Control charts for chronic disease surveillance: testing algorithm sensitivity to changes in data coding

Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrat...

Full description

Saved in:
Bibliographic Details
Published inBMC public health Vol. 22; no. 1; pp. 406 - 16
Main Authors Hamm, Naomi C., Jiang, Depeng, Marrie, Ruth Ann, Irani, Pourang, Lix, Lisa M.
Format Journal Article
LanguageEnglish
Published London BioMed Central 28.02.2022
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2458
1471-2458
DOI10.1186/s12889-021-12328-w

Cover

Abstract Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts. Methods Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count ±0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar’s test with Holm-Bonferroni adjustment. Results The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar’s test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence. Conclusions Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits.
AbstractList Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts.BACKGROUNDAlgorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts.Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count ±0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar's test with Holm-Bonferroni adjustment.METHODSEighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count ±0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar's test with Holm-Bonferroni adjustment.The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar's test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence.RESULTSThe proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar's test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence.Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits.CONCLUSIONSOur study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits.
Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts. Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count ±0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar's test with Holm-Bonferroni adjustment. The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar's test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence. Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits.
Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts. Methods Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count [+ or -]0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar's test with Holm-Bonferroni adjustment. Results The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar's test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence. Conclusions Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits. Keywords: Control charts, Chronic disease surveillance, International classification of diseases codes, Administrative health data
Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts. Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count [+ or -]0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar's test with Holm-Bonferroni adjustment. The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar's test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence. Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits.
Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts. Methods Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count ±0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar’s test with Holm-Bonferroni adjustment. Results The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar’s test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence. Conclusions Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits.
Abstract Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts. Methods Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count ±0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar’s test with Holm-Bonferroni adjustment. Results The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar’s test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence. Conclusions Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits.
ArticleNumber 406
Audience Academic
Author Lix, Lisa M.
Irani, Pourang
Hamm, Naomi C.
Jiang, Depeng
Marrie, Ruth Ann
Author_xml – sequence: 1
  givenname: Naomi C.
  surname: Hamm
  fullname: Hamm, Naomi C.
  email: lettn@myumanitoba.ca
  organization: Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba
– sequence: 2
  givenname: Depeng
  surname: Jiang
  fullname: Jiang, Depeng
  organization: Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba
– sequence: 3
  givenname: Ruth Ann
  surname: Marrie
  fullname: Marrie, Ruth Ann
  organization: Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba
– sequence: 4
  givenname: Pourang
  surname: Irani
  fullname: Irani, Pourang
  organization: Department of Computer Science, University of Manitoba
– sequence: 5
  givenname: Lisa M.
  surname: Lix
  fullname: Lix, Lisa M.
  organization: Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35220943$$D View this record in MEDLINE/PubMed
BookMark eNqNUstqGzEUHUpK82h_oIsy0E03k-oxekwXhWD6CAS6addCo8dYZiy5ksbGfx8544a4lFC0kJDOObr3nnNZnfngTVW9heAaQk4_Jog47xqAYAMRRrzZvaguYMtgg1rCz56cz6vLlFYAQMYJelWdY4IQ6Fp8US0XwecYxlotZcyptiGWYwzeqVq7ZGQydZri1rhxlF6ZT3U2KTs_1HIcQnR5ua6T8cllt3V5X-dwUPKDSbXztZZZ1irogn9dvbRyTObNcb-qfn398nPxvbn78e12cXPXKMK6XBphWiEDGOis5rA3FgBgegl7rUnPMMVUcmJxqb9VWmrasx4SKLXGxljG8FV1O-vqIFdiE91axr0I0omHixAHURp1ajSCcoyt5Zy01LS9xFxTRKnqCMVKaqSLFp61Jr-R-50cx0dBCMTBAzF7IIoH4sEDsSuszzNrM_Vro5UpA5bjSSmnL94txRC2gnOOGSZF4MNRIIbfUxm3WLukzMEAE6YkEMUtgbxt2wJ9P0MHWRpy3oaiqA5wcUO7ruUMIlBQ1_9AlaXN2qkSKuvK_Qnh3dMWHmv_k5sCQDNAxZBSNPb_BsP_IimXZXaHBEo3Pk89OpHKPyVdUazCFH0J0nOse7J6-WQ
CitedBy_id crossref_primary_10_1080_16843703_2025_2455897
Cites_doi 10.1016/j.ajic.2016.09.021
10.1016/j.hlc.2013.01.011
10.1136/injuryprev-2016-042089
10.1080/00224065.2006.11918593
10.1186/s40621-018-0165-8
10.4324/9780203771587
10.1067/mic.2000.109883
10.1002/(SICI)1097-0258(20000530)19:10<1265::AID-SIM486>3.0.CO;2-U
10.1136/jech-2018-211936
10.1051/ijmqe/2018003
10.2147/CLEP.S217969
10.1067/mic.2000.106277
10.1016/j.chest.2018.04.004
10.24095/hpcdp.34.4.06
10.1007/978-0-387-21706-2
10.1016/S0003-4975(99)00547-0
10.1007/978-3-319-19425-7
10.2105/AJPH.86.5.726
10.1097/EE9.0000000000000090
10.1136/injuryprev-2019-043519
10.1016/S1499-2671(09)33116-0
10.1136/injuryprev-2014-041337
10.1186/cc3996
10.1111/j.1399-5448.2011.00795.x
10.1097/01.CCM.0000065273.63224.A8
10.1177/0962280213519719
10.1111/j.1399-5448.2009.00539.x
10.1111/j.1464-5491.2011.03238.x
10.2307/30149749
10.3233/NRE-130893
10.1093/intqhc/mzm060
10.2337/dc10-1572
10.1111/j.0006-341X.2001.00120.x
10.1016/j.healthpol.2017.11.001
10.1007/s00265-020-02916-y
10.1136/bmj.c4226
10.1186/s12889-019-6748-7
10.1177/096228020301200205
10.1111/j.1467-985X.2004.0apm2.x
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12889-021-12328-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals (NTUSG)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1471-2458
EndPage 16
ExternalDocumentID oai_doaj_org_article_6833ff88546e4ba38d6266c9563cad2d
10.1186/s12889-021-12328-w
PMC8883735
A699487120
35220943
10_1186_s12889_021_12328_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID ---
0R~
23N
2WC
2XV
44B
53G
5VS
6J9
6PF
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AN0
AOIJS
ATCPS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BNQBC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESTFP
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
L6V
M1P
M48
M7S
M~E
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PYCSY
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
NPM
7X8
5PM
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c579t-127dc2e0709fd81bef000eba1bdd5b73636a85f32204cdad6b7b151add3eef773
IEDL.DBID M48
ISSN 1471-2458
IngestDate Fri Oct 03 12:53:27 EDT 2025
Sun Oct 26 03:50:42 EDT 2025
Tue Sep 30 15:41:13 EDT 2025
Thu Oct 02 06:06:38 EDT 2025
Mon Oct 20 22:21:05 EDT 2025
Mon Oct 20 15:56:00 EDT 2025
Mon Jul 21 05:58:03 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
Wed Oct 01 01:41:12 EDT 2025
Sat Sep 06 07:29:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Chronic disease surveillance
International classification of diseases codes
Administrative health data
Control charts
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c579t-127dc2e0709fd81bef000eba1bdd5b73636a85f32204cdad6b7b151add3eef773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/6833ff88546e4ba38d6266c9563cad2d
PMID 35220943
PQID 2634518444
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_6833ff88546e4ba38d6266c9563cad2d
unpaywall_primary_10_1186_s12889_021_12328_w
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8883735
proquest_miscellaneous_2634518444
gale_infotracmisc_A699487120
gale_infotracacademiconefile_A699487120
pubmed_primary_35220943
crossref_primary_10_1186_s12889_021_12328_w
crossref_citationtrail_10_1186_s12889_021_12328_w
springer_journals_10_1186_s12889_021_12328_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-28
PublicationDateYYYYMMDD 2022-02-28
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC public health
PublicationTitleAbbrev BMC Public Health
PublicationTitleAlternate BMC Public Health
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References WN Venables (12328_CR39) 2002
N Sibanda (12328_CR16) 2016; 25
O Grigg (12328_CR21) 2004; 167
DG Manuel (12328_CR42) 2010; 341
M Aickin (12328_CR37) 1996; 86
W Pan (12328_CR32) 2001; 57
M Azimaee (12328_CR44) 2018
CP Quesenberry (12328_CR14) 2000; 28
B Zheng (12328_CR33) 2000; 19
N Bundle (12328_CR41) 2019; 73
F Nilson (12328_CR3) 2015; 21
M Coory (12328_CR11) 2008; 20
SC Mathai (12328_CR1) 2018; 154
A Guttmann (12328_CR23) 2010; 11
KE Eichstaedt (12328_CR38) 2013; 32
S Amed (12328_CR24) 2011; 28
AB Dart (12328_CR25) 2011; 34
NC Hamm (12328_CR43) 2019; 39
OA Grigg (12328_CR22) 2003; 12
DA Cook (12328_CR34) 2003; 31
ZM Myles (12328_CR45) 2011; 38
WH Woodall (12328_CR20) 2006; 38
M Nakhla (12328_CR28) 2019; 11
IR Smith (12328_CR12) 2013; 22
C Blais (12328_CR27) 2014; 34
T Dignam (12328_CR18) 2020; 4
Y Sakamoto (12328_CR31) 1986
S Højsgaard (12328_CR40) 2005; 15
MQR Pembury Smith (12328_CR36) 2020; 74
M Inoue (12328_CR7) 2001; 2
G Suman (12328_CR9) 2018; 9
S Morrell (12328_CR4) 2019; 19
SE Vanderloo (12328_CR26) 2012; 13
JM Levett (12328_CR13) 1999; 68
E Cummings (12328_CR29) 2009; 33
F Harrell (12328_CR30) 2015
TL Gustafson (12328_CR15) 2000; 28
A Schuh (12328_CR17) 2017; 23
MR Lavergne (12328_CR2) 2018; 122
EA Poltavskiy (12328_CR5) 2021; 27
J Cohen (12328_CR35) 2013
JA Sellick (12328_CR8) 1993; 14
TL Wiemken (12328_CR19) 2017; 45
S Slavova (12328_CR6) 2018; 5
JG Cockings (12328_CR10) 2006; 10
References_xml – volume: 45
  start-page: 216
  issue: 3
  year: 2017
  ident: 12328_CR19
  publication-title: Am J Infect Control
  doi: 10.1016/j.ajic.2016.09.021
– volume: 22
  start-page: 634
  issue: 8
  year: 2013
  ident: 12328_CR12
  publication-title: Heart Lung Circ
  doi: 10.1016/j.hlc.2013.01.011
– volume: 23
  start-page: 416
  issue: 6
  year: 2017
  ident: 12328_CR17
  publication-title: Inj Prev J Int Soc Child Adolesc Inj Prev
  doi: 10.1136/injuryprev-2016-042089
– volume: 38
  start-page: 89
  issue: 2
  year: 2006
  ident: 12328_CR20
  publication-title: J Qual Technol
  doi: 10.1080/00224065.2006.11918593
– volume: 5
  start-page: 36
  issue: 1
  year: 2018
  ident: 12328_CR6
  publication-title: Inj Epidemiol
  doi: 10.1186/s40621-018-0165-8
– start-page: 459
  volume-title: Statistical power analysis for the behavioral sciences
  year: 2013
  ident: 12328_CR35
  doi: 10.4324/9780203771587
– volume: 28
  start-page: 406
  issue: 6
  year: 2000
  ident: 12328_CR15
  publication-title: Am J Infect Control
  doi: 10.1067/mic.2000.109883
– volume: 19
  start-page: 1265
  issue: 10
  year: 2000
  ident: 12328_CR33
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(20000530)19:10<1265::AID-SIM486>3.0.CO;2-U
– volume: 73
  start-page: 825
  issue: 9
  year: 2019
  ident: 12328_CR41
  publication-title: J Epidemiol Community Health
  doi: 10.1136/jech-2018-211936
– volume: 9
  start-page: 5
  year: 2018
  ident: 12328_CR9
  publication-title: Int J Metrol Qual Eng
  doi: 10.1051/ijmqe/2018003
– volume: 11
  start-page: 833
  year: 2019
  ident: 12328_CR28
  publication-title: Clin Epidemiol
  doi: 10.2147/CLEP.S217969
– volume: 28
  start-page: 314
  issue: 4
  year: 2000
  ident: 12328_CR14
  publication-title: Am J Infect Control
  doi: 10.1067/mic.2000.106277
– volume: 38
  start-page: 162
  issue: 3
  year: 2011
  ident: 12328_CR45
  publication-title: J Regist Manag
– volume: 154
  start-page: 207
  issue: 1
  year: 2018
  ident: 12328_CR1
  publication-title: Chest
  doi: 10.1016/j.chest.2018.04.004
– volume: 34
  start-page: 226
  issue: 4
  year: 2014
  ident: 12328_CR27
  publication-title: Chronic Dis Inj Can
  doi: 10.24095/hpcdp.34.4.06
– start-page: 562
  volume-title: Modern applied statistics with S
  year: 2002
  ident: 12328_CR39
  doi: 10.1007/978-0-387-21706-2
– volume: 68
  start-page: 353
  issue: 2
  year: 1999
  ident: 12328_CR13
  publication-title: Ann Thorac Surg
  doi: 10.1016/S0003-4975(99)00547-0
– start-page: 582
  volume-title: Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis
  year: 2015
  ident: 12328_CR30
  doi: 10.1007/978-3-319-19425-7
– volume: 39
  start-page: 216
  issue: 6–7
  year: 2019
  ident: 12328_CR43
  publication-title: Health Promot Chronic Dis Prev Can Res Policy Pract
– volume: 86
  start-page: 726
  issue: 5
  year: 1996
  ident: 12328_CR37
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.86.5.726
– volume: 4
  start-page: e090
  issue: 2
  year: 2020
  ident: 12328_CR18
  publication-title: Environ Epidemiol
  doi: 10.1097/EE9.0000000000000090
– volume: 15
  start-page: 1
  issue: 1
  year: 2005
  ident: 12328_CR40
  publication-title: J Stat Softw
– volume: 27
  start-page: i19
  issue: S1
  year: 2021
  ident: 12328_CR5
  publication-title: Inj Prev J Int Soc Child Adolesc Inj Prev
  doi: 10.1136/injuryprev-2019-043519
– volume: 33
  start-page: 228
  issue: 3
  year: 2009
  ident: 12328_CR29
  publication-title: Can J Diabetes
  doi: 10.1016/S1499-2671(09)33116-0
– volume: 21
  start-page: 189
  issue: 3
  year: 2015
  ident: 12328_CR3
  publication-title: Inj Prev J Int Soc Child Adolesc Inj Prev
  doi: 10.1136/injuryprev-2014-041337
– volume: 10
  start-page: R28
  issue: 1
  year: 2006
  ident: 12328_CR10
  publication-title: Crit Care
  doi: 10.1186/cc3996
– volume: 13
  start-page: 229
  issue: 3
  year: 2012
  ident: 12328_CR26
  publication-title: Pediatr Diabetes
  doi: 10.1111/j.1399-5448.2011.00795.x
– volume: 31
  start-page: 1676
  issue: 6
  year: 2003
  ident: 12328_CR34
  publication-title: Crit Care Med
  doi: 10.1097/01.CCM.0000065273.63224.A8
– volume: 25
  start-page: 2274
  issue: 5
  year: 2016
  ident: 12328_CR16
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280213519719
– volume: 11
  start-page: 122
  issue: 2
  year: 2010
  ident: 12328_CR23
  publication-title: Pediatr Diabetes
  doi: 10.1111/j.1399-5448.2009.00539.x
– volume: 28
  start-page: 424
  issue: 4
  year: 2011
  ident: 12328_CR24
  publication-title: Diabet Med
  doi: 10.1111/j.1464-5491.2011.03238.x
– volume: 14
  start-page: 649
  issue: 11
  year: 1993
  ident: 12328_CR8
  publication-title: Infect Control Hosp Epidemiol
  doi: 10.2307/30149749
– volume: 32
  start-page: 693
  issue: 3
  year: 2013
  ident: 12328_CR38
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-130893
– volume: 20
  start-page: 31
  issue: 1
  year: 2008
  ident: 12328_CR11
  publication-title: Int J Qual Health Care
  doi: 10.1093/intqhc/mzm060
– volume-title: MCHP data quality framework
  year: 2018
  ident: 12328_CR44
– volume: 34
  start-page: 898
  issue: 4
  year: 2011
  ident: 12328_CR25
  publication-title: Diabetes Care
  doi: 10.2337/dc10-1572
– volume: 57
  start-page: 120
  issue: 1
  year: 2001
  ident: 12328_CR32
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2001.00120.x
– volume: 122
  start-page: 157
  issue: 2
  year: 2018
  ident: 12328_CR2
  publication-title: Health Policy
  doi: 10.1016/j.healthpol.2017.11.001
– volume: 74
  start-page: 133
  issue: 11
  year: 2020
  ident: 12328_CR36
  publication-title: Behav Ecol Sociobiol
  doi: 10.1007/s00265-020-02916-y
– volume: 341
  start-page: c4226
  year: 2010
  ident: 12328_CR42
  publication-title: BMJ
  doi: 10.1136/bmj.c4226
– volume: 19
  start-page: 481
  issue: 1
  year: 2019
  ident: 12328_CR4
  publication-title: BMC Public Health
  doi: 10.1186/s12889-019-6748-7
– volume: 12
  start-page: 147
  issue: 2
  year: 2003
  ident: 12328_CR22
  publication-title: Stat Methods Med Res
  doi: 10.1177/096228020301200205
– volume: 2
  start-page: 71
  issue: 1
  year: 2001
  ident: 12328_CR7
  publication-title: Asian Pac J Cancer Prev
– volume: 167
  start-page: 523
  issue: 3
  year: 2004
  ident: 12328_CR21
  publication-title: J R Stat Soc Ser A Stat Soc
  doi: 10.1111/j.1467-985X.2004.0apm2.x
– start-page: 290
  volume-title: Akaike information criterion statistics
  year: 1986
  ident: 12328_CR31
SSID ssj0017852
Score 2.3555522
Snippet Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be...
Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess...
Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be...
Abstract Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 406
SubjectTerms Administrative health data
Biostatistics
Chronic disease surveillance
Control charts
Diabetes in children
Environmental Health
Epidemiology
International classification of diseases codes
Management
Medical informatics
Medical research
Medicine
Medicine & Public Health
Medicine, Experimental
Methods
Public Health
Public health administration
Sentinel health events
Vaccine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4AQ4k2gICMhcaBRN7FjO9xKRVVx4ESl3iy_0l1pm1SbLCv-PTNxEm1AKhy4rWKvFI-_Gc_EM98Q8j6vMrFQEJ0YaXjKq-BTKzkSXnoXVMmVM32C7DdxfsG_XhaXe62-MCcs0gNHwR0LxVhVKVVwEbg1THlwwYUDt54543OP1nehyjGYGu4PpCrysURGieMWrDCmBuVZii6ESnezY6hn6__TJu8dSr8nTE63pvfJ3W19Y37uzHq9dzCdPSIPB4-SnsSVPCZ3Qv2EPIif42isMnpKlqcxJZ1ilVXXUnBV4WfPi0uHOxrabjc_AjYhAhx8oh3Sb9RX1Kyvms2qW17TFnPdY7MJ2jU0lgy3dFVTTDOlrsFj8Bm5OPvy_fQ8HZospK6QZQfykN7lATS_rDz4sKECIxmsyaz3hZVMMGFUUYHeL7jzxgsrLXgJYBZZCJWU7Dk5qJs6vCQ0cyy4Ap6yDKNMZo31yKAGEYt3vOQJyUaZazcwkGMjjLXuIxEldNwnDfuk-33Su4R8nP5zE_k3bp39Gbdymonc2f0DQJQeEKX_hqiEfEAgaNRweD1nhkIFWCRyZekTUQKGZZYvEnI4mwma6WbD70YoaRzCdLY6NNtW54LxAmJrDjJ5EaE1vTN6xJjumRA5A91sUfORerXsicGVUkyyIiFHIzz1YJHaW4V2NEH4H2T86n_I-DW5l2MdSc8NcEgOus02vAHvrrNve0X-BWT_SzE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96gh-I6PlVPSWC4INXbtukSerbengcgj65cG8hTdLdhbU9tl0X_3tn0g-uKoe-lSYtzXxlpjPzCyFv0zIRMwXRiZGGx7z0Li4kR8BLZ73KubImFMh-FecL_vkiu-ibwpqh2n1ISQZLHdRaiZMGLCmW96RJjG6Aivc3ya0M4bxAihfpfMwdSJWlQ3vMX5-bbEEBqf9Pe3xlQ_q9WHLMmN4jd3bVpfm5N5vNlU3p7CF50HuTdN6x_xG54atDcvtLny8_JPe7v3K0azZ6TFanXWU6xWartqHgscJlgMelfaqGNrvtD49nEYE4fKAtonBUS2o2y3q7blffaYMl792ZE7Stadc53NB1RbHalNoad8MnZHH26dvpedyftRDbTOYtkEY6m3owAHnpwJX1JdhKX5ikcC4rJBNMGJWVoP4zbp1xopAFOAtgHZn3pZTsKTmo6so_JzSxzNsM7rIEg01WmMIhkBoELs7ynEckGcivbQ9EjudhbHQISJTQHcs0sEwHlul9RN6Pz1x2MBzXzv6IXB1nIoR2uFFvl7rXSC0UY2WpVMaF54VhykFsJyzEi8wal7qIvEOZ0Kjo8HnW9P0KsEiEzNJzkYMoyySdReRoMhMU1E6G3wxSpXEIq9oqX-8anQrGMwixOdDkWSdl4zejY4xVnxGRE_mbLGo6Uq1XAR9cKcUkyyJyPEiq7g1Tcy3Rjkdp_gcav_i_t78kd1NsHAlgAEfkoN3u_Ctw59riddDeXy6vQ5E
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZGdwCE-DkgMJCRkDiwdE3s2C63MjFNHCoOTBony7_SVuuSqkmp4K_nOU6qdqAJJG5R7Ejxy_Pn9-L3fUbobZonbCAgO1Fc0ZjmzsaaUy94aY0TQyqMagpkx-zsnH6-yC720LjjwugrE_SdAw2wv01CnzfIDRfm8nhh8zDhBTuuAGN94U-axD5AEPH6FtpnGcTmPbR_Pv4y-tZQjHgSpzQTHXPmjw_urE6NiP_vUL21Vl2vo9xspt5Ft1fFQv1Yq_l8a706fYDKbqShTOWyv6p13_y8JgL5_0zxEN1vQ1s8Cr74CO254jG6F_4L4kB3eoKmJ6E2Hnu6V11hiJnhshHoxe1mEa5Wy-_On4YEDvkB114HpJhgNZ-Uy1k9vcKVL7oPp17gusSBu1zhWYF9vSs2pV-PD9D56aevJ2dxe9pDbDI-rOF9uTWpAwga5haCaZcDWjutEm1tpjlhhCmR5QBAA2qsskxzDeEK4DNxLuecPEW9oizcc4QTQ5zJ4C5JfLpLtNLWS7lB6mQNHdIIJd1XlqaVQvcncsxlkxIJJoMdJdhRNnaU6wi93zyzCEIgN_b-6J1n09OLeDc3yuVEtpggmSAkz4XIKHNUKyIsZJfMQMZKjLKpjdA773rSQ43_1KplTMAgvWiXHLEhTCaepIMIHe70BIgwO81vOueVvsnX1RWuXFUyZYRmkORTsMmz4Mybd_ahua87jRDfcfOdQe22FLNpo1AuhCCcZBE66iaEbKGxutFoR5tJ8xc2fvFv3V-iO6mnrjRyBIeoVy9X7hUElLV-3aLELxQpcVw
  priority: 102
  providerName: Unpaywall
Title Control charts for chronic disease surveillance: testing algorithm sensitivity to changes in data coding
URI https://link.springer.com/article/10.1186/s12889-021-12328-w
https://www.ncbi.nlm.nih.gov/pubmed/35220943
https://www.proquest.com/docview/2634518444
https://pubmed.ncbi.nlm.nih.gov/PMC8883735
https://bmcpublichealth.biomedcentral.com/track/pdf/10.1186/s12889-021-12328-w
https://doaj.org/article/6833ff88546e4ba38d6266c9563cad2d
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: A8Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: 8C1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: M48
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Open Access Journals (NTUSG)
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: C6C
  dateStart: 20010112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2458
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017852
  issn: 1471-2458
  databaseCode: U2A
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe29QEQQnxTGJWRkHhgGU3s2C4SQm21MSFRTROVCi-WYzttpZKOJqXsv-cuScsK07QXq7GdKjnfne_iu98R8jpKQ9FW4J0YaXjAU--CRHIEvHTWqw5X1pQBsgNxMuSfR_Foh6zLHdUEzK907bCe1HAxO_z98-IjCPyHUuCVeJeDjsXAnygM0EBQwWqXNGCn6mAphy_876mCVGUFnhAUchDxWK2TaK78j62NqsTz_19rX9q2_g2p3Jyr3iG3ltm5uViZ2ezS1nV8n9yrbU7arZjkAdnx2UNyt_pgR6s8pEdk0q-C1inmYRU5BWMWfpbIubQ-xaH5cvHLY5ki4JT3tECAjmxMzWw8X0yLyQ-aYzR8VY6CFnNaJRXndJpRDESldo4b5WMyPD762j8J6jIMgY1lpwB6SGcjD7qhkzqwcn0KatQnJkycixPJBBNGxSlohja3zjiRyATsCFCczPtUSvaE7GXzzD8jNLTM2xh6WYh-KEtM4hBjDXwaZ3mHN0m4prm2NUY5lsqY6dJXUUJX66RhnXS5TnrVJG8395xXCB3Xzu7hUm5mIrp22TFfjHUtrFooxtJUqZgLzxPDlAO3T1hwJZk1LnJN8gYZQSNXwuNZU6cywEsimpbuig5wuQyjdpPsb80E2bVbw6_WrKRxCAPeMj9f5joSjMfgfXOgydOKtTbPjDYzBoQ2idxiuq2X2h7JppMSOlwpxSSLm-RgzZ56LXLXEu1gw8I3oPHzG5PnBbkdYTpJCRGwT_aKxdK_BCOvSFpkV44ktKofYnv8qUUavaPB6Rlc9UW_VX48aZXyDe1Z7zu0wwh6GsPBaffbHzDhVe4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgkxgIIRgDAgOMhMQDi2hix3Z5KxNTKdte2KS9WY7tdJVKMjUpFf89d_mlBdAEb1XsVMn57nyX--4zIW_jLBIjBdmJkYaHPPMuTCVHwktnvRpzZU0NkD0V03M-u0gu2qawskO7dyXJ2lPXZq3EhxI8KcJ74ijEMECFm9tkG0FWYI7bk8ns26yvHkiVxF2DzF_vHGxCNVf_nx752pb0O1yyr5neIzvr_Mr83Jjl8tq2dPSQPGjjSTppFOARueXzXXLnpK2Y75L7zXc52rQbPSaXhw02nWK7VVVSiFnhZ02QS9tiDS3Xqx8eTyMChfhIK-ThyOfULOfFalFdfqclgt6bUydoVdCmd7iki5wi3pTaAvfDPXJ-9PnscBq2py2ENpHjCkQjnY09uIBx5iCY9Rl4S5-aKHUuSSUTTBiVZOAARtw640QqUwgXwD8y7zMp2ROylRe5f0ZoZJm3CVxlEaabLDWpQyo1SF2c5WMekKgTv7YtFTmeiLHUdUqihG6WTMOS6XrJ9CYg7_t7rhoijhtnf8JV7WciiXZ9oVjNdWuTWijGskyphAvPU8OUg-xOWMgYmTUudgF5hzqh0dTh8axpOxbgJZE0S0_EGJRZRvEoIPuDmWCidjD8ptMqjUOIa8t9sS51LBhPIMnmIJOnjZb1z4yhMeI-AyIH-jd4qeFIvrisGcKVUkyyJCAHnabq1jWVNwrtoNfmf5Dx8__799dkZ3p2cqyPv5x-fUHuxthGUlMD7JOtarX2LyG4q9JXrS3_AsQuR8Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAOEEIyvwAAjIfHAojWxYzu8jUI1viYemLQ3y7GdtlJJqial4r_nLkmjBtAEb1XsVMn5PnN3vyPkZZxHYqQgOjHS8JDn3oWZ5Ah46axXKVfWNAWyZ-L0nH-8SC52uvibavdtSrLtaUCUpqI-Xrq8FXEljivQqljqE0chugQq3Fwl1zhYN5xhMBbjPo8gVRJvW2X-et_AHDWo_X_q5h3j9HvhZJ89vUmur4ul-bkxi8WOgZrcIbc7z5KetKxwl1zxxQHZ_9Llzg_IrfYLHW0bj-6R2bitUqfYeFVXFLxX-NlA5dIubUOr9eqHx7lEwBpvaI2IHMWUmsW0XM3r2XdaYfl7O3-C1iVtu4grOi8oVp5SW6JlvE_OJ--_jU_Dbu5CaBOZ1kAa6WzsQRmkuQO31uegN31mosy5JJNMMGFUkoMqGHHrjBOZzMBxAE3JvM-lZA_IXlEW_hGhkWXeJnCVRRh4ssxkDkHVIIhxlqc8INGW_Np2oOQ4G2Ohm-BECd0emYYj082R6U1AXvf3LFtIjkt3v8VT7XcinHZzoVxNdSedWijG8lyphAvPM8OUgzhPWIgdmTUudgF5hTyhUejh8azpehfgJRE-S5-IFNhaRvEoIIeDnSCsdrD8YstVGpewwq3w5brSsWA8gXCbA00etlzWPzM6yVgBGhA54L_BSw1XivmswQpXSjHJkoAcbTlVd0qqupRoRz03_wONH__fvz8n-1_fTfTnD2efnpAbMfaTNBgBh2SvXq39U_Dy6uxZI8i_AFv9SqM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZGdwCE-DkgMJCRkDiwdE3s2C63MjFNHCoOTBony7_SVuuSqkmp4K_nOU6qdqAJJG5R7Ejxy_Pn9-L3fUbobZonbCAgO1Fc0ZjmzsaaUy94aY0TQyqMagpkx-zsnH6-yC720LjjwugrE_SdAw2wv01CnzfIDRfm8nhh8zDhBTuuAGN94U-axD5AEPH6FtpnGcTmPbR_Pv4y-tZQjHgSpzQTHXPmjw_urE6NiP_vUL21Vl2vo9xspt5Ft1fFQv1Yq_l8a706fYDKbqShTOWyv6p13_y8JgL5_0zxEN1vQ1s8Cr74CO254jG6F_4L4kB3eoKmJ6E2Hnu6V11hiJnhshHoxe1mEa5Wy-_On4YEDvkB114HpJhgNZ-Uy1k9vcKVL7oPp17gusSBu1zhWYF9vSs2pV-PD9D56aevJ2dxe9pDbDI-rOF9uTWpAwga5haCaZcDWjutEm1tpjlhhCmR5QBAA2qsskxzDeEK4DNxLuecPEW9oizcc4QTQ5zJ4C5JfLpLtNLWS7lB6mQNHdIIJd1XlqaVQvcncsxlkxIJJoMdJdhRNnaU6wi93zyzCEIgN_b-6J1n09OLeDc3yuVEtpggmSAkz4XIKHNUKyIsZJfMQMZKjLKpjdA773rSQ43_1KplTMAgvWiXHLEhTCaepIMIHe70BIgwO81vOueVvsnX1RWuXFUyZYRmkORTsMmz4Mybd_ahua87jRDfcfOdQe22FLNpo1AuhCCcZBE66iaEbKGxutFoR5tJ8xc2fvFv3V-iO6mnrjRyBIeoVy9X7hUElLV-3aLELxQpcVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+charts+for+chronic+disease+surveillance%3A+testing+algorithm+sensitivity+to+changes+in+data+coding&rft.jtitle=BMC+public+health&rft.au=Hamm%2C+Naomi+C&rft.au=Jiang%2C+Depeng&rft.au=Marrie%2C+Ruth+Ann&rft.au=Irani%2C+Pourang&rft.date=2022-02-28&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2458&rft.eissn=1471-2458&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12889-021-12328-w&rft.externalDocID=A699487120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2458&client=summon