Control charts for chronic disease surveillance: testing algorithm sensitivity to changes in data coding
Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrat...
        Saved in:
      
    
          | Published in | BMC public health Vol. 22; no. 1; pp. 406 - 16 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        28.02.2022
     BioMed Central Ltd BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2458 1471-2458  | 
| DOI | 10.1186/s12889-021-12328-w | 
Cover
| Abstract | Background
Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts.
Methods
Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count ±0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar’s test with Holm-Bonferroni adjustment.
Results
The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar’s test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence.
Conclusions
Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits. | 
    
|---|---|
| AbstractList | Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts.BACKGROUNDAlgorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts.Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count ±0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar's test with Holm-Bonferroni adjustment.METHODSEighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count ±0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar's test with Holm-Bonferroni adjustment.The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar's test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence.RESULTSThe proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar's test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence.Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits.CONCLUSIONSOur study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits. Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts. Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count ±0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar's test with Holm-Bonferroni adjustment. The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar's test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence. Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits. Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts. Methods Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count [+ or -]0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar's test with Holm-Bonferroni adjustment. Results The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar's test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence. Conclusions Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits. Keywords: Control charts, Chronic disease surveillance, International classification of diseases codes, Administrative health data Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts. Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count [+ or -]0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar's test with Holm-Bonferroni adjustment. The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar's test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence. Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits. Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts. Methods Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count ±0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar’s test with Holm-Bonferroni adjustment. Results The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar’s test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence. Conclusions Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits. Abstract Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess how variations in administrative health data impact the stability of estimated trends in incidence and prevalence for administrative data algorithms. We compared the stability of incidence and prevalence trends for multiple juvenile diabetes algorithms using observed-expected control charts. Methods Eighteen validated algorithms for juvenile diabetes were applied to administrative health data from Manitoba, Canada between 1975 and 2018. Trends in disease incidence and prevalence for each algorithm were modelled using negative binomial regression and generalized estimating equations; model-predicted case counts were plotted against observed counts. Control limits were set as predicted case count ±0.8*standard deviation. Differences in the frequency of out-of-control observations for each algorithm were assessed using McNemar’s test with Holm-Bonferroni adjustment. Results The proportion of out-of-control observations for incidence and prevalence ranged from 0.57 to 0.76 and 0.45 to 0.83, respectively. McNemar’s test revealed no difference in the frequency of out-of-control observations across algorithms. A sensitivity analysis with relaxed control limits (2*standard deviation) detected fewer out-of-control years (incidence 0.19 to 0.33; prevalence 0.07 to 0.52), but differences in stability across some algorithms for prevalence. Conclusions Our study using control charts to compare stability of trends in incidence and prevalence for juvenile diabetes algorithms found no differences for disease incidence. Differences were observed between select algorithms for disease prevalence when using wider control limits.  | 
    
| ArticleNumber | 406 | 
    
| Audience | Academic | 
    
| Author | Lix, Lisa M. Irani, Pourang Hamm, Naomi C. Jiang, Depeng Marrie, Ruth Ann  | 
    
| Author_xml | – sequence: 1 givenname: Naomi C. surname: Hamm fullname: Hamm, Naomi C. email: lettn@myumanitoba.ca organization: Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba – sequence: 2 givenname: Depeng surname: Jiang fullname: Jiang, Depeng organization: Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba – sequence: 3 givenname: Ruth Ann surname: Marrie fullname: Marrie, Ruth Ann organization: Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba – sequence: 4 givenname: Pourang surname: Irani fullname: Irani, Pourang organization: Department of Computer Science, University of Manitoba – sequence: 5 givenname: Lisa M. surname: Lix fullname: Lix, Lisa M. organization: Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35220943$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUstqGzEUHUpK82h_oIsy0E03k-oxekwXhWD6CAS6addCo8dYZiy5ksbGfx8544a4lFC0kJDOObr3nnNZnfngTVW9heAaQk4_Jog47xqAYAMRRrzZvaguYMtgg1rCz56cz6vLlFYAQMYJelWdY4IQ6Fp8US0XwecYxlotZcyptiGWYwzeqVq7ZGQydZri1rhxlF6ZT3U2KTs_1HIcQnR5ua6T8cllt3V5X-dwUPKDSbXztZZZ1irogn9dvbRyTObNcb-qfn398nPxvbn78e12cXPXKMK6XBphWiEDGOis5rA3FgBgegl7rUnPMMVUcmJxqb9VWmrasx4SKLXGxljG8FV1O-vqIFdiE91axr0I0omHixAHURp1ajSCcoyt5Zy01LS9xFxTRKnqCMVKaqSLFp61Jr-R-50cx0dBCMTBAzF7IIoH4sEDsSuszzNrM_Vro5UpA5bjSSmnL94txRC2gnOOGSZF4MNRIIbfUxm3WLukzMEAE6YkEMUtgbxt2wJ9P0MHWRpy3oaiqA5wcUO7ruUMIlBQ1_9AlaXN2qkSKuvK_Qnh3dMWHmv_k5sCQDNAxZBSNPb_BsP_IimXZXaHBEo3Pk89OpHKPyVdUazCFH0J0nOse7J6-WQ | 
    
| CitedBy_id | crossref_primary_10_1080_16843703_2025_2455897 | 
    
| Cites_doi | 10.1016/j.ajic.2016.09.021 10.1016/j.hlc.2013.01.011 10.1136/injuryprev-2016-042089 10.1080/00224065.2006.11918593 10.1186/s40621-018-0165-8 10.4324/9780203771587 10.1067/mic.2000.109883 10.1002/(SICI)1097-0258(20000530)19:10<1265::AID-SIM486>3.0.CO;2-U 10.1136/jech-2018-211936 10.1051/ijmqe/2018003 10.2147/CLEP.S217969 10.1067/mic.2000.106277 10.1016/j.chest.2018.04.004 10.24095/hpcdp.34.4.06 10.1007/978-0-387-21706-2 10.1016/S0003-4975(99)00547-0 10.1007/978-3-319-19425-7 10.2105/AJPH.86.5.726 10.1097/EE9.0000000000000090 10.1136/injuryprev-2019-043519 10.1016/S1499-2671(09)33116-0 10.1136/injuryprev-2014-041337 10.1186/cc3996 10.1111/j.1399-5448.2011.00795.x 10.1097/01.CCM.0000065273.63224.A8 10.1177/0962280213519719 10.1111/j.1399-5448.2009.00539.x 10.1111/j.1464-5491.2011.03238.x 10.2307/30149749 10.3233/NRE-130893 10.1093/intqhc/mzm060 10.2337/dc10-1572 10.1111/j.0006-341X.2001.00120.x 10.1016/j.healthpol.2017.11.001 10.1007/s00265-020-02916-y 10.1136/bmj.c4226 10.1186/s12889-019-6748-7 10.1177/096228020301200205 10.1111/j.1467-985X.2004.0apm2.x  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2022 2022. The Author(s). COPYRIGHT 2022 BioMed Central Ltd.  | 
    
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: COPYRIGHT 2022 BioMed Central Ltd.  | 
    
| DBID | C6C AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s12889-021-12328-w | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals (NTUSG) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Public Health  | 
    
| EISSN | 1471-2458 | 
    
| EndPage | 16 | 
    
| ExternalDocumentID | oai_doaj_org_article_6833ff88546e4ba38d6266c9563cad2d 10.1186/s12889-021-12328-w PMC8883735 A699487120 35220943 10_1186_s12889_021_12328_w  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GeographicLocations | Canada | 
    
| GeographicLocations_xml | – name: Canada | 
    
| GroupedDBID | --- 0R~ 23N 2WC 2XV 44B 53G 5VS 6J9 6PF 7X7 7XC 88E 8C1 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAJSJ AASML AAWTL ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AN0 AOIJS ATCPS BAPOH BAWUL BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BNQBC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESTFP ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ITC KQ8 L6V M1P M48 M7S M~E O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PYCSY RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV NPM 7X8 5PM 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c579t-127dc2e0709fd81bef000eba1bdd5b73636a85f32204cdad6b7b151add3eef773 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2458 | 
    
| IngestDate | Fri Oct 03 12:53:27 EDT 2025 Sun Oct 26 03:50:42 EDT 2025 Tue Sep 30 15:41:13 EDT 2025 Thu Oct 02 06:06:38 EDT 2025 Mon Oct 20 22:21:05 EDT 2025 Mon Oct 20 15:56:00 EDT 2025 Mon Jul 21 05:58:03 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 Wed Oct 01 01:41:12 EDT 2025 Sat Sep 06 07:29:11 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Chronic disease surveillance International classification of diseases codes Administrative health data Control charts  | 
    
| Language | English | 
    
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c579t-127dc2e0709fd81bef000eba1bdd5b73636a85f32204cdad6b7b151add3eef773 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://doaj.org/article/6833ff88546e4ba38d6266c9563cad2d | 
    
| PMID | 35220943 | 
    
| PQID | 2634518444 | 
    
| PQPubID | 23479 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6833ff88546e4ba38d6266c9563cad2d unpaywall_primary_10_1186_s12889_021_12328_w pubmedcentral_primary_oai_pubmedcentral_nih_gov_8883735 proquest_miscellaneous_2634518444 gale_infotracmisc_A699487120 gale_infotracacademiconefile_A699487120 pubmed_primary_35220943 crossref_primary_10_1186_s12889_021_12328_w crossref_citationtrail_10_1186_s12889_021_12328_w springer_journals_10_1186_s12889_021_12328_w  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-02-28 | 
    
| PublicationDateYYYYMMDD | 2022-02-28 | 
    
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-28 day: 28  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | BMC public health | 
    
| PublicationTitleAbbrev | BMC Public Health | 
    
| PublicationTitleAlternate | BMC Public Health | 
    
| PublicationYear | 2022 | 
    
| Publisher | BioMed Central BioMed Central Ltd BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC  | 
    
| References | WN Venables (12328_CR39) 2002 N Sibanda (12328_CR16) 2016; 25 O Grigg (12328_CR21) 2004; 167 DG Manuel (12328_CR42) 2010; 341 M Aickin (12328_CR37) 1996; 86 W Pan (12328_CR32) 2001; 57 M Azimaee (12328_CR44) 2018 CP Quesenberry (12328_CR14) 2000; 28 B Zheng (12328_CR33) 2000; 19 N Bundle (12328_CR41) 2019; 73 F Nilson (12328_CR3) 2015; 21 M Coory (12328_CR11) 2008; 20 SC Mathai (12328_CR1) 2018; 154 A Guttmann (12328_CR23) 2010; 11 KE Eichstaedt (12328_CR38) 2013; 32 S Amed (12328_CR24) 2011; 28 AB Dart (12328_CR25) 2011; 34 NC Hamm (12328_CR43) 2019; 39 OA Grigg (12328_CR22) 2003; 12 DA Cook (12328_CR34) 2003; 31 ZM Myles (12328_CR45) 2011; 38 WH Woodall (12328_CR20) 2006; 38 M Nakhla (12328_CR28) 2019; 11 IR Smith (12328_CR12) 2013; 22 C Blais (12328_CR27) 2014; 34 T Dignam (12328_CR18) 2020; 4 Y Sakamoto (12328_CR31) 1986 S Højsgaard (12328_CR40) 2005; 15 MQR Pembury Smith (12328_CR36) 2020; 74 M Inoue (12328_CR7) 2001; 2 G Suman (12328_CR9) 2018; 9 S Morrell (12328_CR4) 2019; 19 SE Vanderloo (12328_CR26) 2012; 13 JM Levett (12328_CR13) 1999; 68 E Cummings (12328_CR29) 2009; 33 F Harrell (12328_CR30) 2015 TL Gustafson (12328_CR15) 2000; 28 A Schuh (12328_CR17) 2017; 23 MR Lavergne (12328_CR2) 2018; 122 EA Poltavskiy (12328_CR5) 2021; 27 J Cohen (12328_CR35) 2013 JA Sellick (12328_CR8) 1993; 14 TL Wiemken (12328_CR19) 2017; 45 S Slavova (12328_CR6) 2018; 5 JG Cockings (12328_CR10) 2006; 10  | 
    
| References_xml | – volume: 45 start-page: 216 issue: 3 year: 2017 ident: 12328_CR19 publication-title: Am J Infect Control doi: 10.1016/j.ajic.2016.09.021 – volume: 22 start-page: 634 issue: 8 year: 2013 ident: 12328_CR12 publication-title: Heart Lung Circ doi: 10.1016/j.hlc.2013.01.011 – volume: 23 start-page: 416 issue: 6 year: 2017 ident: 12328_CR17 publication-title: Inj Prev J Int Soc Child Adolesc Inj Prev doi: 10.1136/injuryprev-2016-042089 – volume: 38 start-page: 89 issue: 2 year: 2006 ident: 12328_CR20 publication-title: J Qual Technol doi: 10.1080/00224065.2006.11918593 – volume: 5 start-page: 36 issue: 1 year: 2018 ident: 12328_CR6 publication-title: Inj Epidemiol doi: 10.1186/s40621-018-0165-8 – start-page: 459 volume-title: Statistical power analysis for the behavioral sciences year: 2013 ident: 12328_CR35 doi: 10.4324/9780203771587 – volume: 28 start-page: 406 issue: 6 year: 2000 ident: 12328_CR15 publication-title: Am J Infect Control doi: 10.1067/mic.2000.109883 – volume: 19 start-page: 1265 issue: 10 year: 2000 ident: 12328_CR33 publication-title: Stat Med doi: 10.1002/(SICI)1097-0258(20000530)19:10<1265::AID-SIM486>3.0.CO;2-U – volume: 73 start-page: 825 issue: 9 year: 2019 ident: 12328_CR41 publication-title: J Epidemiol Community Health doi: 10.1136/jech-2018-211936 – volume: 9 start-page: 5 year: 2018 ident: 12328_CR9 publication-title: Int J Metrol Qual Eng doi: 10.1051/ijmqe/2018003 – volume: 11 start-page: 833 year: 2019 ident: 12328_CR28 publication-title: Clin Epidemiol doi: 10.2147/CLEP.S217969 – volume: 28 start-page: 314 issue: 4 year: 2000 ident: 12328_CR14 publication-title: Am J Infect Control doi: 10.1067/mic.2000.106277 – volume: 38 start-page: 162 issue: 3 year: 2011 ident: 12328_CR45 publication-title: J Regist Manag – volume: 154 start-page: 207 issue: 1 year: 2018 ident: 12328_CR1 publication-title: Chest doi: 10.1016/j.chest.2018.04.004 – volume: 34 start-page: 226 issue: 4 year: 2014 ident: 12328_CR27 publication-title: Chronic Dis Inj Can doi: 10.24095/hpcdp.34.4.06 – start-page: 562 volume-title: Modern applied statistics with S year: 2002 ident: 12328_CR39 doi: 10.1007/978-0-387-21706-2 – volume: 68 start-page: 353 issue: 2 year: 1999 ident: 12328_CR13 publication-title: Ann Thorac Surg doi: 10.1016/S0003-4975(99)00547-0 – start-page: 582 volume-title: Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis year: 2015 ident: 12328_CR30 doi: 10.1007/978-3-319-19425-7 – volume: 39 start-page: 216 issue: 6–7 year: 2019 ident: 12328_CR43 publication-title: Health Promot Chronic Dis Prev Can Res Policy Pract – volume: 86 start-page: 726 issue: 5 year: 1996 ident: 12328_CR37 publication-title: Am J Public Health doi: 10.2105/AJPH.86.5.726 – volume: 4 start-page: e090 issue: 2 year: 2020 ident: 12328_CR18 publication-title: Environ Epidemiol doi: 10.1097/EE9.0000000000000090 – volume: 15 start-page: 1 issue: 1 year: 2005 ident: 12328_CR40 publication-title: J Stat Softw – volume: 27 start-page: i19 issue: S1 year: 2021 ident: 12328_CR5 publication-title: Inj Prev J Int Soc Child Adolesc Inj Prev doi: 10.1136/injuryprev-2019-043519 – volume: 33 start-page: 228 issue: 3 year: 2009 ident: 12328_CR29 publication-title: Can J Diabetes doi: 10.1016/S1499-2671(09)33116-0 – volume: 21 start-page: 189 issue: 3 year: 2015 ident: 12328_CR3 publication-title: Inj Prev J Int Soc Child Adolesc Inj Prev doi: 10.1136/injuryprev-2014-041337 – volume: 10 start-page: R28 issue: 1 year: 2006 ident: 12328_CR10 publication-title: Crit Care doi: 10.1186/cc3996 – volume: 13 start-page: 229 issue: 3 year: 2012 ident: 12328_CR26 publication-title: Pediatr Diabetes doi: 10.1111/j.1399-5448.2011.00795.x – volume: 31 start-page: 1676 issue: 6 year: 2003 ident: 12328_CR34 publication-title: Crit Care Med doi: 10.1097/01.CCM.0000065273.63224.A8 – volume: 25 start-page: 2274 issue: 5 year: 2016 ident: 12328_CR16 publication-title: Stat Methods Med Res doi: 10.1177/0962280213519719 – volume: 11 start-page: 122 issue: 2 year: 2010 ident: 12328_CR23 publication-title: Pediatr Diabetes doi: 10.1111/j.1399-5448.2009.00539.x – volume: 28 start-page: 424 issue: 4 year: 2011 ident: 12328_CR24 publication-title: Diabet Med doi: 10.1111/j.1464-5491.2011.03238.x – volume: 14 start-page: 649 issue: 11 year: 1993 ident: 12328_CR8 publication-title: Infect Control Hosp Epidemiol doi: 10.2307/30149749 – volume: 32 start-page: 693 issue: 3 year: 2013 ident: 12328_CR38 publication-title: NeuroRehabilitation doi: 10.3233/NRE-130893 – volume: 20 start-page: 31 issue: 1 year: 2008 ident: 12328_CR11 publication-title: Int J Qual Health Care doi: 10.1093/intqhc/mzm060 – volume-title: MCHP data quality framework year: 2018 ident: 12328_CR44 – volume: 34 start-page: 898 issue: 4 year: 2011 ident: 12328_CR25 publication-title: Diabetes Care doi: 10.2337/dc10-1572 – volume: 57 start-page: 120 issue: 1 year: 2001 ident: 12328_CR32 publication-title: Biometrics doi: 10.1111/j.0006-341X.2001.00120.x – volume: 122 start-page: 157 issue: 2 year: 2018 ident: 12328_CR2 publication-title: Health Policy doi: 10.1016/j.healthpol.2017.11.001 – volume: 74 start-page: 133 issue: 11 year: 2020 ident: 12328_CR36 publication-title: Behav Ecol Sociobiol doi: 10.1007/s00265-020-02916-y – volume: 341 start-page: c4226 year: 2010 ident: 12328_CR42 publication-title: BMJ doi: 10.1136/bmj.c4226 – volume: 19 start-page: 481 issue: 1 year: 2019 ident: 12328_CR4 publication-title: BMC Public Health doi: 10.1186/s12889-019-6748-7 – volume: 12 start-page: 147 issue: 2 year: 2003 ident: 12328_CR22 publication-title: Stat Methods Med Res doi: 10.1177/096228020301200205 – volume: 2 start-page: 71 issue: 1 year: 2001 ident: 12328_CR7 publication-title: Asian Pac J Cancer Prev – volume: 167 start-page: 523 issue: 3 year: 2004 ident: 12328_CR21 publication-title: J R Stat Soc Ser A Stat Soc doi: 10.1111/j.1467-985X.2004.0apm2.x – start-page: 290 volume-title: Akaike information criterion statistics year: 1986 ident: 12328_CR31  | 
    
| SSID | ssj0017852 | 
    
| Score | 2.3555522 | 
    
| Snippet | Background
Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be... Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be used to assess... Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts can be... Abstract Background Algorithms used to identify disease cases in administrative health data may be sensitive to changes in the data over time. Control charts...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 406 | 
    
| SubjectTerms | Administrative health data Biostatistics Chronic disease surveillance Control charts Diabetes in children Environmental Health Epidemiology International classification of diseases codes Management Medical informatics Medical research Medicine Medicine & Public Health Medicine, Experimental Methods Public Health Public health administration Sentinel health events Vaccine  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4AQ4k2gICMhcaBRN7FjO9xKRVVx4ESl3iy_0l1pm1SbLCv-PTNxEm1AKhy4rWKvFI-_Gc_EM98Q8j6vMrFQEJ0YaXjKq-BTKzkSXnoXVMmVM32C7DdxfsG_XhaXe62-MCcs0gNHwR0LxVhVKVVwEbg1THlwwYUDt54543OP1nehyjGYGu4PpCrysURGieMWrDCmBuVZii6ESnezY6hn6__TJu8dSr8nTE63pvfJ3W19Y37uzHq9dzCdPSIPB4-SnsSVPCZ3Qv2EPIif42isMnpKlqcxJZ1ilVXXUnBV4WfPi0uHOxrabjc_AjYhAhx8oh3Sb9RX1Kyvms2qW17TFnPdY7MJ2jU0lgy3dFVTTDOlrsFj8Bm5OPvy_fQ8HZospK6QZQfykN7lATS_rDz4sKECIxmsyaz3hZVMMGFUUYHeL7jzxgsrLXgJYBZZCJWU7Dk5qJs6vCQ0cyy4Ap6yDKNMZo31yKAGEYt3vOQJyUaZazcwkGMjjLXuIxEldNwnDfuk-33Su4R8nP5zE_k3bp39Gbdymonc2f0DQJQeEKX_hqiEfEAgaNRweD1nhkIFWCRyZekTUQKGZZYvEnI4mwma6WbD70YoaRzCdLY6NNtW54LxAmJrDjJ5EaE1vTN6xJjumRA5A91sUfORerXsicGVUkyyIiFHIzz1YJHaW4V2NEH4H2T86n_I-DW5l2MdSc8NcEgOus02vAHvrrNve0X-BWT_SzE priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96gh-I6PlVPSWC4INXbtukSerbengcgj65cG8hTdLdhbU9tl0X_3tn0g-uKoe-lSYtzXxlpjPzCyFv0zIRMwXRiZGGx7z0Li4kR8BLZ73KubImFMh-FecL_vkiu-ibwpqh2n1ISQZLHdRaiZMGLCmW96RJjG6Aivc3ya0M4bxAihfpfMwdSJWlQ3vMX5-bbEEBqf9Pe3xlQ_q9WHLMmN4jd3bVpfm5N5vNlU3p7CF50HuTdN6x_xG54atDcvtLny8_JPe7v3K0azZ6TFanXWU6xWartqHgscJlgMelfaqGNrvtD49nEYE4fKAtonBUS2o2y3q7blffaYMl792ZE7Stadc53NB1RbHalNoad8MnZHH26dvpedyftRDbTOYtkEY6m3owAHnpwJX1JdhKX5ikcC4rJBNMGJWVoP4zbp1xopAFOAtgHZn3pZTsKTmo6so_JzSxzNsM7rIEg01WmMIhkBoELs7ynEckGcivbQ9EjudhbHQISJTQHcs0sEwHlul9RN6Pz1x2MBzXzv6IXB1nIoR2uFFvl7rXSC0UY2WpVMaF54VhykFsJyzEi8wal7qIvEOZ0Kjo8HnW9P0KsEiEzNJzkYMoyySdReRoMhMU1E6G3wxSpXEIq9oqX-8anQrGMwixOdDkWSdl4zejY4xVnxGRE_mbLGo6Uq1XAR9cKcUkyyJyPEiq7g1Tcy3Rjkdp_gcav_i_t78kd1NsHAlgAEfkoN3u_Ctw59riddDeXy6vQ5E priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZGdwCE-DkgMJCRkDiwdE3s2C63MjFNHCoOTBony7_SVuuSqkmp4K_nOU6qdqAJJG5R7Ejxy_Pn9-L3fUbobZonbCAgO1Fc0ZjmzsaaUy94aY0TQyqMagpkx-zsnH6-yC720LjjwugrE_SdAw2wv01CnzfIDRfm8nhh8zDhBTuuAGN94U-axD5AEPH6FtpnGcTmPbR_Pv4y-tZQjHgSpzQTHXPmjw_urE6NiP_vUL21Vl2vo9xspt5Ft1fFQv1Yq_l8a706fYDKbqShTOWyv6p13_y8JgL5_0zxEN1vQ1s8Cr74CO254jG6F_4L4kB3eoKmJ6E2Hnu6V11hiJnhshHoxe1mEa5Wy-_On4YEDvkB114HpJhgNZ-Uy1k9vcKVL7oPp17gusSBu1zhWYF9vSs2pV-PD9D56aevJ2dxe9pDbDI-rOF9uTWpAwga5haCaZcDWjutEm1tpjlhhCmR5QBAA2qsskxzDeEK4DNxLuecPEW9oizcc4QTQ5zJ4C5JfLpLtNLWS7lB6mQNHdIIJd1XlqaVQvcncsxlkxIJJoMdJdhRNnaU6wi93zyzCEIgN_b-6J1n09OLeDc3yuVEtpggmSAkz4XIKHNUKyIsZJfMQMZKjLKpjdA773rSQ43_1KplTMAgvWiXHLEhTCaepIMIHe70BIgwO81vOueVvsnX1RWuXFUyZYRmkORTsMmz4Mybd_ahua87jRDfcfOdQe22FLNpo1AuhCCcZBE66iaEbKGxutFoR5tJ8xc2fvFv3V-iO6mnrjRyBIeoVy9X7hUElLV-3aLELxQpcVw priority: 102 providerName: Unpaywall  | 
    
| Title | Control charts for chronic disease surveillance: testing algorithm sensitivity to changes in data coding | 
    
| URI | https://link.springer.com/article/10.1186/s12889-021-12328-w https://www.ncbi.nlm.nih.gov/pubmed/35220943 https://www.proquest.com/docview/2634518444 https://pubmed.ncbi.nlm.nih.gov/PMC8883735 https://bmcpublichealth.biomedcentral.com/track/pdf/10.1186/s12889-021-12328-w https://doaj.org/article/6833ff88546e4ba38d6266c9563cad2d  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 22 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central_OA刊 customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: RBZ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: ABDBF dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: A8Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: RPM dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: 8C1 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2458 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: M48 dateStart: 20011001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: AAJSJ dateStart: 20011201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals (NTUSG) customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: C6C dateStart: 20010112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2458 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017852 issn: 1471-2458 databaseCode: U2A dateStart: 20011201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe29QEQQnxTGJWRkHhgGU3s2C4SQm21MSFRTROVCi-WYzttpZKOJqXsv-cuScsK07QXq7GdKjnfne_iu98R8jpKQ9FW4J0YaXjAU--CRHIEvHTWqw5X1pQBsgNxMuSfR_Foh6zLHdUEzK907bCe1HAxO_z98-IjCPyHUuCVeJeDjsXAnygM0EBQwWqXNGCn6mAphy_876mCVGUFnhAUchDxWK2TaK78j62NqsTz_19rX9q2_g2p3Jyr3iG3ltm5uViZ2ezS1nV8n9yrbU7arZjkAdnx2UNyt_pgR6s8pEdk0q-C1inmYRU5BWMWfpbIubQ-xaH5cvHLY5ki4JT3tECAjmxMzWw8X0yLyQ-aYzR8VY6CFnNaJRXndJpRDESldo4b5WMyPD762j8J6jIMgY1lpwB6SGcjD7qhkzqwcn0KatQnJkycixPJBBNGxSlohja3zjiRyATsCFCczPtUSvaE7GXzzD8jNLTM2xh6WYh-KEtM4hBjDXwaZ3mHN0m4prm2NUY5lsqY6dJXUUJX66RhnXS5TnrVJG8395xXCB3Xzu7hUm5mIrp22TFfjHUtrFooxtJUqZgLzxPDlAO3T1hwJZk1LnJN8gYZQSNXwuNZU6cywEsimpbuig5wuQyjdpPsb80E2bVbw6_WrKRxCAPeMj9f5joSjMfgfXOgydOKtTbPjDYzBoQ2idxiuq2X2h7JppMSOlwpxSSLm-RgzZ56LXLXEu1gw8I3oPHzG5PnBbkdYTpJCRGwT_aKxdK_BCOvSFpkV44ktKofYnv8qUUavaPB6Rlc9UW_VX48aZXyDe1Z7zu0wwh6GsPBaffbHzDhVe4 | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgkxgIIRgDAgOMhMQDi2hix3Z5KxNTKdte2KS9WY7tdJVKMjUpFf89d_mlBdAEb1XsVMn57nyX--4zIW_jLBIjBdmJkYaHPPMuTCVHwktnvRpzZU0NkD0V03M-u0gu2qawskO7dyXJ2lPXZq3EhxI8KcJ74ijEMECFm9tkG0FWYI7bk8ns26yvHkiVxF2DzF_vHGxCNVf_nx752pb0O1yyr5neIzvr_Mr83Jjl8tq2dPSQPGjjSTppFOARueXzXXLnpK2Y75L7zXc52rQbPSaXhw02nWK7VVVSiFnhZ02QS9tiDS3Xqx8eTyMChfhIK-ThyOfULOfFalFdfqclgt6bUydoVdCmd7iki5wi3pTaAvfDPXJ-9PnscBq2py2ENpHjCkQjnY09uIBx5iCY9Rl4S5-aKHUuSSUTTBiVZOAARtw640QqUwgXwD8y7zMp2ROylRe5f0ZoZJm3CVxlEaabLDWpQyo1SF2c5WMekKgTv7YtFTmeiLHUdUqihG6WTMOS6XrJ9CYg7_t7rhoijhtnf8JV7WciiXZ9oVjNdWuTWijGskyphAvPU8OUg-xOWMgYmTUudgF5hzqh0dTh8axpOxbgJZE0S0_EGJRZRvEoIPuDmWCidjD8ptMqjUOIa8t9sS51LBhPIMnmIJOnjZb1z4yhMeI-AyIH-jd4qeFIvrisGcKVUkyyJCAHnabq1jWVNwrtoNfmf5Dx8__799dkZ3p2cqyPv5x-fUHuxthGUlMD7JOtarX2LyG4q9JXrS3_AsQuR8Y | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgSAOEEIyvwAAjIfHAojWxYzu8jUI1viYemLQ3y7GdtlJJqial4r_nLkmjBtAEb1XsVMn5PnN3vyPkZZxHYqQgOjHS8JDn3oWZ5Ah46axXKVfWNAWyZ-L0nH-8SC52uvibavdtSrLtaUCUpqI-Xrq8FXEljivQqljqE0chugQq3Fwl1zhYN5xhMBbjPo8gVRJvW2X-et_AHDWo_X_q5h3j9HvhZJ89vUmur4ul-bkxi8WOgZrcIbc7z5KetKxwl1zxxQHZ_9Llzg_IrfYLHW0bj-6R2bitUqfYeFVXFLxX-NlA5dIubUOr9eqHx7lEwBpvaI2IHMWUmsW0XM3r2XdaYfl7O3-C1iVtu4grOi8oVp5SW6JlvE_OJ--_jU_Dbu5CaBOZ1kAa6WzsQRmkuQO31uegN31mosy5JJNMMGFUkoMqGHHrjBOZzMBxAE3JvM-lZA_IXlEW_hGhkWXeJnCVRRh4ssxkDkHVIIhxlqc8INGW_Np2oOQ4G2Ohm-BECd0emYYj082R6U1AXvf3LFtIjkt3v8VT7XcinHZzoVxNdSedWijG8lyphAvPM8OUgzhPWIgdmTUudgF5hTyhUejh8azpehfgJRE-S5-IFNhaRvEoIIeDnSCsdrD8YstVGpewwq3w5brSsWA8gXCbA00etlzWPzM6yVgBGhA54L_BSw1XivmswQpXSjHJkoAcbTlVd0qqupRoRz03_wONH__fvz8n-1_fTfTnD2efnpAbMfaTNBgBh2SvXq39U_Dy6uxZI8i_AFv9SqM | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZGdwCE-DkgMJCRkDiwdE3s2C63MjFNHCoOTBony7_SVuuSqkmp4K_nOU6qdqAJJG5R7Ejxy_Pn9-L3fUbobZonbCAgO1Fc0ZjmzsaaUy94aY0TQyqMagpkx-zsnH6-yC720LjjwugrE_SdAw2wv01CnzfIDRfm8nhh8zDhBTuuAGN94U-axD5AEPH6FtpnGcTmPbR_Pv4y-tZQjHgSpzQTHXPmjw_urE6NiP_vUL21Vl2vo9xspt5Ft1fFQv1Yq_l8a706fYDKbqShTOWyv6p13_y8JgL5_0zxEN1vQ1s8Cr74CO254jG6F_4L4kB3eoKmJ6E2Hnu6V11hiJnhshHoxe1mEa5Wy-_On4YEDvkB114HpJhgNZ-Uy1k9vcKVL7oPp17gusSBu1zhWYF9vSs2pV-PD9D56aevJ2dxe9pDbDI-rOF9uTWpAwga5haCaZcDWjutEm1tpjlhhCmR5QBAA2qsskxzDeEK4DNxLuecPEW9oizcc4QTQ5zJ4C5JfLpLtNLWS7lB6mQNHdIIJd1XlqaVQvcncsxlkxIJJoMdJdhRNnaU6wi93zyzCEIgN_b-6J1n09OLeDc3yuVEtpggmSAkz4XIKHNUKyIsZJfMQMZKjLKpjdA773rSQ43_1KplTMAgvWiXHLEhTCaepIMIHe70BIgwO81vOueVvsnX1RWuXFUyZYRmkORTsMmz4Mybd_ahua87jRDfcfOdQe22FLNpo1AuhCCcZBE66iaEbKGxutFoR5tJ8xc2fvFv3V-iO6mnrjRyBIeoVy9X7hUElLV-3aLELxQpcVw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+charts+for+chronic+disease+surveillance%3A+testing+algorithm+sensitivity+to+changes+in+data+coding&rft.jtitle=BMC+public+health&rft.au=Hamm%2C+Naomi+C&rft.au=Jiang%2C+Depeng&rft.au=Marrie%2C+Ruth+Ann&rft.au=Irani%2C+Pourang&rft.date=2022-02-28&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2458&rft.eissn=1471-2458&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12889-021-12328-w&rft.externalDocID=A699487120 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2458&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2458&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2458&client=summon |