 Jul 9;2(7):791-793
References_xml – volume: 327
  start-page: 685
  year: 1992
  end-page: 691
  ident: CR7
  article-title: Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJM199209033271003
– volume: 312
  start-page: 222
  year: 1996
  ident: CR16
  article-title: Value of the electrocardiogram in identifying heart failure due to left ventricular systolic dysfunction
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.312.7025.222
– volume: 109
  start-page: 3176
  year: 2004
  end-page: 3181
  ident: CR13
  article-title: Plasma brain natriuretic peptide to detect preclinical ventricular systolic or diastolic dysfunction: a community-based study
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000130845.38133.8F
– volume: 75
  start-page: 220
  year: 1995
  end-page: 223
  ident: CR15
  article-title: The utility of clinical, electrocardiographic, and roentgenographic variables in the prediction of left ventricular function
  publication-title: Am. J. Cardiol.
  doi: 10.1016/0002-9149(95)80023-L
– volume: 25
  start-page: 70
  year: 2019
  end-page: 74
  ident: CR17
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0240-2
– volume: 289
  start-page: 194
  year: 2003
  end-page: 202
  ident: CR3
  article-title: Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic
  publication-title: JAMA
  doi: 10.1001/jama.289.2.194
– volume: 8
  start-page: 13
  year: 2016
  end-page: 22
  ident: CR19
  article-title: Toward a learning health-care system—knowledge delivery at the point of care empowered by big data and NLP
  publication-title: Biomed. Inf. Insights
– volume: 382
  start-page: 1488
  year: 2020
  end-page: 1491
  ident: CR20
  article-title: Evidence from pragmatic trials during routine care—slouching toward a learning health system
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMp1915448
– volume: 350
  start-page: 829
  year: 1997
  end-page: 833
  ident: CR2
  article-title: Symptomatic and asymptomatic left-ventricular systolic dysfunction in an urban population
  publication-title: Lancet
  doi: 10.1016/S0140-6736(97)03033-X
– volume: 318
  start-page: 368
  year: 1999
  end-page: 372
  ident: CR5
  article-title: Prevalence and clinical characteristics of left ventricular dysfunction among elderly patients in general practice setting: cross sectional survey
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.318.7180.368
– volume: 62
  start-page: e147
  year: 2013
  end-page: e239
  ident: CR8
  article-title: 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2013.05.019
– volume: 138
  start-page: 907
  year: 2003
  end-page: 916
  ident: CR9
  article-title: The epidemiology of ‘asymptomatic’ left ventricular systolic dysfunction: implications for screening
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-138-11-200306030-00012
– volume: 84
  start-page: 440
  year: 2000
  end-page: 441
  ident: CR10
  article-title: Failure of plasma brain natriuretic peptide to identify left ventricular systolic dysfunction in the community
  publication-title: Heart
  doi: 10.1136/heart.84.4.440
– volume: 320
  start-page: 220
  year: 2000
  end-page: 224
  ident: CR14
  article-title: Risk assessment of left ventricular systolic dysfunction in primary care: cross sectional study evaluating a range of diagnostic tests
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.320.7229.220
– volume: 28
  start-page: 104894
  year: 2019
  ident: CR23
  article-title: Clinical trial design data for electrocardiogram artificial intelligence-guided screening for low ejection fraction (EAGLE)
  publication-title: Data Brief
  doi: 10.1016/j.dib.2019.104894
– volume: 27
  start-page: 3004
  year: 2006
  end-page: 3010
  ident: CR12
  article-title: Plasma pro-B-type natriuretic peptide in the general population: screening for left ventricular hypertrophy and systolic dysfunction
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehl406
– volume: 14
  start-page: 5
  year: 2008
  end-page: 8
  ident: CR4
  article-title: Screening for asymptomatic left ventricular dysfunction using B-type natriuretic peptide
  publication-title: Congest. Heart Fail.
  doi: 10.1111/j.1751-7133.2008.08283.x
– volume: 108
  start-page: 977
  year: 2003
  end-page: 982
  ident: CR1
  article-title: Natural history of asymptomatic left ventricular systolic dysfunction in the community
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000085166.44904.79
– volume: 361
  start-page: 1843
  year: 2003
  end-page: 1848
  ident: CR6
  article-title: Effect of enalapril on 12-year survival and life expectancy in patients with left ventricular systolic dysfunction: a follow-up study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)13501-5
– volume: 320
  start-page: 985
  year: 2000
  end-page: 986
  ident: CR11
  article-title: Measuring brain natriuretic peptide in suspected left ventricular systolic dysfunction in general practice: cross-sectional study
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.320.7240.985
– volume: 30
  start-page: 668
  year: 2019
  end-page: 674
  ident: CR18
  article-title: Prospective validation of a deep learning ECG algorithm for the detection of left ventricular systolic dysfunction
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/jce.13889
– volume: 2
  year: 2019
  ident: CR21
  article-title: Desiderata for delivering NLP to accelerate healthcare AI advancement and a Mayo Clinic NLP-as-a-service implementation
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0208-8
– volume: 26
  start-page: 1364
  year: 2020
  end-page: 1374
  ident: CR24
  article-title: Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-1034-x
– volume: 219
  start-page: 31
  year: 2019
  end-page: 36
  ident: CR22
  article-title: ECG AI-Guided Screening for Low Ejection Fraction (EAGLE): rationale and design of a pragmatic cluster randomized trial
  publication-title: Am. Heart J.
  doi: 10.1016/j.ahj.2019.10.007
– volume: 320
  start-page: 985
  year: 2000
  ident: 1335_CR11
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.320.7240.985
– volume: 312
  start-page: 222
  year: 1996
  ident: 1335_CR16
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.312.7025.222
– volume: 62
  start-page: e147
  year: 2013
  ident: 1335_CR8
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2013.05.019
– volume: 219
  start-page: 31
  year: 2019
  ident: 1335_CR22
  publication-title: Am. Heart J.
  doi: 10.1016/j.ahj.2019.10.007
– volume: 26
  start-page: 1364
  year: 2020
  ident: 1335_CR24
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-1034-x
– volume: 318
  start-page: 368
  year: 1999
  ident: 1335_CR5
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.318.7180.368
– volume: 361
  start-page: 1843
  year: 2003
  ident: 1335_CR6
  publication-title: Lancet
  doi: 10.1016/S0140-6736(03)13501-5
– volume: 138
  start-page: 907
  year: 2003
  ident: 1335_CR9
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-138-11-200306030-00012
– volume: 382
  start-page: 1488
  year: 2020
  ident: 1335_CR20
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMp1915448
– volume: 28
  start-page: 104894
  year: 2019
  ident: 1335_CR23
  publication-title: Data Brief
  doi: 10.1016/j.dib.2019.104894
– volume: 30
  start-page: 668
  year: 2019
  ident: 1335_CR18
  publication-title: J. Cardiovasc. Electrophysiol.
  doi: 10.1111/jce.13889
– volume: 320
  start-page: 220
  year: 2000
  ident: 1335_CR14
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.320.7229.220
– volume: 8
  start-page: 13
  year: 2016
  ident: 1335_CR19
  publication-title: Biomed. Inf. Insights
– volume: 27
  start-page: 3004
  year: 2006
  ident: 1335_CR12
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehl406
– volume: 75
  start-page: 220
  year: 1995
  ident: 1335_CR15
  publication-title: Am. J. Cardiol.
  doi: 10.1016/0002-9149(95)80023-L
– volume: 14
  start-page: 5
  year: 2008
  ident: 1335_CR4
  publication-title: Congest. Heart Fail.
  doi: 10.1111/j.1751-7133.2008.08283.x
– volume: 109
  start-page: 3176
  year: 2004
  ident: 1335_CR13
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000130845.38133.8F
– volume: 25
  start-page: 70
  year: 2019
  ident: 1335_CR17
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0240-2
– volume: 2
  year: 2019
  ident: 1335_CR21
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0208-8
– volume: 84
  start-page: 440
  year: 2000
  ident: 1335_CR10
  publication-title: Heart
  doi: 10.1136/heart.84.4.440
– volume: 108
  start-page: 977
  year: 2003
  ident: 1335_CR1
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000085166.44904.79
– volume: 350
  start-page: 829
  year: 1997
  ident: 1335_CR2
  publication-title: Lancet
  doi: 10.1016/S0140-6736(97)03033-X
– volume: 327
  start-page: 685
  year: 1992
  ident: 1335_CR7
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJM199209033271003
– volume: 289
  start-page: 194
  year: 2003
  ident: 1335_CR3
  publication-title: JAMA
  doi: 10.1001/jama.289.2.194
– reference: 35590216 - Med (N Y). 2021 Jul 9;2(7):791-793
SSID ssj0003059
Score 2.6932335
Snippet We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 815
SubjectTerms 692/699/75/230
692/700/228
Adolescent
Adult
Aged
Algorithms
Artificial Intelligence
Biomedical and Life Sciences
Biomedicine
Cancer Research
Clinical trials
Clusters
Congestive heart failure
Decision support systems
Decision Support Systems, Clinical - instrumentation
Diagnosis
Early Diagnosis
Echocardiography
Echocardiography - methods
Ejection fraction
EKG
Electrocardiogram
Electrocardiography
Electrocardiography - methods
Female
Health care
Heart failure
Heart Failure - diagnosis
Heart function
Heart function tests
Humans
Infectious Diseases
Intervention
Male
Metabolic Diseases
Methods
Middle Aged
Molecular Medicine
Neurosciences
Patients
Primary care
Stroke Volume - physiology
Young Adult
Title Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial
URI https://link.springer.com/article/10.1038/s41591-021-01335-4
https://www.ncbi.nlm.nih.gov/pubmed/33958795
https://www.proquest.com/docview/2527360119
https://www.proquest.com/docview/2524360607
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1546-170X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwED9trUC8IBj_AqMYhOCBRXPjuEmQEGrRpoG0ggZDfYscx66KRlKaVgie-A5IfEA-CT7H6ZYJJh6r_JI0vvPd2b77HcDjQAqBPON-wqPMD7WJ4WKemJ9U9yXjZs1lewMejgcHx-GbCZ9swLiphcG0ysYmWkOdlxL3yHcDZAobIEPZy_kXH7tG4elq00JDuNYK-QtLMbYJ3QCZsTrQHe2N3x2tbbPR7qTOQoz92CwNXBkNZfFuZVwZZgEFuLxmjPthy1WdN9hnPNa5I1TrmfavwVUXUpJhrQPXYUMVW3CpbjL5bQsuH7rj8xvwCzE1ZQSZneHi_P3jp7I1VDlxbXGkTVPFzK2KmLCWzHKXVWQFSUpNHCFrRXAnl5yUX4n6ZNO6CqIXdbXEcyLIfCGmlhV2hxivmJefZ9_NW5p6TGKbhtyE4_29D68OfNeYwZc8Spa-8WdCq0yqhHI9yLkIchFKoSRjGW5RsECbKKdPFa6nYhHoUGWU6TzhccYEp-wWdIqyUHeARIHoDzTnkiodxgkVNIkozXItZSaSPPCg38gglY61HJtnnKT29JzFaS231MgttXJLQw-ere-Z15wdF6IfoGjTuu50PeHToYlcYmaio74HjywC6TIKzMeZilVVpa_ffvwP0PujFuipA-nSfIUUrgbCjAXScLWQT1rIaU1C_jfgdgtorINsX240NnXWqUpP55IHD9eX8U7MuCtUubKY0GAGNPLgdq3p68FkzEgySrgHO43qnz783yN99-L_cg-uBHb2YTbpNnSWi5W6byK-ZdaDzWgS9aA73B-Nxj03qf8A4tVTWg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJi4vCMYtMJhBXB5YNDeOmwRpQgM2tWwtaGxob8Zx7KpoJKVpNY0n_gMSP4cfwy_h2HG6ZYKJlz1W-ZK2PsfnEp_zHYQeB1IIwzPuJyxK_VBDDBezBD4S3ZKUQc5lZwP2-u3OXvh2n-3PoV91L4wpq6xtojXUWSHNO_LVwDCFtQ1D2cvRV99MjTKnq_UIDeFGK2RrlmLMNXZsqaNDSOHKte4bkPeTINjc2H3d8d2UAV-yKJn4YJyFVqlUCWG6nTERZCKUQklKU5Nv00CDy24RZZKDWAQ6VCmhOktYnFLBCIXnXkALIQ0TSP4WXm303-_MfAHspqSqeoz9GFIR17ZDaLxagus0VUeBSecpZX7YcI2nHcQJD3nqyNZ6ws1r6KoLYfF6pXPX0ZzKF9HFaqjl0SK61HPH9TfQT4OpKCrw8AT35-_vP5Tt2cqwG8MjbVmsqRQrMYTReJi5KiarOLjQ2BHAlti8OcYHxSFWn20ZWY71uOrOeIEFHo3FwLLQrmDwwlnxZfgNvqXu_8R2SMlNtHcuIrqF5vMiV3cQjgLRamvGJFE6jBMiSBIRkmZaylQkWeChVi0DLh1LuhnWccDtaT2NeSU3DnLjVm489NDz2T2jiiPkTPSyES2v-lxnBoavQ6QUU4jGWh56ZBGGniM39T8DMS1L3n338T9AH3YaoGcOpAv4F1K4ngtYC0P71UA-bSAHFen534BLDSBYI9m8XGssd9aw5Md710MPZ5fNnabCL1fF1GJCwLRJ5KHblabPFpNSkGSUMA-t1Kp__PB_r_Tds3_LMrrc2e1t8-1uf-seuhLYnWgqWZfQ_GQ8Vfch2pykD9yWxujTeVuRPyVajm0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGEBM3CMZfYDCD-LlgUd04bhIkhCZGtTE2EDDUO-M4dlU0ktK0msYV74DEw_A4PAk-ttMtE0zc7LLKl7T1OT4_8TnfQehBJIUAnvEwY0kextrEcCnLzEeiu5Iyk3PZ2YA7u73NvfjVgA0W0K-mFwbKKhubaA11UUl4R96JgCmsBwxlHe3LIt5u9J-Pv4YwQQpOWptxGk5FttXhgUnf6mdbG0bWD6Oo__LDi83QTxgIJUuyaWgMs9AqlyojTPcKJqJCxFIoSWkOuTaNtHHXXaIgMUhFpGOVE6qLjKU5FYxQ89xz6HxCaQblhMlgnuzBPspcvWMapiYJ8Q07hKad2jhNqDeKIJGnlIVxyymedA3HfOOJw1rrA_uX0SUfvOJ1p21X0IIql9EFN87ycBkt7fiD-qvoJ2AcOQUeHWP9_P39h7LdWgX2A3ikLYiFGrEamwAajwpfv2RVBlcae-rXGsM7Y7xfHWD12RaQlVhPXF_GUyzweCKGln92DRv_W1RfRt_MtzSdn9iOJ7mG9s5EQNfRYlmV6ibCSSS6Pc2YJErHaUYEyRJC8kJLmYusiALUbWTApedHhzEd-9ye09OUO7lxIzdu5cbjAD2Z3zN27CCnoldBtNx1uM5NC183MVJKTRzWDdB9iwBijhJUfChmdc233nz8D9D7dy3QYw_SlfkXUvhuC7MWQPjVQj5qIYeO7vxvwJUW0Ngh2b7caCz3drDmR7s2QPfml-FOqO0rVTWzmNhgeiQJ0A2n6fPFhI2VJhkL0Fqj-kcP__dK3zr9t6yiJWM7-Out3e3b6GJkNyKUsK6gxelkpu6YMHOa37X7GaNPZ21A_gAzkowH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence-enabled+electrocardiograms+for+identification+of+patients+with+low+ejection+fraction%3A+a+pragmatic%2C+randomized+clinical+trial&rft.jtitle=Nature+medicine&rft.au=Yao%2C+Xiaoxi&rft.au=Rushlow%2C+David+R&rft.au=Inselman%2C+Jonathan+W&rft.au=McCoy%2C+Rozalina+G&rft.date=2021-05-01&rft.eissn=1546-170X&rft.volume=27&rft.issue=5&rft.spage=815&rft_id=info:doi/10.1038%2Fs41591-021-01335-4&rft_id=info%3Apmid%2F33958795&rft.externalDocID=33958795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon