Breast cancer disease classification using fuzzy-ID3 algorithm with FUZZYDBD method: automatic fuzzy database definition

Breast cancer becomes the second major cause of death among women cancer patients worldwide. Based on research conducted in 2019, there are approximately 250,000 women across the United States diagnosed with invasive breast cancer each year. The prevention of breast cancer remains a challenge in the...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 7; p. e427
Main Authors Idris, Nur Farahaina, Ismail, Mohd Arfian
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 04.05.2021
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text
ISSN2376-5992
2376-5992
DOI10.7717/peerj-cs.427

Cover

Abstract Breast cancer becomes the second major cause of death among women cancer patients worldwide. Based on research conducted in 2019, there are approximately 250,000 women across the United States diagnosed with invasive breast cancer each year. The prevention of breast cancer remains a challenge in the current world as the growth of breast cancer cells is a multistep process that involves multiple cell types. Early diagnosis and detection of breast cancer are among the greatest approaches to preventing cancer from spreading and increasing the survival rate. For more accurate and fast detection of breast cancer disease, automatic diagnostic methods are applied to conduct the breast cancer diagnosis. This paper proposed the fuzzy-ID3 (FID3) algorithm, a fuzzy decision tree as the classification method in breast cancer detection. This study aims to resolve the limitation of an existing method, ID3 algorithm that unable to classify the continuous-valued data and increase the classification accuracy of the decision tree. FID3 algorithm combined the fuzzy system and decision tree techniques with ID3 algorithm as the decision tree learning. FUZZYDBD method, an automatic fuzzy database definition method, would be used to design the fuzzy database for fuzzification of data in the FID3 algorithm. It was used to generate a predefined fuzzy database before the generation of the fuzzy rule base. The fuzzified dataset was applied in FID3 algorithm, which is the fuzzy version of the ID3 algorithm. The inference system of FID3 algorithm is simple with direct extraction of rules from generated tree to determine the classes for the new input instances. This study also analysed the results using three breast cancer datasets: WBCD (Original), WDBC (Diagnostic) and Coimbra. Furthermore, the comparison of FID3 algorithm with the existing methods is conducted to verify the proposed method’s capability and performance. This study identified that the combination of FID3 algorithm with FUZZYDBD method is reliable, robust and managed to perform well in breast cancer classification.
AbstractList Breast cancer becomes the second major cause of death among women cancer patients worldwide. Based on research conducted in 2019, there are approximately 250,000 women across the United States diagnosed with invasive breast cancer each year. The prevention of breast cancer remains a challenge in the current world as the growth of breast cancer cells is a multistep process that involves multiple cell types. Early diagnosis and detection of breast cancer are among the greatest approaches to preventing cancer from spreading and increasing the survival rate. For more accurate and fast detection of breast cancer disease, automatic diagnostic methods are applied to conduct the breast cancer diagnosis. This paper proposed the fuzzy-ID3 (FID3) algorithm, a fuzzy decision tree as the classification method in breast cancer detection. This study aims to resolve the limitation of an existing method, ID3 algorithm that unable to classify the continuous-valued data and increase the classification accuracy of the decision tree. FID3 algorithm combined the fuzzy system and decision tree techniques with ID3 algorithm as the decision tree learning. FUZZYDBD method, an automatic fuzzy database definition method, would be used to design the fuzzy database for fuzzification of data in the FID3 algorithm. It was used to generate a predefined fuzzy database before the generation of the fuzzy rule base. The fuzzified dataset was applied in FID3 algorithm, which is the fuzzy version of the ID3 algorithm. The inference system of FID3 algorithm is simple with direct extraction of rules from generated tree to determine the classes for the new input instances. This study also analysed the results using three breast cancer datasets: WBCD (Original), WDBC (Diagnostic) and Coimbra. Furthermore, the comparison of FID3 algorithm with the existing methods is conducted to verify the proposed method’s capability and performance. This study identified that the combination of FID3 algorithm with FUZZYDBD method is reliable, robust and managed to perform well in breast cancer classification.
Breast cancer becomes the second major cause of death among women cancer patients worldwide. Based on research conducted in 2019, there are approximately 250,000 women across the United States diagnosed with invasive breast cancer each year. The prevention of breast cancer remains a challenge in the current world as the growth of breast cancer cells is a multistep process that involves multiple cell types. Early diagnosis and detection of breast cancer are among the greatest approaches to preventing cancer from spreading and increasing the survival rate. For more accurate and fast detection of breast cancer disease, automatic diagnostic methods are applied to conduct the breast cancer diagnosis. This paper proposed the fuzzy-ID3 (FID3) algorithm, a fuzzy decision tree as the classification method in breast cancer detection. This study aims to resolve the limitation of an existing method, ID3 algorithm that unable to classify the continuous-valued data and increase the classification accuracy of the decision tree. FID3 algorithm combined the fuzzy system and decision tree techniques with ID3 algorithm as the decision tree learning. FUZZYDBD method, an automatic fuzzy database definition method, would be used to design the fuzzy database for fuzzification of data in the FID3 algorithm. It was used to generate a predefined fuzzy database before the generation of the fuzzy rule base. The fuzzified dataset was applied in FID3 algorithm, which is the fuzzy version of the ID3 algorithm. The inference system of FID3 algorithm is simple with direct extraction of rules from generated tree to determine the classes for the new input instances. This study also analysed the results using three breast cancer datasets: WBCD (Original), WDBC (Diagnostic) and Coimbra. Furthermore, the comparison of FID3 algorithm with the existing methods is conducted to verify the proposed method's capability and performance. This study identified that the combination of FID3 algorithm with FUZZYDBD method is reliable, robust and managed to perform well in breast cancer classification.Breast cancer becomes the second major cause of death among women cancer patients worldwide. Based on research conducted in 2019, there are approximately 250,000 women across the United States diagnosed with invasive breast cancer each year. The prevention of breast cancer remains a challenge in the current world as the growth of breast cancer cells is a multistep process that involves multiple cell types. Early diagnosis and detection of breast cancer are among the greatest approaches to preventing cancer from spreading and increasing the survival rate. For more accurate and fast detection of breast cancer disease, automatic diagnostic methods are applied to conduct the breast cancer diagnosis. This paper proposed the fuzzy-ID3 (FID3) algorithm, a fuzzy decision tree as the classification method in breast cancer detection. This study aims to resolve the limitation of an existing method, ID3 algorithm that unable to classify the continuous-valued data and increase the classification accuracy of the decision tree. FID3 algorithm combined the fuzzy system and decision tree techniques with ID3 algorithm as the decision tree learning. FUZZYDBD method, an automatic fuzzy database definition method, would be used to design the fuzzy database for fuzzification of data in the FID3 algorithm. It was used to generate a predefined fuzzy database before the generation of the fuzzy rule base. The fuzzified dataset was applied in FID3 algorithm, which is the fuzzy version of the ID3 algorithm. The inference system of FID3 algorithm is simple with direct extraction of rules from generated tree to determine the classes for the new input instances. This study also analysed the results using three breast cancer datasets: WBCD (Original), WDBC (Diagnostic) and Coimbra. Furthermore, the comparison of FID3 algorithm with the existing methods is conducted to verify the proposed method's capability and performance. This study identified that the combination of FID3 algorithm with FUZZYDBD method is reliable, robust and managed to perform well in breast cancer classification.
ArticleNumber e427
Audience Academic
Author Idris, Nur Farahaina
Ismail, Mohd Arfian
Author_xml – sequence: 1
  givenname: Nur Farahaina
  surname: Idris
  fullname: Idris, Nur Farahaina
– sequence: 2
  givenname: Mohd Arfian
  orcidid: 0000-0001-8312-2289
  surname: Ismail
  fullname: Ismail, Mohd Arfian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34013024$$D View this record in MEDLINE/PubMed
BookMark eNqFksFv0zAUxiM0xMbYjTOKxAUkUmwnjhMOSNvKoNIkJGAHdrGcZ6d1ldjFdti6vx6nHWOdJhFLie38vs_P773nyZ6xRiXJS4wmjGH2fqWUW2bgJwVhT5IDkrMyo3VN9u7N95Mj75cIIUxxfOpnyX5eIJwjUhwk1ydOCR9SEAaUS6X2calS6IT3utUggrYmHbw287Qdbm7W2Wyap6KbW6fDok-v4js9u7i8_Dk9maa9CgsrP6RiCLaPUthqUimCaEZfqVpt9Oj5Innais6ro9vvYXJx9unH6Zfs_Ovn2enxeQaU1SErKGJ1DUDyuqRCAiWkKYEh0jLW5AWWFTSqkkiUisZ1zRoMQjQFxqBahVB-mMy2vtKKJV853Qu35lZovtmwbs6Fi5F2ije0RVK2uEIMCtqwKpfNeBDBFGgDZfTKtl6DWYn1lei6O0OM-FgQvikIB89jQSL_ccuvhqZXEpQJTnQ7Qez-MXrB5_Y3rzAuqk3wb24NnP01KB94rz2orhNG2cFzQkldFywnVURfP0CXdnAmpnak4p2qiqF_1FzEC2vT2ngujKb8uCxRSUhRk0hNHqHikKrXEDuw1XF_R_B2RxCZoK7DXAze89n3b7vsq_tJucvG356MwLstAM5671T7vySTBzjosGnbGLTuHhf9AUqWBqc
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3139595
crossref_primary_10_1007_s10489_022_04134_7
crossref_primary_10_1038_s41598_024_73083_7
crossref_primary_10_1007_s10586_024_04666_2
crossref_primary_10_1016_j_bspc_2024_106374
crossref_primary_10_3389_fonc_2023_1150840
crossref_primary_10_46481_jnsps_2021_331
crossref_primary_10_1016_j_measurement_2023_113525
crossref_primary_10_3233_JIFS_212842
crossref_primary_10_1016_j_heliyon_2024_e26799
crossref_primary_10_1371_journal_pone_0302595
crossref_primary_10_1007_s12553_022_00710_6
crossref_primary_10_2478_amns_2023_2_01377
crossref_primary_10_1007_s11042_023_18015_9
crossref_primary_10_3390_app132111912
crossref_primary_10_1007_s10710_024_09486_2
crossref_primary_10_1007_s11042_024_18473_9
crossref_primary_10_1016_j_advengsoft_2022_103338
crossref_primary_10_1007_s00521_024_09617_x
crossref_primary_10_3390_bdcc6010013
crossref_primary_10_1007_s11042_023_17044_8
crossref_primary_10_1007_s11042_024_19515_y
crossref_primary_10_3390_axioms14030196
crossref_primary_10_3390_math11010198
Cites_doi 10.5013/ijssst.a.20.s2.23
10.1016/j.ins.2008.02.012
10.1088/1757-899X/495/1/012033
10.1002/uog.4103
10.1016/S0165-0114(03)00089-7
10.1007/978-3-030-11196-0_28
10.1016/j.cmpb.2018.04.013
10.1186/s12885-017-3877-1
10.1007/s42979-020-00296-8
10.1016/b978-012369536-9.50011-5
10.7314/APJCP.2014.15.8.3353
10.3390/JIMAGING6060039
10.3390/sym12010093
10.7150/ijbs.21635
10.3923/pjbs.2010.303.315
10.1016/j.ins.2010.12.014
10.1080/02533839.2019.1676658
10.18287/1613-0073-2018-2212-296-303
10.1007/s11277-012-0883-0
10.1063/5.0007885
10.1109/DBTA.2010.5659010
10.4048/jbc.2014.17.4.301
10.11606/T.55.2012.TDE-16072012-144620
10.1016/j.ins.2018.07.006
10.1016/S0165-0114(98)00224-3
10.1016/S0165-0114(97)00386-2
10.22214/ijraset.2019.3142
10.1109/21.199466
10.5120/ijca2017914286
10.1016/j.compeleceng.2017.08.005
10.1016/j.proeng.2011.12.699
10.1088/1742-6596/1015/2/022002
10.35940/ijeat.A9664.109119
10.1109/FUZZ-IEEE.2017.8015502
10.1109/TSMCC.2002.806060
10.1109/91.963759
10.1016/j.imu.2017.12.008
10.1016/j.procs.2018.05.047
10.1109/ACCESS.2020.3036912
10.1016/S0165-0114(02)00136-7
10.1109/TFUZZ.2009.2038712
10.5772/10201
10.1049/cp.2012.0464
10.1109/TEVC.2008.925144
10.1097/01.JAA.0000580524.95733.3d
10.1109/TSMC.1973.5408575
10.1016/0165-0114(94)00229-Z
10.1109/TR.2016.2578948
10.1504/IJBIS.2011.037295
10.1109/FUZZY.2007.4295520
ContentType Journal Article
Copyright 2021 Idris and Ismail.
COPYRIGHT 2021 PeerJ. Ltd.
2021 Idris and Ismail. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Idris and Ismail 2021 Idris and Ismail
Copyright_xml – notice: 2021 Idris and Ismail.
– notice: COPYRIGHT 2021 PeerJ. Ltd.
– notice: 2021 Idris and Ismail. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Idris and Ismail 2021 Idris and Ismail
DBID AAYXX
CITATION
NPM
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.7717/peerj-cs.427
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_b5f0ddf1807c45b783db02f7215c5bc6
10.7717/peerj-cs.427
PMC8114800
A660622492
34013024
10_7717_peerj_cs_427
Genre Journal Article
GeographicLocations Portugal
GeographicLocations_xml – name: Portugal
GrantInformation_xml – fundername: Universiti Malaysia Pahang
– fundername: Postgraduate Research Grants Scheme (PGRS)
  grantid: PGRS200397
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RPM
3V.
ARCSS
M0N
NPM
7XB
8AL
8FK
JQ2
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c579t-450799cc23965adc522b6c702f77b341d8cbe8d0a6e5b3497b1caab411cefe003
IEDL.DBID UNPAY
ISSN 2376-5992
IngestDate Fri Oct 03 12:43:23 EDT 2025
Sun Oct 26 03:47:43 EDT 2025
Tue Sep 30 16:06:02 EDT 2025
Fri Sep 05 07:45:17 EDT 2025
Fri Jul 25 10:09:30 EDT 2025
Mon Oct 20 21:55:27 EDT 2025
Mon Oct 20 16:11:49 EDT 2025
Thu Oct 16 15:04:15 EDT 2025
Thu Jan 02 22:33:36 EST 2025
Thu Apr 24 23:08:03 EDT 2025
Wed Oct 01 01:44:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords FID3 algorithm
Fuzzy decision tree
Classification
FUZZYDBD
Fuzzification
Breast cancer
Fuzzy
ID3 algorithm
Language English
License https://creativecommons.org/licenses/by/4.0
2021 Idris and Ismail.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-450799cc23965adc522b6c702f77b341d8cbe8d0a6e5b3497b1caab411cefe003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8312-2289
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.7717/peerj-cs.427
PMID 34013024
PQID 2521808870
PQPubID 2045934
PageCount e427
ParticipantIDs doaj_primary_oai_doaj_org_article_b5f0ddf1807c45b783db02f7215c5bc6
unpaywall_primary_10_7717_peerj_cs_427
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8114800
proquest_miscellaneous_2529947328
proquest_journals_2521808870
gale_infotracmisc_A660622492
gale_infotracacademiconefile_A660622492
gale_incontextgauss_ISR_A660622492
pubmed_primary_34013024
crossref_primary_10_7717_peerj_cs_427
crossref_citationtrail_10_7717_peerj_cs_427
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-04
PublicationDateYYYYMMDD 2021-05-04
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2021
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Assiri (10.7717/peerj-cs.427/ref-6) 2020; 6
Peña-Reyes (10.7717/peerj-cs.427/ref-62) 2001; 9
Kumari (10.7717/peerj-cs.427/ref-43) 2019; 7
Chaurasia (10.7717/peerj-cs.427/ref-14) 2020; 1
Zaitseva (10.7717/peerj-cs.427/ref-87) 2016; 65
Mushtaq (10.7717/peerj-cs.427/ref-54) 2020; 43
Pulkkinen (10.7717/peerj-cs.427/ref-64) 2010; 18
Watkins (10.7717/peerj-cs.427/ref-79) 2019; 32
Poorani (10.7717/peerj-cs.427/ref-63) 2019; 9
Cintra (10.7717/peerj-cs.427/ref-29) 2013
Cintra (10.7717/peerj-cs.427/ref-25) 2013a
Cintra (10.7717/peerj-cs.427/ref-22) 2014; 5
Mitra (10.7717/peerj-cs.427/ref-53) 2002; 32
Chen (10.7717/peerj-cs.427/ref-16) 1999; 103
Kantarci-Savas (10.7717/peerj-cs.427/ref-38) 2017
Yuan (10.7717/peerj-cs.427/ref-82) 1995; 69
Wang (10.7717/peerj-cs.427/ref-77) 2000; 112
Wu (10.7717/peerj-cs.427/ref-80) 2006
Li (10.7717/peerj-cs.427/ref-46) 2012; 29
Surya (10.7717/peerj-cs.427/ref-73) 2012; 2
Teli (10.7717/peerj-cs.427/ref-74) 2015; 5
Nijhawan (10.7717/peerj-cs.427/ref-55) 2017; 167
Kumar (10.7717/peerj-cs.427/ref-42) 2011; 7
Ahmadi (10.7717/peerj-cs.427/ref-1) 2018; 161
Zadeh (10.7717/peerj-cs.427/ref-83) 1973; SMC-3
Saoud (10.7717/peerj-cs.427/ref-68) 2019
Chai (10.7717/peerj-cs.427/ref-13) 2010
Fajfer (10.7717/peerj-cs.427/ref-32) 2000
Zaitseva (10.7717/peerj-cs.427/ref-85) 2020; 12
Idris (10.7717/peerj-cs.427/ref-35) 2020; 62
Umanol (10.7717/peerj-cs.427/ref-76) 1994
Omondiagbe (10.7717/peerj-cs.427/ref-57) 2019; 495
Aliev (10.7717/peerj-cs.427/ref-4) 2011; 181
Kuo (10.7717/peerj-cs.427/ref-44) 2008; 32
Gondane (10.7717/peerj-cs.427/ref-34) 2015
Liu (10.7717/peerj-cs.427/ref-48) 2010; 11
Begenova (10.7717/peerj-cs.427/ref-10) 2018a; 1015
Cintra (10.7717/peerj-cs.427/ref-21) 2007
Khuriwal (10.7717/peerj-cs.427/ref-41) 2018
Sun (10.7717/peerj-cs.427/ref-72) 2017; 13
Liao (10.7717/peerj-cs.427/ref-47) 2003; 135
Ben-mubarak (10.7717/peerj-cs.427/ref-12) 2012; 71
Begenova (10.7717/peerj-cs.427/ref-11) 2018b; 2212
Lee (10.7717/peerj-cs.427/ref-45) 2014; 17
Khan (10.7717/peerj-cs.427/ref-40) 2017; 17
Patrício (10.7717/peerj-cs.427/ref-61) 2018; 18
Chen (10.7717/peerj-cs.427/ref-15) 2009
Cintra (10.7717/peerj-cs.427/ref-20) 2009
Kayaalp (10.7717/peerj-cs.427/ref-39) 2019
Ribeiro (10.7717/peerj-cs.427/ref-66) 2013
Cintra (10.7717/peerj-cs.427/ref-28) 2011d
Majeed (10.7717/peerj-cs.427/ref-51) 2014; 15
Seymoens (10.7717/peerj-cs.427/ref-70) 2019; 544
Pyingkodi (10.7717/peerj-cs.427/ref-65) 2020; 13
Thaker (10.7717/peerj-cs.427/ref-75) 2018; 132
Cintra (10.7717/peerj-cs.427/ref-27) 2011c
Cintra (10.7717/peerj-cs.427/ref-24) 2011b
Saad (10.7717/peerj-cs.427/ref-67) 2010
Austria (10.7717/peerj-cs.427/ref-7) 2019; 20
Cintra (10.7717/peerj-cs.427/ref-23) 2011a
Sree Kumar (10.7717/peerj-cs.427/ref-71) 2010; 13
Cintra (10.7717/peerj-cs.427/ref-18) 2012
Schaefer (10.7717/peerj-cs.427/ref-69) 2007
Al-Ibrahim (10.7717/peerj-cs.427/ref-2) 2011; II
Zadeh (10.7717/peerj-cs.427/ref-84) 2008; 178
Johra (10.7717/peerj-cs.427/ref-37) 2017
Orriols-Puig (10.7717/peerj-cs.427/ref-58) 2009; 13
Fauziyyah (10.7717/peerj-cs.427/ref-33) 2020; 2242
Yang (10.7717/peerj-cs.427/ref-81) 2018; 65
Liu (10.7717/peerj-cs.427/ref-49) 2010
Angayarkanni (10.7717/peerj-cs.427/ref-5) 2012; 2012
De Brito (10.7717/peerj-cs.427/ref-31) 2018
Avdeenko (10.7717/peerj-cs.427/ref-8) 2018
Badiang (10.7717/peerj-cs.427/ref-9) 2019
Chiu (10.7717/peerj-cs.427/ref-17) 2020; 8
Luo (10.7717/peerj-cs.427/ref-50) 2010
Patil (10.7717/peerj-cs.427/ref-60) 2015; 6
Ali (10.7717/peerj-cs.427/ref-3) 2018; 96
Cintra (10.7717/peerj-cs.427/ref-19) 2010; 80
Oyelade (10.7717/peerj-cs.427/ref-59) 2018; 10
Wang (10.7717/peerj-cs.427/ref-78) 1992; 22
Olaru (10.7717/peerj-cs.427/ref-56) 2003; 138
Zhai (10.7717/peerj-cs.427/ref-86) 2018; 465
Cintra (10.7717/peerj-cs.427/ref-26) 2013b; 20
Jacob (10.7717/peerj-cs.427/ref-36) 2012; 1
Masoum (10.7717/peerj-cs.427/ref-52) 2008
Dai (10.7717/peerj-cs.427/ref-30) 2010; 1
References_xml – volume: 20
  start-page: 1
  year: 2019
  ident: 10.7717/peerj-cs.427/ref-7
  article-title: Comparison of machine learning algorithms in breast cancer prediction using the coimbra dataset
  publication-title: International Journal of Simulation: Systems, Science & Technology
  doi: 10.5013/ijssst.a.20.s2.23
– start-page: 465
  year: 2010
  ident: 10.7717/peerj-cs.427/ref-49
  article-title: Improved ID3 algorithm
– volume: 178
  start-page: 2751
  issue: 13
  year: 2008
  ident: 10.7717/peerj-cs.427/ref-84
  article-title: Is there a need for fuzzy logic?
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2008.02.012
– volume: 495
  start-page: 012033
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.427/ref-57
  article-title: Machine learning classification techniques for breast cancer diagnosis
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/495/1/012033
– start-page: 329
  year: 2010
  ident: 10.7717/peerj-cs.427/ref-13
  article-title: A more efficient classification scheme for ID3
– volume: 32
  start-page: 97
  issue: 1
  year: 2008
  ident: 10.7717/peerj-cs.427/ref-44
  article-title: Classification of benign and malignant breast tumors using neural networks and three-dimensional power Doppler ultrasound
  publication-title: Ultrasound in Obstetrics and Gynecology
  doi: 10.1002/uog.4103
– volume: 138
  start-page: 221
  issue: 2
  year: 2003
  ident: 10.7717/peerj-cs.427/ref-56
  article-title: A complete fuzzy decision tree technique
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(03)00089-7
– volume: 20
  start-page: 56
  year: 2013b
  ident: 10.7717/peerj-cs.427/ref-26
  article-title: A fuzzy decision tree algorithm based on C4.5
  publication-title: Mathware & Soft Computing
– start-page: 98
  year: 2018
  ident: 10.7717/peerj-cs.427/ref-41
  article-title: Breast cancer diagnosis using deep learning algorithm
– volume: 13
  start-page: 1238
  issue: 2
  year: 2020
  ident: 10.7717/peerj-cs.427/ref-65
  article-title: Performance study of classification algorithms using the breast cancer dataset
  publication-title: International Journal of Future Generation Communication and Networking
– volume-title: Using feature selection techniques to improve the accuracy of breast cancer classification
  year: 2019
  ident: 10.7717/peerj-cs.427/ref-68
  doi: 10.1007/978-3-030-11196-0_28
– volume: 161
  start-page: 145
  issue: Suppl. 1
  year: 2018
  ident: 10.7717/peerj-cs.427/ref-1
  article-title: Diseases diagnosis using fuzzy logic methods: a systematic and meta-analysis review
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2018.04.013
– volume: 18
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.7717/peerj-cs.427/ref-61
  article-title: Using resistin, glucose, age and BMI to predict the presence of breast cancer
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3877-1
– volume: 1
  start-page: 270
  issue: 5
  year: 2020
  ident: 10.7717/peerj-cs.427/ref-14
  article-title: Applications of machine learning techniques to predict diagnostic breast cancer
  publication-title: SN Computer Science
  doi: 10.1007/s42979-020-00296-8
– volume-title: Power Quality in Power Systems and Electrical Machines
  year: 2008
  ident: 10.7717/peerj-cs.427/ref-52
  article-title: Optimal placement and sizing of shunt capacitor banks in the presence of harmonics
  doi: 10.1016/b978-012369536-9.50011-5
– volume: 15
  start-page: 3353
  issue: 8
  year: 2014
  ident: 10.7717/peerj-cs.427/ref-51
  article-title: Breast cancer: major risk factors and recent developments in treatment
  publication-title: Asian Pacific Journal of Cancer Prevention
  doi: 10.7314/APJCP.2014.15.8.3353
– volume: 2
  start-page: 463
  issue: 6
  year: 2012
  ident: 10.7717/peerj-cs.427/ref-73
  article-title: Classification of different textures using SVM and fuzzy logic
  publication-title: International Journal of Advanced Computer Research
– volume: 6
  start-page: 39
  issue: 6
  year: 2020
  ident: 10.7717/peerj-cs.427/ref-6
  article-title: Breast tumor classification using an ensemble machine learning method
  publication-title: Journal of Imaging
  doi: 10.3390/JIMAGING6060039
– volume: 12
  start-page: 93
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.427/ref-85
  article-title: Application of the structure function in the evaluation of the human factor in healthcare
  publication-title: Symmetry
  doi: 10.3390/sym12010093
– start-page: 2113
  year: 1994
  ident: 10.7717/peerj-cs.427/ref-76
  article-title: Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems
– volume: 13
  start-page: 1387
  issue: 11
  year: 2017
  ident: 10.7717/peerj-cs.427/ref-72
  article-title: Risk factors and preventions of breast cancer
  publication-title: International Journal of Biological Sciences
  doi: 10.7150/ijbs.21635
– volume: 13
  start-page: 303
  issue: 7
  year: 2010
  ident: 10.7717/peerj-cs.427/ref-71
  article-title: Rapid metastasis of breast cancer cells from primary tumour to liver
  publication-title: Pakistan Journal of Biological Sciences
  doi: 10.3923/pjbs.2010.303.315
– volume: 181
  start-page: 1591
  issue: 9
  year: 2011
  ident: 10.7717/peerj-cs.427/ref-4
  article-title: Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2010.12.014
– volume: 43
  start-page: 80
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.427/ref-54
  article-title: Effective K-nearest neighbor classifications for Wisconsin breast cancer data sets
  publication-title: Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A
  doi: 10.1080/02533839.2019.1676658
– volume: 2212
  start-page: 296
  year: 2018b
  ident: 10.7717/peerj-cs.427/ref-11
  article-title: The research of fuzzy decision trees building based on entropy and the theory of fuzzy sets
  publication-title: CEUR Workshop Proceedings
  doi: 10.18287/1613-0073-2018-2212-296-303
– volume: 71
  start-page: 1421
  issue: 2
  year: 2012
  ident: 10.7717/peerj-cs.427/ref-12
  article-title: Fuzzy logic based self-adaptive handover algorithm for mobile WiMAX
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-012-0883-0
– volume: 2242
  start-page: 030019
  year: 2020
  ident: 10.7717/peerj-cs.427/ref-33
  article-title: Reviewing the consistency of the Naïve Bayes Classifier’s performance in medical diagnosis and prognosis problems
  publication-title: AIP Conference Proceedings
  doi: 10.1063/5.0007885
– start-page: 742
  year: 2009
  ident: 10.7717/peerj-cs.427/ref-20
  article-title: Optimising the fuzzy granulation of attribute domains
– year: 2011c
  ident: 10.7717/peerj-cs.427/ref-27
  article-title: On rule generation approaches for genetic Fuzzy Systems
– volume: 11
  start-page: 494
  year: 2010
  ident: 10.7717/peerj-cs.427/ref-48
  article-title: Improved ID3 algorithm using ontology in computer forensics
– year: 2010
  ident: 10.7717/peerj-cs.427/ref-50
  article-title: An improved ID3 algorithm based on attribute importance-weighted
  doi: 10.1109/DBTA.2010.5659010
– volume: 17
  start-page: 301
  issue: 4
  year: 2014
  ident: 10.7717/peerj-cs.427/ref-45
  article-title: Unique features of young age breast cancer and its management
  publication-title: Journal of Breast Cancer
  doi: 10.4048/jbc.2014.17.4.301
– year: 2011a
  ident: 10.7717/peerj-cs.427/ref-23
  article-title: An approach for the extraction of classification rules from fuzzy formal contexts
– year: 2012
  ident: 10.7717/peerj-cs.427/ref-18
  article-title: Genetic generation of fuzzy knowledge bases: new perspectives
  publication-title: Biblioteca Digital
  doi: 10.11606/T.55.2012.TDE-16072012-144620
– start-page: 174
  year: 2015
  ident: 10.7717/peerj-cs.427/ref-34
  article-title: Classification using probabilistic random forest
– year: 2013a
  ident: 10.7717/peerj-cs.427/ref-25
  article-title: FuzzyDT: a fuzzy decision tree algorithm based on C4.5
– start-page: 135
  year: 2006
  ident: 10.7717/peerj-cs.427/ref-80
  article-title: Improved classification algorithm by minsup and minconf based on ID3
– volume: 5
  start-page: 613
  issue: 4
  year: 2015
  ident: 10.7717/peerj-cs.427/ref-74
  article-title: A survey on decision tree based approaches in data mining
  publication-title: International Journal of Advanced Research in Computer Science and Software Engineering
– start-page: 89
  year: 2019
  ident: 10.7717/peerj-cs.427/ref-9
  article-title: Relocating local outliers produced by K-means and K-medoids using local outlier rectifier V.2.0
– start-page: 127
  year: 2009
  ident: 10.7717/peerj-cs.427/ref-15
  article-title: An improved ID3 decision tree algorithm
– volume: 96
  start-page: 5717
  issue: 17
  year: 2018
  ident: 10.7717/peerj-cs.427/ref-3
  article-title: Early detection for breast cancer by using fuzzy logic
  publication-title: Journal of Theoretical and Applied Information Technology
– volume: 465
  start-page: 425
  issue: 1
  year: 2018
  ident: 10.7717/peerj-cs.427/ref-86
  article-title: Tolerance rough fuzzy decision tree
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.07.006
– volume: 103
  start-page: 239
  issue: 2
  year: 1999
  ident: 10.7717/peerj-cs.427/ref-16
  article-title: Fuzzy clustering analysis for optimizing fuzzy membership functions
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(98)00224-3
– volume: 112
  start-page: 117
  issue: 1
  year: 2000
  ident: 10.7717/peerj-cs.427/ref-77
  article-title: On the optimization of fuzzy decision trees
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(97)00386-2
– volume: 7
  start-page: 816
  issue: 3
  year: 2019
  ident: 10.7717/peerj-cs.427/ref-43
  article-title: Decision support system for breast cancer prediction
  publication-title: International Journal for Research in Applied Science and Engineering Technology
  doi: 10.22214/ijraset.2019.3142
– volume: 22
  start-page: 1414
  issue: 6
  year: 1992
  ident: 10.7717/peerj-cs.427/ref-78
  article-title: Generating fuzzy rules by learning from examples
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/21.199466
– volume: 1
  start-page: 493
  year: 2012
  ident: 10.7717/peerj-cs.427/ref-36
  article-title: Efficient classifier for classification of prognostic breast cancer data through data mining techniques
  publication-title: Lecture Notes in Engineering and Computer Science
– volume: 167
  start-page: 1
  issue: 11
  year: 2017
  ident: 10.7717/peerj-cs.427/ref-55
  article-title: The analytical comparison of ID3 and C4.5 using WEKA
  publication-title: International Journal of Computer Applications
  doi: 10.5120/ijca2017914286
– volume: 80
  volume-title: Information Processing and Management of Uncertainty in Knowledge-Based Systems—Theory and Methods: IPMU 2010—Communications in Computer and Information Science
  year: 2010
  ident: 10.7717/peerj-cs.427/ref-19
  article-title: Feature subset selection for fuzzy classification methods
– volume-title: Predicting the occurrence of breast cancer using insulin-related biomarkers, independently of obesity
  year: 2018
  ident: 10.7717/peerj-cs.427/ref-31
– volume: 65
  start-page: 474
  issue: 4
  year: 2018
  ident: 10.7717/peerj-cs.427/ref-81
  article-title: An improved Id3 algorithm for medical data classification
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2017.08.005
– volume: 29
  start-page: 229
  issue: 4
  year: 2012
  ident: 10.7717/peerj-cs.427/ref-46
  article-title: The application of generating fuzzy ID3 algorithm in performance evaluation
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2011.12.699
– volume: 1015
  start-page: 022002
  issue: 2
  year: 2018a
  ident: 10.7717/peerj-cs.427/ref-10
  article-title: Building of fuzzy decision trees using ID3 algorithm
  publication-title: Journal of Physics: Conference Series
  doi: 10.1088/1742-6596/1015/2/022002
– volume: 544
  volume-title: IFIP Advances in Information and Communication Technology
  year: 2019
  ident: 10.7717/peerj-cs.427/ref-70
  article-title: A methodology to involve domain experts and machine learning techniques in the design of human-centered algorithms
– volume: II
  start-page: 1158
  issue: IV
  year: 2011
  ident: 10.7717/peerj-cs.427/ref-2
  article-title: Discretization of continuous attributes in supervised learning algorithms
  publication-title: Research Bulletin of Jordan ACM
– volume: 9
  start-page: 2106
  issue: 1
  year: 2019
  ident: 10.7717/peerj-cs.427/ref-63
  article-title: Deep neural network classifier in breast cancer prediction
  publication-title: International Journal of Engineering and Advanced Technology
  doi: 10.35940/ijeat.A9664.109119
– year: 2017
  ident: 10.7717/peerj-cs.427/ref-38
  article-title: Fuzzy ID3 algorithm on linguistic dataset by using WABL defuzzification method
  doi: 10.1109/FUZZ-IEEE.2017.8015502
– volume: 32
  start-page: 328
  issue: 4
  year: 2002
  ident: 10.7717/peerj-cs.427/ref-53
  article-title: Fuzzy decision tree, linguistic rules and fuzzy knowledge-based network: generation and evaluation
  publication-title: IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews
  doi: 10.1109/TSMCC.2002.806060
– volume: 9
  start-page: 727
  issue: 5
  year: 2001
  ident: 10.7717/peerj-cs.427/ref-62
  article-title: Fuzzy CoCo: a cooperative-coevolutionary approach to fuzzy modeling
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.963759
– volume: 10
  start-page: 117
  year: 2018
  ident: 10.7717/peerj-cs.427/ref-59
  article-title: ST-ONCODIAG: a semantic rule-base approach to diagnosing breast cancer base on Wisconsin datasets
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2017.12.008
– start-page: 326
  year: 2000
  ident: 10.7717/peerj-cs.427/ref-32
  article-title: Bottom-up fuzzy partitioning in fuzzy decision trees
– volume: 132
  start-page: 1308
  issue: 2
  year: 2018
  ident: 10.7717/peerj-cs.427/ref-75
  article-title: Analysis of fuzzification process in fuzzy expert system
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.05.047
– volume: 8
  start-page: 204309
  year: 2020
  ident: 10.7717/peerj-cs.427/ref-17
  article-title: Breast cancer–detection system using PCA, multilayer perceptron, transfer learning, and support vector machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3036912
– volume: 5
  start-page: 104
  issue: 1
  year: 2014
  ident: 10.7717/peerj-cs.427/ref-22
  article-title: A fuzzy decision tree model to support the task of bus reallocation in public transport systems
  publication-title: Journal of Information and Data Management
– volume: 135
  start-page: 241
  issue: 2
  year: 2003
  ident: 10.7717/peerj-cs.427/ref-47
  article-title: A fuzzy c-means variant for the generation of fuzzy term sets
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(02)00136-7
– start-page: 261
  year: 2007
  ident: 10.7717/peerj-cs.427/ref-21
  article-title: Fuzzy rules generation using genetic algorithms with self-adaptive selection
– start-page: 1
  year: 2013
  ident: 10.7717/peerj-cs.427/ref-29
  article-title: A fuzzy decision tree for bus network management
– volume: 18
  start-page: 161
  issue: 1
  year: 2010
  ident: 10.7717/peerj-cs.427/ref-64
  article-title: A dynamically constrained multiobjective genetic fuzzy system for regression problems
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2009.2038712
– start-page: 709
  year: 2013
  ident: 10.7717/peerj-cs.427/ref-66
  article-title: A comparative analysis of pruning strategies for fuzzy decision trees
– volume-title: Advanced Strategies for Robot Manipulators
  year: 2010
  ident: 10.7717/peerj-cs.427/ref-67
  article-title: Development of fuzzy-logic-based self tuning PI controller for servomotor
  doi: 10.5772/10201
– volume: 1
  start-page: 296
  year: 2010
  ident: 10.7717/peerj-cs.427/ref-30
  article-title: Self-adaptive fuzzification in fuzzy decision tree induction
– volume: 2012
  start-page: 1
  issue: 600
  year: 2012
  ident: 10.7717/peerj-cs.427/ref-5
  article-title: MRI mammogram image classification using ID3 algorithm
  publication-title: IET Conference Publications
  doi: 10.1049/cp.2012.0464
– volume: 17
  start-page: 207
  issue: 12
  year: 2017
  ident: 10.7717/peerj-cs.427/ref-40
  article-title: Data mining algorithms for classification of diagnostic cancer using genetic optimization algorithms
  publication-title: Ijcsns
– start-page: 211
  year: 2011d
  ident: 10.7717/peerj-cs.427/ref-28
  article-title: On the estimation of the number of fuzzy sets for fuzzy rule-based classification systems
– volume: 6
  start-page: 1956
  issue: 2
  year: 2015
  ident: 10.7717/peerj-cs.427/ref-60
  article-title: Efficient processing of decision tree using ID3 & improved C4.5 algorithm
  publication-title: International Journal of Computer Science and Information Technologies
– volume: 13
  start-page: 260
  issue: 2
  year: 2009
  ident: 10.7717/peerj-cs.427/ref-58
  article-title: Fuzzy-UCS: a michigan-style learning fuzzy-classifier system for supervised learning
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.925144
– volume: 32
  start-page: 13
  issue: 10
  year: 2019
  ident: 10.7717/peerj-cs.427/ref-79
  article-title: Overview of breast cancer
  publication-title: Journal of the American Academy of Physician Assistants
  doi: 10.1097/01.JAA.0000580524.95733.3d
– volume: SMC-3
  start-page: 28
  issue: 1
  year: 1973
  ident: 10.7717/peerj-cs.427/ref-83
  article-title: Outline of a new approach to the analysis of complex systems and decision processes
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1973.5408575
– start-page: 159
  volume-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10943 LNCS
  year: 2018
  ident: 10.7717/peerj-cs.427/ref-8
  article-title: Combination of case-based reasoning and data mining through integration with the domain ontology
– start-page: 1347
  year: 2011b
  ident: 10.7717/peerj-cs.427/ref-24
  article-title: The use of fuzzy decision trees for coffee rust warning in Brazilian crops
– volume: 69
  start-page: 125
  issue: 2
  year: 1995
  ident: 10.7717/peerj-cs.427/ref-82
  article-title: Induction of fuzzy decision trees
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(94)00229-Z
– volume: 65
  start-page: 1710
  issue: 4
  year: 2016
  ident: 10.7717/peerj-cs.427/ref-87
  article-title: Construction of a reliability structure function based on uncertain data
  publication-title: IEEE Transactions on Reliability
  doi: 10.1109/TR.2016.2578948
– start-page: 2
  year: 2017
  ident: 10.7717/peerj-cs.427/ref-37
  article-title: Detection of breast cancer from histopathology image and classifying benign and malignant state using fuzzy logic
– volume: 62
  start-page: 4759
  issue: 8
  year: 2020
  ident: 10.7717/peerj-cs.427/ref-35
  article-title: Attribute related methods for improvement of ID3 algorithm in classification of data: a review
  publication-title: Technology Reports of Kansai University
– start-page: 1
  year: 2019
  ident: 10.7717/peerj-cs.427/ref-39
  article-title: Performance analysis of filter based feature selection methods on diagnosis of breast cancer and orthopedics
– volume: 7
  start-page: 27
  issue: 1
  year: 2011
  ident: 10.7717/peerj-cs.427/ref-42
  article-title: Fuzzy based clustering algorithm for privacy preserving data mining
  publication-title: International Journal of Business Information Systems
  doi: 10.1504/IJBIS.2011.037295
– year: 2007
  ident: 10.7717/peerj-cs.427/ref-69
  article-title: Breast cancer classification using statistical features and fuzzy classification of thermograms
  doi: 10.1109/FUZZY.2007.4295520
SSID ssj0001511119
Score 2.3447487
Snippet Breast cancer becomes the second major cause of death among women cancer patients worldwide. Based on research conducted in 2019, there are approximately...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e427
SubjectTerms Accuracy
Algorithms
Algorithms and Analysis of Algorithms
Analysis
Artificial Intelligence
Breast cancer
Cancer
Classification
Data Mining and Machine Learning
Datasets
Decision trees
Diagnosis
Diagnostic systems
FID3 algorithm
Fuzzy
Fuzzy decision tree
Fuzzy logic
Fuzzy sets
FUZZYDBD
Health aspects
Human error
ID3 algorithm
Linguistics
Machine learning
Medical research
Medicine, Experimental
Methods
Prevention
Variables
Women
Womens health
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQXuDC-xFYkEE8DiiskzgvbltKtYsEB6DSshfLHjvdopJUTSLY_fV4nDRqQMCFaz1Rk5nxPJLP3xDytAhZrCItbVsChc-14r4MgPkIOFRRlilwQ_vef0iO5vzdSXyyM-oLMWEdPXCnuAMVF0zrIshYCjxWaRZpxcLCNi4xxAoc2TbL8p1mqjsfjKEg75DuqW1ZDtbGbL76UL_iOEBmJwc5qv7fA_JORvoVLXm5Ldfy_LtcrXZS0ew6udrXkPSwu_cb5JIpb5Jr2_kMtN-ut8iPCSLOGwpo2Q3tv8VQwIIZEULOKBSR7wtatBcX5_7xNKJytag2y-bsG8V3tHQ2Pz39Mp1MaTdr-jWVbVM5ntfuGooYU8yFVJtiWToE2G0yn739_ObI7yct-BCneeNzWxXmOUAY5UksNdiiTCWQop5TZfOczkCZTDOZGGtZnqcqACkVDwIwhbGB4Q7ZK6vS3MMz4K6vzKIAcLqZ3eCSSRUVqU6YzmPpkZdb3QvoachxGsZK2HYELSWcpQTUwlrKI88G6XVHv_EHuQmacZBB0mz3g3Ul0buS-JcreeQJOoFAWowScTcL2da1OP70URwmttELkV3RIy96oaKy9w2yP8Zgnx6ZtEaS-yNJu29hvLz1NdHHjVqEtprKMPAzjzwelvFKxMKVpmqdTJ5zJFnyyN3ONYfnjrj7Es09ko6cdqSY8Uq5PHOs4hl2xsz-7_PBvf-q8vv_Q-UPyJUQQUKIIOX7ZK_ZtOahrfIa9cht6J8hUFVZ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZG9wAv3C8ZAxnE5QGFpYlzQ0Jopas2JCo0qDT2YtnHTjfUJaVNBNuvx8dJugbEXusT1fa525_PIeRF5nuhDJQwaQlkLlOSuaIPnouAQxkkiQTbtO_zONqfsE9H4dEGGbdvYRBW2dpEa6hVAXhGvuMbP5OgSngf5j9d7BqFt6ttCw3RtFZQ722JsWtk08fKWD2yOdgbfzm8PHUJ0USkNQI-NqnMzlzrxQ8Xlm8ZNpZZ8022hP-_hnrNU_2Norxe5XNx_kvMZmsuanSb3GxiS7pbC8MdsqHzu-RW27eBNmp8j_weIBK9pIAcX9DmjoYCBtKIHLLMooiIn9Ksurg4dw-GARWzqdmP8uSM4tktHU2Oj78PB0Na96B-R0VVFrb-a_0NRewp-kiqdHaaW2TYfTIZ7X37uO82HRhcCOO0dJmJFtMUwA_SKBQKTLAmI4g9P4tjafyfSkDqRHki0objLI1lH4SQrN8HnWljMB6QXl7k-hG-Dbf5ZhL0AbueGcUXnpBBFqvIU2koHPKm3XsOTXly7JIx4yZNQU5xyykOS2445ZCXK-p5XZbjP3QDZOOKBotp2x-KxZQ3usllmHlKZUa8YmChNHNUEpdooiEIJUQOeY5CwLFcRo54nKmolkt-8PWQ70YmAfSx6qJDXjdEWWHmDaJ53mBWjxW2OpTbHUqjz9AdbmWNN_ZkyS-l3yHPVsP4JWLkcl1UliZNGRZfcsjDWjRX6w6YvaFmDok7QtvZmO5Ifnpiq40nmDF75n9frcT7yi3funr-j8kNH2FBiBll26RXLir9xMR1pXzaKOsfn7RS7g
  priority: 102
  providerName: ProQuest
Title Breast cancer disease classification using fuzzy-ID3 algorithm with FUZZYDBD method: automatic fuzzy database definition
URI https://www.ncbi.nlm.nih.gov/pubmed/34013024
https://www.proquest.com/docview/2521808870
https://www.proquest.com/docview/2529947328
https://pubmed.ncbi.nlm.nih.gov/PMC8114800
https://doi.org/10.7717/peerj-cs.427
https://doaj.org/article/b5f0ddf1807c45b783db02f7215c5bc6
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: 8FG
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t7QO8ML4JjMqgAQ8oJR_OF28tbdmQqKZBpW0vlu0kXbeSVm0iWP96fE5aNZv4eK3Pqn0---7in38HcJA6lifcmKu0RKYmjQU1uS0tEwGHwg1DIXXRvq9D_3BEv5x6pztwsH4Ls3V_H6hM48M8SRaXply2qRPsQtP3VMTdgOZoeNw503XjAt_0osgpMe23utS8jSblv330bvmem7jIO0U259c_-XS65XQGe9BfD7fEmly1i1y05eoGk-O_5nMf7lVRJ-mUZvIAdpLsIeytKzqQaoM_gl9dxKjnRKItLEh1e0MkhtiIKdLLSBArPyZpsVpdm0c9l_DpeLaY5Bc_CH7VJYPR-flZr9sjZXXqj4QX-Uwzw5Z9CKJS0XuSOEknmcaMPYbRoP_906FZ1WYwpRdEuUlVHBlFUjpu5Hs8liqME74MLCcNAqE8YxxKkYSxxf1E2QKNAmFLzgW1bZmkiTpKnkAjm2XJM3w1rjPR0LUl1kNTRwK3uHDTIPatOPK4Ae_Xa8hkRVyO9TOmTCUwqFSmlcrkkimlGvBmIz0vCTv-INdFc9jIIM22_kGtFqt2LRNeasVxaodWIKkn1BhjgVNUcZL0hPQNeI3GxJBII0OkzpgXyyU7-nbCOr5KDR3kYzTgXSWUztS4Ja8ePqjZI_dWTXK_Jql2uqw3r22WVSfNkjkq_grRVVgGvNo0Y09Ez2XJrNAyUUSRlsmAp6WJb-btUn13TQ0IasZfU0y9JZtcaB7yEHNpS_3v2802-avKn_-v4Au46yB0CHGldB8a-aJIXqrYLxct2A0Hn1vQ7PaHxyct_QWlVR0HvwF3z2DA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9zBeuF8CAwxi8IDC0sS5IU1opatatlVoW6WxF-NL0g2VpDSJRvfj-G34OEnXgNjbXuOTxPY5Phf78zkIvY5ty-WOZCosEbFJJCcmawvLBMAhd4KAC120b3_o9Ufk87F7vIJ-13dhAFZZ60StqGUqYI9801Z2JoAlYX2c_jShahScrtYlNFhVWkFu6RRj1cWO3Wh-rkK4bGvQVfzesO3eztGnvllVGTCF64e5SZRHFIZC2E7ouUwK5ZBwT_iWHfs-VzpeBoJHgbSYF6lRkdDnbcEYJ-22iOJILQr13RtolUBTC612doZfDi53eVxQSWGJuPdV6LQ5jaLZd1Nk7wkUslmyhbpkwL-GYcky_o3aXCuSKZufs8lkyST27qBblS-Lt0vhu4tWouQeul3XicCV2riPfnUA-Z5jARI2w9WZEBbguANSSQsHBgT-GMfFxcXcHHQdzCZjNf_56Q8Me8W4Nzo5-drtdHFZ8_oDZkWe6nyz5TsYsK5gk7GM4rNEI9EeoNG18OIhaiVpEj2Gu-g6vg2ctoAqa0rRMItxJ_alZ8nQZQZ6V889FVU6dKjKMaEqLAJOUc0pKjKqOGWgjQX1tEwD8h-6DrBxQQPJu_WDdDamlS6g3I0tKWMlzr4gLld9lByGqLwv4XLhGegVCAGF9BwJ4H_GrMgyOjg8oNueCjhtyPJooLcVUZyqfgtWXadQo4eMXg3K9Qal0h-i2VzLGq30V0YvV5uBXi6a4U3A5CVRWmiaMCSQ7MlAj0rRXIzbIfpEnBjIbwhtY2KaLcnZqc5uHkCEbqn_vlmI95VT_uTq_r9Aa_2j_T26NxjuPkU3bYAkAV6VrKNWPiuiZ8qnzPnzauFi9O26dcUfTlWQWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXvj8CAwxi8IBC08T5QkJopZSVwTQBlcZejO043VBJSpNodH8afx13TtKtIPa21_iS2L7zfdg_3xHyJHUdX3qJgLBEpTZLJLNFVzk2Ag6lF0VSmaJ9H7eDzRF7v-vvrpDf7V0YhFW2OtEo6iRXuEfeccHORLgknE7awCJ2-oPX0582VpDCk9a2nEYtIlt6fgjhW_Fq2Ader7vu4O2XN5t2U2HAVn4YlzYDbyiOlXK9OPBFosAZkYEKHTcNQwn6PYmU1FHiiEDDiFgcyq4SQrJuV-lUw4KA754j50PM4o631Afvjvd3fFRGcY21DyFo6ky1nn23VfGCYQmbE1bQFAv41yScsIl_4zUvVtlUzA_FZHLCGA6uksuNF0s3arG7RlZ0dp1caStE0EZh3CC_eoh5L6lC2ZrR5jSIKnTZEaNkxIIi9n5M0-roaG4P-x4VkzHMdrn_g-IuMR2M9va-9nt9Wle7fklFVeYm02z9DkWUK1pjmuj0IDMYtJtkdCacuEVWszzTd_AWuolsI6-rsL4aqBjhCOmlYRI4SewLizxv556rJhE61uOYcAiIkFPccIqrggOnLLK-oJ7WCUD-Q9dDNi5oMG23eZDPxrzRAlz6qZMkKQhyqJgvoY-JxCGC36V8qQKLPEYh4JiYI0MRH4uqKPjw8ye-EUCo6WJ-R4s8a4jSHPqtRHORAkaPubyWKNeWKEFzqOXmVtZ4o7kKfrzOLPJo0YxvIhov03llaOKYYZoni9yuRXMxbo-Zs3BmkXBJaJcmZrklO9g3ec0jjM0d-O_ThXifOuV3T-__Q3IBNAT_MNzeukcuuYhFQqAqWyOr5azS98GZLOUDs2op-XbWauIPcqON9A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZKeoAL5VkWCjKowAFt2If3xS0hrVokKgREanux7LE3DYRNlOwKml-Px7uJsq14XOOxYo_Hnpn1528I2c8DL5KhEiYtgdxlSjJX-OC5CDiUYZpKsEX7Pp7ER0P24TQ63SL7q7cwG_f3ick03s60nn9zYdFlQXKDbMeRibg7ZHt48ql3ZuvGJbEbZVlQY9qvdWl5G0vKf_3o3fA9V3GRN6tiJi5_islkw-kc7pCD1XBrrMn3blXKLiyvMDn-az53yO0m6qS92kzuki1d3CM7q4oOtNng98mvPmLUSwpoC3Pa3N5QwBAbMUV2GSli5Uc0r5bLS_d4EFIxGU3n4_LiB8WvuvRweH5-NugPaF2d-h0VVTm1zLB1H4qoVPSeVOl8XFjM2AMyPDz4-v7IbWozuBAlWekyE0dmGUAQZnEkFJgwTsaQeEGeJNJ4RpWC1KnyRKyNLbAskT4IIZnvg861OUoekk4xLfQjfDVuM9E09AHroZkjQXhChnmiYk9lkXDIm9UacmiIy7F-xoSbBAaVyq1SOSy4UapDXq6lZzVhxx_k-mgOaxmk2bY_mNXiza7lMso9pXI_9RJgkTRjVBKnaOIkiCTEDnmBxsSRSKNApM5IVIsFP_7ymfdikxoGyMfokNeNUD414wbRPHwws0furZbkXkvS7HRoN69sljcnzYIHJv5K0VV4Dnm-bsaeiJ4r9LSyMlnGkJbJIbu1ia_nHTJ7d80ckrSMv6WYdksxvrA85Cnm0p7531frbfJXlT_-X8En5FaA0CHElbI90innlX5qYr9SPmu2_m8ThF1L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+cancer+disease+classification+using+fuzzy-ID3+algorithm+with+FUZZYDBD+method%3A+automatic+fuzzy+database+definition&rft.jtitle=PeerJ.+Computer+science&rft.au=Idris%2C+Nur+Farahaina&rft.au=Ismail%2C+Mohd+Arfian&rft.date=2021-05-04&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=7&rft.spage=e427&rft_id=info:doi/10.7717%2Fpeerj-cs.427&rft.externalDocID=A660622492
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon