4′‐Phosphopantetheine corrects CoA, iron, and dopamine metabolic defects in mammalian models of PKAN
Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigati...
Saved in:
Published in | EMBO molecular medicine Vol. 11; no. 12; pp. e10489 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2019
EMBO Press John Wiley and Sons Inc Springer Nature |
Subjects | |
Online Access | Get full text |
ISSN | 1757-4676 1757-4684 1757-4684 |
DOI | 10.15252/emmm.201910489 |
Cover
Abstract | Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of
Pank2
and found that isolating the disease‐vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4′‐phosphopantetheine, normalized levels of the CoA‐, iron‐, and dopamine‐related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4′‐phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron–sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4′‐phosphopantetheine as a candidate therapeutic for PKAN.
Synopsis
Mutations in PANK2 cause pantothenate kinase‐associated neurodegeneration (PKAN), a neurodegeneration with brain iron accumulation (NBIA) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate.
Germline deletion of
Pank2
, encoding pantothenate kinase 2, causes defects in CoA, iron, and dopamine metabolism and diminished activities of mitochondrial aconitase, complex I, and pyruvate dehydrogenase (PDH) in globus pallidus.
Regional biomarker abnormalities, which are revealed by isolating disease‐vulnerable brain regions, are specifically attributable to a defect in Pank2 alone, without the need to superimpose further genetic or metabolic defects.
Correction of the CoA metabolic defect by oral administration of 4′‐phosphopantetheine recovers iron and dopamine homeostasis in brain and normalizes mitochondrial complex I and PDH activities.
Graphical Abstract
Mutations in PANK2 cause pantothenate kinase‐associated neurodegeneration (PKAN), a neurodegeneration with brain iron accumulation (NBIA) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate. |
---|---|
AbstractList | Pantothenate kinase‐associated neurodegeneration (
PKAN
) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of
Pank2
and found that isolating the disease‐vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4′‐phosphopantetheine, normalized levels of the CoA‐, iron‐, and dopamine‐related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4′‐phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron–sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4′‐phosphopantetheine as a candidate therapeutic for
PKAN
.
Mutations in
PANK
2 cause pantothenate kinase‐associated neurodegeneration (
PKAN
), a neurodegeneration with brain iron accumulation (
NBIA
) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate. Abstract Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease‐vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4′‐phosphopantetheine, normalized levels of the CoA‐, iron‐, and dopamine‐related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4′‐phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron–sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4′‐phosphopantetheine as a candidate therapeutic for PKAN. Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease‐vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4′‐phosphopantetheine, normalized levels of the CoA‐, iron‐, and dopamine‐related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4′‐phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron–sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4′‐phosphopantetheine as a candidate therapeutic for PKAN. Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN.Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN. Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease‐vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4′‐phosphopantetheine, normalized levels of the CoA‐, iron‐, and dopamine‐related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4′‐phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron–sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4′‐phosphopantetheine as a candidate therapeutic for PKAN. Synopsis Mutations in PANK2 cause pantothenate kinase‐associated neurodegeneration (PKAN), a neurodegeneration with brain iron accumulation (NBIA) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate. Germline deletion of Pank2 , encoding pantothenate kinase 2, causes defects in CoA, iron, and dopamine metabolism and diminished activities of mitochondrial aconitase, complex I, and pyruvate dehydrogenase (PDH) in globus pallidus. Regional biomarker abnormalities, which are revealed by isolating disease‐vulnerable brain regions, are specifically attributable to a defect in Pank2 alone, without the need to superimpose further genetic or metabolic defects. Correction of the CoA metabolic defect by oral administration of 4′‐phosphopantetheine recovers iron and dopamine homeostasis in brain and normalizes mitochondrial complex I and PDH activities. Graphical Abstract Mutations in PANK2 cause pantothenate kinase‐associated neurodegeneration (PKAN), a neurodegeneration with brain iron accumulation (NBIA) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate. Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease‐vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4′‐phosphopantetheine, normalized levels of the CoA‐, iron‐, and dopamine‐related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4′‐phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron–sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4′‐phosphopantetheine as a candidate therapeutic for PKAN. Synopsis Mutations in PANK2 cause pantothenate kinase‐associated neurodegeneration (PKAN), a neurodegeneration with brain iron accumulation (NBIA) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate. Germline deletion of Pank2, encoding pantothenate kinase 2, causes defects in CoA, iron, and dopamine metabolism and diminished activities of mitochondrial aconitase, complex I, and pyruvate dehydrogenase (PDH) in globus pallidus. Regional biomarker abnormalities, which are revealed by isolating disease‐vulnerable brain regions, are specifically attributable to a defect in Pank2 alone, without the need to superimpose further genetic or metabolic defects. Correction of the CoA metabolic defect by oral administration of 4′‐phosphopantetheine recovers iron and dopamine homeostasis in brain and normalizes mitochondrial complex I and PDH activities. Mutations in PANK2 cause pantothenate kinase‐associated neurodegeneration (PKAN), a neurodegeneration with brain iron accumulation (NBIA) disorder. This study presents a mouse model that recapitulates key features of the human disease and shows rescue by a coenzyme A pathway intermediate. |
Author | Nilsen, Aaron Gregory, Allison M Jeong, Suh Young Pham, Thao Sibon, Ody CM Duffy, Megan Freed, Alison Placzek, Andrew Lambrechts, Roald Jin, Haihong Rai, Puneet Wakeman, Katrina van der Zwaag, Marianne Hogarth, Penelope Hamada, Jeffrey Woltjer, Randall L Hayflick, Susan J Schwanemann, Leila Fox, Rachel Cobb, Jared Zhen, Dolly Gray, Nora Ralle, Martina |
AuthorAffiliation | 4 Department of Cell Biology University Medical Center Groningen Groningen the Netherlands 3 Medicinal Chemistry Core Oregon Health & Science University Portland OR USA 1 Department of Molecular & Medical Genetics Oregon Health & Science University Portland OR USA 5 Department of Pathology Oregon Health & Science University Portland OR USA 6 Department of Pediatrics Oregon Health & Science University Portland OR USA 2 Department of Neurology Oregon Health & Science University Portland OR USA |
AuthorAffiliation_xml | – name: 1 Department of Molecular & Medical Genetics Oregon Health & Science University Portland OR USA – name: 4 Department of Cell Biology University Medical Center Groningen Groningen the Netherlands – name: 3 Medicinal Chemistry Core Oregon Health & Science University Portland OR USA – name: 6 Department of Pediatrics Oregon Health & Science University Portland OR USA – name: 2 Department of Neurology Oregon Health & Science University Portland OR USA – name: 5 Department of Pathology Oregon Health & Science University Portland OR USA |
Author_xml | – sequence: 1 givenname: Suh Young orcidid: 0000-0002-6376-7001 surname: Jeong fullname: Jeong, Suh Young organization: Department of Molecular & Medical Genetics, Oregon Health & Science University – sequence: 2 givenname: Penelope surname: Hogarth fullname: Hogarth, Penelope organization: Department of Molecular & Medical Genetics, Oregon Health & Science University, Department of Neurology, Oregon Health & Science University – sequence: 3 givenname: Andrew surname: Placzek fullname: Placzek, Andrew organization: Medicinal Chemistry Core, Oregon Health & Science University – sequence: 4 givenname: Allison M surname: Gregory fullname: Gregory, Allison M organization: Department of Molecular & Medical Genetics, Oregon Health & Science University – sequence: 5 givenname: Rachel orcidid: 0000-0001-6265-2256 surname: Fox fullname: Fox, Rachel organization: Department of Molecular & Medical Genetics, Oregon Health & Science University – sequence: 6 givenname: Dolly surname: Zhen fullname: Zhen, Dolly organization: Department of Molecular & Medical Genetics, Oregon Health & Science University – sequence: 7 givenname: Jeffrey surname: Hamada fullname: Hamada, Jeffrey organization: Department of Molecular & Medical Genetics, Oregon Health & Science University – sequence: 8 givenname: Marianne surname: van der Zwaag fullname: van der Zwaag, Marianne organization: Department of Cell Biology, University Medical Center Groningen – sequence: 9 givenname: Roald surname: Lambrechts fullname: Lambrechts, Roald organization: Department of Cell Biology, University Medical Center Groningen – sequence: 10 givenname: Haihong surname: Jin fullname: Jin, Haihong organization: Medicinal Chemistry Core, Oregon Health & Science University – sequence: 11 givenname: Aaron surname: Nilsen fullname: Nilsen, Aaron organization: Medicinal Chemistry Core, Oregon Health & Science University – sequence: 12 givenname: Jared surname: Cobb fullname: Cobb, Jared organization: Department of Pathology, Oregon Health & Science University – sequence: 13 givenname: Thao surname: Pham fullname: Pham, Thao organization: Department of Pathology, Oregon Health & Science University – sequence: 14 givenname: Nora surname: Gray fullname: Gray, Nora organization: Department of Neurology, Oregon Health & Science University – sequence: 15 givenname: Martina surname: Ralle fullname: Ralle, Martina organization: Department of Molecular & Medical Genetics, Oregon Health & Science University – sequence: 16 givenname: Megan surname: Duffy fullname: Duffy, Megan organization: Department of Molecular & Medical Genetics, Oregon Health & Science University – sequence: 17 givenname: Leila surname: Schwanemann fullname: Schwanemann, Leila organization: Department of Molecular & Medical Genetics, Oregon Health & Science University – sequence: 18 givenname: Puneet surname: Rai fullname: Rai, Puneet organization: Department of Molecular & Medical Genetics, Oregon Health & Science University – sequence: 19 givenname: Alison surname: Freed fullname: Freed, Alison organization: Department of Molecular & Medical Genetics, Oregon Health & Science University – sequence: 20 givenname: Katrina surname: Wakeman fullname: Wakeman, Katrina organization: Department of Molecular & Medical Genetics, Oregon Health & Science University – sequence: 21 givenname: Randall L surname: Woltjer fullname: Woltjer, Randall L organization: Department of Pathology, Oregon Health & Science University – sequence: 22 givenname: Ody CM orcidid: 0000-0002-6836-6063 surname: Sibon fullname: Sibon, Ody CM organization: Department of Cell Biology, University Medical Center Groningen – sequence: 23 givenname: Susan J orcidid: 0000-0003-2595-3943 surname: Hayflick fullname: Hayflick, Susan J email: hayflick@ohsu.edu organization: Department of Molecular & Medical Genetics, Oregon Health & Science University, Department of Neurology, Oregon Health & Science University, Department of Pediatrics, Oregon Health & Science University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31660701$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhkeoiF5gzQ6NxIZF0_oytscskKKohYoGuoC15bE9iaOxndoTUHd9hD4Lj9Qnwcm0oa1UsfKR_f3_ufjsFzs-eFMUbyE4ggQRdGycc0cIQA5BVfMXxR5khI0qWlc725jR3WI_pQUAlFBYvyp2MaQUMAD3inl1e_3n9vrmYh7Sch6W0vemnxvrTalCjEb1qZyE8WFpY_CHpfS61Jlya8CZXjahs6rUpt2Q1pdOOic7K3MUtOlSGdry4uv42-viZSu7ZN7cnQfFz9OTH5Mvo_Pvn88m4_ORIozzEW0xrlDdaKYAwcggXiPZMIi0hqhCjFcKNi1QQFIsdYsM5S3JcQMR0RUj-KA4G3x1kAuxjNbJeCWCtGJzEeJMyNhb1RmBuda0Vgpy3FagBTkpYJA1NQZc1oxlr0-D13LVOKOV8X2U3SPTxy_ezsUs_BK05iQPOBt8uDOI4XJlUi-cTcp0nfQmrJJAGALESf6NjL5_gi7CKvo8qkwhBAiAeN3du4cVbUu5_9AMkAFQMaQUTSuU7WVvw7pA2wkIxGZxxHpxxHZxsu74ie7e-nnFx0Hx23bm6n-4OJlOpw_FYBCnrPMzE_91-1y-vzqb5zc |
CitedBy_id | crossref_primary_10_1016_j_parkreldis_2022_03_017 crossref_primary_10_3390_biom12091323 crossref_primary_10_1089_jmf_2024_0157 crossref_primary_10_3390_ijms24010435 crossref_primary_10_3390_ijms22010293 crossref_primary_10_1186_s13023_023_02687_5 crossref_primary_10_3390_pharmaceutics15010202 crossref_primary_10_3390_ijms232112914 crossref_primary_10_1016_j_ymgme_2022_09_011 crossref_primary_10_3389_fneur_2021_629414 crossref_primary_10_1002_mds_28392 crossref_primary_10_1021_acs_jmedchem_0c01531 crossref_primary_10_1002_eji_202350435 crossref_primary_10_1016_j_bbamcr_2021_118965 crossref_primary_10_1016_j_bbabio_2024_149517 crossref_primary_10_3390_antiox9101020 crossref_primary_10_1016_j_mito_2023_02_007 crossref_primary_10_3389_fnagi_2022_848919 crossref_primary_10_1002_jimd_12584 crossref_primary_10_1016_j_plipres_2020_101028 crossref_primary_10_1038_s41419_022_04626_x crossref_primary_10_1177_1535370220953065 crossref_primary_10_1177_1971400920943967 crossref_primary_10_1002_ajmg_a_62848 crossref_primary_10_1002_acn3_51127 crossref_primary_10_1016_j_molcel_2022_05_006 crossref_primary_10_3390_biom12081065 crossref_primary_10_1186_s13023_020_01530_5 crossref_primary_10_3389_fnagi_2022_893159 crossref_primary_10_1186_s13023_021_01823_3 crossref_primary_10_3390_ph16101359 crossref_primary_10_21769_BioProtoc_5126 crossref_primary_10_3390_ijms21249707 crossref_primary_10_1038_s41467_022_30178_x crossref_primary_10_3390_ijms21103664 crossref_primary_10_1111_dmcn_14869 crossref_primary_10_1097_WCO_0000000000000844 crossref_primary_10_3389_fncel_2022_878103 crossref_primary_10_3390_ijms241310696 crossref_primary_10_1124_jpet_123_001919 crossref_primary_10_1186_s12967_022_03304_y crossref_primary_10_1016_j_bbadis_2020_165663 crossref_primary_10_1038_s42255_024_01059_y crossref_primary_10_1186_s13041_021_00863_x crossref_primary_10_3390_ijms24065951 crossref_primary_10_3390_brainsci11081031 crossref_primary_10_1177_10738584221100183 crossref_primary_10_3390_biom12020325 crossref_primary_10_1002_mds_28642 crossref_primary_10_1016_j_jbc_2022_101577 |
Cites_doi | 10.1073/pnas.0807581105 10.1016/j.cmet.2014.01.015 10.1016/j.bbabio.2010.03.006 10.1126/science.276.5319.1709 10.1196/annals.1306.023 10.1073/pnas.1519473113 10.1016/S0378-1119(02)00564-4 10.1016/S0006-8993(97)00008-5 10.1016/j.molcel.2018.06.039 10.1093/brain/awt325 10.1016/j.nbd.2015.02.030 10.1242/dmm.009019 10.15252/emmm.201910488 10.1016/j.cmet.2015.05.014 10.15252/emmm.201606391 10.1093/carcin/bgx023 10.1074/jbc.273.35.22334 10.1016/j.ymgme.2015.10.012 10.1038/s41467-018-06703-2 10.1042/BCJ20170129 10.1016/j.ajo.2005.03.024 10.1371/journal.pone.0006379 10.1038/ng572 10.1038/nbt1210-1248 10.1172/JCI112152 10.1016/S0014-5793(97)00428-6 10.1056/NEJMoa020817 10.1016/j.plipres.2005.04.001 10.1194/jlr.M300279-JLR200 10.1126/science.1106391 10.1111/mmi.12402 10.1096/fj.07-8986 10.1016/S1474-4422(19)30142-5 10.1016/S0006-8993(96)01271-1 10.1016/j.chembiol.2007.01.013 10.1038/84859 10.1038/nchembio.1906 10.1074/jbc.M707627200 10.1006/mgme.2000.3138 10.1523/JNEUROSCI.4265-04.2005 10.1016/B978-008045382-8.00141-6 10.1039/C3NP70054B 10.7554/eLife.17828 10.1042/BCJ20180043 10.1016/S0021-9258(18)65695-9 10.1074/jbc.R800068200 10.1038/s41598-017-11564-8 10.1016/j.ajhg.2013.11.008 10.1093/hmg/ddi005 10.1038/nrm.2016.110 10.1093/hmg/ddg026 10.1016/j.cmet.2006.02.003 10.1111/j.1432-1033.1989.tb15061.x 10.1016/j.bbamcr.2014.09.009 10.1007/s00109-009-0565-x 10.1074/jbc.275.2.1377 10.1042/BST20170506 10.1093/jn/113.10.2107 10.1042/bss0660085 10.1126/science.1230593 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019 The Authors. Published under the terms of the CC BY 4.0 license 2019 The Authors. Published under the terms of the CC BY 4.0 license. 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2019 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.15252/emmm.201910489 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central - New (Subscription) Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 4 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 5 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | Suh Young Jeong et al |
EISSN | 1757-4684 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_39dd68cc193f40f0bd70717b8309a877 PMC6895607 31660701 10_15252_emmm_201910489 EMMM201910489 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Collins Foundation (TCF) funderid: 10.13039/100001043 – fundername: HHS|NIH|National Center for Advancing Translational Sciences (NCATS) grantid: UL1TR0002369 funderid: 10.13039/100006108 – fundername: NBIA Disorders Association (Neurodegeneration with Brain Iron Accumulation Disorders Association) funderid: 10.13039/100009582 – fundername: OCTRI Biomedical Innovation Program – fundername: HHS|NIH|National Institute of Neurological Disorders and Stroke (NINDS) grantid: R01NS109083 funderid: 10.13039/100000065 – fundername: Friends of Doernbecher – fundername: HHS|NIH|Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) grantid: R21HD088833 funderid: 10.13039/100009633 – fundername: HHS|NIH|National Institute of Neurological Disorders and Stroke (NINDS) funderid: R01NS109083 – fundername: NBIA Disorders Association (Neurodegeneration with Brain Iron Accumulation Disorders Association) – fundername: Collins Foundation (TCF) – fundername: HHS|NIH|National Center for Advancing Translational Sciences (NCATS) funderid: UL1TR0002369 – fundername: HHS|NIH|Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) funderid: R21HD088833 – fundername: NCATS NIH HHS grantid: UL1 TR002369 – fundername: NICHD NIH HHS grantid: R21 HD088833 – fundername: NINDS NIH HHS grantid: R01 NS109083 – fundername: NCRR NIH HHS grantid: S10 RR025512 – fundername: ; grantid: R21HD088833 – fundername: ; – fundername: ; grantid: UL1TR0002369 – fundername: ; grantid: R01NS109083 |
GroupedDBID | --- 0R~ 1OC 24P 4.4 53G 5DZ 5GY 5VS 7X7 8-0 8-1 8AO 8FE 8FH 8FI 8FJ AAHHS AAJSJ AAZKR ABOCM ABUWG ACCFJ ACCMX ACGFO ACGFS ACPRK ACXQS ADBBV ADKYN ADPDF ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFKRA AHMBA AIAGR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BTFSW BVXVI C6C CCPQU D-9 DIK DU5 EBD EBS EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HK~ HMCUK HYE HZ~ IAO IHR ITC KQ8 LH4 LK8 M48 M7P M~E NNB O9- OIG OK1 OVD OVEED P2P PIMPY PQQKQ PROAC RHF RHI RNS ROL RPM SV3 TEORI UKHRP WIN XV2 31~ ABJNI ADRAZ AFZJQ EBLON EJD GODZA H13 LW6 AASML AAYXX CITATION NAO PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c5799-6f33428bd7c0532e2982ab712dd1242794c1bf0c0a63adf2e69f5a63b125d4753 |
IEDL.DBID | M48 |
ISSN | 1757-4676 1757-4684 |
IngestDate | Wed Aug 27 01:27:45 EDT 2025 Thu Aug 21 14:01:22 EDT 2025 Fri Sep 05 12:07:30 EDT 2025 Wed Aug 13 07:34:13 EDT 2025 Wed Feb 19 02:07:26 EST 2025 Tue Jul 01 01:53:01 EDT 2025 Thu Apr 24 22:52:53 EDT 2025 Wed Jan 22 16:36:18 EST 2025 Fri Feb 21 02:37:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | NBIA PANK2 4′‐phosphopantetheine PKAN coenzyme A 4′-phosphopantetheine |
Language | English |
License | Attribution 2019 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5799-6f33428bd7c0532e2982ab712dd1242794c1bf0c0a63adf2e69f5a63b125d4753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 See also: https://doi.org/10.15252/emmm.201910488 (December 2019) |
ORCID | 0000-0002-6836-6063 0000-0003-2595-3943 0000-0002-6376-7001 0000-0001-6265-2256 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.15252/emmm.201910489 |
PMID | 31660701 |
PQID | 2322050135 |
PQPubID | 866378 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_39dd68cc193f40f0bd70717b8309a877 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6895607 proquest_miscellaneous_2310295166 proquest_journals_2322050135 pubmed_primary_31660701 crossref_citationtrail_10_15252_emmm_201910489 crossref_primary_10_15252_emmm_201910489 wiley_primary_10_15252_emmm_201910489_EMMM201910489 springer_journals_10_15252_emmm_201910489 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Frankfurt – name: Hoboken |
PublicationTitle | EMBO molecular medicine |
PublicationTitleAbbrev | EMBO Mol Med |
PublicationTitleAlternate | EMBO Mol Med |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK EMBO Press John Wiley and Sons Inc Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: EMBO Press – name: John Wiley and Sons Inc – name: Springer Nature |
References | Zhou, Westaway, Levinson, Johnson, Gitschier, Hayflick (CR63) 2001; 28 Kotzbauer, Truax, Trojanowski, Lee (CR25) 2005; 25 Rouault (CR44) 2012; 5 Sharma, Subramanian, Yun, Frank, White, Rock, Lee, Jackowski (CR46) 2018; 9 Van Vranken, Jeong, Wei, Chen, Gygi, Winge, Rutter (CR58) 2016; 5 Rhee, Zou, Udeshi, Martell, Mootha, Carr, Ting (CR39) 2013; 339 Choi, Kruse, Palmiter, Xia (CR9) 2008; 105 Gout (CR17) 2018; 46 Hiltunen, Schonauer, Autio, Mittelmeier, Kastaniotis, Dieckmann (CR20) 2009; 284 Hiltunen, Autio, Schonauer, Kursu, Dieckmann, Kastaniotis (CR21) 2010; 1797 Brunetti, Dusi, Giordano, Lamperti, Morbin, Fugnanesi, Marchet, Fagiolari, Sibon, Moggio (CR5) 2014; 137 Johnson, Kuo, Westaway, Parker, Ching, Gitschier, Hayflick (CR23) 2004; 1012 Rittie, Fisher (CR41) 2005; 117 Levintow, Novelli (CR31) 1954; 207 Darlington (CR11) 2006; 2006 Hayflick, Westaway, Levinson, Zhou, Johnson, Ching, Gitschier (CR19) 2003; 348 Beld, Sonnenschein, Vickery, Noel, Burkart (CR3) 2014; 31 Brody, Oh, Hoja, Schweizer (CR4) 1997; 408 Sriram, Pai, Boyd, Ravindranath (CR50) 1997; 749 Di Meo, Colombelli, Srinivasan, de Villiers, Hamada, Jeong, Fox, Woltjer, Tepper, Lahaye (CR12) 2017; 7 Kursu, Pietikainen, Fontanesi, Aaltonen, Suomi, Raghavan Nair, Schonauer, Dieckmann, Barrientos, Hiltunen (CR27) 2013; 90 Zhang, Chohnan, Virga, Stevens, Ilkayeva, Wenner, Bain, Newgard, Lee, Rock (CR62) 2007; 14 Tsuchiya, Peak‐Chew, Newell, Miller‐Aidoo, Mangal, Zhyvoloup, Bakovic, Malanchuk, Pereira, Kotiadis (CR55) 2017; 474 Dusi, Valletta, Haack, Tsuchiya, Venco, Pasqualato, Goffrini, Tigano, Demchenko, Wieland (CR14) 2014; 94 Tong, Rouault (CR54) 2006; 3 Klopstock, Tricta, Neumayr, Karin, Zorzi, Fradette, Kmiec, Buchner, Steele, Horvath (CR24) 2019; 18 Babcock, de Silva, Oaks, Davis‐Kaplan, Jiralerspong, Montermini, Pandolfo, Kaplan (CR2) 1997; 276 Chen, Wang, Huang, Zeng, Hu, Guan, Zhang, Yu, Johnson, Gonzalez (CR8) 2017; 38 Chen, Wang, Kaufman, Butow (CR7) 2005; 307 Shibata, Gross, Henderson (CR47) 1983; 113 Autio, Kastaniotis, Pospiech, Miinalainen, Schonauer, Dieckmann, Hiltunen (CR1) 2008; 22 Donato, Krupenko, Tsybovsky, Krupenko (CR13) 2007; 282 Srinivasan, Baratashvili, van der Zwaag, Kanon, Colombelli, Lambrechts, Schaap, Nollen, Podgorsek, Kosec (CR49) 2015; 11 Uhlen, Oksvold, Fagerberg, Lundberg, Jonasson, Forsberg, Zwahlen, Kampf, Wester, Hober (CR57) 2010; 28 Ferrante, Schulz, Kowall, Beal (CR16) 1997; 753 Sibon, Strauss (CR48) 2016; 17 Leonardi, Zhang, Rock, Jackowski (CR30) 2005; 44 Rock, Karim, Zhang, Jackowski (CR43) 2002; 291 Rock, Calder, Karim, Jackowski (CR42) 2000; 275 Maio, Rouault (CR33) 2015; 1853 Stuible, Meier, Wagner, Hannappel, Schweizer (CR53) 1998; 273 Matak, Matak, Moustafa, Aryal, Benner, Wetsel, Andrews (CR34) 2016; 113 Richardson, Huang, Whitnall, Becker, Ponka, Suryo Rahmanto (CR40) 2010; 88 Pietrocola, Galluzzi, Bravo‐San Pedro, Madeo, Kroemer (CR36) 2015; 21 Praphanphoj, Sacksteder, Gould, Thomas, Geraghty (CR37) 2001; 72 Maio, Singh, Uhrigshardt, Saxena, Tong, Rouault (CR32) 2014; 19 LaVaute, Smith, Cooperman, Iwai, Land, Meyron‐Holtz, Drake, Miller, Abu‐Asab, Tsokos (CR29) 2001; 27 Wittwer, Gahl, Butler, Zatz, Thoene (CR60) 1985; 76 Orellana, Santambrogio, Rubio, Yekhlef, Cancellieri, Dusi, Giannelli, Venco, Mazzara, Cozzi (CR35) 2016; 8 Greenamyre, MacKenzie, Peng, Stephans (CR18) 1999; 66 Van Vranken, Nowinski, Clowers, Jeong, Ouyang, Berg, Gygi, Gygi, Winge, Rutter (CR59) 2018; 71 CR28 Egan, Weleber, Hogarth, Gregory, Coryell, Westaway, Gitschier, Das, Hayflick (CR15) 2005; 140 Hortnagel, Prokisch, Meitinger (CR22) 2003; 12 Santambrogio, Dusi, Guaraldo, Rotundo, Broccoli, Garavaglia, Tiranti, Levi (CR45) 2015; 81 Calmels, Schmucker, Wattenhofer‐Donze, Martelli, Vaucamps, Reutenauer, Messaddeq, Bouton, Koenig, Puccio (CR6) 2009; 4 Chuman, Brody (CR10) 1989; 184 Ramaswamy, Karim, Murti, Jackowski (CR38) 2004; 45 Tsuchiya, Zhyvoloup, Bakovic, Thomas, Yu, Das, Orengo, Newell, Ward, Saladino (CR56) 2018; 475 Kuo, Duncan, Westaway, Yang, Nune, Xu, Hayflick, Gitschier (CR26) 2005; 14 Strauss, Mander, Hung‐Wen (CR51) 2010 Woltjer, Reese, Richardson, Tran, Green, Pham, Chalupsky, Gabriel, Light, Sanford (CR61) 2015; 116 2017; 7 1997; 753 1983; 113 2019; 11 1997; 276 2019; 18 2008; 105 2017; 474 1954; 207 2014; 137 2018; 46 2003; 12 2005; 25 1998; 273 2018; 9 2005; 140 2015; 81 2017; 38 2010; 28 2016; 113 2005; 307 2006; 2006 2008; 22 2014; 19 2009; 284 2004; 1012 2018; 71 1997; 749 2014; 94 2001; 72 2002; 291 2007; 282 2010 2004; 45 2015; 11 2005; 117 2013; 90 1999; 66 1989; 184 2015; 1853 2006; 3 2001; 27 2000; 275 2001; 28 2016; 17 2005; 44 2007; 14 2010; 1797 2010; 88 2016; 5 2003; 348 2013; 339 2015; 116 2018; 475 2015; 21 2009; 4 1997; 408 2012; 5 1985; 76 2016; 8 2014; 31 2005; 14 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Rittie L (e_1_2_10_42_1) 2005; 117 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Darlington GJ (e_1_2_10_12_1) 2006; 2006 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 275 start-page: 1377 year: 2000 end-page: 1383 ident: CR42 article-title: Pantothenate kinase regulation of the intracellular concentration of coenzyme A publication-title: J Biol Chem – volume: 19 start-page: 445 year: 2014 end-page: 457 ident: CR32 article-title: Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery publication-title: Cell Metab – volume: 44 start-page: 125 year: 2005 end-page: 153 ident: CR30 article-title: Coenzyme A: back in action publication-title: Prog Lipid Res – volume: 140 start-page: 267 year: 2005 end-page: 274 ident: CR15 article-title: Neuro‐ophthalmologic and electroretinographic findings in pantothenate kinase‐associated neurodegeneration (formerly Hallervorden‐Spatz syndrome) publication-title: Am J Ophthalmol – volume: 76 start-page: 1665 year: 1985 end-page: 1672 ident: CR60 article-title: Metabolism of pantethine in cystinosis publication-title: J Clin Invest – volume: 1012 start-page: 282 year: 2004 end-page: 298 ident: CR23 article-title: Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase‐associated neurodegeneration publication-title: Ann N Y Acad Sci – volume: 81 start-page: 144 year: 2015 end-page: 153 ident: CR45 article-title: Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase‐associated neurodegeneration patients publication-title: Neurobiol Dis – start-page: 351 year: 2010 end-page: 410 ident: CR51 article-title: Coenzyme a biosynthesis and enzymology publication-title: Comprehensive Natural Products II Chemistry and Biology – volume: 207 start-page: 761 year: 1954 end-page: 765 ident: CR31 article-title: The synthesis of coenzyme a from pantetheine: preparation and properties of pantetheine kinase publication-title: J Biol Chem – volume: 475 start-page: 1909 year: 2018 end-page: 1937 ident: CR56 article-title: Protein CoAlation and antioxidant function of coenzyme A in prokaryotic cells publication-title: Biochem J – volume: 276 start-page: 1709 year: 1997 end-page: 1712 ident: CR2 article-title: Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin publication-title: Science – volume: 17 start-page: 605 year: 2016 end-page: 606 ident: CR48 article-title: Coenzyme A: to make it or uptake it? publication-title: Nat Rev Mol Cell Biol – volume: 291 start-page: 35 year: 2002 end-page: 43 ident: CR43 article-title: The murine pantothenate kinase (Pank1) gene encodes two differentially regulated pantothenate kinase isozymes publication-title: Gene – volume: 25 start-page: 689 year: 2005 end-page: 698 ident: CR25 article-title: Altered neuronal mitochondrial coenzyme A synthesis in neurodegeneration with brain iron accumulation caused by abnormal processing, stability, and catalytic activity of mutant pantothenate kinase 2 publication-title: J Neurosci – volume: 11 start-page: 784 year: 2015 end-page: 792 ident: CR49 article-title: Extracellular 4′‐phosphopantetheine is a source for intracellular coenzyme A synthesis publication-title: Nat Chem Biol – volume: 284 start-page: 9011 year: 2009 end-page: 9015 ident: CR20 article-title: Mitochondrial fatty acid synthesis type II: more than just fatty acids publication-title: J Biol Chem – volume: 14 start-page: 49 year: 2005 end-page: 57 ident: CR26 article-title: Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia publication-title: Hum Mol Genet – volume: 45 start-page: 17 year: 2004 end-page: 31 ident: CR38 article-title: PPARalpha controls the intracellular coenzyme A concentration via regulation of PANK1alpha gene expression publication-title: J Lipid Res – volume: 14 start-page: 291 year: 2007 end-page: 302 ident: CR62 article-title: Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis publication-title: Chem Biol – volume: 8 start-page: 1197 year: 2016 end-page: 1211 ident: CR35 article-title: Coenzyme A corrects pathological defects in human neurons of PANK2‐associated neurodegeneration publication-title: EMBO Mol Med – volume: 105 start-page: 15136 year: 2008 end-page: 15141 ident: CR9 article-title: Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat publication-title: Proc Natl Acad Sci USA – volume: 27 start-page: 209 year: 2001 end-page: 214 ident: CR29 article-title: Targeted deletion of the gene encoding iron regulatory protein‐2 causes misregulation of iron metabolism and neurodegenerative disease in mice publication-title: Nat Genet – volume: 408 start-page: 217 year: 1997 end-page: 220 ident: CR4 article-title: Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae publication-title: FEBS Lett – volume: 28 start-page: 345 year: 2001 end-page: 349 ident: CR63 article-title: A novel pantothenate kinase gene ( ) is defective in Hallervorden‐Spatz syndrome publication-title: Nat Genet – volume: 307 start-page: 714 year: 2005 end-page: 717 ident: CR7 article-title: Aconitase couples metabolic regulation to mitochondrial DNA maintenance publication-title: Science – volume: 184 start-page: 643 year: 1989 end-page: 649 ident: CR10 article-title: Acyl carrier protein is present in the mitochondria of plants and eucaryotic micro‐organisms publication-title: Eur J Biochem – volume: 5 start-page: e17828 year: 2016 ident: CR58 article-title: The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis publication-title: Elife – volume: 116 start-page: 289 year: 2015 end-page: 297 ident: CR61 article-title: Pallidal neuronal apolipoprotein E in pantothenate kinase‐associated neurodegeneration recapitulates ischemic injury to the globus pallidus publication-title: Mol Genet Metab – volume: 9 start-page: 4399 year: 2018 ident: CR46 article-title: A therapeutic approach to pantothenate kinase associated neurodegeneration publication-title: Nat Commun – volume: 273 start-page: 22334 year: 1998 end-page: 22339 ident: CR53 article-title: A novel phosphopantetheine:protein transferase activating yeast mitochondrial acyl carrier protein publication-title: J Biol Chem – volume: 1853 start-page: 1493 year: 2015 end-page: 1512 ident: CR33 article-title: Iron‐sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery publication-title: Biochim Biophys Acta – volume: 31 start-page: 61 year: 2014 end-page: 108 ident: CR3 article-title: The phosphopantetheinyl transferases: catalysis of a post‐translational modification crucial for life publication-title: Nat Prod Rep – volume: 117 start-page: 83 year: 2005 end-page: 98 ident: CR41 article-title: Isolation and culture of skin fibroblasts publication-title: Methods Mol Med – volume: 113 start-page: 2107 year: 1983 end-page: 2115 ident: CR47 article-title: Hydrolysis and absorption of pantothenate and its coenzymes in the rat small intestine publication-title: J Nutr – volume: 7 start-page: 11260 year: 2017 ident: CR12 article-title: Acetyl‐4′‐phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency publication-title: Sci Rep – volume: 38 start-page: 474 year: 2017 end-page: 483 ident: CR8 article-title: PPARalpha regulates tumor cell proliferation and senescence via a novel target gene carnitine palmitoyltransferase 1C publication-title: Carcinogenesis – volume: 339 start-page: 1328 year: 2013 end-page: 1331 ident: CR39 article-title: Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging publication-title: Science – volume: 113 start-page: 3428 year: 2016 end-page: 3435 ident: CR34 article-title: Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice publication-title: Proc Natl Acad Sci USA – volume: 66 start-page: 85 year: 1999 end-page: 97 ident: CR18 article-title: Mitochondrial dysfunction in Parkinson's disease publication-title: Biochem Soc Symp – volume: 88 start-page: 323 year: 2010 end-page: 329 ident: CR40 article-title: The ins and outs of mitochondrial iron‐loading: the metabolic defect in Friedreich's ataxia publication-title: J Mol Med (Berl) – volume: 71 start-page: 567 year: 2018 end-page: 580 ident: CR59 article-title: ACP acylation is an Acetyl‐CoA‐dependent modification required for electron transport chain assembly publication-title: Mol Cell – volume: 5 start-page: 155 year: 2012 end-page: 164 ident: CR44 article-title: Biogenesis of iron‐sulfur clusters in mammalian cells: new insights and relevance to human disease publication-title: Dis Model Mech – volume: 137 start-page: 57 year: 2014 end-page: 68 ident: CR5 article-title: Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase‐associated neurodegeneration mouse model publication-title: Brain – volume: 4 start-page: e6379 year: 2009 ident: CR6 article-title: The first cellular models based on frataxin missense mutations that reproduce spontaneously the defects associated with Friedreich ataxia publication-title: PLoS One – volume: 3 start-page: 199 year: 2006 end-page: 210 ident: CR54 article-title: Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron‐sulfur cluster biogenesis and iron homeostasis publication-title: Cell Metab – volume: 90 start-page: 824 year: 2013 end-page: 840 ident: CR27 article-title: Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae publication-title: Mol Microbiol – volume: 749 start-page: 44 year: 1997 end-page: 52 ident: CR50 article-title: Evidence for generation of oxidative stress in brain by MPTP: and studies in mice publication-title: Brain Res – volume: 28 start-page: 1248 year: 2010 end-page: 1250 ident: CR57 article-title: Towards a knowledge‐based human protein atlas publication-title: Nat Biotechnol – volume: 753 start-page: 157 year: 1997 end-page: 162 ident: CR16 article-title: Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra publication-title: Brain Res – volume: 348 start-page: 33 year: 2003 end-page: 40 ident: CR19 article-title: Genetic, clinical, and radiographic delineation of Hallervorden‐Spatz syndrome publication-title: N Engl J Med – volume: 72 start-page: 336 year: 2001 end-page: 342 ident: CR37 article-title: Identification of the alpha‐aminoadipic semialdehyde dehydrogenase‐phosphopantetheinyl transferase gene, the human ortholog of the yeast LYS5 gene publication-title: Mol Genet Metab – volume: 46 start-page: 721 year: 2018 end-page: 728 ident: CR17 article-title: Coenzyme A, protein CoAlation and redox regulation in mammalian cells publication-title: Biochem Soc Trans – volume: 12 start-page: 321 year: 2003 end-page: 327 ident: CR22 article-title: An isoform of hPANK2, deficient in pantothenate kinase‐associated neurodegeneration, localizes to mitochondria publication-title: Hum Mol Genet – volume: 94 start-page: 11 year: 2014 end-page: 22 ident: CR14 article-title: Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation publication-title: Am J Hum Genet – volume: 18 start-page: 631 year: 2019 end-page: 642 ident: CR24 article-title: Safety and efficacy of deferiprone for pantothenate kinase‐associated neurodegeneration: a randomised, double‐blind, controlled trial and an open‐label extension study publication-title: Lancet Neurol – volume: 282 start-page: 34159 year: 2007 end-page: 34166 ident: CR13 article-title: 10‐formyltetrahydrofolate dehydrogenase requires a 4′‐phosphopantetheine prosthetic group for catalysis publication-title: J Biol Chem – volume: 2006 start-page: pdb.prot4481 year: 2006 ident: CR11 article-title: Epstein‐Barr virus transformation of lymphoblasts publication-title: CSH Protoc – volume: 22 start-page: 569 year: 2008 end-page: 578 ident: CR1 article-title: An ancient genetic link between vertebrate mitochondrial fatty acid synthesis and RNA processing publication-title: FASEB J – ident: CR28 – volume: 474 start-page: 2489 year: 2017 end-page: 2508 ident: CR55 article-title: Protein CoAlation: a redox‐regulated protein modification by coenzyme A in mammalian cells publication-title: Biochem J – volume: 1797 start-page: 1195 year: 2010 end-page: 1202 ident: CR21 article-title: Mitochondrial fatty acid synthesis and respiration publication-title: Biochim Biophys Acta – volume: 21 start-page: 805 year: 2015 end-page: 821 ident: CR36 article-title: Acetyl coenzyme A: a central metabolite and second messenger publication-title: Cell Metab – volume: 140 start-page: 267 year: 2005 end-page: 274 article-title: Neuro‐ophthalmologic and electroretinographic findings in pantothenate kinase‐associated neurodegeneration (formerly Hallervorden‐Spatz syndrome) publication-title: Am J Ophthalmol – volume: 5 start-page: 155 year: 2012 end-page: 164 article-title: Biogenesis of iron‐sulfur clusters in mammalian cells: new insights and relevance to human disease publication-title: Dis Model Mech – volume: 17 start-page: 605 year: 2016 end-page: 606 article-title: Coenzyme A: to make it or uptake it? publication-title: Nat Rev Mol Cell Biol – volume: 207 start-page: 761 year: 1954 end-page: 765 article-title: The synthesis of coenzyme a from pantetheine: preparation and properties of pantetheine kinase publication-title: J Biol Chem – volume: 2006 start-page: pdb.prot4481 year: 2006 article-title: Epstein‐Barr virus transformation of lymphoblasts publication-title: CSH Protoc – volume: 88 start-page: 323 year: 2010 end-page: 329 article-title: The ins and outs of mitochondrial iron‐loading: the metabolic defect in Friedreich's ataxia publication-title: J Mol Med (Berl) – volume: 276 start-page: 1709 year: 1997 end-page: 1712 article-title: Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin publication-title: Science – volume: 408 start-page: 217 year: 1997 end-page: 220 article-title: Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae publication-title: FEBS Lett – volume: 475 start-page: 1909 year: 2018 end-page: 1937 article-title: Protein CoAlation and antioxidant function of coenzyme A in prokaryotic cells publication-title: Biochem J – volume: 71 start-page: 567 year: 2018 end-page: 580 article-title: ACP acylation is an Acetyl‐CoA‐dependent modification required for electron transport chain assembly publication-title: Mol Cell – volume: 105 start-page: 15136 year: 2008 end-page: 15141 article-title: Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat publication-title: Proc Natl Acad Sci USA – volume: 474 start-page: 2489 year: 2017 end-page: 2508 article-title: Protein CoAlation: a redox‐regulated protein modification by coenzyme A in mammalian cells publication-title: Biochem J – volume: 3 start-page: 199 year: 2006 end-page: 210 article-title: Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron‐sulfur cluster biogenesis and iron homeostasis publication-title: Cell Metab – volume: 1853 start-page: 1493 year: 2015 end-page: 1512 article-title: Iron‐sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery publication-title: Biochim Biophys Acta – volume: 11 start-page: e10488 year: 2019 – volume: 28 start-page: 1248 year: 2010 end-page: 1250 article-title: Towards a knowledge‐based human protein atlas publication-title: Nat Biotechnol – volume: 348 start-page: 33 year: 2003 end-page: 40 article-title: Genetic, clinical, and radiographic delineation of Hallervorden‐Spatz syndrome publication-title: N Engl J Med – volume: 339 start-page: 1328 year: 2013 end-page: 1331 article-title: Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging publication-title: Science – volume: 76 start-page: 1665 year: 1985 end-page: 1672 article-title: Metabolism of pantethine in cystinosis publication-title: J Clin Invest – volume: 116 start-page: 289 year: 2015 end-page: 297 article-title: Pallidal neuronal apolipoprotein E in pantothenate kinase‐associated neurodegeneration recapitulates ischemic injury to the globus pallidus publication-title: Mol Genet Metab – volume: 38 start-page: 474 year: 2017 end-page: 483 article-title: PPARalpha regulates tumor cell proliferation and senescence via a novel target gene carnitine palmitoyltransferase 1C publication-title: Carcinogenesis – volume: 90 start-page: 824 year: 2013 end-page: 840 article-title: Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae publication-title: Mol Microbiol – volume: 14 start-page: 291 year: 2007 end-page: 302 article-title: Chemical knockout of pantothenate kinase reveals the metabolic and genetic program responsible for hepatic coenzyme A homeostasis publication-title: Chem Biol – volume: 113 start-page: 2107 year: 1983 end-page: 2115 article-title: Hydrolysis and absorption of pantothenate and its coenzymes in the rat small intestine publication-title: J Nutr – volume: 28 start-page: 345 year: 2001 end-page: 349 article-title: A novel pantothenate kinase gene ( ) is defective in Hallervorden‐Spatz syndrome publication-title: Nat Genet – volume: 184 start-page: 643 year: 1989 end-page: 649 article-title: Acyl carrier protein is present in the mitochondria of plants and eucaryotic micro‐organisms publication-title: Eur J Biochem – volume: 1012 start-page: 282 year: 2004 end-page: 298 article-title: Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase‐associated neurodegeneration publication-title: Ann N Y Acad Sci – volume: 273 start-page: 22334 year: 1998 end-page: 22339 article-title: A novel phosphopantetheine:protein transferase activating yeast mitochondrial acyl carrier protein publication-title: J Biol Chem – volume: 753 start-page: 157 year: 1997 end-page: 162 article-title: Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra publication-title: Brain Res – volume: 9 start-page: 4399 year: 2018 article-title: A therapeutic approach to pantothenate kinase associated neurodegeneration publication-title: Nat Commun – volume: 27 start-page: 209 year: 2001 end-page: 214 article-title: Targeted deletion of the gene encoding iron regulatory protein‐2 causes misregulation of iron metabolism and neurodegenerative disease in mice publication-title: Nat Genet – volume: 1797 start-page: 1195 year: 2010 end-page: 1202 article-title: Mitochondrial fatty acid synthesis and respiration publication-title: Biochim Biophys Acta – volume: 46 start-page: 721 year: 2018 end-page: 728 article-title: Coenzyme A, protein CoAlation and redox regulation in mammalian cells publication-title: Biochem Soc Trans – volume: 21 start-page: 805 year: 2015 end-page: 821 article-title: Acetyl coenzyme A: a central metabolite and second messenger publication-title: Cell Metab – volume: 8 start-page: 1197 year: 2016 end-page: 1211 article-title: Coenzyme A corrects pathological defects in human neurons of PANK2‐associated neurodegeneration publication-title: EMBO Mol Med – volume: 22 start-page: 569 year: 2008 end-page: 578 article-title: An ancient genetic link between vertebrate mitochondrial fatty acid synthesis and RNA processing publication-title: FASEB J – volume: 31 start-page: 61 year: 2014 end-page: 108 article-title: The phosphopantetheinyl transferases: catalysis of a post‐translational modification crucial for life publication-title: Nat Prod Rep – volume: 19 start-page: 445 year: 2014 end-page: 457 article-title: Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery publication-title: Cell Metab – volume: 18 start-page: 631 year: 2019 end-page: 642 article-title: Safety and efficacy of deferiprone for pantothenate kinase‐associated neurodegeneration: a randomised, double‐blind, controlled trial and an open‐label extension study publication-title: Lancet Neurol – volume: 749 start-page: 44 year: 1997 end-page: 52 article-title: Evidence for generation of oxidative stress in brain by MPTP: and studies in mice publication-title: Brain Res – volume: 66 start-page: 85 year: 1999 end-page: 97 article-title: Mitochondrial dysfunction in Parkinson's disease publication-title: Biochem Soc Symp – start-page: 351 year: 2010 end-page: 410 – volume: 137 start-page: 57 year: 2014 end-page: 68 article-title: Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase‐associated neurodegeneration mouse model publication-title: Brain – volume: 307 start-page: 714 year: 2005 end-page: 717 article-title: Aconitase couples metabolic regulation to mitochondrial DNA maintenance publication-title: Science – volume: 94 start-page: 11 year: 2014 end-page: 22 article-title: Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation publication-title: Am J Hum Genet – volume: 45 start-page: 17 year: 2004 end-page: 31 article-title: PPARalpha controls the intracellular coenzyme A concentration via regulation of PANK1alpha gene expression publication-title: J Lipid Res – volume: 275 start-page: 1377 year: 2000 end-page: 1383 article-title: Pantothenate kinase regulation of the intracellular concentration of coenzyme A publication-title: J Biol Chem – volume: 14 start-page: 49 year: 2005 end-page: 57 article-title: Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia publication-title: Hum Mol Genet – volume: 44 start-page: 125 year: 2005 end-page: 153 article-title: Coenzyme A: back in action publication-title: Prog Lipid Res – volume: 117 start-page: 83 year: 2005 end-page: 98 article-title: Isolation and culture of skin fibroblasts publication-title: Methods Mol Med – volume: 4 start-page: e6379 year: 2009 article-title: The first cellular models based on frataxin missense mutations that reproduce spontaneously the defects associated with Friedreich ataxia publication-title: PLoS One – volume: 284 start-page: 9011 year: 2009 end-page: 9015 article-title: Mitochondrial fatty acid synthesis type II: more than just fatty acids publication-title: J Biol Chem – volume: 113 start-page: 3428 year: 2016 end-page: 3435 article-title: Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice publication-title: Proc Natl Acad Sci USA – volume: 25 start-page: 689 year: 2005 end-page: 698 article-title: Altered neuronal mitochondrial coenzyme A synthesis in neurodegeneration with brain iron accumulation caused by abnormal processing, stability, and catalytic activity of mutant pantothenate kinase 2 publication-title: J Neurosci – volume: 5 start-page: e17828 year: 2016 article-title: The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis publication-title: Elife – volume: 282 start-page: 34159 year: 2007 end-page: 34166 article-title: 10‐formyltetrahydrofolate dehydrogenase requires a 4′‐phosphopantetheine prosthetic group for catalysis publication-title: J Biol Chem – volume: 72 start-page: 336 year: 2001 end-page: 342 article-title: Identification of the alpha‐aminoadipic semialdehyde dehydrogenase‐phosphopantetheinyl transferase gene, the human ortholog of the yeast LYS5 gene publication-title: Mol Genet Metab – volume: 81 start-page: 144 year: 2015 end-page: 153 article-title: Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase‐associated neurodegeneration patients publication-title: Neurobiol Dis – volume: 7 start-page: 11260 year: 2017 article-title: Acetyl‐4′‐phosphopantetheine is stable in serum and prevents phenotypes induced by pantothenate kinase deficiency publication-title: Sci Rep – volume: 12 start-page: 321 year: 2003 end-page: 327 article-title: An isoform of hPANK2, deficient in pantothenate kinase‐associated neurodegeneration, localizes to mitochondria publication-title: Hum Mol Genet – volume: 11 start-page: 784 year: 2015 end-page: 792 article-title: Extracellular 4′‐phosphopantetheine is a source for intracellular coenzyme A synthesis publication-title: Nat Chem Biol – volume: 291 start-page: 35 year: 2002 end-page: 43 article-title: The murine pantothenate kinase (Pank1) gene encodes two differentially regulated pantothenate kinase isozymes publication-title: Gene – ident: e_1_2_10_10_1 doi: 10.1073/pnas.0807581105 – ident: e_1_2_10_33_1 doi: 10.1016/j.cmet.2014.01.015 – ident: e_1_2_10_22_1 doi: 10.1016/j.bbabio.2010.03.006 – ident: e_1_2_10_3_1 doi: 10.1126/science.276.5319.1709 – ident: e_1_2_10_24_1 doi: 10.1196/annals.1306.023 – ident: e_1_2_10_35_1 doi: 10.1073/pnas.1519473113 – ident: e_1_2_10_44_1 doi: 10.1016/S0378-1119(02)00564-4 – ident: e_1_2_10_17_1 doi: 10.1016/S0006-8993(97)00008-5 – ident: e_1_2_10_59_1 doi: 10.1016/j.molcel.2018.06.039 – ident: e_1_2_10_6_1 doi: 10.1093/brain/awt325 – ident: e_1_2_10_46_1 doi: 10.1016/j.nbd.2015.02.030 – volume: 117 start-page: 83 year: 2005 ident: e_1_2_10_42_1 article-title: Isolation and culture of skin fibroblasts publication-title: Methods Mol Med – ident: e_1_2_10_45_1 doi: 10.1242/dmm.009019 – ident: e_1_2_10_29_1 doi: 10.15252/emmm.201910488 – ident: e_1_2_10_37_1 doi: 10.1016/j.cmet.2015.05.014 – ident: e_1_2_10_36_1 doi: 10.15252/emmm.201606391 – ident: e_1_2_10_9_1 doi: 10.1093/carcin/bgx023 – ident: e_1_2_10_53_1 doi: 10.1074/jbc.273.35.22334 – ident: e_1_2_10_61_1 doi: 10.1016/j.ymgme.2015.10.012 – ident: e_1_2_10_47_1 doi: 10.1038/s41467-018-06703-2 – ident: e_1_2_10_55_1 doi: 10.1042/BCJ20170129 – ident: e_1_2_10_16_1 doi: 10.1016/j.ajo.2005.03.024 – ident: e_1_2_10_7_1 doi: 10.1371/journal.pone.0006379 – ident: e_1_2_10_63_1 doi: 10.1038/ng572 – ident: e_1_2_10_57_1 doi: 10.1038/nbt1210-1248 – ident: e_1_2_10_60_1 doi: 10.1172/JCI112152 – ident: e_1_2_10_5_1 doi: 10.1016/S0014-5793(97)00428-6 – ident: e_1_2_10_20_1 doi: 10.1056/NEJMoa020817 – ident: e_1_2_10_31_1 doi: 10.1016/j.plipres.2005.04.001 – ident: e_1_2_10_39_1 doi: 10.1194/jlr.M300279-JLR200 – ident: e_1_2_10_8_1 doi: 10.1126/science.1106391 – ident: e_1_2_10_28_1 doi: 10.1111/mmi.12402 – volume: 2006 start-page: pdb.prot4481 year: 2006 ident: e_1_2_10_12_1 article-title: Epstein‐Barr virus transformation of lymphoblasts publication-title: CSH Protoc – ident: e_1_2_10_2_1 doi: 10.1096/fj.07-8986 – ident: e_1_2_10_25_1 doi: 10.1016/S1474-4422(19)30142-5 – ident: e_1_2_10_51_1 doi: 10.1016/S0006-8993(96)01271-1 – ident: e_1_2_10_62_1 doi: 10.1016/j.chembiol.2007.01.013 – ident: e_1_2_10_30_1 doi: 10.1038/84859 – ident: e_1_2_10_50_1 doi: 10.1038/nchembio.1906 – ident: e_1_2_10_14_1 doi: 10.1074/jbc.M707627200 – ident: e_1_2_10_38_1 doi: 10.1006/mgme.2000.3138 – ident: e_1_2_10_26_1 doi: 10.1523/JNEUROSCI.4265-04.2005 – ident: e_1_2_10_52_1 doi: 10.1016/B978-008045382-8.00141-6 – ident: e_1_2_10_4_1 doi: 10.1039/C3NP70054B – ident: e_1_2_10_58_1 doi: 10.7554/eLife.17828 – ident: e_1_2_10_56_1 doi: 10.1042/BCJ20180043 – ident: e_1_2_10_32_1 doi: 10.1016/S0021-9258(18)65695-9 – ident: e_1_2_10_21_1 doi: 10.1074/jbc.R800068200 – ident: e_1_2_10_13_1 doi: 10.1038/s41598-017-11564-8 – ident: e_1_2_10_15_1 doi: 10.1016/j.ajhg.2013.11.008 – ident: e_1_2_10_27_1 doi: 10.1093/hmg/ddi005 – ident: e_1_2_10_49_1 doi: 10.1038/nrm.2016.110 – ident: e_1_2_10_23_1 doi: 10.1093/hmg/ddg026 – ident: e_1_2_10_54_1 doi: 10.1016/j.cmet.2006.02.003 – ident: e_1_2_10_11_1 doi: 10.1111/j.1432-1033.1989.tb15061.x – ident: e_1_2_10_34_1 doi: 10.1016/j.bbamcr.2014.09.009 – ident: e_1_2_10_41_1 doi: 10.1007/s00109-009-0565-x – ident: e_1_2_10_43_1 doi: 10.1074/jbc.275.2.1377 – ident: e_1_2_10_18_1 doi: 10.1042/BST20170506 – ident: e_1_2_10_48_1 doi: 10.1093/jn/113.10.2107 – ident: e_1_2_10_19_1 doi: 10.1042/bss0660085 – ident: e_1_2_10_40_1 doi: 10.1126/science.1230593 |
SSID | ssj0065618 |
Score | 2.4732244 |
Snippet | Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack... Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack... Pantothenate kinase‐associated neurodegeneration ( PKAN ) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation.... Abstract Pantothenate kinase‐associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e10489 |
SubjectTerms | 4′‐phosphopantetheine Acyl carrier protein Animals Basal ganglia Biomarkers Biomarkers - metabolism Brain research Central nervous system diseases coenzyme A Coenzyme A - metabolism Defects Dopamine Dopamine - metabolism Drug development Dystonia EMBO08 EMBO27 Gene expression Genotype Homeostasis Iron Iron - metabolism Kinases Mammals Metabolism Mice Mitochondria Movement disorders Mutation NBIA Neurodegeneration Oxidative phosphorylation PANK2 Pantetheine - analogs & derivatives Pantetheine - pharmacology Pantetheine - therapeutic use Pantothenate kinase Pantothenate Kinase-Associated Neurodegeneration - drug therapy Pantothenate Kinase-Associated Neurodegeneration - metabolism Pathogenesis Pharmacodynamics Phosphorylation Phosphotransferases (Alcohol Group Acceptor) - metabolism PKAN Pyruvic acid Sulfur |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQJRAXBOUvUJCROIDU0MSOE_u4VK0q0FY9UKk3y3_RrtQkVXd74NZH4Fl4pD4JM042EEHVC7dde3blzHy2v4nHM4S8z4VhHHpSk1uVFk7a1AJUUlgvleOVCiLEKN_j8ui0-HImzv4o9YUxYX164F5xe1x5X0rngGjURVZn1lfogljJM2VkFe-RZyrbOFP9GgwkJb7Zg72xSmEpKIekPoIJtheaBq-gg6MC6FWT_Sim7f8X1_w7ZHI8N52y2rgtHT4mjwY-SWf9czwh90K7Te73FSa_b5MH8-Hs_ClZFDfXP2-uf5wsutXFAnxlUCkeE7SBOizR4dYrut_NdilefNulpvXUg1SDAk1YA1jOl476EOM_6LKljWma-JaExnI6K9rV9OTr7PgZOT08-LZ_lA51FlInKqXSsuYcvBDQrMM6EYEpyYytcuY97P4MZqzLbZ25zJTc-JqFUtUCPlsgR74Af-c52Wq7Nrwk1IBLF3JfW5GbAkQVl8FL6SslBLSWCfm00bZ2QxJyrIVxrtEZQfNoNI8ezZOQD-MPLvr8G7eLfkbzjWKYODs2AJz0ACd9F5wSsrMxvh5m80oD62SZALIsEvJu7IZ5iIcrpg3dFcoAVQO6WsIzvuixMo6EQyssrXlCqgmKJkOd9rTLRcz1XUp0YGFYHzd4-z2sW_XAIyDv0pc-mM_n47dX_0N7r8lD_MM-3GeHbK0vr8IbIG1r-zbOz193mzpO priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagCMQFQfkLFGQkDiA1NInjOD6hpWpVgbbqgUp7i_wXdqUmWbrbA7c-As_CI_VJmHG8qSIo3BJ7ItmeH39jT2YIeZtylTHoiVWqZZybUscaRCUGeykNE9Jx56N8j4uj0_zzjM_CgdsqhFVubKI31LYzeEa-Bzt_lnAALPzj8nuMVaPwdjWU0LhN7qSARLB0g5gNDhdAFX--BzukiMEgFCG1D894tueaBn9EB3cFZFiOdiWfvP9viPPPwMnh9nSMbf3mdPiQPAiokk56MXhEbrl2m9zt60z-2Cb3puEG_TGZ51eXv64uf57Mu9VyDh4zLCxeFrSOGizUYdYrut9Ndin-_rZLVWupBaoGCRq3BpE5WxhqnY8CoYuWNqpp_FkJ9UV1VrSr6cmXyfETcnp48HX_KA7VFmLDhZRxUTMGvoi2wmC1CJfJMlNapJm1gAEy0FuT6joxiSqYsnXmCllzeNYAkWwOXs9TstV2rXtOqALHzqW21jxVOZBKVjpbllZIzqG1iMiHzWpXJqQix4oYZxW6JMieCtlTDeyJyLvhg2WfheNm0k_IvoEM02f7hu78WxW0sWLS2qI0BmSmzpM6gUmjX6tLlkhVChGRnQ3zq6DTq-paAiPyZugGbcQrFtW67gJpALABaC1gjs96WRlGwqAVDGwaETGSotFQxz3tYu4zfhclurEwrPcbebse1o3rwLxA_m-9qoPpdDq8vfj3xF-S-0jah_PskK31-YV7BaBsrV97zfsNhtQyMg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagFYgLouUvtEVG4gBSA0kcO_FxWbWqQFv1QKXeLP9Fu1KTVOz2wK2PwLPwSH2SzjjZQNRWiFtiTxLHM2N_47FnCHmfcp0xqIl1amSc29LEBkQlhvFSWlZIz33Y5Xssjk7zr2f8rA-ShGdh_vbf84xnn31d44FxMCtA1uRDsslh1EVRnorpesgFTBIW8mAqLGLQfNHH8LnjBaPpJ0Tpvwta3t4hObhJxyA2zEKHz8jTHj7SScfvLfLAN9vkUZdQ8uc2eTzrXeXPyTy_vvp9ffXrZN4uL-ZgGkMPoleg8dRiRg67WtJpO9mneM5tn-rGUQdUNRLUfgWycb6w1Pmw3YMuGlrrug6LIjRkz1nStqIn3ybHL8jp4cH36VHcp1WILS-kjEXFGBgdxhUW00L4TJaZNkWaOQeTfQYKalNTJTbRgmlXZV7IisO1ASzkcjBvXpKNpm38a0I1WHA-dZXhqc6BVLLSu7J0heQcSkVEPq17W9k-5jimvjhXaHsgexSyRw3siciH4YGLLtzG_aRfkH0DGcbJDgUgPqpXO8Wkc6K0FmBqlSdVAj-NBqwpWSJ1WRQR2V0zX_XKu1QAMrOEAzbmEXk3VIPaoS9FN769RBpAZoBOBfzjq05WhpYwKIWRNI1IMZKiUVPHNc1iHkJ7ixLtVWjWx7W8_WnWvf3AgkD-q7_UwWw2G-7e_McXdsgTvO428eySjdWPS78HUGxl3gY1vAFnWCry priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELagCMQFQfkLtMhIHEBqIInjxD5uq1YVaKs9UIlb5L90V2qSqtkeeusj9Fl4pD4JM84PitoKiVtiTyLbM2N_Y49nCPkUc5UwqAlVrGWYGqFDDaISwnwpDcul4857-R5lh8fp91988CbEuzBdfIhxww01w8_XqOBKt0PGHowa6qoKr5KDwQFSKB-SRwDtGQp5ki6GyRjQit_ig0UyD2FOyProPviLb9MfTBYmH7__LtB523dyPECdwlu_Ph08J896YElnnSS8IA9cvUked6kmLzfJk3l_iP6SLNObq983V9eLZdOeLcFohrHF84LaUYO5Osy6pXvNbIfiDbgdqmpLLVBVSFC5NUjN6cpQ67wjCF3VtFJV5bdLqM-r09KmpIsfs6NX5Phg_-feYdgnXAgNz6UMs5IxMEe0zQ0mjHCJFInSeZxYCzAgAdU1sS4jE6mMKVsmLpMlh2cNKMmmYPi8Jht1U7u3hCqw7VxsS81jlQKpZMJZIWwuOYfSLCBfh9EuTB-NHJNinBZolSB7CmRPMbInIJ_HD866QBz3k-4i-0YyjKDtC5rzk6JXyIJJazNhDADYMo3KCDqNpq0WLJJK5HlAtgbmF71atwXAzyTigJp5QD6O1aCQeMqiatdcIA1gNsCtGfTxTScrY0sYlMIcGwckn0jRpKnTmnq19EG_M4GWLDTryyBvf5t17zgwL5D_Gq9ifz6fj2_v_uur9-QpPneOPltkY31-4bYBrq31B6-QfwAe4DaI priority: 102 providerName: Wiley-Blackwell |
Title | 4′‐Phosphopantetheine corrects CoA, iron, and dopamine metabolic defects in mammalian models of PKAN |
URI | https://link.springer.com/article/10.15252/emmm.201910489 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201910489 https://www.ncbi.nlm.nih.gov/pubmed/31660701 https://www.proquest.com/docview/2322050135 https://www.proquest.com/docview/2310295166 https://pubmed.ncbi.nlm.nih.gov/PMC6895607 https://doaj.org/article/39dd68cc193f40f0bd70717b8309a877 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEB-8OxS_iJ6v6FlWEFS4nHnv7geRXulxKC1FLPRb2FdsoUnOtgfef-_sJs1R7KFfQrM7KbvzyP5mZzMD8C5MRRRjjy9Cyf1EMelLVBUf35dcxZSb1LhTvuPscpp8naWz23JALQPXe107W09qulqe_f518wUN_nNbvSf6ZMrSflSOrgfqIz-AIxcssuf4ki6kgLjFbfbhckn9JGNJm-dnzx_sLFEuk_8--Pn3KcoulLoLdN1KdfEYHrUQk_QbnXgC90x1DPebopM3x_Bg1IbTn4JO3vuTeb2-mqPrjBy2UYPKEGUrdqjNmgzq_imx38GdElFpopGqtASl2aDuLBeKaOOOg5BFRUpRlm7ThLjqOmtSF2TyrT9-BtOL4Y_Bpd-WXfBVSjn3syKO0SmRmipbNsJEnEVC0jDSGsFAhAasQlkEKhBZLHQRmYwXKf6WiJV0gu7Pczis6sq8BCLQwzOhLmQaigRJecyMZkxTnqbYmnlwtuV0rtqc5LY0xjK3vokVTW5Fk3ei8eBD98BVk47jbtJzK7qOzObRdg316mfemmUec60zphTC2CIJigAnbR1cyeKAC0apBydbwedb3cwRhEZBitg59eBt141maWMtojL1taVB5IboNcM5vmj0pBtJjK34pg09oDsatDPU3Z5qMXepvzNm_Vkc1setrt0O604-xE4Z_8WvfDgajbq7V_8xs9fw0NI3h3tO4HCzujZvEKJtZA8OomSCVzqjPTg6H44n3_FukA16btOj50zzD9_YOQw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLamTvzcIBh_hQFGAgmkhSVOnMQXE-pGp46uVYU2aXeZYzu00pKUtRPa3R6BZ-EBeJg9Cee4SaYKBle7a-0TyfY5Pj_28fkIeeNxyXzocaSXCidQceqkICoO6Euh_EgYbmyW7zDsHQafj_jRCvlVv4XBtMpaJ1pFrUuFZ-SbYPmZy8Fh4R-n3xxEjcLb1RpCQ1bQCnrLlhirHnb0zfl3COFmW3ufgN9vGdvtHuz0nAplwFE8EsIJM98HHzzVkUKUBMNEzGQaeUxrsH0M5FV5aeYqV4a-1Bkzocg4_E7BNdBBhKgRYAJWAzxAaZHV7e5w9KW2BeAs2RNGsNGRAyoprIoLccbZpslzfAoPARPsIrFkFy18wN983j9TN5v722Xv2prH3fvkXuXX0s5CEB-QFVOskVsLpMvzNXJ7UN3hPyTj4PLi5-XFj9G4nE3HELMDa_G6ojBUIVSIms_oTtnZoPgAb4PKQlMNVDkS5GYOQnsyUVQbm4dCJwXNZZ7b0xpqYX1mtMzoqN8ZPiKHN8KJx6RVlIV5SqiE0NJ4Oku5JwMgFX5sdBzrSHAOrWGbfKhXO1FVMXTE5DhJMChC9iTInqRhT5u8az6YLuqAXE-6jexryLCAt20oT78mlT5IfKF1GCsF_nMWuJkLk8bIOo19V8g4itpkvWZ-UmmVWXK1B9rkddMN-gAveWRhyjOkAZcR3OYQ5vhkISvNSHxoBRXvtUm0JEVLQ13uKSZjW3M8jDGQhmG9r-XtaljXroNvBfJ_65V0B4NB8-_Zvyf-itzpHQz2k_29Yf85uYufLZKL1klrfnpmXoCLOE9fVvuQkuOb3vq_AcAqdCw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELaqIiouCMpfaAEjgQRSl-x61-v1AaHQNmoJiXKgUm7Lru0lkbq7aZMK9dZH4Fk48jh9Ema8P1UEhVNviT0r2Z7x-Bt77I-QVx5PmA81TuKl0glUlDopmIoD_lIqX0jDjc3yHYUHR8GnCZ-skV_NXRhMq2x8onXUulS4R96FlZ-5HAAL72Z1WsR4r_9hfuIggxSetDZ0GpWJDMz5dwjfFu8P90DXrxnr73_ZPXBqhgFHcSGlE2a-D_g71UIhQ4JhMmJJKjymNax7DGxVeWnmKjcJ_URnzIQy4_A7BVigA4GMEeD-bwk_CJA2QkzaYA9gkt1bhNVZOOCMwvpZIc4465o8x0vwECrB_JErK6IlDvgb2v0zabM9uV3F1XZh7N8jd2tES3uVCd4na6bYJLcrjsvzTbIxrE_vH5BpcHnx8_Lix3haLuZTiNZBqXhQURiqkCRELRd0t-ztULx6t0OTQlMNUjkK5GYJ5no8U1Qbm4FCZwXNkzy3-zTUEvosaJnR8aA3ekiObkQPj8h6URbmCaEJBJXG01nKvSQAUelHRkeRFpJzKA075F0z2rGqn0FHNo7jGMMhVE-M6olb9XTIm_aDefUCyPWiH1F9rRg-3W0LytNvce0JYl9qHUZKAXLOAjdzodMYU6eR78okEqJDthvlx7U_WcRX1t8hL9tq8AR4vJMUpjxDGQCLAJhD6OPjylbalvhQCs7d6xCxYkUrTV2tKWZT-9p4GGEIDc1629jbVbOuHQffGuT_xiveHw6H7b-n_-74C7IBEz7-fDgabJE7-FWVVbRN1penZ-YZYMNl-txOQkq-3vSs_w2D7nHI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4%27-Phosphopantetheine+corrects+CoA%2C+iron%2C+and+dopamine+metabolic+defects+in+mammalian+models+of+PKAN&rft.jtitle=EMBO+molecular+medicine&rft.au=Jeong%2C+Suh+Young&rft.au=Hogarth%2C+Penelope&rft.au=Placzek%2C+Andrew&rft.au=Gregory%2C+Allison+M&rft.date=2019-12-01&rft.issn=1757-4684&rft.eissn=1757-4684&rft.volume=11&rft.issue=12&rft.spage=e10489&rft_id=info:doi/10.15252%2Femmm.201910489&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon |