4′‐Phosphopantetheine corrects CoA, iron, and dopamine metabolic defects in mammalian models of PKAN

Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigati...

Full description

Saved in:
Bibliographic Details
Published inEMBO molecular medicine Vol. 11; no. 12; pp. e10489 - n/a
Main Authors Jeong, Suh Young, Hogarth, Penelope, Placzek, Andrew, Gregory, Allison M, Fox, Rachel, Zhen, Dolly, Hamada, Jeffrey, van der Zwaag, Marianne, Lambrechts, Roald, Jin, Haihong, Nilsen, Aaron, Cobb, Jared, Pham, Thao, Gray, Nora, Ralle, Martina, Duffy, Megan, Schwanemann, Leila, Rai, Puneet, Freed, Alison, Wakeman, Katrina, Woltjer, Randall L, Sibon, Ody CM, Hayflick, Susan J
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2019
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text
ISSN1757-4676
1757-4684
1757-4684
DOI10.15252/emmm.201910489

Cover

Abstract Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease‐vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4′‐phosphopantetheine, normalized levels of the CoA‐, iron‐, and dopamine‐related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4′‐phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron–sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4′‐phosphopantetheine as a candidate therapeutic for PKAN. Synopsis Mutations in PANK2 cause pantothenate kinase‐associated neurodegeneration (PKAN), a neurodegeneration with brain iron accumulation (NBIA) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate. Germline deletion of Pank2 , encoding pantothenate kinase 2, causes defects in CoA, iron, and dopamine metabolism and diminished activities of mitochondrial aconitase, complex I, and pyruvate dehydrogenase (PDH) in globus pallidus. Regional biomarker abnormalities, which are revealed by isolating disease‐vulnerable brain regions, are specifically attributable to a defect in Pank2 alone, without the need to superimpose further genetic or metabolic defects. Correction of the CoA metabolic defect by oral administration of 4′‐phosphopantetheine recovers iron and dopamine homeostasis in brain and normalizes mitochondrial complex I and PDH activities. Graphical Abstract Mutations in PANK2 cause pantothenate kinase‐associated neurodegeneration (PKAN), a neurodegeneration with brain iron accumulation (NBIA) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate.
AbstractList Pantothenate kinase‐associated neurodegeneration ( PKAN ) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease‐vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4′‐phosphopantetheine, normalized levels of the CoA‐, iron‐, and dopamine‐related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4′‐phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron–sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4′‐phosphopantetheine as a candidate therapeutic for PKAN . Mutations in PANK 2 cause pantothenate kinase‐associated neurodegeneration ( PKAN ), a neurodegeneration with brain iron accumulation ( NBIA ) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate.
Abstract Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease‐vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4′‐phosphopantetheine, normalized levels of the CoA‐, iron‐, and dopamine‐related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4′‐phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron–sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4′‐phosphopantetheine as a candidate therapeutic for PKAN.
Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease‐vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4′‐phosphopantetheine, normalized levels of the CoA‐, iron‐, and dopamine‐related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4′‐phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron–sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4′‐phosphopantetheine as a candidate therapeutic for PKAN.
Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN.Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN.
Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease‐vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4′‐phosphopantetheine, normalized levels of the CoA‐, iron‐, and dopamine‐related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4′‐phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron–sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4′‐phosphopantetheine as a candidate therapeutic for PKAN. Synopsis Mutations in PANK2 cause pantothenate kinase‐associated neurodegeneration (PKAN), a neurodegeneration with brain iron accumulation (NBIA) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate. Germline deletion of Pank2 , encoding pantothenate kinase 2, causes defects in CoA, iron, and dopamine metabolism and diminished activities of mitochondrial aconitase, complex I, and pyruvate dehydrogenase (PDH) in globus pallidus. Regional biomarker abnormalities, which are revealed by isolating disease‐vulnerable brain regions, are specifically attributable to a defect in Pank2 alone, without the need to superimpose further genetic or metabolic defects. Correction of the CoA metabolic defect by oral administration of 4′‐phosphopantetheine recovers iron and dopamine homeostasis in brain and normalizes mitochondrial complex I and PDH activities. Graphical Abstract Mutations in PANK2 cause pantothenate kinase‐associated neurodegeneration (PKAN), a neurodegeneration with brain iron accumulation (NBIA) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate.
Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease‐vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4′‐phosphopantetheine, normalized levels of the CoA‐, iron‐, and dopamine‐related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4′‐phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron–sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4′‐phosphopantetheine as a candidate therapeutic for PKAN. Synopsis Mutations in PANK2 cause pantothenate kinase‐associated neurodegeneration (PKAN), a neurodegeneration with brain iron accumulation (NBIA) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate. Germline deletion of Pank2, encoding pantothenate kinase 2, causes defects in CoA, iron, and dopamine metabolism and diminished activities of mitochondrial aconitase, complex I, and pyruvate dehydrogenase (PDH) in globus pallidus. Regional biomarker abnormalities, which are revealed by isolating disease‐vulnerable brain regions, are specifically attributable to a defect in Pank2 alone, without the need to superimpose further genetic or metabolic defects. Correction of the CoA metabolic defect by oral administration of 4′‐phosphopantetheine recovers iron and dopamine homeostasis in brain and normalizes mitochondrial complex I and PDH activities. Mutations in PANK2 cause pantothenate kinase‐associated neurodegeneration (PKAN), a neurodegeneration with brain iron accumulation (NBIA) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate.
Author Nilsen, Aaron
Gregory, Allison M
Jeong, Suh Young
Pham, Thao
Sibon, Ody CM
Duffy, Megan
Freed, Alison
Placzek, Andrew
Lambrechts, Roald
Jin, Haihong
Rai, Puneet
Wakeman, Katrina
van der Zwaag, Marianne
Hogarth, Penelope
Hamada, Jeffrey
Woltjer, Randall L
Hayflick, Susan J
Schwanemann, Leila
Fox, Rachel
Cobb, Jared
Zhen, Dolly
Gray, Nora
Ralle, Martina
AuthorAffiliation 4 Department of Cell Biology University Medical Center Groningen Groningen the Netherlands
3 Medicinal Chemistry Core Oregon Health & Science University Portland OR USA
1 Department of Molecular & Medical Genetics Oregon Health & Science University Portland OR USA
5 Department of Pathology Oregon Health & Science University Portland OR USA
6 Department of Pediatrics Oregon Health & Science University Portland OR USA
2 Department of Neurology Oregon Health & Science University Portland OR USA
AuthorAffiliation_xml – name: 1 Department of Molecular & Medical Genetics Oregon Health & Science University Portland OR USA
– name: 4 Department of Cell Biology University Medical Center Groningen Groningen the Netherlands
– name: 3 Medicinal Chemistry Core Oregon Health & Science University Portland OR USA
– name: 6 Department of Pediatrics Oregon Health & Science University Portland OR USA
– name: 2 Department of Neurology Oregon Health & Science University Portland OR USA
– name: 5 Department of Pathology Oregon Health & Science University Portland OR USA
Author_xml – sequence: 1
  givenname: Suh Young
  orcidid: 0000-0002-6376-7001
  surname: Jeong
  fullname: Jeong, Suh Young
  organization: Department of Molecular & Medical Genetics, Oregon Health & Science University
– sequence: 2
  givenname: Penelope
  surname: Hogarth
  fullname: Hogarth, Penelope
  organization: Department of Molecular & Medical Genetics, Oregon Health & Science University, Department of Neurology, Oregon Health & Science University
– sequence: 3
  givenname: Andrew
  surname: Placzek
  fullname: Placzek, Andrew
  organization: Medicinal Chemistry Core, Oregon Health & Science University
– sequence: 4
  givenname: Allison M
  surname: Gregory
  fullname: Gregory, Allison M
  organization: Department of Molecular & Medical Genetics, Oregon Health & Science University
– sequence: 5
  givenname: Rachel
  orcidid: 0000-0001-6265-2256
  surname: Fox
  fullname: Fox, Rachel
  organization: Department of Molecular & Medical Genetics, Oregon Health & Science University
– sequence: 6
  givenname: Dolly
  surname: Zhen
  fullname: Zhen, Dolly
  organization: Department of Molecular & Medical Genetics, Oregon Health & Science University
– sequence: 7
  givenname: Jeffrey
  surname: Hamada
  fullname: Hamada, Jeffrey
  organization: Department of Molecular & Medical Genetics, Oregon Health & Science University
– sequence: 8
  givenname: Marianne
  surname: van der Zwaag
  fullname: van der Zwaag, Marianne
  organization: Department of Cell Biology, University Medical Center Groningen
– sequence: 9
  givenname: Roald
  surname: Lambrechts
  fullname: Lambrechts, Roald
  organization: Department of Cell Biology, University Medical Center Groningen
– sequence: 10
  givenname: Haihong
  surname: Jin
  fullname: Jin, Haihong
  organization: Medicinal Chemistry Core, Oregon Health & Science University
– sequence: 11
  givenname: Aaron
  surname: Nilsen
  fullname: Nilsen, Aaron
  organization: Medicinal Chemistry Core, Oregon Health & Science University
– sequence: 12
  givenname: Jared
  surname: Cobb
  fullname: Cobb, Jared
  organization: Department of Pathology, Oregon Health & Science University
– sequence: 13
  givenname: Thao
  surname: Pham
  fullname: Pham, Thao
  organization: Department of Pathology, Oregon Health & Science University
– sequence: 14
  givenname: Nora
  surname: Gray
  fullname: Gray, Nora
  organization: Department of Neurology, Oregon Health & Science University
– sequence: 15
  givenname: Martina
  surname: Ralle
  fullname: Ralle, Martina
  organization: Department of Molecular & Medical Genetics, Oregon Health & Science University
– sequence: 16
  givenname: Megan
  surname: Duffy
  fullname: Duffy, Megan
  organization: Department of Molecular & Medical Genetics, Oregon Health & Science University
– sequence: 17
  givenname: Leila
  surname: Schwanemann
  fullname: Schwanemann, Leila
  organization: Department of Molecular & Medical Genetics, Oregon Health & Science University
– sequence: 18
  givenname: Puneet
  surname: Rai
  fullname: Rai, Puneet
  organization: Department of Molecular & Medical Genetics, Oregon Health & Science University
– sequence: 19
  givenname: Alison
  surname: Freed
  fullname: Freed, Alison
  organization: Department of Molecular & Medical Genetics, Oregon Health & Science University
– sequence: 20
  givenname: Katrina
  surname: Wakeman
  fullname: Wakeman, Katrina
  organization: Department of Molecular & Medical Genetics, Oregon Health & Science University
– sequence: 21
  givenname: Randall L
  surname: Woltjer
  fullname: Woltjer, Randall L
  organization: Department of Pathology, Oregon Health & Science University
– sequence: 22
  givenname: Ody CM
  orcidid: 0000-0002-6836-6063
  surname: Sibon
  fullname: Sibon, Ody CM
  organization: Department of Cell Biology, University Medical Center Groningen
– sequence: 23
  givenname: Susan J
  orcidid: 0000-0003-2595-3943
  surname: Hayflick
  fullname: Hayflick, Susan J
  email: hayflick@ohsu.edu
  organization: Department of Molecular & Medical Genetics, Oregon Health & Science University, Department of Neurology, Oregon Health & Science University, Department of Pediatrics, Oregon Health & Science University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31660701$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhkeoiF5gzQ6NxIZF0_oytscskKKohYoGuoC15bE9iaOxndoTUHd9hD4Lj9Qnwcm0oa1UsfKR_f3_ufjsFzs-eFMUbyE4ggQRdGycc0cIQA5BVfMXxR5khI0qWlc725jR3WI_pQUAlFBYvyp2MaQUMAD3inl1e_3n9vrmYh7Sch6W0vemnxvrTalCjEb1qZyE8WFpY_CHpfS61Jlya8CZXjahs6rUpt2Q1pdOOic7K3MUtOlSGdry4uv42-viZSu7ZN7cnQfFz9OTH5Mvo_Pvn88m4_ORIozzEW0xrlDdaKYAwcggXiPZMIi0hqhCjFcKNi1QQFIsdYsM5S3JcQMR0RUj-KA4G3x1kAuxjNbJeCWCtGJzEeJMyNhb1RmBuda0Vgpy3FagBTkpYJA1NQZc1oxlr0-D13LVOKOV8X2U3SPTxy_ezsUs_BK05iQPOBt8uDOI4XJlUi-cTcp0nfQmrJJAGALESf6NjL5_gi7CKvo8qkwhBAiAeN3du4cVbUu5_9AMkAFQMaQUTSuU7WVvw7pA2wkIxGZxxHpxxHZxsu74ie7e-nnFx0Hx23bm6n-4OJlOpw_FYBCnrPMzE_91-1y-vzqb5zc
CitedBy_id crossref_primary_10_1016_j_parkreldis_2022_03_017
crossref_primary_10_3390_biom12091323
crossref_primary_10_1089_jmf_2024_0157
crossref_primary_10_3390_ijms24010435
crossref_primary_10_3390_ijms22010293
crossref_primary_10_1186_s13023_023_02687_5
crossref_primary_10_3390_pharmaceutics15010202
crossref_primary_10_3390_ijms232112914
crossref_primary_10_1016_j_ymgme_2022_09_011
crossref_primary_10_3389_fneur_2021_629414
crossref_primary_10_1002_mds_28392
crossref_primary_10_1021_acs_jmedchem_0c01531
crossref_primary_10_1002_eji_202350435
crossref_primary_10_1016_j_bbamcr_2021_118965
crossref_primary_10_1016_j_bbabio_2024_149517
crossref_primary_10_3390_antiox9101020
crossref_primary_10_1016_j_mito_2023_02_007
crossref_primary_10_3389_fnagi_2022_848919
crossref_primary_10_1002_jimd_12584
crossref_primary_10_1016_j_plipres_2020_101028
crossref_primary_10_1038_s41419_022_04626_x
crossref_primary_10_1177_1535370220953065
crossref_primary_10_1177_1971400920943967
crossref_primary_10_1002_ajmg_a_62848
crossref_primary_10_1002_acn3_51127
crossref_primary_10_1016_j_molcel_2022_05_006
crossref_primary_10_3390_biom12081065
crossref_primary_10_1186_s13023_020_01530_5
crossref_primary_10_3389_fnagi_2022_893159
crossref_primary_10_1186_s13023_021_01823_3
crossref_primary_10_3390_ph16101359
crossref_primary_10_21769_BioProtoc_5126
crossref_primary_10_3390_ijms21249707
crossref_primary_10_1038_s41467_022_30178_x
crossref_primary_10_3390_ijms21103664
crossref_primary_10_1111_dmcn_14869
crossref_primary_10_1097_WCO_0000000000000844
crossref_primary_10_3389_fncel_2022_878103
crossref_primary_10_3390_ijms241310696
crossref_primary_10_1124_jpet_123_001919
crossref_primary_10_1186_s12967_022_03304_y
crossref_primary_10_1016_j_bbadis_2020_165663
crossref_primary_10_1038_s42255_024_01059_y
crossref_primary_10_1186_s13041_021_00863_x
crossref_primary_10_3390_ijms24065951
crossref_primary_10_3390_brainsci11081031
crossref_primary_10_1177_10738584221100183
crossref_primary_10_3390_biom12020325
crossref_primary_10_1002_mds_28642
crossref_primary_10_1016_j_jbc_2022_101577
Cites_doi 10.1073/pnas.0807581105
10.1016/j.cmet.2014.01.015
10.1016/j.bbabio.2010.03.006
10.1126/science.276.5319.1709
10.1196/annals.1306.023
10.1073/pnas.1519473113
10.1016/S0378-1119(02)00564-4
10.1016/S0006-8993(97)00008-5
10.1016/j.molcel.2018.06.039
10.1093/brain/awt325
10.1016/j.nbd.2015.02.030
10.1242/dmm.009019
10.15252/emmm.201910488
10.1016/j.cmet.2015.05.014
10.15252/emmm.201606391
10.1093/carcin/bgx023
10.1074/jbc.273.35.22334
10.1016/j.ymgme.2015.10.012
10.1038/s41467-018-06703-2
10.1042/BCJ20170129
10.1016/j.ajo.2005.03.024
10.1371/journal.pone.0006379
10.1038/ng572
10.1038/nbt1210-1248
10.1172/JCI112152
10.1016/S0014-5793(97)00428-6
10.1056/NEJMoa020817
10.1016/j.plipres.2005.04.001
10.1194/jlr.M300279-JLR200
10.1126/science.1106391
10.1111/mmi.12402
10.1096/fj.07-8986
10.1016/S1474-4422(19)30142-5
10.1016/S0006-8993(96)01271-1
10.1016/j.chembiol.2007.01.013
10.1038/84859
10.1038/nchembio.1906
10.1074/jbc.M707627200
10.1006/mgme.2000.3138
10.1523/JNEUROSCI.4265-04.2005
10.1016/B978-008045382-8.00141-6
10.1039/C3NP70054B
10.7554/eLife.17828
10.1042/BCJ20180043
10.1016/S0021-9258(18)65695-9
10.1074/jbc.R800068200
10.1038/s41598-017-11564-8
10.1016/j.ajhg.2013.11.008
10.1093/hmg/ddi005
10.1038/nrm.2016.110
10.1093/hmg/ddg026
10.1016/j.cmet.2006.02.003
10.1111/j.1432-1033.1989.tb15061.x
10.1016/j.bbamcr.2014.09.009
10.1007/s00109-009-0565-x
10.1074/jbc.275.2.1377
10.1042/BST20170506
10.1093/jn/113.10.2107
10.1042/bss0660085
10.1126/science.1230593
ContentType Journal Article
Copyright The Author(s) 2019
2019 The Authors. Published under the terms of the CC BY 4.0 license
2019 The Authors. Published under the terms of the CC BY 4.0 license.
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: 2019 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2019 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.15252/emmm.201910489
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central - New (Subscription)
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Suh Young Jeong et al
EISSN 1757-4684
EndPage n/a
ExternalDocumentID oai_doaj_org_article_39dd68cc193f40f0bd70717b8309a877
PMC6895607
31660701
10_15252_emmm_201910489
EMMM201910489
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Collins Foundation (TCF)
  funderid: 10.13039/100001043
– fundername: HHS|NIH|National Center for Advancing Translational Sciences (NCATS)
  grantid: UL1TR0002369
  funderid: 10.13039/100006108
– fundername: NBIA Disorders Association (Neurodegeneration with Brain Iron Accumulation Disorders Association)
  funderid: 10.13039/100009582
– fundername: OCTRI Biomedical Innovation Program
– fundername: HHS|NIH|National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: R01NS109083
  funderid: 10.13039/100000065
– fundername: Friends of Doernbecher
– fundername: HHS|NIH|Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
  grantid: R21HD088833
  funderid: 10.13039/100009633
– fundername: HHS|NIH|National Institute of Neurological Disorders and Stroke (NINDS)
  funderid: R01NS109083
– fundername: NBIA Disorders Association (Neurodegeneration with Brain Iron Accumulation Disorders Association)
– fundername: Collins Foundation (TCF)
– fundername: HHS|NIH|National Center for Advancing Translational Sciences (NCATS)
  funderid: UL1TR0002369
– fundername: HHS|NIH|Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
  funderid: R21HD088833
– fundername: NCATS NIH HHS
  grantid: UL1 TR002369
– fundername: NICHD NIH HHS
  grantid: R21 HD088833
– fundername: NINDS NIH HHS
  grantid: R01 NS109083
– fundername: NCRR NIH HHS
  grantid: S10 RR025512
– fundername: ;
  grantid: R21HD088833
– fundername: ;
– fundername: ;
  grantid: UL1TR0002369
– fundername: ;
  grantid: R01NS109083
GroupedDBID ---
0R~
1OC
24P
4.4
53G
5DZ
5GY
5VS
7X7
8-0
8-1
8AO
8FE
8FH
8FI
8FJ
AAHHS
AAJSJ
AAZKR
ABOCM
ABUWG
ACCFJ
ACCMX
ACGFO
ACGFS
ACPRK
ACXQS
ADBBV
ADKYN
ADPDF
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFBPY
AFKRA
AHMBA
AIAGR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
C6C
CCPQU
D-9
DIK
DU5
EBD
EBS
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HK~
HMCUK
HYE
HZ~
IAO
IHR
ITC
KQ8
LH4
LK8
M48
M7P
M~E
NNB
O9-
OIG
OK1
OVD
OVEED
P2P
PIMPY
PQQKQ
PROAC
RHF
RHI
RNS
ROL
RPM
SV3
TEORI
UKHRP
WIN
XV2
31~
ABJNI
ADRAZ
AFZJQ
EBLON
EJD
GODZA
H13
LW6
AASML
AAYXX
CITATION
NAO
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5799-6f33428bd7c0532e2982ab712dd1242794c1bf0c0a63adf2e69f5a63b125d4753
IEDL.DBID M48
ISSN 1757-4676
1757-4684
IngestDate Wed Aug 27 01:27:45 EDT 2025
Thu Aug 21 14:01:22 EDT 2025
Fri Sep 05 12:07:30 EDT 2025
Wed Aug 13 07:34:13 EDT 2025
Wed Feb 19 02:07:26 EST 2025
Tue Jul 01 01:53:01 EDT 2025
Thu Apr 24 22:52:53 EDT 2025
Wed Jan 22 16:36:18 EST 2025
Fri Feb 21 02:37:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords NBIA
PANK2
4′‐phosphopantetheine
PKAN
coenzyme A
4′-phosphopantetheine
Language English
License Attribution
2019 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5799-6f33428bd7c0532e2982ab712dd1242794c1bf0c0a63adf2e69f5a63b125d4753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
See also: https://doi.org/10.15252/emmm.201910488 (December 2019)
ORCID 0000-0002-6836-6063
0000-0003-2595-3943
0000-0002-6376-7001
0000-0001-6265-2256
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/emmm.201910489
PMID 31660701
PQID 2322050135
PQPubID 866378
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_39dd68cc193f40f0bd70717b8309a877
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6895607
proquest_miscellaneous_2310295166
proquest_journals_2322050135
pubmed_primary_31660701
crossref_citationtrail_10_15252_emmm_201910489
crossref_primary_10_15252_emmm_201910489
wiley_primary_10_15252_emmm_201910489_EMMM201910489
springer_journals_10_15252_emmm_201910489
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Frankfurt
– name: Hoboken
PublicationTitle EMBO molecular medicine
PublicationTitleAbbrev EMBO Mol Med
PublicationTitleAlternate EMBO Mol Med
PublicationYear 2019
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References Zhou, Westaway, Levinson, Johnson, Gitschier, Hayflick (CR63) 2001; 28
Kotzbauer, Truax, Trojanowski, Lee (CR25) 2005; 25
Rouault (CR44) 2012; 5
Sharma, Subramanian, Yun, Frank, White, Rock, Lee, Jackowski (CR46) 2018; 9
Van Vranken, Jeong, Wei, Chen, Gygi, Winge, Rutter (CR58) 2016; 5
Rhee, Zou, Udeshi, Martell, Mootha, Carr, Ting (CR39) 2013; 339
Choi, Kruse, Palmiter, Xia (CR9) 2008; 105
Gout (CR17) 2018; 46
Hiltunen, Schonauer, Autio, Mittelmeier, Kastaniotis, Dieckmann (CR20) 2009; 284
Hiltunen, Autio, Schonauer, Kursu, Dieckmann, Kastaniotis (CR21) 2010; 1797
Brunetti, Dusi, Giordano, Lamperti, Morbin, Fugnanesi, Marchet, Fagiolari, Sibon, Moggio (CR5) 2014; 137
Johnson, Kuo, Westaway, Parker, Ching, Gitschier, Hayflick (CR23) 2004; 1012
Rittie, Fisher (CR41) 2005; 117
Levintow, Novelli (CR31) 1954; 207
Darlington (CR11) 2006; 2006
Hayflick, Westaway, Levinson, Zhou, Johnson, Ching, Gitschier (CR19) 2003; 348
Beld, Sonnenschein, Vickery, Noel, Burkart (CR3) 2014; 31
Brody, Oh, Hoja, Schweizer (CR4) 1997; 408
Sriram, Pai, Boyd, Ravindranath (CR50) 1997; 749
Di Meo, Colombelli, Srinivasan, de Villiers, Hamada, Jeong, Fox, Woltjer, Tepper, Lahaye (CR12) 2017; 7
Kursu, Pietikainen, Fontanesi, Aaltonen, Suomi, Raghavan Nair, Schonauer, Dieckmann, Barrientos, Hiltunen (CR27) 2013; 90
Zhang, Chohnan, Virga, Stevens, Ilkayeva, Wenner, Bain, Newgard, Lee, Rock (CR62) 2007; 14
Tsuchiya, Peak‐Chew, Newell, Miller‐Aidoo, Mangal, Zhyvoloup, Bakovic, Malanchuk, Pereira, Kotiadis (CR55) 2017; 474
Dusi, Valletta, Haack, Tsuchiya, Venco, Pasqualato, Goffrini, Tigano, Demchenko, Wieland (CR14) 2014; 94
Tong, Rouault (CR54) 2006; 3
Klopstock, Tricta, Neumayr, Karin, Zorzi, Fradette, Kmiec, Buchner, Steele, Horvath (CR24) 2019; 18
Babcock, de Silva, Oaks, Davis‐Kaplan, Jiralerspong, Montermini, Pandolfo, Kaplan (CR2) 1997; 276
Chen, Wang, Huang, Zeng, Hu, Guan, Zhang, Yu, Johnson, Gonzalez (CR8) 2017; 38
Chen, Wang, Kaufman, Butow (CR7) 2005; 307
Shibata, Gross, Henderson (CR47) 1983; 113
Autio, Kastaniotis, Pospiech, Miinalainen, Schonauer, Dieckmann, Hiltunen (CR1) 2008; 22
Donato, Krupenko, Tsybovsky, Krupenko (CR13) 2007; 282
Srinivasan, Baratashvili, van der Zwaag, Kanon, Colombelli, Lambrechts, Schaap, Nollen, Podgorsek, Kosec (CR49) 2015; 11
Uhlen, Oksvold, Fagerberg, Lundberg, Jonasson, Forsberg, Zwahlen, Kampf, Wester, Hober (CR57) 2010; 28
Ferrante, Schulz, Kowall, Beal (CR16) 1997; 753
Sibon, Strauss (CR48) 2016; 17
Leonardi, Zhang, Rock, Jackowski (CR30) 2005; 44
Rock, Karim, Zhang, Jackowski (CR43) 2002; 291
Rock, Calder, Karim, Jackowski (CR42) 2000; 275
Maio, Rouault (CR33) 2015; 1853
Stuible, Meier, Wagner, Hannappel, Schweizer (CR53) 1998; 273
Matak, Matak, Moustafa, Aryal, Benner, Wetsel, Andrews (CR34) 2016; 113
Richardson, Huang, Whitnall, Becker, Ponka, Suryo Rahmanto (CR40) 2010; 88
Pietrocola, Galluzzi, Bravo‐San Pedro, Madeo, Kroemer (CR36) 2015; 21
Praphanphoj, Sacksteder, Gould, Thomas, Geraghty (CR37) 2001; 72
Maio, Singh, Uhrigshardt, Saxena, Tong, Rouault (CR32) 2014; 19
LaVaute, Smith, Cooperman, Iwai, Land, Meyron‐Holtz, Drake, Miller, Abu‐Asab, Tsokos (CR29) 2001; 27
Wittwer, Gahl, Butler, Zatz, Thoene (CR60) 1985; 76
Orellana, Santambrogio, Rubio, Yekhlef, Cancellieri, Dusi, Giannelli, Venco, Mazzara, Cozzi (CR35) 2016; 8
Greenamyre, MacKenzie, Peng, Stephans (CR18) 1999; 66
Van Vranken, Nowinski, Clowers, Jeong, Ouyang, Berg, Gygi, Gygi, Winge, Rutter (CR59) 2018; 71
CR28
Egan, Weleber, Hogarth, Gregory, Coryell, Westaway, Gitschier, Das, Hayflick (CR15) 2005; 140
Hortnagel, Prokisch, Meitinger (CR22) 2003; 12
Santambrogio, Dusi, Guaraldo, Rotundo, Broccoli, Garavaglia, Tiranti, Levi (CR45) 2015; 81
Calmels, Schmucker, Wattenhofer‐Donze, Martelli, Vaucamps, Reutenauer, Messaddeq, Bouton, Koenig, Puccio (CR6) 2009; 4
Chuman, Brody (CR10) 1989; 184
Ramaswamy, Karim, Murti, Jackowski (CR38) 2004; 45
Tsuchiya, Zhyvoloup, Bakovic, Thomas, Yu, Das, Orengo, Newell, Ward, Saladino (CR56) 2018; 475
Kuo, Duncan, Westaway, Yang, Nune, Xu, Hayflick, Gitschier (CR26) 2005; 14
Strauss, Mander, Hung‐Wen (CR51) 2010
Woltjer, Reese, Richardson, Tran, Green, Pham, Chalupsky, Gabriel, Light, Sanford (CR61) 2015; 116
2017; 7
1997; 753
1983; 113
2019; 11
1997; 276
2019; 18
2008; 105
2017; 474
1954; 207
2014; 137
2018; 46
2003; 12
2005; 25
1998; 273
2018; 9
2005; 140
2015; 81
2017; 38
2010; 28
2016; 113
2005; 307
2006; 2006
2008; 22
2014; 19
2009; 284
2004; 1012
2018; 71
1997; 749
2014; 94
2001; 72
2002; 291
2007; 282
2010
2004; 45
2015; 11
2005; 117
2013; 90
1999; 66
1989; 184
2015; 1853
2006; 3
2001; 27
2000; 275
2001; 28
2016; 17
2005; 44
2007; 14
2010; 1797
2010; 88
2016; 5
2003; 348
2013; 339
2015; 116
2018; 475
2015; 21
2009; 4
1997; 408
2012; 5
1985; 76
2016; 8
2014; 31
2005; 14
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Rittie L (e_1_2_10_42_1) 2005; 117
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Darlington GJ (e_1_2_10_12_1) 2006; 2006
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 275
  start-page: 1377
  year: 2000
  end-page: 1383
  ident: CR42
  article-title: Pantothenate kinase regulation of the intracellular concentration of coenzyme A
  publication-title: J Biol Chem
– volume: 19
  start-page: 445
  year: 2014
  end-page: 457
  ident: CR32
  article-title: Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery
  publication-title: Cell Metab
– volume: 44
  start-page: 125
  year: 2005
  end-page: 153
  ident: CR30
  article-title: Coenzyme A: back in action
  publication-title: Prog Lipid Res
– volume: 140
  start-page: 267
  year: 2005
  end-page: 274
  ident: CR15
  article-title: Neuro‐ophthalmologic and electroretinographic findings in pantothenate kinase‐associated neurodegeneration (formerly Hallervorden‐Spatz syndrome)
  publication-title: Am J Ophthalmol
– volume: 76
  start-page: 1665
  year: 1985
  end-page: 1672
  ident: CR60
  article-title: Metabolism of pantethine in cystinosis
  publication-title: J Clin Invest
– volume: 1012
  start-page: 282
  year: 2004
  end-page: 298
  ident: CR23
  article-title: Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase‐associated neurodegeneration
  publication-title: Ann N Y Acad Sci
– volume: 81
  start-page: 144
  year: 2015
  end-page: 153
  ident: CR45
  article-title: Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase‐associated neurodegeneration patients
  publication-title: Neurobiol Dis
– start-page: 351
  year: 2010
  end-page: 410
  ident: CR51
  article-title: Coenzyme a biosynthesis and enzymology
  publication-title: Comprehensive Natural Products II Chemistry and Biology
– volume: 207
  start-page: 761
  year: 1954
  end-page: 765
  ident: CR31
  article-title: The synthesis of coenzyme a from pantetheine: preparation and properties of pantetheine kinase
  publication-title: J Biol Chem
– volume: 475
  start-page: 1909
  year: 2018
  end-page: 1937
  ident: CR56
  article-title: Protein CoAlation and antioxidant function of coenzyme A in prokaryotic cells
  publication-title: Biochem J
– volume: 276
  start-page: 1709
  year: 1997
  end-page: 1712
  ident: CR2
  article-title: Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin
  publication-title: Science
– volume: 17
  start-page: 605
  year: 2016
  end-page: 606
  ident: CR48
  article-title: Coenzyme A: to make it or uptake it?
  publication-title: Nat Rev Mol Cell Biol
– volume: 291
  start-page: 35
  year: 2002
  end-page: 43
  ident: CR43
  article-title: The murine pantothenate kinase (Pank1) gene encodes two differentially regulated pantothenate kinase isozymes
  publication-title: Gene
– volume: 25
  start-page: 689
  year: 2005
  end-page: 698
  ident: CR25
  article-title: Altered neuronal mitochondrial coenzyme A synthesis in neurodegeneration with brain iron accumulation caused by abnormal processing, stability, and catalytic activity of mutant pantothenate kinase 2
  publication-title: J Neurosci
– volume: 11
  start-page: 784
  year: 2015
  end-page: 792
  ident: CR49
  article-title: Extracellular 4′‐phosphopantetheine is a source for intracellular coenzyme A synthesis
  publication-title: Nat Chem Biol
– volume: 284
  start-page: 9011
  year: 2009
  end-page: 9015
  ident: CR20
  article-title: Mitochondrial fatty acid synthesis type II: more than just fatty acids
  publication-title: J Biol Chem
– volume: 14
  start-page: 49
  year: 2005
  end-page: 57
  ident: CR26
  article-title: Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia
  publication-title: Hum Mol Genet
– volume: 45
  start-page: 17
  year: 2004
  end-page: 31
  ident: CR38
  article-title: PPARalpha controls the intracellular coenzyme A concentration via regulation of PANK1alpha gene expression
  publication-title: J Lipid Res
– volume: 14
  start-page: 291
  year: 2007
  end-page: 302
  ident: CR62
  article-title: Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis
  publication-title: Chem Biol
– volume: 8
  start-page: 1197
  year: 2016
  end-page: 1211
  ident: CR35
  article-title: Coenzyme A corrects pathological defects in human neurons of PANK2‐associated neurodegeneration
  publication-title: EMBO Mol Med
– volume: 105
  start-page: 15136
  year: 2008
  end-page: 15141
  ident: CR9
  article-title: Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat
  publication-title: Proc Natl Acad Sci USA
– volume: 27
  start-page: 209
  year: 2001
  end-page: 214
  ident: CR29
  article-title: Targeted deletion of the gene encoding iron regulatory protein‐2 causes misregulation of iron metabolism and neurodegenerative disease in mice
  publication-title: Nat Genet
– volume: 408
  start-page: 217
  year: 1997
  end-page: 220
  ident: CR4
  article-title: Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae
  publication-title: FEBS Lett
– volume: 28
  start-page: 345
  year: 2001
  end-page: 349
  ident: CR63
  article-title: A novel pantothenate kinase gene ( ) is defective in Hallervorden‐Spatz syndrome
  publication-title: Nat Genet
– volume: 307
  start-page: 714
  year: 2005
  end-page: 717
  ident: CR7
  article-title: Aconitase couples metabolic regulation to mitochondrial DNA maintenance
  publication-title: Science
– volume: 184
  start-page: 643
  year: 1989
  end-page: 649
  ident: CR10
  article-title: Acyl carrier protein is present in the mitochondria of plants and eucaryotic micro‐organisms
  publication-title: Eur J Biochem
– volume: 5
  start-page: e17828
  year: 2016
  ident: CR58
  article-title: The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis
  publication-title: Elife
– volume: 116
  start-page: 289
  year: 2015
  end-page: 297
  ident: CR61
  article-title: Pallidal neuronal apolipoprotein E in pantothenate kinase‐associated neurodegeneration recapitulates ischemic injury to the globus pallidus
  publication-title: Mol Genet Metab
– volume: 9
  start-page: 4399
  year: 2018
  ident: CR46
  article-title: A therapeutic approach to pantothenate kinase associated neurodegeneration
  publication-title: Nat Commun
– volume: 273
  start-page: 22334
  year: 1998
  end-page: 22339
  ident: CR53
  article-title: A novel phosphopantetheine:protein transferase activating yeast mitochondrial acyl carrier protein
  publication-title: J Biol Chem
– volume: 1853
  start-page: 1493
  year: 2015
  end-page: 1512
  ident: CR33
  article-title: Iron‐sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery
  publication-title: Biochim Biophys Acta
– volume: 31
  start-page: 61
  year: 2014
  end-page: 108
  ident: CR3
  article-title: The phosphopantetheinyl transferases: catalysis of a post‐translational modification crucial for life
  publication-title: Nat Prod Rep
– volume: 117
  start-page: 83
  year: 2005
  end-page: 98
  ident: CR41
  article-title: Isolation and culture of skin fibroblasts
  publication-title: Methods Mol Med
– volume: 113
  start-page: 2107
  year: 1983
  end-page: 2115
  ident: CR47
  article-title: Hydrolysis and absorption of pantothenate and its coenzymes in the rat small intestine
  publication-title: J Nutr
– volume: 7
  start-page: 11260
  year: 2017
  ident: CR12
  article-title: Acetyl‐4′‐phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency
  publication-title: Sci Rep
– volume: 38
  start-page: 474
  year: 2017
  end-page: 483
  ident: CR8
  article-title: PPARalpha regulates tumor cell proliferation and senescence via a novel target gene carnitine palmitoyltransferase 1C
  publication-title: Carcinogenesis
– volume: 339
  start-page: 1328
  year: 2013
  end-page: 1331
  ident: CR39
  article-title: Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging
  publication-title: Science
– volume: 113
  start-page: 3428
  year: 2016
  end-page: 3435
  ident: CR34
  article-title: Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice
  publication-title: Proc Natl Acad Sci USA
– volume: 66
  start-page: 85
  year: 1999
  end-page: 97
  ident: CR18
  article-title: Mitochondrial dysfunction in Parkinson's disease
  publication-title: Biochem Soc Symp
– volume: 88
  start-page: 323
  year: 2010
  end-page: 329
  ident: CR40
  article-title: The ins and outs of mitochondrial iron‐loading: the metabolic defect in Friedreich's ataxia
  publication-title: J Mol Med (Berl)
– volume: 71
  start-page: 567
  year: 2018
  end-page: 580
  ident: CR59
  article-title: ACP acylation is an Acetyl‐CoA‐dependent modification required for electron transport chain assembly
  publication-title: Mol Cell
– volume: 5
  start-page: 155
  year: 2012
  end-page: 164
  ident: CR44
  article-title: Biogenesis of iron‐sulfur clusters in mammalian cells: new insights and relevance to human disease
  publication-title: Dis Model Mech
– volume: 137
  start-page: 57
  year: 2014
  end-page: 68
  ident: CR5
  article-title: Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase‐associated neurodegeneration mouse model
  publication-title: Brain
– volume: 4
  start-page: e6379
  year: 2009
  ident: CR6
  article-title: The first cellular models based on frataxin missense mutations that reproduce spontaneously the defects associated with Friedreich ataxia
  publication-title: PLoS One
– volume: 3
  start-page: 199
  year: 2006
  end-page: 210
  ident: CR54
  article-title: Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron‐sulfur cluster biogenesis and iron homeostasis
  publication-title: Cell Metab
– volume: 90
  start-page: 824
  year: 2013
  end-page: 840
  ident: CR27
  article-title: Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae
  publication-title: Mol Microbiol
– volume: 749
  start-page: 44
  year: 1997
  end-page: 52
  ident: CR50
  article-title: Evidence for generation of oxidative stress in brain by MPTP: and studies in mice
  publication-title: Brain Res
– volume: 28
  start-page: 1248
  year: 2010
  end-page: 1250
  ident: CR57
  article-title: Towards a knowledge‐based human protein atlas
  publication-title: Nat Biotechnol
– volume: 753
  start-page: 157
  year: 1997
  end-page: 162
  ident: CR16
  article-title: Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra
  publication-title: Brain Res
– volume: 348
  start-page: 33
  year: 2003
  end-page: 40
  ident: CR19
  article-title: Genetic, clinical, and radiographic delineation of Hallervorden‐Spatz syndrome
  publication-title: N Engl J Med
– volume: 72
  start-page: 336
  year: 2001
  end-page: 342
  ident: CR37
  article-title: Identification of the alpha‐aminoadipic semialdehyde dehydrogenase‐phosphopantetheinyl transferase gene, the human ortholog of the yeast LYS5 gene
  publication-title: Mol Genet Metab
– volume: 46
  start-page: 721
  year: 2018
  end-page: 728
  ident: CR17
  article-title: Coenzyme A, protein CoAlation and redox regulation in mammalian cells
  publication-title: Biochem Soc Trans
– volume: 12
  start-page: 321
  year: 2003
  end-page: 327
  ident: CR22
  article-title: An isoform of hPANK2, deficient in pantothenate kinase‐associated neurodegeneration, localizes to mitochondria
  publication-title: Hum Mol Genet
– volume: 94
  start-page: 11
  year: 2014
  end-page: 22
  ident: CR14
  article-title: Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation
  publication-title: Am J Hum Genet
– volume: 18
  start-page: 631
  year: 2019
  end-page: 642
  ident: CR24
  article-title: Safety and efficacy of deferiprone for pantothenate kinase‐associated neurodegeneration: a randomised, double‐blind, controlled trial and an open‐label extension study
  publication-title: Lancet Neurol
– volume: 282
  start-page: 34159
  year: 2007
  end-page: 34166
  ident: CR13
  article-title: 10‐formyltetrahydrofolate dehydrogenase requires a 4′‐phosphopantetheine prosthetic group for catalysis
  publication-title: J Biol Chem
– volume: 2006
  start-page: pdb.prot4481
  year: 2006
  ident: CR11
  article-title: Epstein‐Barr virus transformation of lymphoblasts
  publication-title: CSH Protoc
– volume: 22
  start-page: 569
  year: 2008
  end-page: 578
  ident: CR1
  article-title: An ancient genetic link between vertebrate mitochondrial fatty acid synthesis and RNA processing
  publication-title: FASEB J
– ident: CR28
– volume: 474
  start-page: 2489
  year: 2017
  end-page: 2508
  ident: CR55
  article-title: Protein CoAlation: a redox‐regulated protein modification by coenzyme A in mammalian cells
  publication-title: Biochem J
– volume: 1797
  start-page: 1195
  year: 2010
  end-page: 1202
  ident: CR21
  article-title: Mitochondrial fatty acid synthesis and respiration
  publication-title: Biochim Biophys Acta
– volume: 21
  start-page: 805
  year: 2015
  end-page: 821
  ident: CR36
  article-title: Acetyl coenzyme A: a central metabolite and second messenger
  publication-title: Cell Metab
– volume: 140
  start-page: 267
  year: 2005
  end-page: 274
  article-title: Neuro‐ophthalmologic and electroretinographic findings in pantothenate kinase‐associated neurodegeneration (formerly Hallervorden‐Spatz syndrome)
  publication-title: Am J Ophthalmol
– volume: 5
  start-page: 155
  year: 2012
  end-page: 164
  article-title: Biogenesis of iron‐sulfur clusters in mammalian cells: new insights and relevance to human disease
  publication-title: Dis Model Mech
– volume: 17
  start-page: 605
  year: 2016
  end-page: 606
  article-title: Coenzyme A: to make it or uptake it?
  publication-title: Nat Rev Mol Cell Biol
– volume: 207
  start-page: 761
  year: 1954
  end-page: 765
  article-title: The synthesis of coenzyme a from pantetheine: preparation and properties of pantetheine kinase
  publication-title: J Biol Chem
– volume: 2006
  start-page: pdb.prot4481
  year: 2006
  article-title: Epstein‐Barr virus transformation of lymphoblasts
  publication-title: CSH Protoc
– volume: 88
  start-page: 323
  year: 2010
  end-page: 329
  article-title: The ins and outs of mitochondrial iron‐loading: the metabolic defect in Friedreich's ataxia
  publication-title: J Mol Med (Berl)
– volume: 276
  start-page: 1709
  year: 1997
  end-page: 1712
  article-title: Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin
  publication-title: Science
– volume: 408
  start-page: 217
  year: 1997
  end-page: 220
  article-title: Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae
  publication-title: FEBS Lett
– volume: 475
  start-page: 1909
  year: 2018
  end-page: 1937
  article-title: Protein CoAlation and antioxidant function of coenzyme A in prokaryotic cells
  publication-title: Biochem J
– volume: 71
  start-page: 567
  year: 2018
  end-page: 580
  article-title: ACP acylation is an Acetyl‐CoA‐dependent modification required for electron transport chain assembly
  publication-title: Mol Cell
– volume: 105
  start-page: 15136
  year: 2008
  end-page: 15141
  article-title: Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat
  publication-title: Proc Natl Acad Sci USA
– volume: 474
  start-page: 2489
  year: 2017
  end-page: 2508
  article-title: Protein CoAlation: a redox‐regulated protein modification by coenzyme A in mammalian cells
  publication-title: Biochem J
– volume: 3
  start-page: 199
  year: 2006
  end-page: 210
  article-title: Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron‐sulfur cluster biogenesis and iron homeostasis
  publication-title: Cell Metab
– volume: 1853
  start-page: 1493
  year: 2015
  end-page: 1512
  article-title: Iron‐sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery
  publication-title: Biochim Biophys Acta
– volume: 11
  start-page: e10488
  year: 2019
– volume: 28
  start-page: 1248
  year: 2010
  end-page: 1250
  article-title: Towards a knowledge‐based human protein atlas
  publication-title: Nat Biotechnol
– volume: 348
  start-page: 33
  year: 2003
  end-page: 40
  article-title: Genetic, clinical, and radiographic delineation of Hallervorden‐Spatz syndrome
  publication-title: N Engl J Med
– volume: 339
  start-page: 1328
  year: 2013
  end-page: 1331
  article-title: Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging
  publication-title: Science
– volume: 76
  start-page: 1665
  year: 1985
  end-page: 1672
  article-title: Metabolism of pantethine in cystinosis
  publication-title: J Clin Invest
– volume: 116
  start-page: 289
  year: 2015
  end-page: 297
  article-title: Pallidal neuronal apolipoprotein E in pantothenate kinase‐associated neurodegeneration recapitulates ischemic injury to the globus pallidus
  publication-title: Mol Genet Metab
– volume: 38
  start-page: 474
  year: 2017
  end-page: 483
  article-title: PPARalpha regulates tumor cell proliferation and senescence via a novel target gene carnitine palmitoyltransferase 1C
  publication-title: Carcinogenesis
– volume: 90
  start-page: 824
  year: 2013
  end-page: 840
  article-title: Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae
  publication-title: Mol Microbiol
– volume: 14
  start-page: 291
  year: 2007
  end-page: 302
  article-title: Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis
  publication-title: Chem Biol
– volume: 113
  start-page: 2107
  year: 1983
  end-page: 2115
  article-title: Hydrolysis and absorption of pantothenate and its coenzymes in the rat small intestine
  publication-title: J Nutr
– volume: 28
  start-page: 345
  year: 2001
  end-page: 349
  article-title: A novel pantothenate kinase gene ( ) is defective in Hallervorden‐Spatz syndrome
  publication-title: Nat Genet
– volume: 184
  start-page: 643
  year: 1989
  end-page: 649
  article-title: Acyl carrier protein is present in the mitochondria of plants and eucaryotic micro‐organisms
  publication-title: Eur J Biochem
– volume: 1012
  start-page: 282
  year: 2004
  end-page: 298
  article-title: Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase‐associated neurodegeneration
  publication-title: Ann N Y Acad Sci
– volume: 273
  start-page: 22334
  year: 1998
  end-page: 22339
  article-title: A novel phosphopantetheine:protein transferase activating yeast mitochondrial acyl carrier protein
  publication-title: J Biol Chem
– volume: 753
  start-page: 157
  year: 1997
  end-page: 162
  article-title: Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra
  publication-title: Brain Res
– volume: 9
  start-page: 4399
  year: 2018
  article-title: A therapeutic approach to pantothenate kinase associated neurodegeneration
  publication-title: Nat Commun
– volume: 27
  start-page: 209
  year: 2001
  end-page: 214
  article-title: Targeted deletion of the gene encoding iron regulatory protein‐2 causes misregulation of iron metabolism and neurodegenerative disease in mice
  publication-title: Nat Genet
– volume: 1797
  start-page: 1195
  year: 2010
  end-page: 1202
  article-title: Mitochondrial fatty acid synthesis and respiration
  publication-title: Biochim Biophys Acta
– volume: 46
  start-page: 721
  year: 2018
  end-page: 728
  article-title: Coenzyme A, protein CoAlation and redox regulation in mammalian cells
  publication-title: Biochem Soc Trans
– volume: 21
  start-page: 805
  year: 2015
  end-page: 821
  article-title: Acetyl coenzyme A: a central metabolite and second messenger
  publication-title: Cell Metab
– volume: 8
  start-page: 1197
  year: 2016
  end-page: 1211
  article-title: Coenzyme A corrects pathological defects in human neurons of PANK2‐associated neurodegeneration
  publication-title: EMBO Mol Med
– volume: 22
  start-page: 569
  year: 2008
  end-page: 578
  article-title: An ancient genetic link between vertebrate mitochondrial fatty acid synthesis and RNA processing
  publication-title: FASEB J
– volume: 31
  start-page: 61
  year: 2014
  end-page: 108
  article-title: The phosphopantetheinyl transferases: catalysis of a post‐translational modification crucial for life
  publication-title: Nat Prod Rep
– volume: 19
  start-page: 445
  year: 2014
  end-page: 457
  article-title: Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery
  publication-title: Cell Metab
– volume: 18
  start-page: 631
  year: 2019
  end-page: 642
  article-title: Safety and efficacy of deferiprone for pantothenate kinase‐associated neurodegeneration: a randomised, double‐blind, controlled trial and an open‐label extension study
  publication-title: Lancet Neurol
– volume: 749
  start-page: 44
  year: 1997
  end-page: 52
  article-title: Evidence for generation of oxidative stress in brain by MPTP: and studies in mice
  publication-title: Brain Res
– volume: 66
  start-page: 85
  year: 1999
  end-page: 97
  article-title: Mitochondrial dysfunction in Parkinson's disease
  publication-title: Biochem Soc Symp
– start-page: 351
  year: 2010
  end-page: 410
– volume: 137
  start-page: 57
  year: 2014
  end-page: 68
  article-title: Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase‐associated neurodegeneration mouse model
  publication-title: Brain
– volume: 307
  start-page: 714
  year: 2005
  end-page: 717
  article-title: Aconitase couples metabolic regulation to mitochondrial DNA maintenance
  publication-title: Science
– volume: 94
  start-page: 11
  year: 2014
  end-page: 22
  article-title: Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation
  publication-title: Am J Hum Genet
– volume: 45
  start-page: 17
  year: 2004
  end-page: 31
  article-title: PPARalpha controls the intracellular coenzyme A concentration via regulation of PANK1alpha gene expression
  publication-title: J Lipid Res
– volume: 275
  start-page: 1377
  year: 2000
  end-page: 1383
  article-title: Pantothenate kinase regulation of the intracellular concentration of coenzyme A
  publication-title: J Biol Chem
– volume: 14
  start-page: 49
  year: 2005
  end-page: 57
  article-title: Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia
  publication-title: Hum Mol Genet
– volume: 44
  start-page: 125
  year: 2005
  end-page: 153
  article-title: Coenzyme A: back in action
  publication-title: Prog Lipid Res
– volume: 117
  start-page: 83
  year: 2005
  end-page: 98
  article-title: Isolation and culture of skin fibroblasts
  publication-title: Methods Mol Med
– volume: 4
  start-page: e6379
  year: 2009
  article-title: The first cellular models based on frataxin missense mutations that reproduce spontaneously the defects associated with Friedreich ataxia
  publication-title: PLoS One
– volume: 284
  start-page: 9011
  year: 2009
  end-page: 9015
  article-title: Mitochondrial fatty acid synthesis type II: more than just fatty acids
  publication-title: J Biol Chem
– volume: 113
  start-page: 3428
  year: 2016
  end-page: 3435
  article-title: Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice
  publication-title: Proc Natl Acad Sci USA
– volume: 25
  start-page: 689
  year: 2005
  end-page: 698
  article-title: Altered neuronal mitochondrial coenzyme A synthesis in neurodegeneration with brain iron accumulation caused by abnormal processing, stability, and catalytic activity of mutant pantothenate kinase 2
  publication-title: J Neurosci
– volume: 5
  start-page: e17828
  year: 2016
  article-title: The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis
  publication-title: Elife
– volume: 282
  start-page: 34159
  year: 2007
  end-page: 34166
  article-title: 10‐formyltetrahydrofolate dehydrogenase requires a 4′‐phosphopantetheine prosthetic group for catalysis
  publication-title: J Biol Chem
– volume: 72
  start-page: 336
  year: 2001
  end-page: 342
  article-title: Identification of the alpha‐aminoadipic semialdehyde dehydrogenase‐phosphopantetheinyl transferase gene, the human ortholog of the yeast LYS5 gene
  publication-title: Mol Genet Metab
– volume: 81
  start-page: 144
  year: 2015
  end-page: 153
  article-title: Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase‐associated neurodegeneration patients
  publication-title: Neurobiol Dis
– volume: 7
  start-page: 11260
  year: 2017
  article-title: Acetyl‐4′‐phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency
  publication-title: Sci Rep
– volume: 12
  start-page: 321
  year: 2003
  end-page: 327
  article-title: An isoform of hPANK2, deficient in pantothenate kinase‐associated neurodegeneration, localizes to mitochondria
  publication-title: Hum Mol Genet
– volume: 11
  start-page: 784
  year: 2015
  end-page: 792
  article-title: Extracellular 4′‐phosphopantetheine is a source for intracellular coenzyme A synthesis
  publication-title: Nat Chem Biol
– volume: 291
  start-page: 35
  year: 2002
  end-page: 43
  article-title: The murine pantothenate kinase (Pank1) gene encodes two differentially regulated pantothenate kinase isozymes
  publication-title: Gene
– ident: e_1_2_10_10_1
  doi: 10.1073/pnas.0807581105
– ident: e_1_2_10_33_1
  doi: 10.1016/j.cmet.2014.01.015
– ident: e_1_2_10_22_1
  doi: 10.1016/j.bbabio.2010.03.006
– ident: e_1_2_10_3_1
  doi: 10.1126/science.276.5319.1709
– ident: e_1_2_10_24_1
  doi: 10.1196/annals.1306.023
– ident: e_1_2_10_35_1
  doi: 10.1073/pnas.1519473113
– ident: e_1_2_10_44_1
  doi: 10.1016/S0378-1119(02)00564-4
– ident: e_1_2_10_17_1
  doi: 10.1016/S0006-8993(97)00008-5
– ident: e_1_2_10_59_1
  doi: 10.1016/j.molcel.2018.06.039
– ident: e_1_2_10_6_1
  doi: 10.1093/brain/awt325
– ident: e_1_2_10_46_1
  doi: 10.1016/j.nbd.2015.02.030
– volume: 117
  start-page: 83
  year: 2005
  ident: e_1_2_10_42_1
  article-title: Isolation and culture of skin fibroblasts
  publication-title: Methods Mol Med
– ident: e_1_2_10_45_1
  doi: 10.1242/dmm.009019
– ident: e_1_2_10_29_1
  doi: 10.15252/emmm.201910488
– ident: e_1_2_10_37_1
  doi: 10.1016/j.cmet.2015.05.014
– ident: e_1_2_10_36_1
  doi: 10.15252/emmm.201606391
– ident: e_1_2_10_9_1
  doi: 10.1093/carcin/bgx023
– ident: e_1_2_10_53_1
  doi: 10.1074/jbc.273.35.22334
– ident: e_1_2_10_61_1
  doi: 10.1016/j.ymgme.2015.10.012
– ident: e_1_2_10_47_1
  doi: 10.1038/s41467-018-06703-2
– ident: e_1_2_10_55_1
  doi: 10.1042/BCJ20170129
– ident: e_1_2_10_16_1
  doi: 10.1016/j.ajo.2005.03.024
– ident: e_1_2_10_7_1
  doi: 10.1371/journal.pone.0006379
– ident: e_1_2_10_63_1
  doi: 10.1038/ng572
– ident: e_1_2_10_57_1
  doi: 10.1038/nbt1210-1248
– ident: e_1_2_10_60_1
  doi: 10.1172/JCI112152
– ident: e_1_2_10_5_1
  doi: 10.1016/S0014-5793(97)00428-6
– ident: e_1_2_10_20_1
  doi: 10.1056/NEJMoa020817
– ident: e_1_2_10_31_1
  doi: 10.1016/j.plipres.2005.04.001
– ident: e_1_2_10_39_1
  doi: 10.1194/jlr.M300279-JLR200
– ident: e_1_2_10_8_1
  doi: 10.1126/science.1106391
– ident: e_1_2_10_28_1
  doi: 10.1111/mmi.12402
– volume: 2006
  start-page: pdb.prot4481
  year: 2006
  ident: e_1_2_10_12_1
  article-title: Epstein‐Barr virus transformation of lymphoblasts
  publication-title: CSH Protoc
– ident: e_1_2_10_2_1
  doi: 10.1096/fj.07-8986
– ident: e_1_2_10_25_1
  doi: 10.1016/S1474-4422(19)30142-5
– ident: e_1_2_10_51_1
  doi: 10.1016/S0006-8993(96)01271-1
– ident: e_1_2_10_62_1
  doi: 10.1016/j.chembiol.2007.01.013
– ident: e_1_2_10_30_1
  doi: 10.1038/84859
– ident: e_1_2_10_50_1
  doi: 10.1038/nchembio.1906
– ident: e_1_2_10_14_1
  doi: 10.1074/jbc.M707627200
– ident: e_1_2_10_38_1
  doi: 10.1006/mgme.2000.3138
– ident: e_1_2_10_26_1
  doi: 10.1523/JNEUROSCI.4265-04.2005
– ident: e_1_2_10_52_1
  doi: 10.1016/B978-008045382-8.00141-6
– ident: e_1_2_10_4_1
  doi: 10.1039/C3NP70054B
– ident: e_1_2_10_58_1
  doi: 10.7554/eLife.17828
– ident: e_1_2_10_56_1
  doi: 10.1042/BCJ20180043
– ident: e_1_2_10_32_1
  doi: 10.1016/S0021-9258(18)65695-9
– ident: e_1_2_10_21_1
  doi: 10.1074/jbc.R800068200
– ident: e_1_2_10_13_1
  doi: 10.1038/s41598-017-11564-8
– ident: e_1_2_10_15_1
  doi: 10.1016/j.ajhg.2013.11.008
– ident: e_1_2_10_27_1
  doi: 10.1093/hmg/ddi005
– ident: e_1_2_10_49_1
  doi: 10.1038/nrm.2016.110
– ident: e_1_2_10_23_1
  doi: 10.1093/hmg/ddg026
– ident: e_1_2_10_54_1
  doi: 10.1016/j.cmet.2006.02.003
– ident: e_1_2_10_11_1
  doi: 10.1111/j.1432-1033.1989.tb15061.x
– ident: e_1_2_10_34_1
  doi: 10.1016/j.bbamcr.2014.09.009
– ident: e_1_2_10_41_1
  doi: 10.1007/s00109-009-0565-x
– ident: e_1_2_10_43_1
  doi: 10.1074/jbc.275.2.1377
– ident: e_1_2_10_18_1
  doi: 10.1042/BST20170506
– ident: e_1_2_10_48_1
  doi: 10.1093/jn/113.10.2107
– ident: e_1_2_10_19_1
  doi: 10.1042/bss0660085
– ident: e_1_2_10_40_1
  doi: 10.1126/science.1230593
SSID ssj0065618
Score 2.4732244
Snippet Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack...
Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack...
Pantothenate kinase‐associated neurodegeneration ( PKAN ) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation....
Abstract Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e10489
SubjectTerms 4′‐phosphopantetheine
Acyl carrier protein
Animals
Basal ganglia
Biomarkers
Biomarkers - metabolism
Brain research
Central nervous system diseases
coenzyme A
Coenzyme A - metabolism
Defects
Dopamine
Dopamine - metabolism
Drug development
Dystonia
EMBO08
EMBO27
Gene expression
Genotype
Homeostasis
Iron
Iron - metabolism
Kinases
Mammals
Metabolism
Mice
Mitochondria
Movement disorders
Mutation
NBIA
Neurodegeneration
Oxidative phosphorylation
PANK2
Pantetheine - analogs & derivatives
Pantetheine - pharmacology
Pantetheine - therapeutic use
Pantothenate kinase
Pantothenate Kinase-Associated Neurodegeneration - drug therapy
Pantothenate Kinase-Associated Neurodegeneration - metabolism
Pathogenesis
Pharmacodynamics
Phosphorylation
Phosphotransferases (Alcohol Group Acceptor) - metabolism
PKAN
Pyruvic acid
Sulfur
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQJRAXBOUvUJCROIDU0MSOE_u4VK0q0FY9UKk3y3_RrtQkVXd74NZH4Fl4pD4JM042EEHVC7dde3blzHy2v4nHM4S8z4VhHHpSk1uVFk7a1AJUUlgvleOVCiLEKN_j8ui0-HImzv4o9YUxYX164F5xe1x5X0rngGjURVZn1lfogljJM2VkFe-RZyrbOFP9GgwkJb7Zg72xSmEpKIekPoIJtheaBq-gg6MC6FWT_Sim7f8X1_w7ZHI8N52y2rgtHT4mjwY-SWf9czwh90K7Te73FSa_b5MH8-Hs_ClZFDfXP2-uf5wsutXFAnxlUCkeE7SBOizR4dYrut_NdilefNulpvXUg1SDAk1YA1jOl476EOM_6LKljWma-JaExnI6K9rV9OTr7PgZOT08-LZ_lA51FlInKqXSsuYcvBDQrMM6EYEpyYytcuY97P4MZqzLbZ25zJTc-JqFUtUCPlsgR74Af-c52Wq7Nrwk1IBLF3JfW5GbAkQVl8FL6SslBLSWCfm00bZ2QxJyrIVxrtEZQfNoNI8ezZOQD-MPLvr8G7eLfkbzjWKYODs2AJz0ACd9F5wSsrMxvh5m80oD62SZALIsEvJu7IZ5iIcrpg3dFcoAVQO6WsIzvuixMo6EQyssrXlCqgmKJkOd9rTLRcz1XUp0YGFYHzd4-z2sW_XAIyDv0pc-mM_n47dX_0N7r8lD_MM-3GeHbK0vr8IbIG1r-zbOz193mzpO
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagCMQFQfkLFGQkDiA1NInjOD6hpWpVgbbqgUp7i_wXdqUmWbrbA7c-As_CI_VJmHG8qSIo3BJ7ItmeH39jT2YIeZtylTHoiVWqZZybUscaRCUGeykNE9Jx56N8j4uj0_zzjM_CgdsqhFVubKI31LYzeEa-Bzt_lnAALPzj8nuMVaPwdjWU0LhN7qSARLB0g5gNDhdAFX--BzukiMEgFCG1D894tueaBn9EB3cFZFiOdiWfvP9viPPPwMnh9nSMbf3mdPiQPAiokk56MXhEbrl2m9zt60z-2Cb3puEG_TGZ51eXv64uf57Mu9VyDh4zLCxeFrSOGizUYdYrut9Ndin-_rZLVWupBaoGCRq3BpE5WxhqnY8CoYuWNqpp_FkJ9UV1VrSr6cmXyfETcnp48HX_KA7VFmLDhZRxUTMGvoi2wmC1CJfJMlNapJm1gAEy0FuT6joxiSqYsnXmCllzeNYAkWwOXs9TstV2rXtOqALHzqW21jxVOZBKVjpbllZIzqG1iMiHzWpXJqQix4oYZxW6JMieCtlTDeyJyLvhg2WfheNm0k_IvoEM02f7hu78WxW0sWLS2qI0BmSmzpM6gUmjX6tLlkhVChGRnQ3zq6DTq-paAiPyZugGbcQrFtW67gJpALABaC1gjs96WRlGwqAVDGwaETGSotFQxz3tYu4zfhclurEwrPcbebse1o3rwLxA_m-9qoPpdDq8vfj3xF-S-0jah_PskK31-YV7BaBsrV97zfsNhtQyMg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagFYgLouUvtEVG4gBSA0kcO_FxWbWqQFv1QKXeLP9Fu1KTVOz2wK2PwLPwSH2SzjjZQNRWiFtiTxLHM2N_47FnCHmfcp0xqIl1amSc29LEBkQlhvFSWlZIz33Y5Xssjk7zr2f8rA-ShGdh_vbf84xnn31d44FxMCtA1uRDsslh1EVRnorpesgFTBIW8mAqLGLQfNHH8LnjBaPpJ0Tpvwta3t4hObhJxyA2zEKHz8jTHj7SScfvLfLAN9vkUZdQ8uc2eTzrXeXPyTy_vvp9ffXrZN4uL-ZgGkMPoleg8dRiRg67WtJpO9mneM5tn-rGUQdUNRLUfgWycb6w1Pmw3YMuGlrrug6LIjRkz1nStqIn3ybHL8jp4cH36VHcp1WILS-kjEXFGBgdxhUW00L4TJaZNkWaOQeTfQYKalNTJTbRgmlXZV7IisO1ASzkcjBvXpKNpm38a0I1WHA-dZXhqc6BVLLSu7J0heQcSkVEPq17W9k-5jimvjhXaHsgexSyRw3siciH4YGLLtzG_aRfkH0DGcbJDgUgPqpXO8Wkc6K0FmBqlSdVAj-NBqwpWSJ1WRQR2V0zX_XKu1QAMrOEAzbmEXk3VIPaoS9FN769RBpAZoBOBfzjq05WhpYwKIWRNI1IMZKiUVPHNc1iHkJ7ixLtVWjWx7W8_WnWvf3AgkD-q7_UwWw2G-7e_McXdsgTvO428eySjdWPS78HUGxl3gY1vAFnWCry
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELagCMQFQfkLtMhIHEBqIInjxD5uq1YVaKs9UIlb5L90V2qSqtkeeusj9Fl4pD4JM84PitoKiVtiTyLbM2N_Y49nCPkUc5UwqAlVrGWYGqFDDaISwnwpDcul4857-R5lh8fp91988CbEuzBdfIhxww01w8_XqOBKt0PGHowa6qoKr5KDwQFSKB-SRwDtGQp5ki6GyRjQit_ig0UyD2FOyProPviLb9MfTBYmH7__LtB523dyPECdwlu_Ph08J896YElnnSS8IA9cvUked6kmLzfJk3l_iP6SLNObq983V9eLZdOeLcFohrHF84LaUYO5Osy6pXvNbIfiDbgdqmpLLVBVSFC5NUjN6cpQ67wjCF3VtFJV5bdLqM-r09KmpIsfs6NX5Phg_-feYdgnXAgNz6UMs5IxMEe0zQ0mjHCJFInSeZxYCzAgAdU1sS4jE6mMKVsmLpMlh2cNKMmmYPi8Jht1U7u3hCqw7VxsS81jlQKpZMJZIWwuOYfSLCBfh9EuTB-NHJNinBZolSB7CmRPMbInIJ_HD866QBz3k-4i-0YyjKDtC5rzk6JXyIJJazNhDADYMo3KCDqNpq0WLJJK5HlAtgbmF71atwXAzyTigJp5QD6O1aCQeMqiatdcIA1gNsCtGfTxTScrY0sYlMIcGwckn0jRpKnTmnq19EG_M4GWLDTryyBvf5t17zgwL5D_Gq9ifz6fj2_v_uur9-QpPneOPltkY31-4bYBrq31B6-QfwAe4DaI
  priority: 102
  providerName: Wiley-Blackwell
Title 4′‐Phosphopantetheine corrects CoA, iron, and dopamine metabolic defects in mammalian models of PKAN
URI https://link.springer.com/article/10.15252/emmm.201910489
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201910489
https://www.ncbi.nlm.nih.gov/pubmed/31660701
https://www.proquest.com/docview/2322050135
https://www.proquest.com/docview/2310295166
https://pubmed.ncbi.nlm.nih.gov/PMC6895607
https://doaj.org/article/39dd68cc193f40f0bd70717b8309a877
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEB-8OxS_iJ6v6FlWEFS4nHnv7geRXulxKC1FLPRb2FdsoUnOtgfef-_sJs1R7KFfQrM7KbvzyP5mZzMD8C5MRRRjjy9Cyf1EMelLVBUf35dcxZSb1LhTvuPscpp8naWz23JALQPXe107W09qulqe_f518wUN_nNbvSf6ZMrSflSOrgfqIz-AIxcssuf4ki6kgLjFbfbhckn9JGNJm-dnzx_sLFEuk_8--Pn3KcoulLoLdN1KdfEYHrUQk_QbnXgC90x1DPebopM3x_Bg1IbTn4JO3vuTeb2-mqPrjBy2UYPKEGUrdqjNmgzq_imx38GdElFpopGqtASl2aDuLBeKaOOOg5BFRUpRlm7ThLjqOmtSF2TyrT9-BtOL4Y_Bpd-WXfBVSjn3syKO0SmRmipbNsJEnEVC0jDSGsFAhAasQlkEKhBZLHQRmYwXKf6WiJV0gu7Pczis6sq8BCLQwzOhLmQaigRJecyMZkxTnqbYmnlwtuV0rtqc5LY0xjK3vokVTW5Fk3ei8eBD98BVk47jbtJzK7qOzObRdg316mfemmUec60zphTC2CIJigAnbR1cyeKAC0apBydbwedb3cwRhEZBitg59eBt141maWMtojL1taVB5IboNcM5vmj0pBtJjK34pg09oDsatDPU3Z5qMXepvzNm_Vkc1setrt0O604-xE4Z_8WvfDgajbq7V_8xs9fw0NI3h3tO4HCzujZvEKJtZA8OomSCVzqjPTg6H44n3_FukA16btOj50zzD9_YOQw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLamTvzcIBh_hQFGAgmkhSVOnMQXE-pGp46uVYU2aXeZYzu00pKUtRPa3R6BZ-EBeJg9Cee4SaYKBle7a-0TyfY5Pj_28fkIeeNxyXzocaSXCidQceqkICoO6Euh_EgYbmyW7zDsHQafj_jRCvlVv4XBtMpaJ1pFrUuFZ-SbYPmZy8Fh4R-n3xxEjcLb1RpCQ1bQCnrLlhirHnb0zfl3COFmW3ufgN9vGdvtHuz0nAplwFE8EsIJM98HHzzVkUKUBMNEzGQaeUxrsH0M5FV5aeYqV4a-1Bkzocg4_E7BNdBBhKgRYAJWAzxAaZHV7e5w9KW2BeAs2RNGsNGRAyoprIoLccbZpslzfAoPARPsIrFkFy18wN983j9TN5v722Xv2prH3fvkXuXX0s5CEB-QFVOskVsLpMvzNXJ7UN3hPyTj4PLi5-XFj9G4nE3HELMDa_G6ojBUIVSIms_oTtnZoPgAb4PKQlMNVDkS5GYOQnsyUVQbm4dCJwXNZZ7b0xpqYX1mtMzoqN8ZPiKHN8KJx6RVlIV5SqiE0NJ4Oku5JwMgFX5sdBzrSHAOrWGbfKhXO1FVMXTE5DhJMChC9iTInqRhT5u8az6YLuqAXE-6jexryLCAt20oT78mlT5IfKF1GCsF_nMWuJkLk8bIOo19V8g4itpkvWZ-UmmVWXK1B9rkddMN-gAveWRhyjOkAZcR3OYQ5vhkISvNSHxoBRXvtUm0JEVLQ13uKSZjW3M8jDGQhmG9r-XtaljXroNvBfJ_65V0B4NB8-_Zvyf-itzpHQz2k_29Yf85uYufLZKL1klrfnpmXoCLOE9fVvuQkuOb3vq_AcAqdCw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELaqIiouCMpfaAEjgQRSl-x61-v1AaHQNmoJiXKgUm7Lru0lkbq7aZMK9dZH4Fk48jh9Ema8P1UEhVNviT0r2Z7x-Bt77I-QVx5PmA81TuKl0glUlDopmIoD_lIqX0jDjc3yHYUHR8GnCZ-skV_NXRhMq2x8onXUulS4R96FlZ-5HAAL72Z1WsR4r_9hfuIggxSetDZ0GpWJDMz5dwjfFu8P90DXrxnr73_ZPXBqhgFHcSGlE2a-D_g71UIhQ4JhMmJJKjymNax7DGxVeWnmKjcJ_URnzIQy4_A7BVigA4GMEeD-bwk_CJA2QkzaYA9gkt1bhNVZOOCMwvpZIc4465o8x0vwECrB_JErK6IlDvgb2v0zabM9uV3F1XZh7N8jd2tES3uVCd4na6bYJLcrjsvzTbIxrE_vH5BpcHnx8_Lix3haLuZTiNZBqXhQURiqkCRELRd0t-ztULx6t0OTQlMNUjkK5GYJ5no8U1Qbm4FCZwXNkzy3-zTUEvosaJnR8aA3ekiObkQPj8h6URbmCaEJBJXG01nKvSQAUelHRkeRFpJzKA075F0z2rGqn0FHNo7jGMMhVE-M6olb9XTIm_aDefUCyPWiH1F9rRg-3W0LytNvce0JYl9qHUZKAXLOAjdzodMYU6eR78okEqJDthvlx7U_WcRX1t8hL9tq8AR4vJMUpjxDGQCLAJhD6OPjylbalvhQCs7d6xCxYkUrTV2tKWZT-9p4GGEIDc1629jbVbOuHQffGuT_xiveHw6H7b-n_-74C7IBEz7-fDgabJE7-FWVVbRN1penZ-YZYMNl-txOQkq-3vSs_w2D7nHI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4%27-Phosphopantetheine+corrects+CoA%2C+iron%2C+and+dopamine+metabolic+defects+in+mammalian+models+of+PKAN&rft.jtitle=EMBO+molecular+medicine&rft.au=Jeong%2C+Suh+Young&rft.au=Hogarth%2C+Penelope&rft.au=Placzek%2C+Andrew&rft.au=Gregory%2C+Allison+M&rft.date=2019-12-01&rft.issn=1757-4684&rft.eissn=1757-4684&rft.volume=11&rft.issue=12&rft.spage=e10489&rft_id=info:doi/10.15252%2Femmm.201910489&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon