Breast cancer disease classification using fuzzy-ID3 algorithm with FUZZYDBD method: automatic fuzzy database definition
Breast cancer becomes the second major cause of death among women cancer patients worldwide. Based on research conducted in 2019, there are approximately 250,000 women across the United States diagnosed with invasive breast cancer each year. The prevention of breast cancer remains a challenge in the...
Saved in:
| Published in | PeerJ. Computer science Vol. 7; p. e427 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
PeerJ. Ltd
04.05.2021
PeerJ, Inc PeerJ Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2376-5992 2376-5992 |
| DOI | 10.7717/peerj-cs.427 |
Cover
| Abstract | Breast cancer becomes the second major cause of death among women cancer patients worldwide. Based on research conducted in 2019, there are approximately 250,000 women across the United States diagnosed with invasive breast cancer each year. The prevention of breast cancer remains a challenge in the current world as the growth of breast cancer cells is a multistep process that involves multiple cell types. Early diagnosis and detection of breast cancer are among the greatest approaches to preventing cancer from spreading and increasing the survival rate. For more accurate and fast detection of breast cancer disease, automatic diagnostic methods are applied to conduct the breast cancer diagnosis. This paper proposed the fuzzy-ID3 (FID3) algorithm, a fuzzy decision tree as the classification method in breast cancer detection. This study aims to resolve the limitation of an existing method, ID3 algorithm that unable to classify the continuous-valued data and increase the classification accuracy of the decision tree. FID3 algorithm combined the fuzzy system and decision tree techniques with ID3 algorithm as the decision tree learning. FUZZYDBD method, an automatic fuzzy database definition method, would be used to design the fuzzy database for fuzzification of data in the FID3 algorithm. It was used to generate a predefined fuzzy database before the generation of the fuzzy rule base. The fuzzified dataset was applied in FID3 algorithm, which is the fuzzy version of the ID3 algorithm. The inference system of FID3 algorithm is simple with direct extraction of rules from generated tree to determine the classes for the new input instances. This study also analysed the results using three breast cancer datasets: WBCD (Original), WDBC (Diagnostic) and Coimbra. Furthermore, the comparison of FID3 algorithm with the existing methods is conducted to verify the proposed method’s capability and performance. This study identified that the combination of FID3 algorithm with FUZZYDBD method is reliable, robust and managed to perform well in breast cancer classification. |
|---|---|
| AbstractList | Breast cancer becomes the second major cause of death among women cancer patients worldwide. Based on research conducted in 2019, there are approximately 250,000 women across the United States diagnosed with invasive breast cancer each year. The prevention of breast cancer remains a challenge in the current world as the growth of breast cancer cells is a multistep process that involves multiple cell types. Early diagnosis and detection of breast cancer are among the greatest approaches to preventing cancer from spreading and increasing the survival rate. For more accurate and fast detection of breast cancer disease, automatic diagnostic methods are applied to conduct the breast cancer diagnosis. This paper proposed the fuzzy-ID3 (FID3) algorithm, a fuzzy decision tree as the classification method in breast cancer detection. This study aims to resolve the limitation of an existing method, ID3 algorithm that unable to classify the continuous-valued data and increase the classification accuracy of the decision tree. FID3 algorithm combined the fuzzy system and decision tree techniques with ID3 algorithm as the decision tree learning. FUZZYDBD method, an automatic fuzzy database definition method, would be used to design the fuzzy database for fuzzification of data in the FID3 algorithm. It was used to generate a predefined fuzzy database before the generation of the fuzzy rule base. The fuzzified dataset was applied in FID3 algorithm, which is the fuzzy version of the ID3 algorithm. The inference system of FID3 algorithm is simple with direct extraction of rules from generated tree to determine the classes for the new input instances. This study also analysed the results using three breast cancer datasets: WBCD (Original), WDBC (Diagnostic) and Coimbra. Furthermore, the comparison of FID3 algorithm with the existing methods is conducted to verify the proposed method’s capability and performance. This study identified that the combination of FID3 algorithm with FUZZYDBD method is reliable, robust and managed to perform well in breast cancer classification. Breast cancer becomes the second major cause of death among women cancer patients worldwide. Based on research conducted in 2019, there are approximately 250,000 women across the United States diagnosed with invasive breast cancer each year. The prevention of breast cancer remains a challenge in the current world as the growth of breast cancer cells is a multistep process that involves multiple cell types. Early diagnosis and detection of breast cancer are among the greatest approaches to preventing cancer from spreading and increasing the survival rate. For more accurate and fast detection of breast cancer disease, automatic diagnostic methods are applied to conduct the breast cancer diagnosis. This paper proposed the fuzzy-ID3 (FID3) algorithm, a fuzzy decision tree as the classification method in breast cancer detection. This study aims to resolve the limitation of an existing method, ID3 algorithm that unable to classify the continuous-valued data and increase the classification accuracy of the decision tree. FID3 algorithm combined the fuzzy system and decision tree techniques with ID3 algorithm as the decision tree learning. FUZZYDBD method, an automatic fuzzy database definition method, would be used to design the fuzzy database for fuzzification of data in the FID3 algorithm. It was used to generate a predefined fuzzy database before the generation of the fuzzy rule base. The fuzzified dataset was applied in FID3 algorithm, which is the fuzzy version of the ID3 algorithm. The inference system of FID3 algorithm is simple with direct extraction of rules from generated tree to determine the classes for the new input instances. This study also analysed the results using three breast cancer datasets: WBCD (Original), WDBC (Diagnostic) and Coimbra. Furthermore, the comparison of FID3 algorithm with the existing methods is conducted to verify the proposed method's capability and performance. This study identified that the combination of FID3 algorithm with FUZZYDBD method is reliable, robust and managed to perform well in breast cancer classification.Breast cancer becomes the second major cause of death among women cancer patients worldwide. Based on research conducted in 2019, there are approximately 250,000 women across the United States diagnosed with invasive breast cancer each year. The prevention of breast cancer remains a challenge in the current world as the growth of breast cancer cells is a multistep process that involves multiple cell types. Early diagnosis and detection of breast cancer are among the greatest approaches to preventing cancer from spreading and increasing the survival rate. For more accurate and fast detection of breast cancer disease, automatic diagnostic methods are applied to conduct the breast cancer diagnosis. This paper proposed the fuzzy-ID3 (FID3) algorithm, a fuzzy decision tree as the classification method in breast cancer detection. This study aims to resolve the limitation of an existing method, ID3 algorithm that unable to classify the continuous-valued data and increase the classification accuracy of the decision tree. FID3 algorithm combined the fuzzy system and decision tree techniques with ID3 algorithm as the decision tree learning. FUZZYDBD method, an automatic fuzzy database definition method, would be used to design the fuzzy database for fuzzification of data in the FID3 algorithm. It was used to generate a predefined fuzzy database before the generation of the fuzzy rule base. The fuzzified dataset was applied in FID3 algorithm, which is the fuzzy version of the ID3 algorithm. The inference system of FID3 algorithm is simple with direct extraction of rules from generated tree to determine the classes for the new input instances. This study also analysed the results using three breast cancer datasets: WBCD (Original), WDBC (Diagnostic) and Coimbra. Furthermore, the comparison of FID3 algorithm with the existing methods is conducted to verify the proposed method's capability and performance. This study identified that the combination of FID3 algorithm with FUZZYDBD method is reliable, robust and managed to perform well in breast cancer classification. |
| ArticleNumber | e427 |
| Audience | Academic |
| Author | Idris, Nur Farahaina Ismail, Mohd Arfian |
| Author_xml | – sequence: 1 givenname: Nur Farahaina surname: Idris fullname: Idris, Nur Farahaina – sequence: 2 givenname: Mohd Arfian orcidid: 0000-0001-8312-2289 surname: Ismail fullname: Ismail, Mohd Arfian |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34013024$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFksFv0zAUxiM0xMbYjTOKxAUkUmwnjhMOSNvKoNIkJGAHdrGcZ6d1ldjFdti6vx6nHWOdJhFLie38vs_P773nyZ6xRiXJS4wmjGH2fqWUW2bgJwVhT5IDkrMyo3VN9u7N95Mj75cIIUxxfOpnyX5eIJwjUhwk1ydOCR9SEAaUS6X2calS6IT3utUggrYmHbw287Qdbm7W2Wyap6KbW6fDok-v4js9u7i8_Dk9maa9CgsrP6RiCLaPUthqUimCaEZfqVpt9Oj5Innais6ro9vvYXJx9unH6Zfs_Ovn2enxeQaU1SErKGJ1DUDyuqRCAiWkKYEh0jLW5AWWFTSqkkiUisZ1zRoMQjQFxqBahVB-mMy2vtKKJV853Qu35lZovtmwbs6Fi5F2ije0RVK2uEIMCtqwKpfNeBDBFGgDZfTKtl6DWYn1lei6O0OM-FgQvikIB89jQSL_ccuvhqZXEpQJTnQ7Qez-MXrB5_Y3rzAuqk3wb24NnP01KB94rz2orhNG2cFzQkldFywnVURfP0CXdnAmpnak4p2qiqF_1FzEC2vT2ngujKb8uCxRSUhRk0hNHqHikKrXEDuw1XF_R_B2RxCZoK7DXAze89n3b7vsq_tJucvG356MwLstAM5671T7vySTBzjosGnbGLTuHhf9AUqWBqc |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3139595 crossref_primary_10_1007_s10489_022_04134_7 crossref_primary_10_1038_s41598_024_73083_7 crossref_primary_10_1007_s10586_024_04666_2 crossref_primary_10_1016_j_bspc_2024_106374 crossref_primary_10_3389_fonc_2023_1150840 crossref_primary_10_46481_jnsps_2021_331 crossref_primary_10_1016_j_measurement_2023_113525 crossref_primary_10_3233_JIFS_212842 crossref_primary_10_1016_j_heliyon_2024_e26799 crossref_primary_10_1371_journal_pone_0302595 crossref_primary_10_1007_s12553_022_00710_6 crossref_primary_10_2478_amns_2023_2_01377 crossref_primary_10_1007_s11042_023_18015_9 crossref_primary_10_3390_app132111912 crossref_primary_10_1007_s10710_024_09486_2 crossref_primary_10_1007_s11042_024_18473_9 crossref_primary_10_1016_j_advengsoft_2022_103338 crossref_primary_10_1007_s00521_024_09617_x crossref_primary_10_3390_bdcc6010013 crossref_primary_10_1007_s11042_023_17044_8 crossref_primary_10_1007_s11042_024_19515_y crossref_primary_10_3390_axioms14030196 crossref_primary_10_3390_math11010198 |
| Cites_doi | 10.5013/ijssst.a.20.s2.23 10.1016/j.ins.2008.02.012 10.1088/1757-899X/495/1/012033 10.1002/uog.4103 10.1016/S0165-0114(03)00089-7 10.1007/978-3-030-11196-0_28 10.1016/j.cmpb.2018.04.013 10.1186/s12885-017-3877-1 10.1007/s42979-020-00296-8 10.1016/b978-012369536-9.50011-5 10.7314/APJCP.2014.15.8.3353 10.3390/JIMAGING6060039 10.3390/sym12010093 10.7150/ijbs.21635 10.3923/pjbs.2010.303.315 10.1016/j.ins.2010.12.014 10.1080/02533839.2019.1676658 10.18287/1613-0073-2018-2212-296-303 10.1007/s11277-012-0883-0 10.1063/5.0007885 10.1109/DBTA.2010.5659010 10.4048/jbc.2014.17.4.301 10.11606/T.55.2012.TDE-16072012-144620 10.1016/j.ins.2018.07.006 10.1016/S0165-0114(98)00224-3 10.1016/S0165-0114(97)00386-2 10.22214/ijraset.2019.3142 10.1109/21.199466 10.5120/ijca2017914286 10.1016/j.compeleceng.2017.08.005 10.1016/j.proeng.2011.12.699 10.1088/1742-6596/1015/2/022002 10.35940/ijeat.A9664.109119 10.1109/FUZZ-IEEE.2017.8015502 10.1109/TSMCC.2002.806060 10.1109/91.963759 10.1016/j.imu.2017.12.008 10.1016/j.procs.2018.05.047 10.1109/ACCESS.2020.3036912 10.1016/S0165-0114(02)00136-7 10.1109/TFUZZ.2009.2038712 10.5772/10201 10.1049/cp.2012.0464 10.1109/TEVC.2008.925144 10.1097/01.JAA.0000580524.95733.3d 10.1109/TSMC.1973.5408575 10.1016/0165-0114(94)00229-Z 10.1109/TR.2016.2578948 10.1504/IJBIS.2011.037295 10.1109/FUZZY.2007.4295520 |
| ContentType | Journal Article |
| Copyright | 2021 Idris and Ismail. COPYRIGHT 2021 PeerJ. Ltd. 2021 Idris and Ismail. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Idris and Ismail 2021 Idris and Ismail |
| Copyright_xml | – notice: 2021 Idris and Ismail. – notice: COPYRIGHT 2021 PeerJ. Ltd. – notice: 2021 Idris and Ismail. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Idris and Ismail 2021 Idris and Ismail |
| DBID | AAYXX CITATION NPM ISR 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.7717/peerj-cs.427 |
| DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_b5f0ddf1807c45b783db02f7215c5bc6 10.7717/peerj-cs.427 PMC8114800 A660622492 34013024 10_7717_peerj_cs_427 |
| Genre | Journal Article |
| GeographicLocations | Portugal |
| GeographicLocations_xml | – name: Portugal |
| GrantInformation_xml | – fundername: Universiti Malaysia Pahang – fundername: Postgraduate Research Grants Scheme (PGRS) grantid: PGRS200397 |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RPM 3V. ARCSS M0N NPM 7XB 8AL 8FK JQ2 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c579t-450799cc23965adc522b6c702f77b341d8cbe8d0a6e5b3497b1caab411cefe003 |
| IEDL.DBID | UNPAY |
| ISSN | 2376-5992 |
| IngestDate | Fri Oct 03 12:43:23 EDT 2025 Sun Oct 26 03:47:43 EDT 2025 Tue Sep 30 16:06:02 EDT 2025 Fri Sep 05 07:45:17 EDT 2025 Fri Jul 25 10:09:30 EDT 2025 Mon Oct 20 21:55:27 EDT 2025 Mon Oct 20 16:11:49 EDT 2025 Thu Oct 16 15:04:15 EDT 2025 Thu Jan 02 22:33:36 EST 2025 Thu Apr 24 23:08:03 EDT 2025 Wed Oct 01 01:44:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | FID3 algorithm Fuzzy decision tree Classification FUZZYDBD Fuzzification Breast cancer Fuzzy ID3 algorithm |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2021 Idris and Ismail. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c579t-450799cc23965adc522b6c702f77b341d8cbe8d0a6e5b3497b1caab411cefe003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8312-2289 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.7717/peerj-cs.427 |
| PMID | 34013024 |
| PQID | 2521808870 |
| PQPubID | 2045934 |
| PageCount | e427 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b5f0ddf1807c45b783db02f7215c5bc6 unpaywall_primary_10_7717_peerj_cs_427 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8114800 proquest_miscellaneous_2529947328 proquest_journals_2521808870 gale_infotracmisc_A660622492 gale_infotracacademiconefile_A660622492 gale_incontextgauss_ISR_A660622492 pubmed_primary_34013024 crossref_primary_10_7717_peerj_cs_427 crossref_citationtrail_10_7717_peerj_cs_427 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-04 |
| PublicationDateYYYYMMDD | 2021-05-04 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Diego – name: San Diego, USA |
| PublicationTitle | PeerJ. Computer science |
| PublicationTitleAlternate | PeerJ Comput Sci |
| PublicationYear | 2021 |
| Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
| References | Assiri (10.7717/peerj-cs.427/ref-6) 2020; 6 Peña-Reyes (10.7717/peerj-cs.427/ref-62) 2001; 9 Kumari (10.7717/peerj-cs.427/ref-43) 2019; 7 Chaurasia (10.7717/peerj-cs.427/ref-14) 2020; 1 Zaitseva (10.7717/peerj-cs.427/ref-87) 2016; 65 Mushtaq (10.7717/peerj-cs.427/ref-54) 2020; 43 Pulkkinen (10.7717/peerj-cs.427/ref-64) 2010; 18 Watkins (10.7717/peerj-cs.427/ref-79) 2019; 32 Poorani (10.7717/peerj-cs.427/ref-63) 2019; 9 Cintra (10.7717/peerj-cs.427/ref-29) 2013 Cintra (10.7717/peerj-cs.427/ref-25) 2013a Cintra (10.7717/peerj-cs.427/ref-22) 2014; 5 Mitra (10.7717/peerj-cs.427/ref-53) 2002; 32 Chen (10.7717/peerj-cs.427/ref-16) 1999; 103 Kantarci-Savas (10.7717/peerj-cs.427/ref-38) 2017 Yuan (10.7717/peerj-cs.427/ref-82) 1995; 69 Wang (10.7717/peerj-cs.427/ref-77) 2000; 112 Wu (10.7717/peerj-cs.427/ref-80) 2006 Li (10.7717/peerj-cs.427/ref-46) 2012; 29 Surya (10.7717/peerj-cs.427/ref-73) 2012; 2 Teli (10.7717/peerj-cs.427/ref-74) 2015; 5 Nijhawan (10.7717/peerj-cs.427/ref-55) 2017; 167 Kumar (10.7717/peerj-cs.427/ref-42) 2011; 7 Ahmadi (10.7717/peerj-cs.427/ref-1) 2018; 161 Zadeh (10.7717/peerj-cs.427/ref-83) 1973; SMC-3 Saoud (10.7717/peerj-cs.427/ref-68) 2019 Chai (10.7717/peerj-cs.427/ref-13) 2010 Fajfer (10.7717/peerj-cs.427/ref-32) 2000 Zaitseva (10.7717/peerj-cs.427/ref-85) 2020; 12 Idris (10.7717/peerj-cs.427/ref-35) 2020; 62 Umanol (10.7717/peerj-cs.427/ref-76) 1994 Omondiagbe (10.7717/peerj-cs.427/ref-57) 2019; 495 Aliev (10.7717/peerj-cs.427/ref-4) 2011; 181 Kuo (10.7717/peerj-cs.427/ref-44) 2008; 32 Gondane (10.7717/peerj-cs.427/ref-34) 2015 Liu (10.7717/peerj-cs.427/ref-48) 2010; 11 Begenova (10.7717/peerj-cs.427/ref-10) 2018a; 1015 Cintra (10.7717/peerj-cs.427/ref-21) 2007 Khuriwal (10.7717/peerj-cs.427/ref-41) 2018 Sun (10.7717/peerj-cs.427/ref-72) 2017; 13 Liao (10.7717/peerj-cs.427/ref-47) 2003; 135 Ben-mubarak (10.7717/peerj-cs.427/ref-12) 2012; 71 Begenova (10.7717/peerj-cs.427/ref-11) 2018b; 2212 Lee (10.7717/peerj-cs.427/ref-45) 2014; 17 Khan (10.7717/peerj-cs.427/ref-40) 2017; 17 Patrício (10.7717/peerj-cs.427/ref-61) 2018; 18 Chen (10.7717/peerj-cs.427/ref-15) 2009 Cintra (10.7717/peerj-cs.427/ref-20) 2009 Kayaalp (10.7717/peerj-cs.427/ref-39) 2019 Ribeiro (10.7717/peerj-cs.427/ref-66) 2013 Cintra (10.7717/peerj-cs.427/ref-28) 2011d Majeed (10.7717/peerj-cs.427/ref-51) 2014; 15 Seymoens (10.7717/peerj-cs.427/ref-70) 2019; 544 Pyingkodi (10.7717/peerj-cs.427/ref-65) 2020; 13 Thaker (10.7717/peerj-cs.427/ref-75) 2018; 132 Cintra (10.7717/peerj-cs.427/ref-27) 2011c Cintra (10.7717/peerj-cs.427/ref-24) 2011b Saad (10.7717/peerj-cs.427/ref-67) 2010 Austria (10.7717/peerj-cs.427/ref-7) 2019; 20 Cintra (10.7717/peerj-cs.427/ref-23) 2011a Sree Kumar (10.7717/peerj-cs.427/ref-71) 2010; 13 Cintra (10.7717/peerj-cs.427/ref-18) 2012 Schaefer (10.7717/peerj-cs.427/ref-69) 2007 Al-Ibrahim (10.7717/peerj-cs.427/ref-2) 2011; II Zadeh (10.7717/peerj-cs.427/ref-84) 2008; 178 Johra (10.7717/peerj-cs.427/ref-37) 2017 Orriols-Puig (10.7717/peerj-cs.427/ref-58) 2009; 13 Fauziyyah (10.7717/peerj-cs.427/ref-33) 2020; 2242 Yang (10.7717/peerj-cs.427/ref-81) 2018; 65 Liu (10.7717/peerj-cs.427/ref-49) 2010 Angayarkanni (10.7717/peerj-cs.427/ref-5) 2012; 2012 De Brito (10.7717/peerj-cs.427/ref-31) 2018 Avdeenko (10.7717/peerj-cs.427/ref-8) 2018 Badiang (10.7717/peerj-cs.427/ref-9) 2019 Chiu (10.7717/peerj-cs.427/ref-17) 2020; 8 Luo (10.7717/peerj-cs.427/ref-50) 2010 Patil (10.7717/peerj-cs.427/ref-60) 2015; 6 Ali (10.7717/peerj-cs.427/ref-3) 2018; 96 Cintra (10.7717/peerj-cs.427/ref-19) 2010; 80 Oyelade (10.7717/peerj-cs.427/ref-59) 2018; 10 Wang (10.7717/peerj-cs.427/ref-78) 1992; 22 Olaru (10.7717/peerj-cs.427/ref-56) 2003; 138 Zhai (10.7717/peerj-cs.427/ref-86) 2018; 465 Cintra (10.7717/peerj-cs.427/ref-26) 2013b; 20 Jacob (10.7717/peerj-cs.427/ref-36) 2012; 1 Masoum (10.7717/peerj-cs.427/ref-52) 2008 Dai (10.7717/peerj-cs.427/ref-30) 2010; 1 |
| References_xml | – volume: 20 start-page: 1 year: 2019 ident: 10.7717/peerj-cs.427/ref-7 article-title: Comparison of machine learning algorithms in breast cancer prediction using the coimbra dataset publication-title: International Journal of Simulation: Systems, Science & Technology doi: 10.5013/ijssst.a.20.s2.23 – start-page: 465 year: 2010 ident: 10.7717/peerj-cs.427/ref-49 article-title: Improved ID3 algorithm – volume: 178 start-page: 2751 issue: 13 year: 2008 ident: 10.7717/peerj-cs.427/ref-84 article-title: Is there a need for fuzzy logic? publication-title: Information Sciences doi: 10.1016/j.ins.2008.02.012 – volume: 495 start-page: 012033 issue: 1 year: 2019 ident: 10.7717/peerj-cs.427/ref-57 article-title: Machine learning classification techniques for breast cancer diagnosis publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/495/1/012033 – start-page: 329 year: 2010 ident: 10.7717/peerj-cs.427/ref-13 article-title: A more efficient classification scheme for ID3 – volume: 32 start-page: 97 issue: 1 year: 2008 ident: 10.7717/peerj-cs.427/ref-44 article-title: Classification of benign and malignant breast tumors using neural networks and three-dimensional power Doppler ultrasound publication-title: Ultrasound in Obstetrics and Gynecology doi: 10.1002/uog.4103 – volume: 138 start-page: 221 issue: 2 year: 2003 ident: 10.7717/peerj-cs.427/ref-56 article-title: A complete fuzzy decision tree technique publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(03)00089-7 – volume: 20 start-page: 56 year: 2013b ident: 10.7717/peerj-cs.427/ref-26 article-title: A fuzzy decision tree algorithm based on C4.5 publication-title: Mathware & Soft Computing – start-page: 98 year: 2018 ident: 10.7717/peerj-cs.427/ref-41 article-title: Breast cancer diagnosis using deep learning algorithm – volume: 13 start-page: 1238 issue: 2 year: 2020 ident: 10.7717/peerj-cs.427/ref-65 article-title: Performance study of classification algorithms using the breast cancer dataset publication-title: International Journal of Future Generation Communication and Networking – volume-title: Using feature selection techniques to improve the accuracy of breast cancer classification year: 2019 ident: 10.7717/peerj-cs.427/ref-68 doi: 10.1007/978-3-030-11196-0_28 – volume: 161 start-page: 145 issue: Suppl. 1 year: 2018 ident: 10.7717/peerj-cs.427/ref-1 article-title: Diseases diagnosis using fuzzy logic methods: a systematic and meta-analysis review publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2018.04.013 – volume: 18 start-page: 1 issue: 1 year: 2018 ident: 10.7717/peerj-cs.427/ref-61 article-title: Using resistin, glucose, age and BMI to predict the presence of breast cancer publication-title: BMC Cancer doi: 10.1186/s12885-017-3877-1 – volume: 1 start-page: 270 issue: 5 year: 2020 ident: 10.7717/peerj-cs.427/ref-14 article-title: Applications of machine learning techniques to predict diagnostic breast cancer publication-title: SN Computer Science doi: 10.1007/s42979-020-00296-8 – volume-title: Power Quality in Power Systems and Electrical Machines year: 2008 ident: 10.7717/peerj-cs.427/ref-52 article-title: Optimal placement and sizing of shunt capacitor banks in the presence of harmonics doi: 10.1016/b978-012369536-9.50011-5 – volume: 15 start-page: 3353 issue: 8 year: 2014 ident: 10.7717/peerj-cs.427/ref-51 article-title: Breast cancer: major risk factors and recent developments in treatment publication-title: Asian Pacific Journal of Cancer Prevention doi: 10.7314/APJCP.2014.15.8.3353 – volume: 2 start-page: 463 issue: 6 year: 2012 ident: 10.7717/peerj-cs.427/ref-73 article-title: Classification of different textures using SVM and fuzzy logic publication-title: International Journal of Advanced Computer Research – volume: 6 start-page: 39 issue: 6 year: 2020 ident: 10.7717/peerj-cs.427/ref-6 article-title: Breast tumor classification using an ensemble machine learning method publication-title: Journal of Imaging doi: 10.3390/JIMAGING6060039 – volume: 12 start-page: 93 issue: 1 year: 2020 ident: 10.7717/peerj-cs.427/ref-85 article-title: Application of the structure function in the evaluation of the human factor in healthcare publication-title: Symmetry doi: 10.3390/sym12010093 – start-page: 2113 year: 1994 ident: 10.7717/peerj-cs.427/ref-76 article-title: Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems – volume: 13 start-page: 1387 issue: 11 year: 2017 ident: 10.7717/peerj-cs.427/ref-72 article-title: Risk factors and preventions of breast cancer publication-title: International Journal of Biological Sciences doi: 10.7150/ijbs.21635 – volume: 13 start-page: 303 issue: 7 year: 2010 ident: 10.7717/peerj-cs.427/ref-71 article-title: Rapid metastasis of breast cancer cells from primary tumour to liver publication-title: Pakistan Journal of Biological Sciences doi: 10.3923/pjbs.2010.303.315 – volume: 181 start-page: 1591 issue: 9 year: 2011 ident: 10.7717/peerj-cs.427/ref-4 article-title: Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization publication-title: Information Sciences doi: 10.1016/j.ins.2010.12.014 – volume: 43 start-page: 80 issue: 1 year: 2020 ident: 10.7717/peerj-cs.427/ref-54 article-title: Effective K-nearest neighbor classifications for Wisconsin breast cancer data sets publication-title: Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A doi: 10.1080/02533839.2019.1676658 – volume: 2212 start-page: 296 year: 2018b ident: 10.7717/peerj-cs.427/ref-11 article-title: The research of fuzzy decision trees building based on entropy and the theory of fuzzy sets publication-title: CEUR Workshop Proceedings doi: 10.18287/1613-0073-2018-2212-296-303 – volume: 71 start-page: 1421 issue: 2 year: 2012 ident: 10.7717/peerj-cs.427/ref-12 article-title: Fuzzy logic based self-adaptive handover algorithm for mobile WiMAX publication-title: Wireless Personal Communications doi: 10.1007/s11277-012-0883-0 – volume: 2242 start-page: 030019 year: 2020 ident: 10.7717/peerj-cs.427/ref-33 article-title: Reviewing the consistency of the Naïve Bayes Classifier’s performance in medical diagnosis and prognosis problems publication-title: AIP Conference Proceedings doi: 10.1063/5.0007885 – start-page: 742 year: 2009 ident: 10.7717/peerj-cs.427/ref-20 article-title: Optimising the fuzzy granulation of attribute domains – year: 2011c ident: 10.7717/peerj-cs.427/ref-27 article-title: On rule generation approaches for genetic Fuzzy Systems – volume: 11 start-page: 494 year: 2010 ident: 10.7717/peerj-cs.427/ref-48 article-title: Improved ID3 algorithm using ontology in computer forensics – year: 2010 ident: 10.7717/peerj-cs.427/ref-50 article-title: An improved ID3 algorithm based on attribute importance-weighted doi: 10.1109/DBTA.2010.5659010 – volume: 17 start-page: 301 issue: 4 year: 2014 ident: 10.7717/peerj-cs.427/ref-45 article-title: Unique features of young age breast cancer and its management publication-title: Journal of Breast Cancer doi: 10.4048/jbc.2014.17.4.301 – year: 2011a ident: 10.7717/peerj-cs.427/ref-23 article-title: An approach for the extraction of classification rules from fuzzy formal contexts – year: 2012 ident: 10.7717/peerj-cs.427/ref-18 article-title: Genetic generation of fuzzy knowledge bases: new perspectives publication-title: Biblioteca Digital doi: 10.11606/T.55.2012.TDE-16072012-144620 – start-page: 174 year: 2015 ident: 10.7717/peerj-cs.427/ref-34 article-title: Classification using probabilistic random forest – year: 2013a ident: 10.7717/peerj-cs.427/ref-25 article-title: FuzzyDT: a fuzzy decision tree algorithm based on C4.5 – start-page: 135 year: 2006 ident: 10.7717/peerj-cs.427/ref-80 article-title: Improved classification algorithm by minsup and minconf based on ID3 – volume: 5 start-page: 613 issue: 4 year: 2015 ident: 10.7717/peerj-cs.427/ref-74 article-title: A survey on decision tree based approaches in data mining publication-title: International Journal of Advanced Research in Computer Science and Software Engineering – start-page: 89 year: 2019 ident: 10.7717/peerj-cs.427/ref-9 article-title: Relocating local outliers produced by K-means and K-medoids using local outlier rectifier V.2.0 – start-page: 127 year: 2009 ident: 10.7717/peerj-cs.427/ref-15 article-title: An improved ID3 decision tree algorithm – volume: 96 start-page: 5717 issue: 17 year: 2018 ident: 10.7717/peerj-cs.427/ref-3 article-title: Early detection for breast cancer by using fuzzy logic publication-title: Journal of Theoretical and Applied Information Technology – volume: 465 start-page: 425 issue: 1 year: 2018 ident: 10.7717/peerj-cs.427/ref-86 article-title: Tolerance rough fuzzy decision tree publication-title: Information Sciences doi: 10.1016/j.ins.2018.07.006 – volume: 103 start-page: 239 issue: 2 year: 1999 ident: 10.7717/peerj-cs.427/ref-16 article-title: Fuzzy clustering analysis for optimizing fuzzy membership functions publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(98)00224-3 – volume: 112 start-page: 117 issue: 1 year: 2000 ident: 10.7717/peerj-cs.427/ref-77 article-title: On the optimization of fuzzy decision trees publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(97)00386-2 – volume: 7 start-page: 816 issue: 3 year: 2019 ident: 10.7717/peerj-cs.427/ref-43 article-title: Decision support system for breast cancer prediction publication-title: International Journal for Research in Applied Science and Engineering Technology doi: 10.22214/ijraset.2019.3142 – volume: 22 start-page: 1414 issue: 6 year: 1992 ident: 10.7717/peerj-cs.427/ref-78 article-title: Generating fuzzy rules by learning from examples publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/21.199466 – volume: 1 start-page: 493 year: 2012 ident: 10.7717/peerj-cs.427/ref-36 article-title: Efficient classifier for classification of prognostic breast cancer data through data mining techniques publication-title: Lecture Notes in Engineering and Computer Science – volume: 167 start-page: 1 issue: 11 year: 2017 ident: 10.7717/peerj-cs.427/ref-55 article-title: The analytical comparison of ID3 and C4.5 using WEKA publication-title: International Journal of Computer Applications doi: 10.5120/ijca2017914286 – volume: 80 volume-title: Information Processing and Management of Uncertainty in Knowledge-Based Systems—Theory and Methods: IPMU 2010—Communications in Computer and Information Science year: 2010 ident: 10.7717/peerj-cs.427/ref-19 article-title: Feature subset selection for fuzzy classification methods – volume-title: Predicting the occurrence of breast cancer using insulin-related biomarkers, independently of obesity year: 2018 ident: 10.7717/peerj-cs.427/ref-31 – volume: 65 start-page: 474 issue: 4 year: 2018 ident: 10.7717/peerj-cs.427/ref-81 article-title: An improved Id3 algorithm for medical data classification publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2017.08.005 – volume: 29 start-page: 229 issue: 4 year: 2012 ident: 10.7717/peerj-cs.427/ref-46 article-title: The application of generating fuzzy ID3 algorithm in performance evaluation publication-title: Procedia Engineering doi: 10.1016/j.proeng.2011.12.699 – volume: 1015 start-page: 022002 issue: 2 year: 2018a ident: 10.7717/peerj-cs.427/ref-10 article-title: Building of fuzzy decision trees using ID3 algorithm publication-title: Journal of Physics: Conference Series doi: 10.1088/1742-6596/1015/2/022002 – volume: 544 volume-title: IFIP Advances in Information and Communication Technology year: 2019 ident: 10.7717/peerj-cs.427/ref-70 article-title: A methodology to involve domain experts and machine learning techniques in the design of human-centered algorithms – volume: II start-page: 1158 issue: IV year: 2011 ident: 10.7717/peerj-cs.427/ref-2 article-title: Discretization of continuous attributes in supervised learning algorithms publication-title: Research Bulletin of Jordan ACM – volume: 9 start-page: 2106 issue: 1 year: 2019 ident: 10.7717/peerj-cs.427/ref-63 article-title: Deep neural network classifier in breast cancer prediction publication-title: International Journal of Engineering and Advanced Technology doi: 10.35940/ijeat.A9664.109119 – year: 2017 ident: 10.7717/peerj-cs.427/ref-38 article-title: Fuzzy ID3 algorithm on linguistic dataset by using WABL defuzzification method doi: 10.1109/FUZZ-IEEE.2017.8015502 – volume: 32 start-page: 328 issue: 4 year: 2002 ident: 10.7717/peerj-cs.427/ref-53 article-title: Fuzzy decision tree, linguistic rules and fuzzy knowledge-based network: generation and evaluation publication-title: IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews doi: 10.1109/TSMCC.2002.806060 – volume: 9 start-page: 727 issue: 5 year: 2001 ident: 10.7717/peerj-cs.427/ref-62 article-title: Fuzzy CoCo: a cooperative-coevolutionary approach to fuzzy modeling publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/91.963759 – volume: 10 start-page: 117 year: 2018 ident: 10.7717/peerj-cs.427/ref-59 article-title: ST-ONCODIAG: a semantic rule-base approach to diagnosing breast cancer base on Wisconsin datasets publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2017.12.008 – start-page: 326 year: 2000 ident: 10.7717/peerj-cs.427/ref-32 article-title: Bottom-up fuzzy partitioning in fuzzy decision trees – volume: 132 start-page: 1308 issue: 2 year: 2018 ident: 10.7717/peerj-cs.427/ref-75 article-title: Analysis of fuzzification process in fuzzy expert system publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.05.047 – volume: 8 start-page: 204309 year: 2020 ident: 10.7717/peerj-cs.427/ref-17 article-title: Breast cancer–detection system using PCA, multilayer perceptron, transfer learning, and support vector machine publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3036912 – volume: 5 start-page: 104 issue: 1 year: 2014 ident: 10.7717/peerj-cs.427/ref-22 article-title: A fuzzy decision tree model to support the task of bus reallocation in public transport systems publication-title: Journal of Information and Data Management – volume: 135 start-page: 241 issue: 2 year: 2003 ident: 10.7717/peerj-cs.427/ref-47 article-title: A fuzzy c-means variant for the generation of fuzzy term sets publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(02)00136-7 – start-page: 261 year: 2007 ident: 10.7717/peerj-cs.427/ref-21 article-title: Fuzzy rules generation using genetic algorithms with self-adaptive selection – start-page: 1 year: 2013 ident: 10.7717/peerj-cs.427/ref-29 article-title: A fuzzy decision tree for bus network management – volume: 18 start-page: 161 issue: 1 year: 2010 ident: 10.7717/peerj-cs.427/ref-64 article-title: A dynamically constrained multiobjective genetic fuzzy system for regression problems publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2009.2038712 – start-page: 709 year: 2013 ident: 10.7717/peerj-cs.427/ref-66 article-title: A comparative analysis of pruning strategies for fuzzy decision trees – volume-title: Advanced Strategies for Robot Manipulators year: 2010 ident: 10.7717/peerj-cs.427/ref-67 article-title: Development of fuzzy-logic-based self tuning PI controller for servomotor doi: 10.5772/10201 – volume: 1 start-page: 296 year: 2010 ident: 10.7717/peerj-cs.427/ref-30 article-title: Self-adaptive fuzzification in fuzzy decision tree induction – volume: 2012 start-page: 1 issue: 600 year: 2012 ident: 10.7717/peerj-cs.427/ref-5 article-title: MRI mammogram image classification using ID3 algorithm publication-title: IET Conference Publications doi: 10.1049/cp.2012.0464 – volume: 17 start-page: 207 issue: 12 year: 2017 ident: 10.7717/peerj-cs.427/ref-40 article-title: Data mining algorithms for classification of diagnostic cancer using genetic optimization algorithms publication-title: Ijcsns – start-page: 211 year: 2011d ident: 10.7717/peerj-cs.427/ref-28 article-title: On the estimation of the number of fuzzy sets for fuzzy rule-based classification systems – volume: 6 start-page: 1956 issue: 2 year: 2015 ident: 10.7717/peerj-cs.427/ref-60 article-title: Efficient processing of decision tree using ID3 & improved C4.5 algorithm publication-title: International Journal of Computer Science and Information Technologies – volume: 13 start-page: 260 issue: 2 year: 2009 ident: 10.7717/peerj-cs.427/ref-58 article-title: Fuzzy-UCS: a michigan-style learning fuzzy-classifier system for supervised learning publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.925144 – volume: 32 start-page: 13 issue: 10 year: 2019 ident: 10.7717/peerj-cs.427/ref-79 article-title: Overview of breast cancer publication-title: Journal of the American Academy of Physician Assistants doi: 10.1097/01.JAA.0000580524.95733.3d – volume: SMC-3 start-page: 28 issue: 1 year: 1973 ident: 10.7717/peerj-cs.427/ref-83 article-title: Outline of a new approach to the analysis of complex systems and decision processes publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1973.5408575 – start-page: 159 volume-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10943 LNCS year: 2018 ident: 10.7717/peerj-cs.427/ref-8 article-title: Combination of case-based reasoning and data mining through integration with the domain ontology – start-page: 1347 year: 2011b ident: 10.7717/peerj-cs.427/ref-24 article-title: The use of fuzzy decision trees for coffee rust warning in Brazilian crops – volume: 69 start-page: 125 issue: 2 year: 1995 ident: 10.7717/peerj-cs.427/ref-82 article-title: Induction of fuzzy decision trees publication-title: Fuzzy Sets and Systems doi: 10.1016/0165-0114(94)00229-Z – volume: 65 start-page: 1710 issue: 4 year: 2016 ident: 10.7717/peerj-cs.427/ref-87 article-title: Construction of a reliability structure function based on uncertain data publication-title: IEEE Transactions on Reliability doi: 10.1109/TR.2016.2578948 – start-page: 2 year: 2017 ident: 10.7717/peerj-cs.427/ref-37 article-title: Detection of breast cancer from histopathology image and classifying benign and malignant state using fuzzy logic – volume: 62 start-page: 4759 issue: 8 year: 2020 ident: 10.7717/peerj-cs.427/ref-35 article-title: Attribute related methods for improvement of ID3 algorithm in classification of data: a review publication-title: Technology Reports of Kansai University – start-page: 1 year: 2019 ident: 10.7717/peerj-cs.427/ref-39 article-title: Performance analysis of filter based feature selection methods on diagnosis of breast cancer and orthopedics – volume: 7 start-page: 27 issue: 1 year: 2011 ident: 10.7717/peerj-cs.427/ref-42 article-title: Fuzzy based clustering algorithm for privacy preserving data mining publication-title: International Journal of Business Information Systems doi: 10.1504/IJBIS.2011.037295 – year: 2007 ident: 10.7717/peerj-cs.427/ref-69 article-title: Breast cancer classification using statistical features and fuzzy classification of thermograms doi: 10.1109/FUZZY.2007.4295520 |
| SSID | ssj0001511119 |
| Score | 2.3447487 |
| Snippet | Breast cancer becomes the second major cause of death among women cancer patients worldwide. Based on research conducted in 2019, there are approximately... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e427 |
| SubjectTerms | Accuracy Algorithms Algorithms and Analysis of Algorithms Analysis Artificial Intelligence Breast cancer Cancer Classification Data Mining and Machine Learning Datasets Decision trees Diagnosis Diagnostic systems FID3 algorithm Fuzzy Fuzzy decision tree Fuzzy logic Fuzzy sets FUZZYDBD Health aspects Human error ID3 algorithm Linguistics Machine learning Medical research Medicine, Experimental Methods Prevention Variables Women Womens health |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQXuDC-xFYkEE8DiiskzgvbltKtYsEB6DSshfLHjvdopJUTSLY_fV4nDRqQMCFaz1Rk5nxPJLP3xDytAhZrCItbVsChc-14r4MgPkIOFRRlilwQ_vef0iO5vzdSXyyM-oLMWEdPXCnuAMVF0zrIshYCjxWaRZpxcLCNi4xxAoc2TbL8p1mqjsfjKEg75DuqW1ZDtbGbL76UL_iOEBmJwc5qv7fA_JORvoVLXm5Ldfy_LtcrXZS0ew6udrXkPSwu_cb5JIpb5Jr2_kMtN-ut8iPCSLOGwpo2Q3tv8VQwIIZEULOKBSR7wtatBcX5_7xNKJytag2y-bsG8V3tHQ2Pz39Mp1MaTdr-jWVbVM5ntfuGooYU8yFVJtiWToE2G0yn739_ObI7yct-BCneeNzWxXmOUAY5UksNdiiTCWQop5TZfOczkCZTDOZGGtZnqcqACkVDwIwhbGB4Q7ZK6vS3MMz4K6vzKIAcLqZ3eCSSRUVqU6YzmPpkZdb3QvoachxGsZK2HYELSWcpQTUwlrKI88G6XVHv_EHuQmacZBB0mz3g3Ul0buS-JcreeQJOoFAWowScTcL2da1OP70URwmttELkV3RIy96oaKy9w2yP8Zgnx6ZtEaS-yNJu29hvLz1NdHHjVqEtprKMPAzjzwelvFKxMKVpmqdTJ5zJFnyyN3ONYfnjrj7Es09ko6cdqSY8Uq5PHOs4hl2xsz-7_PBvf-q8vv_Q-UPyJUQQUKIIOX7ZK_ZtOahrfIa9cht6J8hUFVZ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZG9wAv3C8ZAxnE5QGFpYlzQ0Jopas2JCo0qDT2YtnHTjfUJaVNBNuvx8dJugbEXusT1fa525_PIeRF5nuhDJQwaQlkLlOSuaIPnouAQxkkiQTbtO_zONqfsE9H4dEGGbdvYRBW2dpEa6hVAXhGvuMbP5OgSngf5j9d7BqFt6ttCw3RtFZQ722JsWtk08fKWD2yOdgbfzm8PHUJ0USkNQI-NqnMzlzrxQ8Xlm8ZNpZZ8022hP-_hnrNU_2Norxe5XNx_kvMZmsuanSb3GxiS7pbC8MdsqHzu-RW27eBNmp8j_weIBK9pIAcX9DmjoYCBtKIHLLMooiIn9Ksurg4dw-GARWzqdmP8uSM4tktHU2Oj78PB0Na96B-R0VVFrb-a_0NRewp-kiqdHaaW2TYfTIZ7X37uO82HRhcCOO0dJmJFtMUwA_SKBQKTLAmI4g9P4tjafyfSkDqRHki0objLI1lH4SQrN8HnWljMB6QXl7k-hG-Dbf5ZhL0AbueGcUXnpBBFqvIU2koHPKm3XsOTXly7JIx4yZNQU5xyykOS2445ZCXK-p5XZbjP3QDZOOKBotp2x-KxZQ3usllmHlKZUa8YmChNHNUEpdooiEIJUQOeY5CwLFcRo54nKmolkt-8PWQ70YmAfSx6qJDXjdEWWHmDaJ53mBWjxW2OpTbHUqjz9AdbmWNN_ZkyS-l3yHPVsP4JWLkcl1UliZNGRZfcsjDWjRX6w6YvaFmDok7QtvZmO5Ifnpiq40nmDF75n9frcT7yi3funr-j8kNH2FBiBll26RXLir9xMR1pXzaKOsfn7RS7g priority: 102 providerName: ProQuest |
| Title | Breast cancer disease classification using fuzzy-ID3 algorithm with FUZZYDBD method: automatic fuzzy database definition |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34013024 https://www.proquest.com/docview/2521808870 https://www.proquest.com/docview/2529947328 https://pubmed.ncbi.nlm.nih.gov/PMC8114800 https://doi.org/10.7717/peerj-cs.427 https://doaj.org/article/b5f0ddf1807c45b783db02f7215c5bc6 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: RPM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: 8FG dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t7QO8ML4JjMqgAQ8oJR_OF28tbdmQqKZBpW0vlu0kXbeSVm0iWP96fE5aNZv4eK3Pqn0---7in38HcJA6lifcmKu0RKYmjQU1uS0tEwGHwg1DIXXRvq9D_3BEv5x6pztwsH4Ls3V_H6hM48M8SRaXply2qRPsQtP3VMTdgOZoeNw503XjAt_0osgpMe23utS8jSblv330bvmem7jIO0U259c_-XS65XQGe9BfD7fEmly1i1y05eoGk-O_5nMf7lVRJ-mUZvIAdpLsIeytKzqQaoM_gl9dxKjnRKItLEh1e0MkhtiIKdLLSBArPyZpsVpdm0c9l_DpeLaY5Bc_CH7VJYPR-flZr9sjZXXqj4QX-Uwzw5Z9CKJS0XuSOEknmcaMPYbRoP_906FZ1WYwpRdEuUlVHBlFUjpu5Hs8liqME74MLCcNAqE8YxxKkYSxxf1E2QKNAmFLzgW1bZmkiTpKnkAjm2XJM3w1rjPR0LUl1kNTRwK3uHDTIPatOPK4Ae_Xa8hkRVyO9TOmTCUwqFSmlcrkkimlGvBmIz0vCTv-INdFc9jIIM22_kGtFqt2LRNeasVxaodWIKkn1BhjgVNUcZL0hPQNeI3GxJBII0OkzpgXyyU7-nbCOr5KDR3kYzTgXSWUztS4Ja8ePqjZI_dWTXK_Jql2uqw3r22WVSfNkjkq_grRVVgGvNo0Y09Ez2XJrNAyUUSRlsmAp6WJb-btUn13TQ0IasZfU0y9JZtcaB7yEHNpS_3v2802-avKn_-v4Au46yB0CHGldB8a-aJIXqrYLxct2A0Hn1vQ7PaHxyct_QWlVR0HvwF3z2DA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9zBeuF8CAwxi8IDC0sS5IU1opatatlVoW6WxF-NL0g2VpDSJRvfj-G34OEnXgNjbXuOTxPY5Phf78zkIvY5ty-WOZCosEbFJJCcmawvLBMAhd4KAC120b3_o9Ufk87F7vIJ-13dhAFZZ60StqGUqYI9801Z2JoAlYX2c_jShahScrtYlNFhVWkFu6RRj1cWO3Wh-rkK4bGvQVfzesO3eztGnvllVGTCF64e5SZRHFIZC2E7ouUwK5ZBwT_iWHfs-VzpeBoJHgbSYF6lRkdDnbcEYJ-22iOJILQr13RtolUBTC612doZfDi53eVxQSWGJuPdV6LQ5jaLZd1Nk7wkUslmyhbpkwL-GYcky_o3aXCuSKZufs8lkyST27qBblS-Lt0vhu4tWouQeul3XicCV2riPfnUA-Z5jARI2w9WZEBbguANSSQsHBgT-GMfFxcXcHHQdzCZjNf_56Q8Me8W4Nzo5-drtdHFZ8_oDZkWe6nyz5TsYsK5gk7GM4rNEI9EeoNG18OIhaiVpEj2Gu-g6vg2ctoAqa0rRMItxJ_alZ8nQZQZ6V889FVU6dKjKMaEqLAJOUc0pKjKqOGWgjQX1tEwD8h-6DrBxQQPJu_WDdDamlS6g3I0tKWMlzr4gLld9lByGqLwv4XLhGegVCAGF9BwJ4H_GrMgyOjg8oNueCjhtyPJooLcVUZyqfgtWXadQo4eMXg3K9Qal0h-i2VzLGq30V0YvV5uBXi6a4U3A5CVRWmiaMCSQ7MlAj0rRXIzbIfpEnBjIbwhtY2KaLcnZqc5uHkCEbqn_vlmI95VT_uTq_r9Aa_2j_T26NxjuPkU3bYAkAV6VrKNWPiuiZ8qnzPnzauFi9O26dcUfTlWQWg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkIAXvj8CAwxi8IBC08T5QkJopZSVwTQBlcZejO043VBJSpNodH8afx13TtKtIPa21_iS2L7zfdg_3xHyJHUdX3qJgLBEpTZLJLNFVzk2Ag6lF0VSmaJ9H7eDzRF7v-vvrpDf7V0YhFW2OtEo6iRXuEfeccHORLgknE7awCJ2-oPX0582VpDCk9a2nEYtIlt6fgjhW_Fq2Ader7vu4O2XN5t2U2HAVn4YlzYDbyiOlXK9OPBFosAZkYEKHTcNQwn6PYmU1FHiiEDDiFgcyq4SQrJuV-lUw4KA754j50PM4o631Afvjvd3fFRGcY21DyFo6ky1nn23VfGCYQmbE1bQFAv41yScsIl_4zUvVtlUzA_FZHLCGA6uksuNF0s3arG7RlZ0dp1caStE0EZh3CC_eoh5L6lC2ZrR5jSIKnTZEaNkxIIi9n5M0-roaG4P-x4VkzHMdrn_g-IuMR2M9va-9nt9Wle7fklFVeYm02z9DkWUK1pjmuj0IDMYtJtkdCacuEVWszzTd_AWuolsI6-rsL4aqBjhCOmlYRI4SewLizxv556rJhE61uOYcAiIkFPccIqrggOnLLK-oJ7WCUD-Q9dDNi5oMG23eZDPxrzRAlz6qZMkKQhyqJgvoY-JxCGC36V8qQKLPEYh4JiYI0MRH4uqKPjw8ye-EUCo6WJ-R4s8a4jSHPqtRHORAkaPubyWKNeWKEFzqOXmVtZ4o7kKfrzOLPJo0YxvIhov03llaOKYYZoni9yuRXMxbo-Zs3BmkXBJaJcmZrklO9g3ec0jjM0d-O_ThXifOuV3T-__Q3IBNAT_MNzeukcuuYhFQqAqWyOr5azS98GZLOUDs2op-XbWauIPcqON9A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZKeoAL5VkWCjKowAFt2If3xS0hrVokKgREanux7LE3DYRNlOwKml-Px7uJsq14XOOxYo_Hnpn1528I2c8DL5KhEiYtgdxlSjJX-OC5CDiUYZpKsEX7Pp7ER0P24TQ63SL7q7cwG_f3ick03s60nn9zYdFlQXKDbMeRibg7ZHt48ql3ZuvGJbEbZVlQY9qvdWl5G0vKf_3o3fA9V3GRN6tiJi5_islkw-kc7pCD1XBrrMn3blXKLiyvMDn-az53yO0m6qS92kzuki1d3CM7q4oOtNng98mvPmLUSwpoC3Pa3N5QwBAbMUV2GSli5Uc0r5bLS_d4EFIxGU3n4_LiB8WvuvRweH5-NugPaF2d-h0VVTm1zLB1H4qoVPSeVOl8XFjM2AMyPDz4-v7IbWozuBAlWekyE0dmGUAQZnEkFJgwTsaQeEGeJNJ4RpWC1KnyRKyNLbAskT4IIZnvg861OUoekk4xLfQjfDVuM9E09AHroZkjQXhChnmiYk9lkXDIm9UacmiIy7F-xoSbBAaVyq1SOSy4UapDXq6lZzVhxx_k-mgOaxmk2bY_mNXiza7lMso9pXI_9RJgkTRjVBKnaOIkiCTEDnmBxsSRSKNApM5IVIsFP_7ymfdikxoGyMfokNeNUD414wbRPHwws0furZbkXkvS7HRoN69sljcnzYIHJv5K0VV4Dnm-bsaeiJ4r9LSyMlnGkJbJIbu1ia_nHTJ7d80ckrSMv6WYdksxvrA85Cnm0p7531frbfJXlT_-X8En5FaA0CHElbI90innlX5qYr9SPmu2_m8ThF1L |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breast+cancer+disease+classification+using+fuzzy-ID3+algorithm+with+FUZZYDBD+method%3A+automatic+fuzzy+database+definition&rft.jtitle=PeerJ.+Computer+science&rft.au=Idris%2C+Nur+Farahaina&rft.au=Ismail%2C+Mohd+Arfian&rft.date=2021-05-04&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=7&rft.spage=e427&rft_id=info:doi/10.7717%2Fpeerj-cs.427&rft.externalDocID=A660622492 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |