Deep learning driven segmentation of maxillary impacted canine on cone beam computed tomography images
The process of creating virtual models of dentomaxillofacial structures through three-dimensional segmentation is a crucial component of most digital dental workflows. This process is typically performed using manual or semi-automated approaches, which can be time-consuming and subject to observer b...
Saved in:
| Published in | Scientific reports Vol. 14; no. 1; pp. 369 - 8 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
03.01.2024
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-023-49613-0 |
Cover
| Abstract | The process of creating virtual models of dentomaxillofacial structures through three-dimensional segmentation is a crucial component of most digital dental workflows. This process is typically performed using manual or semi-automated approaches, which can be time-consuming and subject to observer bias. The aim of this study was to train and assess the performance of a convolutional neural network (CNN)-based online cloud platform for automated segmentation of maxillary impacted canine on CBCT image. A total of 100 CBCT images with maxillary canine impactions were randomly allocated into two groups: a training set (n = 50) and a testing set (n = 50). The training set was used to train the CNN model and the testing set was employed to evaluate the model performance. Both tasks were performed on an online cloud-based platform, ‘Virtual patient creator’ (Relu, Leuven, Belgium). The performance was assessed using voxel- and surface-based comparison between automated and semi-automated ground truth segmentations. In addition, the time required for segmentation was also calculated. The automated tool showed high performance for segmenting impacted canines with a dice similarity coefficient of 0.99 ± 0.02. Moreover, it was 24 times faster than semi-automated approach. The proposed CNN model achieved fast, consistent, and precise segmentation of maxillary impacted canines. |
|---|---|
| AbstractList | The process of creating virtual models of dentomaxillofacial structures through three-dimensional segmentation is a crucial component of most digital dental workflows. This process is typically performed using manual or semi-automated approaches, which can be time-consuming and subject to observer bias. The aim of this study was to train and assess the performance of a convolutional neural network (CNN)-based online cloud platform for automated segmentation of maxillary impacted canine on CBCT image. A total of 100 CBCT images with maxillary canine impactions were randomly allocated into two groups: a training set (n = 50) and a testing set (n = 50). The training set was used to train the CNN model and the testing set was employed to evaluate the model performance. Both tasks were performed on an online cloud-based platform, 'Virtual patient creator' (Relu, Leuven, Belgium). The performance was assessed using voxel- and surface-based comparison between automated and semi-automated ground truth segmentations. In addition, the time required for segmentation was also calculated. The automated tool showed high performance for segmenting impacted canines with a dice similarity coefficient of 0.99 ± 0.02. Moreover, it was 24 times faster than semi-automated approach. The proposed CNN model achieved fast, consistent, and precise segmentation of maxillary impacted canines. The process of creating virtual models of dentomaxillofacial structures through three-dimensional segmentation is a crucial component of most digital dental workflows. This process is typically performed using manual or semi-automated approaches, which can be time-consuming and subject to observer bias. The aim of this study was to train and assess the performance of a convolutional neural network (CNN)-based online cloud platform for automated segmentation of maxillary impacted canine on CBCT image. A total of 100 CBCT images with maxillary canine impactions were randomly allocated into two groups: a training set (n = 50) and a testing set (n = 50). The training set was used to train the CNN model and the testing set was employed to evaluate the model performance. Both tasks were performed on an online cloud-based platform, 'Virtual patient creator' (Relu, Leuven, Belgium). The performance was assessed using voxel- and surface-based comparison between automated and semi-automated ground truth segmentations. In addition, the time required for segmentation was also calculated. The automated tool showed high performance for segmenting impacted canines with a dice similarity coefficient of 0.99 ± 0.02. Moreover, it was 24 times faster than semi-automated approach. The proposed CNN model achieved fast, consistent, and precise segmentation of maxillary impacted canines.The process of creating virtual models of dentomaxillofacial structures through three-dimensional segmentation is a crucial component of most digital dental workflows. This process is typically performed using manual or semi-automated approaches, which can be time-consuming and subject to observer bias. The aim of this study was to train and assess the performance of a convolutional neural network (CNN)-based online cloud platform for automated segmentation of maxillary impacted canine on CBCT image. A total of 100 CBCT images with maxillary canine impactions were randomly allocated into two groups: a training set (n = 50) and a testing set (n = 50). The training set was used to train the CNN model and the testing set was employed to evaluate the model performance. Both tasks were performed on an online cloud-based platform, 'Virtual patient creator' (Relu, Leuven, Belgium). The performance was assessed using voxel- and surface-based comparison between automated and semi-automated ground truth segmentations. In addition, the time required for segmentation was also calculated. The automated tool showed high performance for segmenting impacted canines with a dice similarity coefficient of 0.99 ± 0.02. Moreover, it was 24 times faster than semi-automated approach. The proposed CNN model achieved fast, consistent, and precise segmentation of maxillary impacted canines. Abstract The process of creating virtual models of dentomaxillofacial structures through three-dimensional segmentation is a crucial component of most digital dental workflows. This process is typically performed using manual or semi-automated approaches, which can be time-consuming and subject to observer bias. The aim of this study was to train and assess the performance of a convolutional neural network (CNN)-based online cloud platform for automated segmentation of maxillary impacted canine on CBCT image. A total of 100 CBCT images with maxillary canine impactions were randomly allocated into two groups: a training set (n = 50) and a testing set (n = 50). The training set was used to train the CNN model and the testing set was employed to evaluate the model performance. Both tasks were performed on an online cloud-based platform, ‘Virtual patient creator’ (Relu, Leuven, Belgium). The performance was assessed using voxel- and surface-based comparison between automated and semi-automated ground truth segmentations. In addition, the time required for segmentation was also calculated. The automated tool showed high performance for segmenting impacted canines with a dice similarity coefficient of 0.99 ± 0.02. Moreover, it was 24 times faster than semi-automated approach. The proposed CNN model achieved fast, consistent, and precise segmentation of maxillary impacted canines. |
| ArticleNumber | 369 |
| Author | Swaity, Abdullah Ali, Saleem Elgarba, Bahaaeldeen M. Morgan, Nermin Shujaat, Sohaib Jacobs, Reinhilde Borsci, Elena Chilvarquer, Israel |
| Author_xml | – sequence: 1 givenname: Abdullah surname: Swaity fullname: Swaity, Abdullah organization: OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Prosthodontic Department, King Hussein Medical Center, Jordanian Royal Medical Services – sequence: 2 givenname: Bahaaeldeen M. surname: Elgarba fullname: Elgarba, Bahaaeldeen M. organization: OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Department of Prosthodontics, Tanta University – sequence: 3 givenname: Nermin surname: Morgan fullname: Morgan, Nermin organization: OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Department of Oral Medicine, Faculty of Dentistry, Mansoura University – sequence: 4 givenname: Saleem surname: Ali fullname: Ali, Saleem organization: OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Restorative Dentistry Department, King Hussein Medical Center, Jordanian Royal Medical Services – sequence: 5 givenname: Sohaib surname: Shujaat fullname: Shujaat, Sohaib organization: OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, King Abdullah International Medical Research Center, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs – sequence: 6 givenname: Elena surname: Borsci fullname: Borsci, Elena organization: Oral Diagnostic Clinic, Karolinska Institute – sequence: 7 givenname: Israel surname: Chilvarquer fullname: Chilvarquer, Israel organization: Department of Oral Radiology, School of Dentistry, University of São Paulo (USP) – sequence: 8 givenname: Reinhilde surname: Jacobs fullname: Jacobs, Reinhilde email: reinhilde.jacobs@ki.se organization: OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Department of Dental Medicine, Karolinska Institute |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38172136$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:155025429$$DView record from Swedish Publication Index |
| BookMark | eNqNUk1v1TAQjFARLaV_gAOKxIVLwF9x4hNC5atSJS5wtjbJJs0jsYOd1_L-PZvmUfp6qMglK-_MeHbHz5Mj5x0myUvO3nImy3dR8dyUGRMyU0ZzmbEnyYlgKs-EFOLoXn2cnMW4YfTlwihuniXHsuSF4FKfJO1HxCkdEILrXZc2ob9Gl0bsRnQzzL13qW_TEX73wwBhl_bjBPWMTVoDETClfk3G0gphpGqctktz9qPvAkxXCwE6jC-Spy0MEc_2_9Pkx-dP38-_Zpffvlycf7jM6rwwcyaXoaoKSi4aUAwL0WrWcmiURmPQcC15IVvGeVFxzZqSQw4Gi6ZtDWCl5Glyseo2HjZ2CnR72FkPvb098KGzEOa-HtBWLWhVVrWWolIlY5VSQlW6bkrIGZqStOSqtXUT7G5gGO4EObNLCHYNwVII9jYEy4iVrax4g9O2OvCwP_pJFdpScV3khH-_4qkzYlPT2gMMB7TDjuuvbOevyUBB_s2i8GavEPyvLcbZjn2skfJy6LfRCsMZp9Xly3peP4Bu_DY4SoRQzMhc09yEenXf0p2Xv6-GAGIF1MHHGLD9v8WUD0h1v74wGqsfHqfuk4h0j-sw_LP9COsPxPT4GQ |
| CitedBy_id | crossref_primary_10_1111_ocr_12863 crossref_primary_10_1111_cid_13352 crossref_primary_10_1111_ipd_13204 crossref_primary_10_1016_j_compbiomed_2025_109896 crossref_primary_10_1186_s12903_024_04718_4 crossref_primary_10_1038_s41598_025_86203_8 crossref_primary_10_1016_j_jdent_2024_105546 crossref_primary_10_1016_j_joen_2024_05_012 crossref_primary_10_1007_s44411_025_00043_6 |
| Cites_doi | 10.1007/s00784-022-04651-2 10.25241/stomaeduj.2016.3(3-4).art.11 10.1016/j.ajodo.2018.10.018 10.1016/j.jdent.2022.104069 10.1016/j.jdent.2021.103865 10.1007/s00056-016-0048-y 10.1016/j.jdent.2021.103786 10.1016/j.coms.2020.07.008 10.1148/radiol.12120255 10.3390/healthcare9081042 10.1590/2177-6709.24.1.074-087.bbo 10.1016/j.ajodo.2015.07.029 10.1016/j.ijom.2010.10.013 10.1259/dmfr.20210268 10.1007/s00247-017-4012-9 10.1016/j.joen.2020.12.020 10.1007/978-3-319-79048-0_8 10.1097/PRS.0000000000008427 10.1186/s12903-018-0523-5 10.1016/j.jormas.2020.12.006 10.1016/B978-0-12-816176-0.00023-5 10.1016/j.oooo.2020.04.813 10.1111/ocr.12423 10.1038/s41598-020-69920-0 10.3390/diagnostics12040942 10.1016/j.jdent.2021.103891 10.1016/j.jdent.2022.104238 10.1016/j.jdent.2021.103705 10.1093/ejo/cjz056 10.1093/ejo/cjp014 10.4103/2321-1407.199180 10.1038/s41598-022-11483-3 10.1007/s00784-022-04708-2 10.1371/journal.pone.0084217 10.1371/journal.pone.0102107 10.1007/s11282-023-00677-8 10.17762/turcomat.v12i1S.1936 10.1007/978-3-030-00722-5_7 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTPV AOWAS D8T ZZAVC ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-023-49613-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Proquest Health and Medical Complete ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Database ProQuest Central (ProQuest) Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Medicine Dentistry |
| EISSN | 2045-2322 |
| EndPage | 8 |
| ExternalDocumentID | oai_doaj_org_article_bfa648bc632b4800b4424b6cd8a50e98 10.1038/s41598-023-49613-0 oai_swepub_ki_se_841675 PMC10764895 38172136 10_1038_s41598_023_49613_0 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Karolinska Institute |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 5PM ADTPV AOWAS D8T EJD IPNFZ RIG ZZAVC ADTOC UNPAY |
| ID | FETCH-LOGICAL-c579t-34159bba812da40e72f60f1ad46e99e9163173f0117b160d81a5a9e7dff9aeb43 |
| IEDL.DBID | M48 |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:28:02 EDT 2025 Sun Oct 26 02:18:28 EDT 2025 Mon Oct 20 03:25:35 EDT 2025 Tue Sep 30 17:10:26 EDT 2025 Fri Sep 05 14:39:06 EDT 2025 Tue Oct 07 07:46:55 EDT 2025 Thu Apr 03 07:08:01 EDT 2025 Wed Oct 01 01:31:19 EDT 2025 Thu Apr 24 22:57:53 EDT 2025 Fri Feb 21 02:37:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c579t-34159bba812da40e72f60f1ad46e99e9163173f0117b160d81a5a9e7dff9aeb43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-49613-0 |
| PMID | 38172136 |
| PQID | 2909356983 |
| PQPubID | 2041939 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bfa648bc632b4800b4424b6cd8a50e98 unpaywall_primary_10_1038_s41598_023_49613_0 swepub_primary_oai_swepub_ki_se_841675 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10764895 proquest_miscellaneous_2910191654 proquest_journals_2909356983 pubmed_primary_38172136 crossref_primary_10_1038_s41598_023_49613_0 crossref_citationtrail_10_1038_s41598_023_49613_0 springer_journals_10_1038_s41598_023_49613_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-03 |
| PublicationDateYYYYMMDD | 2024-01-03 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Nogueira-Reis (CR26) 2023; 27 Brown (CR14) 2015; 148 Orhan (CR39) 2021; 122 Christensen (CR16) 2017; 7 Imak, Çelebi, Polat, Türkoğlu, Şengür (CR38) 2023 Starmans (CR17) 2020 Preda (CR27) 2022; 124 CR34 Renard, Guedria, Palma, Vuillerme (CR21) 2020; 10 Shujaat (CR29) 2021; 111 CR31 Lahoud (CR24) 2021; 47 Camardella, Rothier, Vilella, Ongkosuwito, Breuning (CR15) 2016; 77 Oenning (CR11) 2018; 48 Lin (CR12) 2018 Schwefer, Freitag-Wolf, Meyer, Kern (CR6) 2022; 26 Parmar (CR19) 2014; 9 Plooij (CR35) 2011; 40 Shujaat, Bornstein, Price, Jacobs (CR13) 2021; 50 Valverde-Albacete, Peláez-Moreno (CR40) 2014; 9 Heye (CR18) 2013; 266 Alberto (CR3) 2020; 32 Jacobs, Salmon, Codari, Hassan, Bornstein (CR10) 2018; 18 Li (CR33) 2021; 148 Kuwada (CR36) 2020; 130 Grisar (CR7) 2021; 24 Mageet (CR5) 2016; 3 Friedlander-Barenboim (CR9) 2021 Fontenele (CR22) 2022; 119 Verhelst (CR30) 2021; 114 Anic-Milosevic, Varga, Mestrovic, Lapter-Varga, Slaj (CR4) 2009; 31 Arriola-Guillen, Aliaga-Del Castillo, Ruiz-Mora, Rodriguez-Cardenas, Dias-Da Silveira (CR8) 2019; 156 CR20 Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (CR32) 2016 Celik (CR37) 2022 Lövgren, Dahl, Uribe, Ransjö, Westerlund (CR2) 2019; 41 Cruz (CR1) 2019; 24 Morgan (CR25) 2022; 12 Lahoud (CR23) 2022; 116 Shaheen (CR28) 2021; 115 F Nogueira-Reis (49613_CR26) 2023; 27 LE Arriola-Guillen (49613_CR8) 2019; 156 AO Mageet (49613_CR5) 2016; 3 49613_CR31 R Jacobs (49613_CR10) 2018; 18 49613_CR34 P Lahoud (49613_CR23) 2022; 116 C Parmar (49613_CR19) 2014; 9 B Li (49613_CR33) 2021; 148 S Friedlander-Barenboim (49613_CR9) 2021 Y-M Lin (49613_CR12) 2018 F Renard (49613_CR21) 2020; 10 K Orhan (49613_CR39) 2021; 122 PL Alberto (49613_CR3) 2020; 32 N Morgan (49613_CR25) 2022; 12 MW Brown (49613_CR14) 2015; 148 C Kuwada (49613_CR36) 2020; 130 LT Camardella (49613_CR15) 2016; 77 ME Celik (49613_CR37) 2022 E Shaheen (49613_CR28) 2021; 115 JM Plooij (49613_CR35) 2011; 40 AC Oenning (49613_CR11) 2018; 48 A Imak (49613_CR38) 2023 P Lahoud (49613_CR24) 2021; 47 K Grisar (49613_CR7) 2021; 24 49613_CR20 N Schwefer (49613_CR6) 2022; 26 LR Christensen (49613_CR16) 2017; 7 T Heye (49613_CR18) 2013; 266 Ö Çiçek (49613_CR32) 2016 MPA Starmans (49613_CR17) 2020 FJ Valverde-Albacete (49613_CR40) 2014; 9 RC Fontenele (49613_CR22) 2022; 119 ML Lövgren (49613_CR2) 2019; 41 P-J Verhelst (49613_CR30) 2021; 114 S Shujaat (49613_CR13) 2021; 50 RM Cruz (49613_CR1) 2019; 24 S Anic-Milosevic (49613_CR4) 2009; 31 F Preda (49613_CR27) 2022; 124 S Shujaat (49613_CR29) 2021; 111 |
| References_xml | – volume: 26 start-page: 6973 year: 2022 end-page: 6983 ident: CR6 article-title: Investigation of the esthetic perception of different canine parameters publication-title: Clin. Oral Investig. doi: 10.1007/s00784-022-04651-2 – volume: 3 start-page: 205 year: 2016 end-page: 211 ident: CR5 article-title: Classification of skeletal and dental malocclusion: Revisited publication-title: Stomatol. Edu J. doi: 10.25241/stomaeduj.2016.3(3-4).art.11 – volume: 156 start-page: 391 year: 2019 end-page: 400 ident: CR8 article-title: Influence of maxillary canine impaction characteristics and factors associated with orthodontic treatment on the duration of active orthodontic traction publication-title: Am. J. Orthod. Dentofac. Orthop. doi: 10.1016/j.ajodo.2018.10.018 – volume: 119 year: 2022 ident: CR22 article-title: Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images: A validation study publication-title: J. Dent. doi: 10.1016/j.jdent.2022.104069 – volume: 115 start-page: 103865 year: 2021 end-page: 103865 ident: CR28 article-title: A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study publication-title: J. Dent. doi: 10.1016/j.jdent.2021.103865 – volume: 77 start-page: 409 year: 2016 end-page: 419 ident: CR15 article-title: Virtual setup: Application in orthodontic practice publication-title: J. Orofac. Orthop. doi: 10.1007/s00056-016-0048-y – volume: 114 year: 2021 ident: CR30 article-title: Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography publication-title: J. Dent. doi: 10.1016/j.jdent.2021.103786 – volume: 32 start-page: 561 year: 2020 end-page: 570 ident: CR3 article-title: Surgical exposure of impacted teeth publication-title: Oral Maxillofac. Surg. Clin. N. Am. doi: 10.1016/j.coms.2020.07.008 – volume: 266 start-page: 812 year: 2013 end-page: 821 ident: CR18 article-title: Reproducibility of dynamic contrast-enhanced MR imaging. Part II. Comparison of Intra- and Interobserver variability with manual region of interest placement versus semiautomatic lesion segmentation and histogram analysis publication-title: Radiology doi: 10.1148/radiol.12120255 – year: 2021 ident: CR9 article-title: Patterns of cone-beam computed tomography (CBCT) utilization by various dental specialties: A 4-year retrospective analysis from a dental and maxillofacial specialty center publication-title: Healthcare doi: 10.3390/healthcare9081042 – volume: 24 start-page: 74 year: 2019 end-page: 87 ident: CR1 article-title: Orthodontic traction of impacted canines: Concepts and clinical application publication-title: Dental Press J. Orthod. doi: 10.1590/2177-6709.24.1.074-087.bbo – volume: 148 start-page: 1067 year: 2015 end-page: 1074 ident: CR14 article-title: Effectiveness and efficiency of a CAD/CAM orthodontic bracket system publication-title: Am. J. Orthod. Dentofac. Orthop. doi: 10.1016/j.ajodo.2015.07.029 – volume: 40 start-page: 341 year: 2011 end-page: 352 ident: CR35 article-title: Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery: A systematic review publication-title: Int. J. Oral Maxillofac. Surg. doi: 10.1016/j.ijom.2010.10.013 – volume: 50 start-page: 20210268 year: 2021 end-page: 20210268 ident: CR13 article-title: Integration of imaging modalities in digital dental workflows: Possibilities, limitations, and potential future developments publication-title: Dentomaxillofac. Radiol. doi: 10.1259/dmfr.20210268 – volume: 48 start-page: 308 year: 2018 end-page: 316 ident: CR11 article-title: Cone-beam CT in paediatric dentistry: DIMITRA project position statement publication-title: Pediatr. Radiol. doi: 10.1007/s00247-017-4012-9 – volume: 47 start-page: 827 year: 2021 end-page: 835 ident: CR24 article-title: Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography publication-title: J. Endod. doi: 10.1016/j.joen.2020.12.020 – start-page: 199 year: 2018 end-page: 217 ident: CR12 publication-title: The Digitization of Business in China: Exploring the Transformation from Manufacturing to a Digital Service Hub doi: 10.1007/978-3-319-79048-0_8 – volume: 148 start-page: 1101 year: 2021 end-page: 1110 ident: CR33 article-title: Randomized clinical trial of the accuracy of patient-specific implants versus CAD/CAM splints in orthognathic surgery publication-title: Plast. Reconstr. Surg. doi: 10.1097/PRS.0000000000008427 – volume: 18 start-page: 88 year: 2018 ident: CR10 article-title: Cone beam computed tomography in implant dentistry: Recommendations for clinical use publication-title: BMC Oral Health doi: 10.1186/s12903-018-0523-5 – volume: 122 start-page: 333 year: 2021 end-page: 337 ident: CR39 article-title: Evaluation of artificial intelligence for detecting impacted third molars on cone-beam computed tomography scans publication-title: J. Stomatol. Oral Maxillofac. Surg. doi: 10.1016/j.jormas.2020.12.006 – start-page: 429 year: 2020 end-page: 456 ident: CR17 publication-title: Handbook of Medical Image Computing and Computer Assisted Intervention doi: 10.1016/B978-0-12-816176-0.00023-5 – volume: 130 start-page: 464 year: 2020 end-page: 469 ident: CR36 article-title: Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. doi: 10.1016/j.oooo.2020.04.813 – volume: 24 start-page: 180 year: 2021 end-page: 193 ident: CR7 article-title: Interventions for impacted maxillary canines: A systematic review of the relationship between initial canine position and treatment outcome publication-title: Orthod. Craniofac. Res. doi: 10.1111/ocr.12423 – ident: CR31 – start-page: 424 year: 2016 end-page: 432 ident: CR32 publication-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016 – volume: 10 start-page: 13724 year: 2020 end-page: 13724 ident: CR21 article-title: Variability and reproducibility in deep learning for medical image segmentation publication-title: Sci. Rep. doi: 10.1038/s41598-020-69920-0 – year: 2022 ident: CR37 article-title: Deep learning based detection tool for impacted mandibular third molar teeth publication-title: Diagnostics. doi: 10.3390/diagnostics12040942 – volume: 116 start-page: 103891 year: 2022 end-page: 103891 ident: CR23 article-title: Development and validation of a novel artificial intelligence driven tool for accurate mandibular canal segmentation on CBCT publication-title: J. Dent. doi: 10.1016/j.jdent.2021.103891 – volume: 124 year: 2022 ident: CR27 article-title: Deep convolutional neural network-based automated segmentation of the maxillofacial complex from cone-beam computed tomography: A validation study publication-title: J. Dent. doi: 10.1016/j.jdent.2022.104238 – ident: CR34 – volume: 111 year: 2021 ident: CR29 article-title: Automatic segmentation of the pharyngeal airway space with convolutional neural network publication-title: J. Dent. doi: 10.1016/j.jdent.2021.103705 – volume: 41 start-page: 454 year: 2019 end-page: 459 ident: CR2 article-title: Prevalence of impacted maxillary canines: An epidemiological study in a region with systematically implemented interceptive treatment publication-title: Eur. J. Orthod. doi: 10.1093/ejo/cjz056 – volume: 31 start-page: 367 year: 2009 end-page: 373 ident: CR4 article-title: Dental and occlusal features in patients with palatally displaced maxillary canines publication-title: Eur. J. Orthod. doi: 10.1093/ejo/cjp014 – volume: 7 start-page: 12 year: 2017 end-page: 18 ident: CR16 article-title: Digital workflows in contemporary orthodontics publication-title: APOS Trends Orthod. doi: 10.4103/2321-1407.199180 – volume: 12 start-page: 7523 year: 2022 ident: CR25 article-title: Convolutional neural network for automatic maxillary sinus segmentation on cone-beam computed tomographic images publication-title: Sci. Rep. doi: 10.1038/s41598-022-11483-3 – volume: 27 start-page: 1133 year: 2023 end-page: 1141 ident: CR26 article-title: Three-dimensional maxillary virtual patient creation by convolutional neural network-based segmentation on cone-beam computed tomography images publication-title: Clin. Oral Investig. doi: 10.1007/s00784-022-04708-2 – volume: 9 year: 2014 ident: CR40 article-title: 100% classification accuracy considered harmful: The normalized information transfer factor explains the accuracy paradox publication-title: PLoS ONE doi: 10.1371/journal.pone.0084217 – volume: 9 year: 2014 ident: CR19 article-title: Robust Radiomics feature quantification using semiautomatic volumetric segmentation publication-title: PLoS ONE doi: 10.1371/journal.pone.0102107 – ident: CR20 – year: 2023 ident: CR38 article-title: ResMIBCU-Net: An encoder-decoder network with residual blocks, modified inverted residual block, and bi-directional ConvLSTM for impacted tooth segmentation in panoramic X-ray images publication-title: Oral. Radiol. doi: 10.1007/s11282-023-00677-8 – volume: 116 start-page: 103891 year: 2022 ident: 49613_CR23 publication-title: J. Dent. doi: 10.1016/j.jdent.2021.103891 – volume: 12 start-page: 7523 year: 2022 ident: 49613_CR25 publication-title: Sci. Rep. doi: 10.1038/s41598-022-11483-3 – start-page: 429 volume-title: Handbook of Medical Image Computing and Computer Assisted Intervention year: 2020 ident: 49613_CR17 doi: 10.1016/B978-0-12-816176-0.00023-5 – volume: 40 start-page: 341 year: 2011 ident: 49613_CR35 publication-title: Int. J. Oral Maxillofac. Surg. doi: 10.1016/j.ijom.2010.10.013 – volume: 18 start-page: 88 year: 2018 ident: 49613_CR10 publication-title: BMC Oral Health doi: 10.1186/s12903-018-0523-5 – volume: 148 start-page: 1067 year: 2015 ident: 49613_CR14 publication-title: Am. J. Orthod. Dentofac. Orthop. doi: 10.1016/j.ajodo.2015.07.029 – volume: 10 start-page: 13724 year: 2020 ident: 49613_CR21 publication-title: Sci. Rep. doi: 10.1038/s41598-020-69920-0 – volume: 32 start-page: 561 year: 2020 ident: 49613_CR3 publication-title: Oral Maxillofac. Surg. Clin. N. Am. doi: 10.1016/j.coms.2020.07.008 – volume: 26 start-page: 6973 year: 2022 ident: 49613_CR6 publication-title: Clin. Oral Investig. doi: 10.1007/s00784-022-04651-2 – volume: 48 start-page: 308 year: 2018 ident: 49613_CR11 publication-title: Pediatr. Radiol. doi: 10.1007/s00247-017-4012-9 – volume: 7 start-page: 12 year: 2017 ident: 49613_CR16 publication-title: APOS Trends Orthod. doi: 10.4103/2321-1407.199180 – volume: 31 start-page: 367 year: 2009 ident: 49613_CR4 publication-title: Eur. J. Orthod. doi: 10.1093/ejo/cjp014 – volume: 77 start-page: 409 year: 2016 ident: 49613_CR15 publication-title: J. Orofac. Orthop. doi: 10.1007/s00056-016-0048-y – volume: 50 start-page: 20210268 year: 2021 ident: 49613_CR13 publication-title: Dentomaxillofac. Radiol. doi: 10.1259/dmfr.20210268 – volume: 24 start-page: 180 year: 2021 ident: 49613_CR7 publication-title: Orthod. Craniofac. Res. doi: 10.1111/ocr.12423 – year: 2021 ident: 49613_CR9 publication-title: Healthcare doi: 10.3390/healthcare9081042 – volume: 156 start-page: 391 year: 2019 ident: 49613_CR8 publication-title: Am. J. Orthod. Dentofac. Orthop. doi: 10.1016/j.ajodo.2018.10.018 – volume: 111 year: 2021 ident: 49613_CR29 publication-title: J. Dent. doi: 10.1016/j.jdent.2021.103705 – volume: 148 start-page: 1101 year: 2021 ident: 49613_CR33 publication-title: Plast. Reconstr. Surg. doi: 10.1097/PRS.0000000000008427 – volume: 124 year: 2022 ident: 49613_CR27 publication-title: J. Dent. doi: 10.1016/j.jdent.2022.104238 – volume: 3 start-page: 205 year: 2016 ident: 49613_CR5 publication-title: Stomatol. Edu J. doi: 10.25241/stomaeduj.2016.3(3-4).art.11 – volume: 41 start-page: 454 year: 2019 ident: 49613_CR2 publication-title: Eur. J. Orthod. doi: 10.1093/ejo/cjz056 – start-page: 199 volume-title: The Digitization of Business in China: Exploring the Transformation from Manufacturing to a Digital Service Hub year: 2018 ident: 49613_CR12 doi: 10.1007/978-3-319-79048-0_8 – volume: 119 year: 2022 ident: 49613_CR22 publication-title: J. Dent. doi: 10.1016/j.jdent.2022.104069 – volume: 24 start-page: 74 year: 2019 ident: 49613_CR1 publication-title: Dental Press J. Orthod. doi: 10.1590/2177-6709.24.1.074-087.bbo – volume: 47 start-page: 827 year: 2021 ident: 49613_CR24 publication-title: J. Endod. doi: 10.1016/j.joen.2020.12.020 – volume: 130 start-page: 464 year: 2020 ident: 49613_CR36 publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. doi: 10.1016/j.oooo.2020.04.813 – volume: 114 year: 2021 ident: 49613_CR30 publication-title: J. Dent. doi: 10.1016/j.jdent.2021.103786 – ident: 49613_CR31 – year: 2023 ident: 49613_CR38 publication-title: Oral. Radiol. doi: 10.1007/s11282-023-00677-8 – volume: 9 year: 2014 ident: 49613_CR19 publication-title: PLoS ONE doi: 10.1371/journal.pone.0102107 – ident: 49613_CR20 doi: 10.17762/turcomat.v12i1S.1936 – ident: 49613_CR34 doi: 10.1007/978-3-030-00722-5_7 – year: 2022 ident: 49613_CR37 publication-title: Diagnostics. doi: 10.3390/diagnostics12040942 – volume: 266 start-page: 812 year: 2013 ident: 49613_CR18 publication-title: Radiology doi: 10.1148/radiol.12120255 – volume: 27 start-page: 1133 year: 2023 ident: 49613_CR26 publication-title: Clin. Oral Investig. doi: 10.1007/s00784-022-04708-2 – volume: 115 start-page: 103865 year: 2021 ident: 49613_CR28 publication-title: J. Dent. doi: 10.1016/j.jdent.2021.103865 – start-page: 424 volume-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016 year: 2016 ident: 49613_CR32 – volume: 9 year: 2014 ident: 49613_CR40 publication-title: PLoS ONE doi: 10.1371/journal.pone.0084217 – volume: 122 start-page: 333 year: 2021 ident: 49613_CR39 publication-title: J. Stomatol. Oral Maxillofac. Surg. doi: 10.1016/j.jormas.2020.12.006 |
| SSID | ssj0000529419 |
| Score | 2.4903922 |
| Snippet | The process of creating virtual models of dentomaxillofacial structures through three-dimensional segmentation is a crucial component of most digital dental... Abstract The process of creating virtual models of dentomaxillofacial structures through three-dimensional segmentation is a crucial component of most digital... |
| SourceID | doaj unpaywall swepub pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 369 |
| SubjectTerms | 692/700/3032 692/700/3032/3093/3094 692/700/3032/3093/3095 692/700/3032/3145 Automation Canine teeth Computed tomography Cone-Beam Computed Tomography - methods Cuspid - diagnostic imaging Datasets Deep Learning Dentistry Humanities and Social Sciences Humans Image Processing, Computer-Assisted - methods Maxilla Maxillofacial surgery Medical research Medicine multidisciplinary Neural networks Neural Networks, Computer Orthodontics Performance assessment Planning Science Science (multidisciplinary) Segmentation Teeth Tomography Tooth, Impacted |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcKt6kLchIiAtEdeKJEx95VRUSnKjUm2XHdkHsZlf7ULv_vuPYGzYCFQ7cothJJuOx53Mm8w0hr1grLICG3IGBHKw2OOcKn1eWo_dqmTBt-A755as4PYPP59X5Tqmv8E9YpAeOijs2XgtoTCt4aQDRjQEowYjWNrpiTvZpvqyRO5upyOpdSihkypJhvDleoqcK2WQlz0GKUNJg5Il6wv4_oczff5YcIqYDu-g9cmfdzfXmUk8mO97p5D7ZT7CSvouv84Dcct1DcjsWmtw8Iv6jc3OaKkRcULsIaxxduotpSj3q6MzTqb4KNYgWGxpzJ52lqHiEoRTbcd_sqHF6SttYCMLS1WyaCK_xAlyXlo_J2cmnbx9O81RhIW-rWq5yHpRijEYvbzUwV5deMF9oC8JJ6RA6IrzgPvDGmUIw2xS60tLV1nupnQH-hOx1-PhnhNbM4Nat8ChIAwZhp_bArbOA-KhwUGek2GpbtYl-PFTBmKg-DM4bFUdI4QipfoQUy8ib4Zp5JN-4sff7MIhDz0Cc3Z9Ac1LJnNTfzCkjR1sTUGk2L1UpQ7hYyIZn5OXQjPMwBFd052br0AcXNxlywzLyNFrMIElgQSwLLjLSjGxpJOq4pfvxvef6xt05yiurjLzdmt0vuW7SxetomqNHpFM_8cipEG-uw30H0_0HHR_8Dx0fkrslQsP-QxY_Inurxdo9R2i3Mi_6WXwN_WVJSg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTjB4QFAGBAYyEuIFoiWx48QPCDG2aUJahRCT9hbZsVMQbVr6Q9D_nrvEyahAE29RbCcn39k--3zfB_AyKqUVQovQCSNCYbXBMRdXYWo5rl5lJE1J55DnI3l2IT5eppc7MOpyYehaZTcnNhO1nZV0Rn6YKArZSZXzd_MfIbFGUXS1o9DQnlrBvm0gxm7AbkLIWAPYPToZffrcn7pQXEvEymfPRDw_XOIKRllmCQ-FkkR1sLVCNUD-__I-_75E2UdSe9TRO7C3rud681NPJn-sWqf34K53N9n71j7uw46rh3CzJaDcDGHvmC4LEd_bEG6d-zD7A6iOnZszTygxZnZBUyJbuvHUZyrVbFaxqf5FlEWLDWtTLZ1lqCf8AMNy3GY7ZpyesrLljbBsNZt6fGxsgNPYch8uTk--fDgLPSFDWKaZWoWc-soYjU6B1SJyWVLJqIq1FdIp5dDTRG-EVwQzZ2IZ2TzWqVYus1WltDOCP4RBjb9_DCyLDO704goFyYVBL1VXgltnBbpTsRNZAHGnhKL0aOVEmjEpmqg5z4tWcQUqrmgUV0QBvO7bzFusjmtrH5Fu-5qEs928mC3GhR-2ham0FLkpJU-MQN_aCJEII0ub6zRyKg_goLOMwg_-ZXFlqgG86Itx2FIsRtdutqY6OBcqSiUL4FFrSL0kBJqYxFwGkG-Z2Jao2yX1t68NNDhu5lFelQbwprPGK7mu64tXrcVu_cK_-o5PrqDwdEbf7S36P_r4yfXd8xRuJ-gjNida_AAGq8XaPUMfb2We-4H7G84aTnI priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tXSHggHgTWJCREBc2IoknTnwsj9WqElxgpb1ZdmwviDat-hD03zNO3EC1aAW3Krab0Tw8Y0_mG4CXWSMsosbUocEUrTZkc7lPS8vJezWZME24h_z4SZye4eS8PD-A410tzF7-voPuXpGLCWVgBU9RitCL4Boc1qSY9QgOx-PJ58lwpxKyVpjLWBtDy99cXrznfzqY_r_Flpc_kRzypAOm6C24sWkXevtDT6d_-KSTO3A7BpNs3Ev_Lhy49h5c79tLbu-Df-_cgsW-EBfMLsPOxlbuYhYLjlo292ymf4bOQ8st6ysmnWXEbgo-GY3Tadkx4_SMNX37B8vW81mEuaYFtButHsDZyYcv707T2FchbcpKrlMemGKMJt9uNWauKrzIfK4tCielo4CRggruA1qcyUVm61yXWrrKei-1M8gfwqil1z8GVmWGDmy5J0JqNBRsao_cOosUFeUOqwTyHbdVE0HHQ--LqeqS37xWvYQUSUh1ElJZAq-HNYsecuPK2W-DEIeZAS67e0BapKL1KeO1wNo0ghcGKUQ2iAUa0dhal5mTdQJHOxVQ0YZXqpAhSSxkzRN4MQyT9YWUim7dfBPm0JYmQ0VYAo96jRkoCdiHRc5FAvWeLu2Ruj_SfvvaIXzTmZzolWUCxzu1-03XVbx41avm3ivio-_0y6mQZa7C_w6q-w88fvJ_ZDyFmwWFft1FFT-C0Xq5cc8odFub59FifwEarDty priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwLsQKMhIiAtkSWLHiY_lUVVIVBxYUU6WHdsL6m52tQ_B8usZJ05goaroLYrtZGKPx58znm8AniUVN4wpFlumWcyM0jjnUhfnhuLqVSVcV_4_5IcTfjxi70_z0x3gXSxMc2i_obRszHR3OuzVEhcaHwyW0ZgJ7jMSDOfGXYFdniMGH8Du6OTj4RefSQ4xSowwIQsRMgktz2m8tQo1ZP3nIcx_D0r23tKeWfQ6XFvXc7X5riaTP1amo5vwufum9kDK2XC90sPq5190j5f_6FtwI4BVctjWvA07tr4DV9v0lZu74N5aOych78SYmIW3nGRpx9MQ0FSTmSNT9cNnNlpsSBuRaQ3B4URwS7Acd-OWaKumpGrTSxiymk0DjTY2QGu3vAejo3ef3hzHIW9DXOWFWMXUi621QuxgFEtskTmeuFQZxq0QFgEpghbqPBudTnliylTlStjCOCeU1Yzuw6DG1z8AUiQaN4SpQ0FKphHMKseosYYh6kotKyJIu3GUVSA197k1JrJxrtNStn0osQ9l04cyieBF32beUnpcWPu1V4--pqfjbm7MFmMZRkpqpzgrdcVpphlCcM1YxjSvTKnyxIoygoNOuWSwEUuZCe-E5qKkETzti3F2e5eNqu1s7eugyRQ-4iyC-60u9pJ4bsUspTyCcktLt0TdLqm_fW0YxHHPj_KKPIKXnUL_luuivnjeKv3WK8KtM7yy0nuxC__cflL8Rx8_vFz1R7CXIbRsfoTRAxisFmv7GKHhSj8JduAXJWleAA priority: 102 providerName: Unpaywall |
| Title | Deep learning driven segmentation of maxillary impacted canine on cone beam computed tomography images |
| URI | https://link.springer.com/article/10.1038/s41598-023-49613-0 https://www.ncbi.nlm.nih.gov/pubmed/38172136 https://www.proquest.com/docview/2909356983 https://www.proquest.com/docview/2910191654 https://pubmed.ncbi.nlm.nih.gov/PMC10764895 http://kipublications.ki.se/Default.aspx?queryparsed=id:155025429 https://www.nature.com/articles/s41598-023-49613-0.pdf https://doaj.org/article/bfa648bc632b4800b4424b6cd8a50e98 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL3ahxDwgPgmMCojIV4gI4kdJ35AqCubpkqrJqBSeYrs2C6INi1pK9Z_z3WSBiqqCZ4S2U5i-V7bx3buOQAvg5xrxiTzDVPMZ1oq7HOh9WNNcfbKA65ytw95MeDnQ9YfxaM92MgdNQ242Lm0c3pSw3JyfPVj_R47_Ls6ZDx9u8BJyAWKRdRngju1gn04xJlKOCmHiwbu11zfkWCV1ocjYfcRTERNHM3u12zNVRWl_y4c-vfvlO2Zass_ehturoq5XP-Uk8kf89fZXbjTAE_SrT3lHuyZ4j7cqKUo1w_AfjBmThoNiTHRpRsFycKMp01wUkFmlkzllVMpKtekjq40mqBpEKgSzMeVtSHKyCnJa6kITZazaUOJjQ_gyLV4CMOz08-9c7_RYPDzOBFLn7pGUUoiDtCSBSaJLA9sKDXjRgiD4BIBCLWOWU6FPNBpKGMpTKKtFdIoRh_BQYGffwIkCRQu7kKLFUmZQmAqLaPaaIYIKjQs8SDctHaWNwTlTidjklUH5TTNagtlaKGsslAWePC6fWZe03NcW_rEGbEt6ai1q4RZOc6anpopKzlLVc5ppBjCacVYxBTPdSrjwIjUg6ONC2Qbd80i4Q6UuUipBy_abOyp7vhFFma2cmVw-BMuesyDx7XHtDVxPIlRSLkH6ZYvbVV1O6f49rViA8f1O9ZXxB682bjd73pd1xavatfc-kST9B3vTOZOpBP33tZ1_6GNn_6XRZ7BrQhRYrWnRY_gYFmuzHNEeUvVgf1klHTgsNvtf-rj9eR0cPkRU3u816l2TjpV58ac4eCy--UXniNRFw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTVB4QFC-AgOMBLxAtHw4TvwwIUY3dWydENqkvRk7dgqiTUs_NPrP8bdxTtyMClTxsrco_pTvfHf2-e4H8DLImaZUUt9QRX2qpcI9FxZ-omPUXnnAVG7vIXsnrHtGP54n5xvwaxkLY59VLmViJaj1KLd35DsRty47xrP43fiHb1GjrHd1CaEhHbSC3q1SjLnAjiOzuMAj3HT3sIP0fhVFB_unH7q-Qxnw8yTlMx_FeMKVkqjptKSBSaOCBUUoNWWGc4PmE6rYuLC501TIAp2FMpHcpLoouDSKxtjvNdiiMeV4-Nva2z_59Lm55bF-NBpyF60TxNnO1A6X-agqfcqZhVZY0YgVcMC_rN2_H202ntsmy-ktaM3LsVxcyMHgDy15cAduO_OWvK_58S5smLIN12vAy0UbWh37OMniy7XhRs-59e9B0TFmTByARZ_oiRXBZGr6QxcZVZJRQYbyp4VImixIHdppNEG-wA4IluOx3hBl5JDkNU6FJrPR0OXjxgYoNqf34exKSPMANksc_hGQNFB4sgwLnEhGFVrFsqCxNpqi-RYamnoQLokgcpcd3YJ0DETlpY8zURNOIOFERTgRePCmaTOuc4Osrb1nadvUtHm9qx-jSV84MSFUIRnNVM7iSFG05RWlEVUs15lMAsMzD7aXnCGcsJmKy63hwYumGMWE9f3I0ozmtg7KXm5D1zx4WDNSMxObpDEKY-ZBtsJiK1NdLSm_fa1SkYdBivPliQdvl9x4Oa91a_G65tiVIdyv7_hlhHWHp7bfhqP_Y40fr1-e59DqnvaOxfHhydETuBmhfVrdpsXbsDmbzM1TtC9n6pnbxAS-XLXc-A1TXYs2 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NITZ4QFC-AgOMBLxA1CR2nPgBIaBMG2MTD0zqW7BjuyDatPRDo_8afx3nxM2oQBUve4sSx7Z859-dffb9AJ5GJdeMSRYapljItFQ452Ibppqi9Sojrkq3D3l8wg9O2Yd-2t-CX6u7MO5Y5QoTa6DW49LtkXcT4UJ2XOS0a_2xiE-9_deTH6FjkHKR1hWdRqMiR2Z5hsu32avDHsr6WZLsv__87iD0DANhmWZiHiKEp0IpiVZOSxaZLLE8srHUjBshDLpOaF6pdXnTVMwjnccylcJk2lohjWIU670ElzNKhTtOmPWzdn_HRdBYLPw9nYjm3ZlrLA_RSIZMcEeqsGYLa8qAf_m5fx_XbGO2bX7Ta7C7qCZyeSaHwz_s4_4NuO4dW_Km0cSbsGWqDlxpqC6XHdjtuWNJjlmuAzvHPqB_C2zPmAnx1BUDoqcOfMnMDEb-TlRFxpaM5E9HjjRdkuZSp9EENQIrIPgdF_SGKCNHpGwYKjSZj0c-Ezf-gIA5uw2nFyKYO7BdYfP3gGSRwjVlbLEjOVPoD0vLqDaaoeMWG5YFEK-EUJQ-L7qj5xgWdXye5kUjuAIFV9SCK6IAXrT_TJqsIBtLv3WybUu6jN71i_F0UHiAKJSVnOWq5DRRDL14xVjCFC91LtPIiDyAvZVmFB5mZsX5pAjgSfsZAcJFfWRlxgtXBlFXuEtrAdxtFKntiUvPmMSUB5CvqdhaV9e_VN--1knI4yjD_oo0gJcrbTzv16axeN5o7FoT_tV3fDKFC4Rnrt5Wo_9jjO9vHp7HsINoUXw8PDl6AFcTdEzrbTS6B9vz6cI8RMdyrh7VM5jAl4uGjN93CIjQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwLsQKMhIiAtkSWLHiY_lUVVIVBxYUU6WHdsL6m52tQ_B8usZJ05goaroLYrtZGKPx58znm8AniUVN4wpFlumWcyM0jjnUhfnhuLqVSVcV_4_5IcTfjxi70_z0x3gXSxMc2i_obRszHR3OuzVEhcaHwyW0ZgJ7jMSDOfGXYFdniMGH8Du6OTj4RefSQ4xSowwIQsRMgktz2m8tQo1ZP3nIcx_D0r23tKeWfQ6XFvXc7X5riaTP1amo5vwufum9kDK2XC90sPq5190j5f_6FtwI4BVctjWvA07tr4DV9v0lZu74N5aOych78SYmIW3nGRpx9MQ0FSTmSNT9cNnNlpsSBuRaQ3B4URwS7Acd-OWaKumpGrTSxiymk0DjTY2QGu3vAejo3ef3hzHIW9DXOWFWMXUi621QuxgFEtskTmeuFQZxq0QFgEpghbqPBudTnliylTlStjCOCeU1Yzuw6DG1z8AUiQaN4SpQ0FKphHMKseosYYh6kotKyJIu3GUVSA197k1JrJxrtNStn0osQ9l04cyieBF32beUnpcWPu1V4--pqfjbm7MFmMZRkpqpzgrdcVpphlCcM1YxjSvTKnyxIoygoNOuWSwEUuZCe-E5qKkETzti3F2e5eNqu1s7eugyRQ-4iyC-60u9pJ4bsUspTyCcktLt0TdLqm_fW0YxHHPj_KKPIKXnUL_luuivnjeKv3WK8KtM7yy0nuxC__cflL8Rx8_vFz1R7CXIbRsfoTRAxisFmv7GKHhSj8JduAXJWleAA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+driven+segmentation+of+maxillary+impacted+canine+on+cone+beam+computed+tomography+images&rft.jtitle=Scientific+reports&rft.au=Swaity%2C+Abdullah&rft.au=Elgarba%2C+Bahaaeldeen+M.&rft.au=Morgan%2C+Nermin&rft.au=Ali%2C+Saleem&rft.date=2024-01-03&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-49613-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_49613_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |