Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial
We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial ( NCT04000...
        Saved in:
      
    
          | Published in | Nature medicine Vol. 27; no. 5; pp. 815 - 819 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Nature Publishing Group US
    
        01.05.2021
     Nature Publishing Group  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1078-8956 1546-170X 1546-170X  | 
| DOI | 10.1038/s41591-021-01335-4 | 
Cover
| Abstract | We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial (
NCT04000087
), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (
N
 = 11,573 intervention;
N
 = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF (≤50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01–1.61),
P
 = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08–1.91),
P
 = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention,
P
 = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention,
P
 < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care.
In a pragmatic, cluster-randomized clinical trial, use of an AI algorithm for interpretation of electrocardiograms in primary care practices increased the frequency at which impaired heart function was diagnosed. | 
    
|---|---|
| AbstractList | We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial ( NCT04000087 ), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF (≤50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01-1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08-1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care.We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial ( NCT04000087 ), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF (≤50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01-1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08-1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care. We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial (NCT04000087), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF (≤50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01–1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08–1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care.In a pragmatic, cluster-randomized clinical trial, use of an AI algorithm for interpretation of electrocardiograms in primary care practices increased the frequency at which impaired heart function was diagnosed. We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial ( NCT04000087 ), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults ( N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF (≤50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01–1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08–1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care. In a pragmatic, cluster-randomized clinical trial, use of an AI algorithm for interpretation of electrocardiograms in primary care practices increased the frequency at which impaired heart function was diagnosed. We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial (NCT04000087), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF ([less than or equal to]50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01-1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08-1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care. We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial (NCT04000087), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF ([less than or equal to]50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01-1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08-1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care. In a pragmatic, cluster-randomized clinical trial, use of an AI algorithm for interpretation of electrocardiograms in primary care practices increased the frequency at which impaired heart function was diagnosed. We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision support tool enables early diagnosis of low ejection fraction (EF), a condition that is underdiagnosed but treatable. In this trial ( NCT04000087 ), 120 primary care teams from 45 clinics or hospitals were cluster-randomized to either the intervention arm (access to AI results; 181 clinicians) or the control arm (usual care; 177 clinicians). ECGs were obtained as part of routine care from a total of 22,641 adults (N = 11,573 intervention; N = 11,068 control) without prior heart failure. The primary outcome was a new diagnosis of low EF (≤50%) within 90 days of the ECG. The trial met the prespecified primary endpoint, demonstrating that the intervention increased the diagnosis of low EF in the overall cohort (1.6% in the control arm versus 2.1% in the intervention arm, odds ratio (OR) 1.32 (1.01-1.61), P = 0.007) and among those who were identified as having a high likelihood of low EF (that is, positive AI-ECG, 6% of the overall cohort) (14.5% in the control arm versus 19.5% in the intervention arm, OR 1.43 (1.08-1.91), P = 0.01). In the overall cohort, echocardiogram utilization was similar between the two arms (18.2% control versus 19.2% intervention, P = 0.17); for patients with positive AI-ECGs, more echocardiograms were obtained in the intervention compared to the control arm (38.1% control versus 49.6% intervention, P < 0.001). These results indicate that use of an AI algorithm based on ECGs can enable the early diagnosis of low EF in patients in the setting of routine primary care.  | 
    
| Audience | Academic | 
    
| Author | Molling, Paul E. Friedman, Paul A. Thacher, Thomas D. McCoy, Rozalina G. Bernard, Matthew E. Siontis, Konstantinos C. Barry, Barbara A. Attia, Zachi I. Misra, Artika Kapa, Suraj Rosas, Steven L. Lopez-Jimenez, Francisco Inselman, Jonathan W. Yao, Xiaoxi Behnken, Emma M. Akfaly, Abdulla Noseworthy, Peter A. Krien, Joseph S. Foss, Randy M. Rushlow, David R. Shah, Nilay D. Pellikka, Patricia A.  | 
    
| Author_xml | – sequence: 1 givenname: Xiaoxi orcidid: 0000-0001-9906-7106 surname: Yao fullname: Yao, Xiaoxi email: yao.xiaoxi@mayo.edu organization: Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Department of Cardiovascular Medicine, Mayo Clinic – sequence: 2 givenname: David R. surname: Rushlow fullname: Rushlow, David R. organization: Department of Family Medicine, Mayo Clinic – sequence: 3 givenname: Jonathan W. surname: Inselman fullname: Inselman, Jonathan W. organization: Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic – sequence: 4 givenname: Rozalina G. surname: McCoy fullname: McCoy, Rozalina G. organization: Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Division of Community Internal Medicine, Department of Medicine, Mayo Clinic – sequence: 5 givenname: Thomas D. orcidid: 0000-0002-7644-8173 surname: Thacher fullname: Thacher, Thomas D. organization: Department of Family Medicine, Mayo Clinic – sequence: 6 givenname: Emma M. surname: Behnken fullname: Behnken, Emma M. organization: Knowledge and Evaluation Research Unit, Mayo Clinic – sequence: 7 givenname: Matthew E. surname: Bernard fullname: Bernard, Matthew E. organization: Department of Family Medicine, Mayo Clinic – sequence: 8 givenname: Steven L. surname: Rosas fullname: Rosas, Steven L. organization: Department of Family Medicine, Mayo Clinic Health System – sequence: 9 givenname: Abdulla surname: Akfaly fullname: Akfaly, Abdulla organization: Department of Community Internal Medicine, Mayo Clinic Health System – sequence: 10 givenname: Artika surname: Misra fullname: Misra, Artika organization: Department of Family Medicine, Mayo Clinic Health System – sequence: 11 givenname: Paul E. surname: Molling fullname: Molling, Paul E. organization: Department of Family Medicine, Mayo Clinic Health System – sequence: 12 givenname: Joseph S. surname: Krien fullname: Krien, Joseph S. organization: Department of Family Medicine, Mayo Clinic Health System – sequence: 13 givenname: Randy M. orcidid: 0000-0003-3898-7317 surname: Foss fullname: Foss, Randy M. organization: Department of Family Medicine, Mayo Clinic Health System – sequence: 14 givenname: Barbara A. surname: Barry fullname: Barry, Barbara A. organization: Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic – sequence: 15 givenname: Konstantinos C. surname: Siontis fullname: Siontis, Konstantinos C. organization: Department of Cardiovascular Medicine, Mayo Clinic – sequence: 16 givenname: Suraj surname: Kapa fullname: Kapa, Suraj organization: Department of Cardiovascular Medicine, Mayo Clinic – sequence: 17 givenname: Patricia A. orcidid: 0000-0001-6800-3521 surname: Pellikka fullname: Pellikka, Patricia A. organization: Department of Cardiovascular Medicine, Mayo Clinic – sequence: 18 givenname: Francisco surname: Lopez-Jimenez fullname: Lopez-Jimenez, Francisco organization: Department of Cardiovascular Medicine, Mayo Clinic – sequence: 19 givenname: Zachi I. orcidid: 0000-0002-9706-7900 surname: Attia fullname: Attia, Zachi I. organization: Department of Cardiovascular Medicine, Mayo Clinic – sequence: 20 givenname: Nilay D. surname: Shah fullname: Shah, Nilay D. organization: Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic – sequence: 21 givenname: Paul A. orcidid: 0000-0001-5052-2948 surname: Friedman fullname: Friedman, Paul A. organization: Department of Cardiovascular Medicine, Mayo Clinic – sequence: 22 givenname: Peter A. orcidid: 0000-0002-4308-0456 surname: Noseworthy fullname: Noseworthy, Peter A. organization: Department of Cardiovascular Medicine, Mayo Clinic  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33958795$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkt1qFDEUxwep2Hb1BbyQgCAKTk0m8-ndUvwoFAp-4V3IZk52UzLJNslQ9cp3EHxAn8Szuy11y1JkCHNIfv-TnHP-h9me8w6y7DGjR4zy9lUsWdWxnBa4GOdVXt7LDlhV1jlr6Nc9jGnT5m1X1fvZYYznlFJOq-5Bts95V7VNVx1kv6chGW2UkZYYl8BaMwen4M_PX-DkzEJPwIJKwSsZeuPnQQ6RaB-I6cGtpTIZ74jXZIkR7kVyadKCWH9J4Bylq1Md5Dp4TSRZBjkfEFUvSZCu94P5gbcoaxzmsiQFfMvD7L6WNsKjq_8k-_z2zafj9_np2buT4-lprqqmS3nDWqlhpqCjla77Sha9LJUExfmsoLTmhe6amlGgZde1stAlzCjXPVY_47KifJI93-RdBn8xQkxiMFFhF6QDP0ZRVEXJa1rTBtGnt9BzPwaHr1tRDVKMdTfUXFoQxmmfsPRVUjGta9ZyxnBWkyzfQWHjIUiLQ9YGt7f4ox08fj0MRu0UvNgSIJPgW5rLMUZx8vHD_7NnX7bZZ_-wC5A2LaK342q2cRt8ctWtcTZAL5bBDDJ8F9fOQ6DdACr4GANooUxaWwlLM1YwKlYmFxuTCzS5WJtclCgtbkmvs98p4htRRNjNIdyM7w7VX6cFDYk | 
    
| CitedBy_id | crossref_primary_10_1093_ehjdh_ztab078 crossref_primary_10_1016_S2589_7500_24_00158_4 crossref_primary_10_3390_businesses4030028 crossref_primary_10_1016_j_cpcardiol_2023_101750 crossref_primary_10_1093_jamia_ocad180 crossref_primary_10_1016_j_cjca_2024_05_027 crossref_primary_10_1161_CIRCOUTCOMES_123_010404 crossref_primary_10_1001_jamacardio_2021_2878 crossref_primary_10_1016_S2589_7500_21_00281_8 crossref_primary_10_1186_s13063_022_06430_6 crossref_primary_10_26442_00403660_2022_09_201843 crossref_primary_10_1093_eurheartj_ehab649 crossref_primary_10_1093_ehjdh_ztac033 crossref_primary_10_1093_ehjdh_ztad001 crossref_primary_10_1093_eurheartj_ehac733 crossref_primary_10_2196_37188 crossref_primary_10_1097_TP_0000000000005023 crossref_primary_10_1161_HCG_0000000000000097 crossref_primary_10_1093_eurheartj_ehae475 crossref_primary_10_1016_j_cpcardiol_2025_103004 crossref_primary_10_5694_mja2_52401 crossref_primary_10_1038_s41591_024_02970_3 crossref_primary_10_1038_s41591_022_02053_1 crossref_primary_10_1016_j_hfc_2024_06_008 crossref_primary_10_3349_ymj_2023_0341 crossref_primary_10_1016_j_mcpdig_2023_03_005 crossref_primary_10_1097_SCS_0000000000010826 crossref_primary_10_1001_jamanetworkopen_2024_32990 crossref_primary_10_3389_fpubh_2023_1328918 crossref_primary_10_3390_jcm10225284 crossref_primary_10_1016_S0140_6736_23_00875_9 crossref_primary_10_1093_eurheartj_ehab678 crossref_primary_10_1016_S2589_7500_21_00256_9 crossref_primary_10_1093_ehjdh_ztac028 crossref_primary_10_17849_insm_51_2_64_76_1 crossref_primary_10_1253_circj_CJ_22_0827 crossref_primary_10_1002_joa3_13052 crossref_primary_10_7759_cureus_59661 crossref_primary_10_1016_j_mayocp_2022_04_008 crossref_primary_10_3390_applbiosci3010002 crossref_primary_10_3390_children12010025 crossref_primary_10_1177_10892532221100660 crossref_primary_10_3390_ejihpe14030045 crossref_primary_10_1093_eurheartj_ehac758 crossref_primary_10_1016_j_mayocp_2023_02_019 crossref_primary_10_1136_bmjhci_2021_100466 crossref_primary_10_1097_JS9_0000000000000088 crossref_primary_10_1186_s12933_023_01985_3 crossref_primary_10_1016_j_jjcc_2023_07_019 crossref_primary_10_1016_j_jacep_2025_02_003 crossref_primary_10_2459_JCM_0000000000001663 crossref_primary_10_1038_s41598_025_90615_x crossref_primary_10_1161_CIRCULATIONAHA_122_062646 crossref_primary_10_1093_jamia_ocae119 crossref_primary_10_3389_fvets_2024_1395934 crossref_primary_10_1016_j_hjc_2024_07_003 crossref_primary_10_1016_j_mcpdig_2024_10_001 crossref_primary_10_3390_info15110725 crossref_primary_10_1063_5_0176850 crossref_primary_10_1016_j_cej_2022_140459 crossref_primary_10_1016_j_jcmg_2021_09_004 crossref_primary_10_17802_2306_1278_2023_12_3_109_125 crossref_primary_10_1088_1361_6579_ad9ce5 crossref_primary_10_26442_20751753_2023_1_202095 crossref_primary_10_1177_20552076221143249 crossref_primary_10_1007_s12170_023_00723_4 crossref_primary_10_1093_eurheartj_ehae794 crossref_primary_10_3389_fcvm_2022_853614 crossref_primary_10_1038_s41586_023_05947_3 crossref_primary_10_1093_cvr_cvac006 crossref_primary_10_1016_j_cjca_2023_11_044 crossref_primary_10_1016_j_mayocp_2022_10_001 crossref_primary_10_3389_fcvm_2023_1070641 crossref_primary_10_1016_j_mayocpiqo_2022_08_003 crossref_primary_10_1093_eurheartj_ehab874 crossref_primary_10_1093_ehjdh_ztac065 crossref_primary_10_1161_CIRCRESAHA_121_319876 crossref_primary_10_1007_s11936_023_01032_0 crossref_primary_10_1038_s41598_022_18640_8 crossref_primary_10_1016_j_jjcc_2023_04_020 crossref_primary_10_1016_j_mser_2025_100971 crossref_primary_10_1016_j_jacc_2021_08_043 crossref_primary_10_1016_j_xcrm_2022_100869 crossref_primary_10_1016_j_jacadv_2024_101202 crossref_primary_10_56294_dm2024_356 crossref_primary_10_1016_j_ccl_2023_06_001 crossref_primary_10_2139_ssrn_4001822 crossref_primary_10_1016_j_jacc_2022_05_034 crossref_primary_10_1016_j_jacadv_2023_100632 crossref_primary_10_1007_s11936_023_01029_9 crossref_primary_10_1161_CIRCULATIONAHA_123_067750 crossref_primary_10_1161_JAHA_123_031671 crossref_primary_10_1093_ehjacc_zuac156 crossref_primary_10_1007_s10741_022_10283_1 crossref_primary_10_1016_j_jjcc_2021_11_017 crossref_primary_10_3389_fcvm_2022_829553 crossref_primary_10_1016_j_xcrm_2024_101746 crossref_primary_10_1007_s10554_023_02941_8 crossref_primary_10_1016_j_jelectrocard_2024_06_046 crossref_primary_10_2196_56774 crossref_primary_10_3389_fcvm_2024_1323918 crossref_primary_10_1093_eurheartj_ehad553 crossref_primary_10_1016_j_medj_2021_06_003 crossref_primary_10_1016_j_cardfail_2024_03_001 crossref_primary_10_1186_s40001_023_01065_y crossref_primary_10_1016_j_jacc_2024_08_036 crossref_primary_10_1007_s12265_022_10260_x crossref_primary_10_1016_j_cvdhj_2021_08_002 crossref_primary_10_1161_CIRCULATIONAHA_123_065489 crossref_primary_10_1038_s41591_024_03243_9 crossref_primary_10_1038_s41746_023_00934_4 crossref_primary_10_1093_ehjdh_ztab101 crossref_primary_10_1093_europace_euae070 crossref_primary_10_1016_j_ahjo_2025_100528 crossref_primary_10_1161_CIRCOUTCOMES_124_011504 crossref_primary_10_15420_aer_2022_31 crossref_primary_10_2147_VHRM_S279337 crossref_primary_10_1161_CIRCULATIONAHA_121_057869 crossref_primary_10_1016_j_jacadv_2025_101619 crossref_primary_10_1016_j_ijcard_2022_03_002 crossref_primary_10_3390_bioengineering11111069 crossref_primary_10_1093_eurjpc_zwac098 crossref_primary_10_1007_s12265_022_10232_1 crossref_primary_10_1016_j_mayocp_2022_06_003 crossref_primary_10_1080_1061186X_2024_2448711 crossref_primary_10_1016_j_jacc_2024_05_062 crossref_primary_10_3390_jpm12020315 crossref_primary_10_1001_jamanetworkopen_2022_33946 crossref_primary_10_1016_j_cjca_2024_07_026 crossref_primary_10_1093_ehjdh_ztad081 crossref_primary_10_1002_adfm_202423264 crossref_primary_10_1016_j_cjca_2024_11_031 crossref_primary_10_1038_s41746_022_00690_x crossref_primary_10_1016_j_jjcc_2021_10_016 crossref_primary_10_1016_j_mayocp_2023_04_013 crossref_primary_10_1007_s11936_023_01004_4 crossref_primary_10_1016_j_ibmed_2022_100070 crossref_primary_10_1038_d41586_024_02675_0 crossref_primary_10_1016_j_ahjo_2024_100479 crossref_primary_10_3390_jcm13164792 crossref_primary_10_1016_j_hfc_2023_03_001 crossref_primary_10_1186_s12891_022_05126_x crossref_primary_10_1016_j_isci_2022_105434 crossref_primary_10_1016_j_cardfail_2022_12_016 crossref_primary_10_1038_s41591_024_02961_4 crossref_primary_10_1016_j_cvdhj_2024_03_005 crossref_primary_10_2215_CJN_0000000000000483 crossref_primary_10_1161_HYPERTENSIONAHA_124_22349 crossref_primary_10_7143_jhep_51_229 crossref_primary_10_1038_s41591_024_03206_0 crossref_primary_10_3390_jcm14020653 crossref_primary_10_1016_j_echo_2022_04_005 crossref_primary_10_1093_eurheartj_ehae415 crossref_primary_10_1016_j_cvdhj_2022_06_001 crossref_primary_10_1186_s40959_022_00151_0 crossref_primary_10_1016_j_cjca_2024_06_011 crossref_primary_10_1056_AIoa2400190 crossref_primary_10_1016_j_jacc_2024_08_069 crossref_primary_10_1093_eurheartj_ehae651 crossref_primary_10_1007_s10439_023_03343_6 crossref_primary_10_1016_j_cpcardiol_2023_102097 crossref_primary_10_15212_CVIA_2023_0024 crossref_primary_10_1016_S2589_7500_24_00115_8 crossref_primary_10_1038_s41591_022_02079_5 crossref_primary_10_1136_bmjmed_2022_000193 crossref_primary_10_1007_s11936_024_01059_x crossref_primary_10_2174_0118749445181059240201054546 crossref_primary_10_2196_41940 crossref_primary_10_1016_j_ebiom_2023_104462 crossref_primary_10_3390_jcm11226767 crossref_primary_10_1016_j_repc_2024_08_009 crossref_primary_10_1016_j_jelectrocard_2023_08_014 crossref_primary_10_1093_jamia_ocac052 crossref_primary_10_1016_j_cvdhj_2022_09_001 crossref_primary_10_1016_j_jcct_2024_04_006 crossref_primary_10_1136_bmjopen_2024_084398 crossref_primary_10_1038_s41591_024_03094_4 crossref_primary_10_1016_j_jacc_2024_03_400 crossref_primary_10_1016_j_jacc_2024_03_401 crossref_primary_10_3390_diagnostics13223479 crossref_primary_10_1056_AIcs2300176 crossref_primary_10_1016_j_ahj_2023_03_008 crossref_primary_10_1016_j_mayocp_2023_07_011 crossref_primary_10_1212_WNL_0000000000013200 crossref_primary_10_1016_j_cmpb_2023_107359 crossref_primary_10_1016_j_mcpdig_2024_06_010 crossref_primary_10_1093_infdis_jiae348 crossref_primary_10_1161_CIR_0000000000001201 crossref_primary_10_1016_j_ijcha_2024_101361 crossref_primary_10_31083_j_rcm2204121 crossref_primary_10_1038_s41440_023_01469_7 crossref_primary_10_1186_s43044_024_00551_w crossref_primary_10_3389_fcvm_2024_1397921 crossref_primary_10_3390_jimaging10080193 crossref_primary_10_4330_wjc_v15_i6_284 crossref_primary_10_1016_j_jacadv_2023_100682 crossref_primary_10_1016_j_hrthm_2023_07_001 crossref_primary_10_1002_ehf2_14263 crossref_primary_10_46871_eams_1438927 crossref_primary_10_2196_52073 crossref_primary_10_3389_fphys_2022_1089343 crossref_primary_10_1038_s41467_024_45355_3 crossref_primary_10_1093_europace_euae007 crossref_primary_10_1016_j_jacadv_2022_100153 crossref_primary_10_1093_ehjqcco_qcad009 crossref_primary_10_1093_eurheartj_ehae737 crossref_primary_10_1016_j_jncc_2022_11_004 crossref_primary_10_3389_fcvm_2022_945726 crossref_primary_10_1016_j_ahjo_2022_100129 crossref_primary_10_1016_j_cvdhj_2022_07_074 crossref_primary_10_1016_S2589_7500_24_00151_1 crossref_primary_10_1136_bmjopen_2022_065845 crossref_primary_10_1016_j_jacadv_2024_101179 crossref_primary_10_1016_j_cjca_2024_07_003  | 
    
| Cites_doi | 10.1056/NEJM199209033271003 10.1136/bmj.312.7025.222 10.1161/01.CIR.0000130845.38133.8F 10.1016/0002-9149(95)80023-L 10.1038/s41591-018-0240-2 10.1001/jama.289.2.194 10.1056/NEJMp1915448 10.1016/S0140-6736(97)03033-X 10.1136/bmj.318.7180.368 10.1016/j.jacc.2013.05.019 10.7326/0003-4819-138-11-200306030-00012 10.1136/heart.84.4.440 10.1136/bmj.320.7229.220 10.1016/j.dib.2019.104894 10.1093/eurheartj/ehl406 10.1111/j.1751-7133.2008.08283.x 10.1161/01.CIR.0000085166.44904.79 10.1016/S0140-6736(03)13501-5 10.1136/bmj.320.7240.985 10.1111/jce.13889 10.1038/s41746-019-0208-8 10.1038/s41591-020-1034-x 10.1016/j.ahj.2019.10.007  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 COPYRIGHT 2021 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 – notice: COPYRIGHT 2021 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8  | 
    
| DOI | 10.1038/s41591-021-01335-4 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database ProQuest Central Research Library (via ProQuest) ProQuest Central Science Database (via ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Biology  | 
    
| EISSN | 1546-170X | 
    
| EndPage | 819 | 
    
| ExternalDocumentID | A661831101 33958795 10_1038_s41591_021_01335_4  | 
    
| Genre | Randomized Controlled Trial Multicenter Study Journal Article  | 
    
| GeographicLocations | United States | 
    
| GeographicLocations_xml | – name: United States | 
    
| GrantInformation_xml | – fundername: Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery | 
    
| GroupedDBID | --- .-4 .55 .GJ 0R~ 123 1CY 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABUWG ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IEA IH2 IHR IHW INH INR IOF IOV ISR ITC J5H L7B LGEZI LK8 LOTEE M0L M1P M2O M2P M7P MK0 N9A NADUK NNMJJ NXXTH O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TSG TUS UKHRP UQL X7M XJT YHZ ZGI ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO AETEA CGR CUY CVF ECM EIF NFIDA NPM ACMFV AGSTI AEIIB 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8  | 
    
| ID | FETCH-LOGICAL-c579t-718afebce905f6d5a2da4caec33b200632f97610e04998a2f4eb03fd958b3a503 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1078-8956 1546-170X  | 
    
| IngestDate | Thu Oct 02 08:43:32 EDT 2025 Mon Oct 06 17:16:49 EDT 2025 Mon Oct 20 22:21:04 EDT 2025 Thu Jun 12 23:36:23 EDT 2025 Mon Oct 20 16:34:08 EDT 2025 Thu Oct 16 15:12:48 EDT 2025 Thu Oct 16 14:44:41 EDT 2025 Thu May 22 20:58:25 EDT 2025 Thu Apr 03 07:04:32 EDT 2025 Wed Oct 01 04:32:40 EDT 2025 Thu Apr 24 23:10:19 EDT 2025 Fri Feb 21 02:37:42 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c579t-718afebce905f6d5a2da4caec33b200632f97610e04998a2f4eb03fd958b3a503 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3  | 
    
| ORCID | 0000-0001-9906-7106 0000-0002-7644-8173 0000-0002-4308-0456 0000-0001-6800-3521 0000-0002-9706-7900 0000-0003-3898-7317 0000-0001-5052-2948  | 
    
| PMID | 33958795 | 
    
| PQID | 2527360119 | 
    
| PQPubID | 33975 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | proquest_miscellaneous_2524360607 proquest_journals_2527360119 gale_infotracmisc_A661831101 gale_infotracgeneralonefile_A661831101 gale_infotracacademiconefile_A661831101 gale_incontextgauss_ISR_A661831101 gale_incontextgauss_IOV_A661831101 gale_healthsolutions_A661831101 pubmed_primary_33958795 crossref_citationtrail_10_1038_s41591_021_01335_4 crossref_primary_10_1038_s41591_021_01335_4 springer_journals_10_1038_s41591_021_01335_4  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-05-01 | 
    
| PublicationDateYYYYMMDD | 2021-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: United States  | 
    
| PublicationTitle | Nature medicine | 
    
| PublicationTitleAbbrev | Nat Med | 
    
| PublicationTitleAlternate | Nat Med | 
    
| PublicationYear | 2021 | 
    
| Publisher | Nature Publishing Group US Nature Publishing Group  | 
    
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group  | 
    
| References | Wang (CR1) 2003; 108 Yao (CR23) 2019; 28 Morgan (CR5) 1999; 318 Attia (CR18) 2019; 30 Landray, Lehman, Arnold (CR11) 2000; 320 Hetmanski, Sparrow, Curtis, Cowley (CR10) 2000; 84 Liu (CR24) 2020; 26 Attia (CR17) 2019; 25 Yancy (CR8) 2013; 62 Kaggal (CR19) 2016; 8 Rihal, Davis, Kennedy, Gersh (CR15) 1995; 75 Simon, Platt, Hernandez (CR20) 2020; 382 Redfield (CR3) 2003; 289 Davie (CR16) 1996; 312 Wen (CR21) 2019; 2 McDonagh, McDonald, Maisel (CR4) 2008; 14 Goetze (CR12) 2006; 27 Redfield (CR13) 2004; 109 Nielsen, Hansen, Hilden, Larsen, Svanegaard (CR14) 2000; 320 Jong, Yusuf, Rousseau, Ahn, Bangdiwala (CR6) 2003; 361 McDonagh (CR2) 1997; 350 Wang, Levy, Benjamin, Vasan (CR9) 2003; 138 Yusuf, Pitt, Davis, Hood, Cohn (CR7) 1992; 327 Yao (CR22) 2019; 219 TA McDonagh (1335_CR4) 2008; 14 MM Redfield (1335_CR3) 2003; 289 P Jong (1335_CR6) 2003; 361 CW Yancy (1335_CR8) 2013; 62 TJ Wang (1335_CR1) 2003; 108 TJ Wang (1335_CR9) 2003; 138 AP Davie (1335_CR16) 1996; 312 ZI Attia (1335_CR18) 2019; 30 ZI Attia (1335_CR17) 2019; 25 VC Kaggal (1335_CR19) 2016; 8 CS Rihal (1335_CR15) 1995; 75 X Yao (1335_CR22) 2019; 219 MM Redfield (1335_CR13) 2004; 109 S Morgan (1335_CR5) 1999; 318 S Yusuf (1335_CR7) 1992; 327 TA McDonagh (1335_CR2) 1997; 350 GE Simon (1335_CR20) 2020; 382 OW Nielsen (1335_CR14) 2000; 320 A Wen (1335_CR21) 2019; 2 X Yao (1335_CR23) 2019; 28 X Liu (1335_CR24) 2020; 26 MJ Landray (1335_CR11) 2000; 320 JP Goetze (1335_CR12) 2006; 27 DJ Hetmanski (1335_CR10) 2000; 84 35590216 - Med (N Y). 2021 Jul 9;2(7):791-793  | 
    
| References_xml | – volume: 327 start-page: 685 year: 1992 end-page: 691 ident: CR7 article-title: Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions publication-title: New Engl. J. Med. doi: 10.1056/NEJM199209033271003 – volume: 312 start-page: 222 year: 1996 ident: CR16 article-title: Value of the electrocardiogram in identifying heart failure due to left ventricular systolic dysfunction publication-title: Br. Med. J. doi: 10.1136/bmj.312.7025.222 – volume: 109 start-page: 3176 year: 2004 end-page: 3181 ident: CR13 article-title: Plasma brain natriuretic peptide to detect preclinical ventricular systolic or diastolic dysfunction: a community-based study publication-title: Circulation doi: 10.1161/01.CIR.0000130845.38133.8F – volume: 75 start-page: 220 year: 1995 end-page: 223 ident: CR15 article-title: The utility of clinical, electrocardiographic, and roentgenographic variables in the prediction of left ventricular function publication-title: Am. J. Cardiol. doi: 10.1016/0002-9149(95)80023-L – volume: 25 start-page: 70 year: 2019 end-page: 74 ident: CR17 article-title: Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram publication-title: Nat. Med. doi: 10.1038/s41591-018-0240-2 – volume: 289 start-page: 194 year: 2003 end-page: 202 ident: CR3 article-title: Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic publication-title: JAMA doi: 10.1001/jama.289.2.194 – volume: 8 start-page: 13 year: 2016 end-page: 22 ident: CR19 article-title: Toward a learning health-care system—knowledge delivery at the point of care empowered by big data and NLP publication-title: Biomed. Inf. Insights – volume: 382 start-page: 1488 year: 2020 end-page: 1491 ident: CR20 article-title: Evidence from pragmatic trials during routine care—slouching toward a learning health system publication-title: New Engl. J. Med. doi: 10.1056/NEJMp1915448 – volume: 350 start-page: 829 year: 1997 end-page: 833 ident: CR2 article-title: Symptomatic and asymptomatic left-ventricular systolic dysfunction in an urban population publication-title: Lancet doi: 10.1016/S0140-6736(97)03033-X – volume: 318 start-page: 368 year: 1999 end-page: 372 ident: CR5 article-title: Prevalence and clinical characteristics of left ventricular dysfunction among elderly patients in general practice setting: cross sectional survey publication-title: Br. Med. J. doi: 10.1136/bmj.318.7180.368 – volume: 62 start-page: e147 year: 2013 end-page: e239 ident: CR8 article-title: 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2013.05.019 – volume: 138 start-page: 907 year: 2003 end-page: 916 ident: CR9 article-title: The epidemiology of ‘asymptomatic’ left ventricular systolic dysfunction: implications for screening publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-138-11-200306030-00012 – volume: 84 start-page: 440 year: 2000 end-page: 441 ident: CR10 article-title: Failure of plasma brain natriuretic peptide to identify left ventricular systolic dysfunction in the community publication-title: Heart doi: 10.1136/heart.84.4.440 – volume: 320 start-page: 220 year: 2000 end-page: 224 ident: CR14 article-title: Risk assessment of left ventricular systolic dysfunction in primary care: cross sectional study evaluating a range of diagnostic tests publication-title: Br. Med. J. doi: 10.1136/bmj.320.7229.220 – volume: 28 start-page: 104894 year: 2019 ident: CR23 article-title: Clinical trial design data for electrocardiogram artificial intelligence-guided screening for low ejection fraction (EAGLE) publication-title: Data Brief doi: 10.1016/j.dib.2019.104894 – volume: 27 start-page: 3004 year: 2006 end-page: 3010 ident: CR12 article-title: Plasma pro-B-type natriuretic peptide in the general population: screening for left ventricular hypertrophy and systolic dysfunction publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehl406 – volume: 14 start-page: 5 year: 2008 end-page: 8 ident: CR4 article-title: Screening for asymptomatic left ventricular dysfunction using B-type natriuretic peptide publication-title: Congest. Heart Fail. doi: 10.1111/j.1751-7133.2008.08283.x – volume: 108 start-page: 977 year: 2003 end-page: 982 ident: CR1 article-title: Natural history of asymptomatic left ventricular systolic dysfunction in the community publication-title: Circulation doi: 10.1161/01.CIR.0000085166.44904.79 – volume: 361 start-page: 1843 year: 2003 end-page: 1848 ident: CR6 article-title: Effect of enalapril on 12-year survival and life expectancy in patients with left ventricular systolic dysfunction: a follow-up study publication-title: Lancet doi: 10.1016/S0140-6736(03)13501-5 – volume: 320 start-page: 985 year: 2000 end-page: 986 ident: CR11 article-title: Measuring brain natriuretic peptide in suspected left ventricular systolic dysfunction in general practice: cross-sectional study publication-title: Br. Med. J. doi: 10.1136/bmj.320.7240.985 – volume: 30 start-page: 668 year: 2019 end-page: 674 ident: CR18 article-title: Prospective validation of a deep learning ECG algorithm for the detection of left ventricular systolic dysfunction publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/jce.13889 – volume: 2 year: 2019 ident: CR21 article-title: Desiderata for delivering NLP to accelerate healthcare AI advancement and a Mayo Clinic NLP-as-a-service implementation publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0208-8 – volume: 26 start-page: 1364 year: 2020 end-page: 1374 ident: CR24 article-title: Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension publication-title: Nat. Med. doi: 10.1038/s41591-020-1034-x – volume: 219 start-page: 31 year: 2019 end-page: 36 ident: CR22 article-title: ECG AI-Guided Screening for Low Ejection Fraction (EAGLE): rationale and design of a pragmatic cluster randomized trial publication-title: Am. Heart J. doi: 10.1016/j.ahj.2019.10.007 – volume: 320 start-page: 985 year: 2000 ident: 1335_CR11 publication-title: Br. Med. J. doi: 10.1136/bmj.320.7240.985 – volume: 312 start-page: 222 year: 1996 ident: 1335_CR16 publication-title: Br. Med. J. doi: 10.1136/bmj.312.7025.222 – volume: 62 start-page: e147 year: 2013 ident: 1335_CR8 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2013.05.019 – volume: 219 start-page: 31 year: 2019 ident: 1335_CR22 publication-title: Am. Heart J. doi: 10.1016/j.ahj.2019.10.007 – volume: 26 start-page: 1364 year: 2020 ident: 1335_CR24 publication-title: Nat. Med. doi: 10.1038/s41591-020-1034-x – volume: 318 start-page: 368 year: 1999 ident: 1335_CR5 publication-title: Br. Med. J. doi: 10.1136/bmj.318.7180.368 – volume: 361 start-page: 1843 year: 2003 ident: 1335_CR6 publication-title: Lancet doi: 10.1016/S0140-6736(03)13501-5 – volume: 138 start-page: 907 year: 2003 ident: 1335_CR9 publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-138-11-200306030-00012 – volume: 382 start-page: 1488 year: 2020 ident: 1335_CR20 publication-title: New Engl. J. Med. doi: 10.1056/NEJMp1915448 – volume: 28 start-page: 104894 year: 2019 ident: 1335_CR23 publication-title: Data Brief doi: 10.1016/j.dib.2019.104894 – volume: 30 start-page: 668 year: 2019 ident: 1335_CR18 publication-title: J. Cardiovasc. Electrophysiol. doi: 10.1111/jce.13889 – volume: 320 start-page: 220 year: 2000 ident: 1335_CR14 publication-title: Br. Med. J. doi: 10.1136/bmj.320.7229.220 – volume: 8 start-page: 13 year: 2016 ident: 1335_CR19 publication-title: Biomed. Inf. Insights – volume: 27 start-page: 3004 year: 2006 ident: 1335_CR12 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehl406 – volume: 75 start-page: 220 year: 1995 ident: 1335_CR15 publication-title: Am. J. Cardiol. doi: 10.1016/0002-9149(95)80023-L – volume: 14 start-page: 5 year: 2008 ident: 1335_CR4 publication-title: Congest. Heart Fail. doi: 10.1111/j.1751-7133.2008.08283.x – volume: 109 start-page: 3176 year: 2004 ident: 1335_CR13 publication-title: Circulation doi: 10.1161/01.CIR.0000130845.38133.8F – volume: 25 start-page: 70 year: 2019 ident: 1335_CR17 publication-title: Nat. Med. doi: 10.1038/s41591-018-0240-2 – volume: 2 year: 2019 ident: 1335_CR21 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0208-8 – volume: 84 start-page: 440 year: 2000 ident: 1335_CR10 publication-title: Heart doi: 10.1136/heart.84.4.440 – volume: 108 start-page: 977 year: 2003 ident: 1335_CR1 publication-title: Circulation doi: 10.1161/01.CIR.0000085166.44904.79 – volume: 350 start-page: 829 year: 1997 ident: 1335_CR2 publication-title: Lancet doi: 10.1016/S0140-6736(97)03033-X – volume: 327 start-page: 685 year: 1992 ident: 1335_CR7 publication-title: New Engl. J. Med. doi: 10.1056/NEJM199209033271003 – volume: 289 start-page: 194 year: 2003 ident: 1335_CR3 publication-title: JAMA doi: 10.1001/jama.289.2.194 – reference: 35590216 - Med (N Y). 2021 Jul 9;2(7):791-793  | 
    
| SSID | ssj0003059 | 
    
| Score | 2.6932335 | 
    
| Snippet | We have conducted a pragmatic clinical trial aimed to assess whether an electrocardiogram (ECG)-based, artificial intelligence (AI)-powered clinical decision... | 
    
| SourceID | proquest gale pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 815 | 
    
| SubjectTerms | 692/699/75/230 692/700/228 Adolescent Adult Aged Algorithms Artificial Intelligence Biomedical and Life Sciences Biomedicine Cancer Research Clinical trials Clusters Congestive heart failure Decision support systems Decision Support Systems, Clinical - instrumentation Diagnosis Early Diagnosis Echocardiography Echocardiography - methods Ejection fraction EKG Electrocardiogram Electrocardiography Electrocardiography - methods Female Health care Heart failure Heart Failure - diagnosis Heart function Heart function tests Humans Infectious Diseases Intervention Male Metabolic Diseases Methods Middle Aged Molecular Medicine Neurosciences Patients Primary care Stroke Volume - physiology Young Adult  | 
    
| Title | Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial | 
    
| URI | https://link.springer.com/article/10.1038/s41591-021-01335-4 https://www.ncbi.nlm.nih.gov/pubmed/33958795 https://www.proquest.com/docview/2527360119 https://www.proquest.com/docview/2524360607  | 
    
| Volume | 27 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1546-170X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003059 issn: 1078-8956 databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwED9trUC8IBj_AqMYhOCBRXPjuEmQEGrRpoG0ggZDfYscx66KRlKaVgie-A5IfEA-CT7H6ZYJJh6r_JI0vvPd2b77HcDjQAqBPON-wqPMD7WJ4WKemJ9U9yXjZs1lewMejgcHx-GbCZ9swLiphcG0ysYmWkOdlxL3yHcDZAobIEPZy_kXH7tG4elq00JDuNYK-QtLMbYJ3QCZsTrQHe2N3x2tbbPR7qTOQoz92CwNXBkNZfFuZVwZZgEFuLxmjPthy1WdN9hnPNa5I1TrmfavwVUXUpJhrQPXYUMVW3CpbjL5bQsuH7rj8xvwCzE1ZQSZneHi_P3jp7I1VDlxbXGkTVPFzK2KmLCWzHKXVWQFSUpNHCFrRXAnl5yUX4n6ZNO6CqIXdbXEcyLIfCGmlhV2hxivmJefZ9_NW5p6TGKbhtyE4_29D68OfNeYwZc8Spa-8WdCq0yqhHI9yLkIchFKoSRjGW5RsECbKKdPFa6nYhHoUGWU6TzhccYEp-wWdIqyUHeARIHoDzTnkiodxgkVNIkozXItZSaSPPCg38gglY61HJtnnKT29JzFaS231MgttXJLQw-ere-Z15wdF6IfoGjTuu50PeHToYlcYmaio74HjywC6TIKzMeZilVVpa_ffvwP0PujFuipA-nSfIUUrgbCjAXScLWQT1rIaU1C_jfgdgtorINsX240NnXWqUpP55IHD9eX8U7MuCtUubKY0GAGNPLgdq3p68FkzEgySrgHO43qnz783yN99-L_cg-uBHb2YTbpNnSWi5W6byK-ZdaDzWgS9aA73B-Nxj03qf8A4tVTWg | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJi4vCMYtMJhBXB5YNDeOmwRpQgM2tWwtaGxob8Zx7KpoJKVpNY0n_gMSP4cfwy_h2HG6ZYKJlz1W-ZK2PsfnEp_zHYQeB1IIwzPuJyxK_VBDDBezBD4S3ZKUQc5lZwP2-u3OXvh2n-3PoV91L4wpq6xtojXUWSHNO_LVwDCFtQ1D2cvRV99MjTKnq_UIDeFGK2RrlmLMNXZsqaNDSOHKte4bkPeTINjc2H3d8d2UAV-yKJn4YJyFVqlUCWG6nTERZCKUQklKU5Nv00CDy24RZZKDWAQ6VCmhOktYnFLBCIXnXkALIQ0TSP4WXm303-_MfAHspqSqeoz9GFIR17ZDaLxagus0VUeBSecpZX7YcI2nHcQJD3nqyNZ6ws1r6KoLYfF6pXPX0ZzKF9HFaqjl0SK61HPH9TfQT4OpKCrw8AT35-_vP5Tt2cqwG8MjbVmsqRQrMYTReJi5KiarOLjQ2BHAlti8OcYHxSFWn20ZWY71uOrOeIEFHo3FwLLQrmDwwlnxZfgNvqXu_8R2SMlNtHcuIrqF5vMiV3cQjgLRamvGJFE6jBMiSBIRkmZaylQkWeChVi0DLh1LuhnWccDtaT2NeSU3DnLjVm489NDz2T2jiiPkTPSyES2v-lxnBoavQ6QUU4jGWh56ZBGGniM39T8DMS1L3n338T9AH3YaoGcOpAv4F1K4ngtYC0P71UA-bSAHFen534BLDSBYI9m8XGssd9aw5Md710MPZ5fNnabCL1fF1GJCwLRJ5KHblabPFpNSkGSUMA-t1Kp__PB_r_Tds3_LMrrc2e1t8-1uf-seuhLYnWgqWZfQ_GQ8Vfch2pykD9yWxujTeVuRPyVajm0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGEBM3CMZfYDCD-LlgUd04bhIkhCZGtTE2EDDUO-M4dlU0ktK0msYV74DEw_A4PAk-ttMtE0zc7LLKl7T1OT4_8TnfQehBJIUAnvEwY0kextrEcCnLzEeiu5Iyk3PZ2YA7u73NvfjVgA0W0K-mFwbKKhubaA11UUl4R96JgCmsBwxlHe3LIt5u9J-Pv4YwQQpOWptxGk5FttXhgUnf6mdbG0bWD6Oo__LDi83QTxgIJUuyaWgMs9AqlyojTPcKJqJCxFIoSWkOuTaNtHHXXaIgMUhFpGOVE6qLjKU5FYxQ89xz6HxCaQblhMlgnuzBPspcvWMapiYJ8Q07hKad2jhNqDeKIJGnlIVxyymedA3HfOOJw1rrA_uX0SUfvOJ1p21X0IIql9EFN87ycBkt7fiD-qvoJ2AcOQUeHWP9_P39h7LdWgX2A3ikLYiFGrEamwAajwpfv2RVBlcae-rXGsM7Y7xfHWD12RaQlVhPXF_GUyzweCKGln92DRv_W1RfRt_MtzSdn9iOJ7mG9s5EQNfRYlmV6ibCSSS6Pc2YJErHaUYEyRJC8kJLmYusiALUbWTApedHhzEd-9ye09OUO7lxIzdu5cbjAD2Z3zN27CCnoldBtNx1uM5NC183MVJKTRzWDdB9iwBijhJUfChmdc233nz8D9D7dy3QYw_SlfkXUvhuC7MWQPjVQj5qIYeO7vxvwJUW0Ngh2b7caCz3drDmR7s2QPfml-FOqO0rVTWzmNhgeiQJ0A2n6fPFhI2VJhkL0Fqj-kcP__dK3zr9t6yiJWM7-Out3e3b6GJkNyKUsK6gxelkpu6YMHOa37X7GaNPZ21A_gAzkowH | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence-enabled+electrocardiograms+for+identification+of+patients+with+low+ejection+fraction%3A+a+pragmatic%2C+randomized+clinical+trial&rft.jtitle=Nature+medicine&rft.au=Yao%2C+Xiaoxi&rft.au=Rushlow%2C+David+R&rft.au=Inselman%2C+Jonathan+W&rft.au=McCoy%2C+Rozalina+G&rft.date=2021-05-01&rft.eissn=1546-170X&rft.volume=27&rft.issue=5&rft.spage=815&rft_id=info:doi/10.1038%2Fs41591-021-01335-4&rft_id=info%3Apmid%2F33958795&rft.externalDocID=33958795 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon |