Myeloid cell deficiency of p38γ/p38δ protects against candidiasis and regulates antifungal immunity

Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate imm...

Full description

Saved in:
Bibliographic Details
Published inEMBO molecular medicine Vol. 10; no. 5; pp. 1 - n/a
Main Authors Alsina‐Beauchamp, Dayanira, Escós, Alejandra, Fajardo, Pilar, González‐Romero, Diego, Díaz‐Mora, Ester, Risco, Ana, Martín‐Serrano, Miguel A, del Fresno, Carlos, Dominguez‐Andrés, Jorge, Aparicio, Noelia, Zur, Rafal, Shpiro, Natalia, Brown, Gordon D, Ardavín, Carlos, Netea, Mihai G, Alemany, Susana, Sanz‐Ezquerro, Juan J, Cuenda, Ana
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2018
EMBO Press
John Wiley and Sons Inc
Springer Nature
Subjects
Online AccessGet full text
ISSN1757-4676
1757-4684
1757-4684
DOI10.15252/emmm.201708485

Cover

Abstract Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate immune response to C. albicans . We describe a new TAK1‐TPL2‐MKK1‐ERK1/2 pathway in macrophages, which is activated by Dectin‐1 engagement and positively regulated by p38γ/p38δ. In mice, p38γ/p38δ deficiency protects against C. albicans infection by increasing ROS and iNOS production and thus the antifungal capacity of neutrophils and macrophages, and by decreasing the hyper‐inflammation that leads to severe host damage. Leucocyte recruitment to infected kidneys and production of inflammatory mediators are decreased in p38γ/δ‐null mice, reducing septic shock. p38γ/p38δ in myeloid cells are critical for this effect. Moreover, pharmacological inhibition of p38γ/p38δ in mice reduces fungal burden, revealing that these p38MAPKs may be therapeutic targets for treating C. albicans infection in humans. Synopsis Candida albicans infections cause high mortality in immunocompromised patients. This study shows that p38γ/p38δ are essential for the immune response to C. albicans by regulating host antifungal activity. p38γ/p38δ inhibition reduces mice fungal burden, establishing p38γ/p38δ as therapeutic targets. Deletion of p38γ/p38δ protects mice from C. albicans infection. p38γ/p38δ control fungicidal capacity through ROS and iNOS production. p38γ/p38δ regulate the inflammatory response to C. albicans through a new Dectin‐1 pathway in macrophages. Chemical inhibition of p38γ/p38δ reduces fungal burden in a candidiasis mouse model. Graphical Abstract Candida albicans infections cause high mortality in immunocompromised patients. This study shows that p38γ/p38δ are essential for the immune response to C. albicans by regulating host antifungal activity. p38γ/p38δ inhibition reduces mice fungal burden, establishing p38γ/p38δ as therapeutic targets.
AbstractList Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate immune response to C. albicans . We describe a new TAK1‐TPL2‐MKK1‐ERK1/2 pathway in macrophages, which is activated by Dectin‐1 engagement and positively regulated by p38γ/p38δ. In mice, p38γ/p38δ deficiency protects against C. albicans infection by increasing ROS and iNOS production and thus the antifungal capacity of neutrophils and macrophages, and by decreasing the hyper‐inflammation that leads to severe host damage. Leucocyte recruitment to infected kidneys and production of inflammatory mediators are decreased in p38γ/δ‐null mice, reducing septic shock. p38γ/p38δ in myeloid cells are critical for this effect. Moreover, pharmacological inhibition of p38γ/p38δ in mice reduces fungal burden, revealing that these p38MAPKs may be therapeutic targets for treating C. albicans infection in humans. Synopsis Candida albicans infections cause high mortality in immunocompromised patients. This study shows that p38γ/p38δ are essential for the immune response to C. albicans by regulating host antifungal activity. p38γ/p38δ inhibition reduces mice fungal burden, establishing p38γ/p38δ as therapeutic targets. Deletion of p38γ/p38δ protects mice from C. albicans infection. p38γ/p38δ control fungicidal capacity through ROS and iNOS production. p38γ/p38δ regulate the inflammatory response to C. albicans through a new Dectin‐1 pathway in macrophages. Chemical inhibition of p38γ/p38δ reduces fungal burden in a candidiasis mouse model. Graphical Abstract Candida albicans infections cause high mortality in immunocompromised patients. This study shows that p38γ/p38δ are essential for the immune response to C. albicans by regulating host antifungal activity. p38γ/p38δ inhibition reduces mice fungal burden, establishing p38γ/p38δ as therapeutic targets.
Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate immune response to C. albicans We describe a new TAK1-TPL2-MKK1-ERK1/2 pathway in macrophages, which is activated by Dectin-1 engagement and positively regulated by p38γ/p38δ. In mice, p38γ/p38δ deficiency protects against C. albicans infection by increasing ROS and iNOS production and thus the antifungal capacity of neutrophils and macrophages, and by decreasing the hyper-inflammation that leads to severe host damage. Leucocyte recruitment to infected kidneys and production of inflammatory mediators are decreased in p38γ/δ-null mice, reducing septic shock. p38γ/p38δ in myeloid cells are critical for this effect. Moreover, pharmacological inhibition of p38γ/p38δ in mice reduces fungal burden, revealing that these p38MAPKs may be therapeutic targets for treating C. albicans infection in humans.Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate immune response to C. albicans We describe a new TAK1-TPL2-MKK1-ERK1/2 pathway in macrophages, which is activated by Dectin-1 engagement and positively regulated by p38γ/p38δ. In mice, p38γ/p38δ deficiency protects against C. albicans infection by increasing ROS and iNOS production and thus the antifungal capacity of neutrophils and macrophages, and by decreasing the hyper-inflammation that leads to severe host damage. Leucocyte recruitment to infected kidneys and production of inflammatory mediators are decreased in p38γ/δ-null mice, reducing septic shock. p38γ/p38δ in myeloid cells are critical for this effect. Moreover, pharmacological inhibition of p38γ/p38δ in mice reduces fungal burden, revealing that these p38MAPKs may be therapeutic targets for treating C. albicans infection in humans.
Abstract Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate immune response to C. albicans. We describe a new TAK1‐TPL2‐MKK1‐ERK1/2 pathway in macrophages, which is activated by Dectin‐1 engagement and positively regulated by p38γ/p38δ. In mice, p38γ/p38δ deficiency protects against C. albicans infection by increasing ROS and iNOS production and thus the antifungal capacity of neutrophils and macrophages, and by decreasing the hyper‐inflammation that leads to severe host damage. Leucocyte recruitment to infected kidneys and production of inflammatory mediators are decreased in p38γ/δ‐null mice, reducing septic shock. p38γ/p38δ in myeloid cells are critical for this effect. Moreover, pharmacological inhibition of p38γ/p38δ in mice reduces fungal burden, revealing that these p38MAPKs may be therapeutic targets for treating C. albicans infection in humans.
is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate immune response to We describe a new TAK1-TPL2-MKK1-ERK1/2 pathway in macrophages, which is activated by Dectin-1 engagement and positively regulated by p38γ/p38δ. In mice, p38γ/p38δ deficiency protects against infection by increasing ROS and iNOS production and thus the antifungal capacity of neutrophils and macrophages, and by decreasing the hyper-inflammation that leads to severe host damage. Leucocyte recruitment to infected kidneys and production of inflammatory mediators are decreased in p38γ/δ-null mice, reducing septic shock. p38γ/p38δ in myeloid cells are critical for this effect. Moreover, pharmacological inhibition of p38γ/p38δ in mice reduces fungal burden, revealing that these p38MAPKs may be therapeutic targets for treating infection in humans.
Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate immune response to C. albicans. We describe a new TAK1‐TPL2‐MKK1‐ERK1/2 pathway in macrophages, which is activated by Dectin‐1 engagement and positively regulated by p38γ/p38δ. In mice, p38γ/p38δ deficiency protects against C. albicans infection by increasing ROS and iNOS production and thus the antifungal capacity of neutrophils and macrophages, and by decreasing the hyper‐inflammation that leads to severe host damage. Leucocyte recruitment to infected kidneys and production of inflammatory mediators are decreased in p38γ/δ‐null mice, reducing septic shock. p38γ/p38δ in myeloid cells are critical for this effect. Moreover, pharmacological inhibition of p38γ/p38δ in mice reduces fungal burden, revealing that these p38MAPKs may be therapeutic targets for treating C. albicans infection in humans. Synopsis Candida albicans infections cause high mortality in immunocompromised patients. This study shows that p38γ/p38δ are essential for the immune response to C. albicans by regulating host antifungal activity. p38γ/p38δ inhibition reduces mice fungal burden, establishing p38γ/p38δ as therapeutic targets. Deletion of p38γ/p38δ protects mice from C. albicans infection. p38γ/p38δ control fungicidal capacity through ROS and iNOS production. p38γ/p38δ regulate the inflammatory response to C. albicans through a new Dectin‐1 pathway in macrophages. Chemical inhibition of p38γ/p38δ reduces fungal burden in a candidiasis mouse model. Candida albicans infections cause high mortality in immunocompromised patients. This study shows that p38γ/p38δ are essential for the immune response to C. albicans by regulating host antifungal activity. p38γ/p38δ inhibition reduces mice fungal burden, establishing p38γ/p38δ as therapeutic targets.
Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate immune response to C. albicans . We describe a new TAK 1‐ TPL 2‐ MKK 1‐ ERK 1/2 pathway in macrophages, which is activated by Dectin‐1 engagement and positively regulated by p38γ/p38δ. In mice, p38γ/p38δ deficiency protects against C. albicans infection by increasing ROS and iNOS production and thus the antifungal capacity of neutrophils and macrophages, and by decreasing the hyper‐inflammation that leads to severe host damage. Leucocyte recruitment to infected kidneys and production of inflammatory mediators are decreased in p38γ/δ‐null mice, reducing septic shock. p38γ/p38δ in myeloid cells are critical for this effect. Moreover, pharmacological inhibition of p38γ/p38δ in mice reduces fungal burden, revealing that these p38 MAPK s may be therapeutic targets for treating C. albicans infection in humans.
Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need due to the low efficiency and resistance to current antifungal drugs. Here, we show that p38γ and p38δ regulate the innate immune response to C. albicans. We describe a new TAK1‐TPL2‐MKK1‐ERK1/2 pathway in macrophages, which is activated by Dectin‐1 engagement and positively regulated by p38γ/p38δ. In mice, p38γ/p38δ deficiency protects against C. albicans infection by increasing ROS and iNOS production and thus the antifungal capacity of neutrophils and macrophages, and by decreasing the hyper‐inflammation that leads to severe host damage. Leucocyte recruitment to infected kidneys and production of inflammatory mediators are decreased in p38γ/δ‐null mice, reducing septic shock. p38γ/p38δ in myeloid cells are critical for this effect. Moreover, pharmacological inhibition of p38γ/p38δ in mice reduces fungal burden, revealing that these p38MAPKs may be therapeutic targets for treating C. albicans infection in humans.
Author González‐Romero, Diego
Netea, Mihai G
Shpiro, Natalia
Dominguez‐Andrés, Jorge
Brown, Gordon D
Zur, Rafal
Aparicio, Noelia
Sanz‐Ezquerro, Juan J
Alsina‐Beauchamp, Dayanira
Risco, Ana
Cuenda, Ana
Ardavín, Carlos
Martín‐Serrano, Miguel A
Escós, Alejandra
Fajardo, Pilar
Díaz‐Mora, Ester
Alemany, Susana
del Fresno, Carlos
AuthorAffiliation 2 Immunobiology of Inflammation Laboratory Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid Spain
3 Medical Research Council Protein Phosphorylation Unit Sir James Black Building School of Life Sciences University of Dundee Dundee UK
7 Department of Cellular and Molecular Biology CNB/CSIC Madrid Spain
1 Department of Immunology and Oncology Centro Nacional de Biotecnología/CSIC Madrid Spain
6 Instituto de Investigaciones Biomédicas Alberto Sols CSIC‐UAM Madrid Spain
4 Aberdeen Fungal Group Institute of Medical Sciences Medical Research Council Centre for Medical Mycology at the University of Aberdeen Aberdeen UK
5 Department of Internal Medicine and Radboud Center for Infectious Diseases Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
AuthorAffiliation_xml – name: 4 Aberdeen Fungal Group Institute of Medical Sciences Medical Research Council Centre for Medical Mycology at the University of Aberdeen Aberdeen UK
– name: 5 Department of Internal Medicine and Radboud Center for Infectious Diseases Radboud University Nijmegen Medical Centre Nijmegen The Netherlands
– name: 3 Medical Research Council Protein Phosphorylation Unit Sir James Black Building School of Life Sciences University of Dundee Dundee UK
– name: 1 Department of Immunology and Oncology Centro Nacional de Biotecnología/CSIC Madrid Spain
– name: 2 Immunobiology of Inflammation Laboratory Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid Spain
– name: 6 Instituto de Investigaciones Biomédicas Alberto Sols CSIC‐UAM Madrid Spain
– name: 7 Department of Cellular and Molecular Biology CNB/CSIC Madrid Spain
Author_xml – sequence: 1
  givenname: Dayanira
  surname: Alsina‐Beauchamp
  fullname: Alsina‐Beauchamp, Dayanira
  organization: Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC
– sequence: 2
  givenname: Alejandra
  orcidid: 0000-0002-2990-7920
  surname: Escós
  fullname: Escós, Alejandra
  organization: Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC
– sequence: 3
  givenname: Pilar
  surname: Fajardo
  fullname: Fajardo, Pilar
  organization: Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC
– sequence: 4
  givenname: Diego
  surname: González‐Romero
  fullname: González‐Romero, Diego
  organization: Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC
– sequence: 5
  givenname: Ester
  surname: Díaz‐Mora
  fullname: Díaz‐Mora, Ester
  organization: Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC
– sequence: 6
  givenname: Ana
  surname: Risco
  fullname: Risco, Ana
  organization: Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC
– sequence: 7
  givenname: Miguel A
  surname: Martín‐Serrano
  fullname: Martín‐Serrano, Miguel A
  organization: Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC
– sequence: 8
  givenname: Carlos
  surname: del Fresno
  fullname: del Fresno, Carlos
  organization: Immunobiology of Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III
– sequence: 9
  givenname: Jorge
  surname: Dominguez‐Andrés
  fullname: Dominguez‐Andrés, Jorge
  organization: Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC
– sequence: 10
  givenname: Noelia
  surname: Aparicio
  fullname: Aparicio, Noelia
  organization: Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC
– sequence: 11
  givenname: Rafal
  surname: Zur
  fullname: Zur, Rafal
  organization: Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC
– sequence: 12
  givenname: Natalia
  surname: Shpiro
  fullname: Shpiro, Natalia
  organization: Medical Research Council Protein Phosphorylation Unit, Sir James Black Building, School of Life Sciences, University of Dundee
– sequence: 13
  givenname: Gordon D
  surname: Brown
  fullname: Brown, Gordon D
  organization: Aberdeen Fungal Group, Institute of Medical Sciences, Medical Research Council Centre for Medical Mycology at the University of Aberdeen
– sequence: 14
  givenname: Carlos
  surname: Ardavín
  fullname: Ardavín, Carlos
  organization: Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC
– sequence: 15
  givenname: Mihai G
  surname: Netea
  fullname: Netea, Mihai G
  organization: Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre
– sequence: 16
  givenname: Susana
  surname: Alemany
  fullname: Alemany, Susana
  organization: Instituto de Investigaciones Biomédicas Alberto Sols, CSIC‐UAM
– sequence: 17
  givenname: Juan J
  surname: Sanz‐Ezquerro
  fullname: Sanz‐Ezquerro, Juan J
  organization: Department of Cellular and Molecular Biology, CNB/CSIC
– sequence: 18
  givenname: Ana
  orcidid: 0000-0002-9013-5077
  surname: Cuenda
  fullname: Cuenda, Ana
  email: acuenda@cnb.csic.es
  organization: Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29661910$$D View this record in MEDLINE/PubMed
BookMark eNqFkstu1DAUhiNURC-wZocisWEzndiOnZgFEqoKVOqIDawtxz4OHiX2YDtF81z0OfpMOJ0ytJWAja__9x-f43NcHDjvoCheouoUUUzxEsZxPMUVaqq2bumT4gg1tFnUrK0P9uuGHRbHMa6rilGG2mfFIeaMIY6qowJWWxi81aWCYSg1GKssOLUtvSk3pL35uZzH63ITfAKVYil7aV1MpZJOW21ltPnM6TJAPw0ywbxL1kyul0Npx3FyNm2fF0-NHCK8uJtPiq8fzr-cfVpcfv54cfb-cqFow-nCIEqwIaTRBGMkFdIKdx1SBMtGSUCK65obqhs63yPKWI1aZmQLmkpiDDkpLna-2su12AQ7yrAVXlpxe-BDL2RIVg0gOOHAUNdmsKslbTtscA7HOZKoNqbLXu92XpupG0ErcCnI4YHpwxtnv4neXwnKScsQyQZv7gyC_z5BTGK0cS6zdOCnKHCFWY0r3vAsff1IuvZTcLlUWUUo5ZxRlFWv7r9o_5Tfv5kFy51ABR9jALOXoErc9ouY-0Xs-yUT9BGhbJLJ-jklO_yDe7vjftgBtv8LI85Xq9V9uNrBMXOuh_An27_F-wXQwOfj
CitedBy_id crossref_primary_10_3390_cancers15030861
crossref_primary_10_1002_cac2_12331
crossref_primary_10_1007_s10787_023_01369_9
crossref_primary_10_1016_j_it_2019_07_001
crossref_primary_10_1371_journal_ppat_1010873
crossref_primary_10_61189_863627autews
crossref_primary_10_3389_fcell_2023_1083033
crossref_primary_10_3389_fcell_2025_1522294
crossref_primary_10_1016_j_micinf_2024_105302
crossref_primary_10_1073_pnas_2204752119
crossref_primary_10_3390_ijms20030659
crossref_primary_10_3389_fimmu_2022_812148
crossref_primary_10_7554_eLife_86200
crossref_primary_10_1016_j_bcp_2023_115973
crossref_primary_10_3389_fimmu_2022_894069
crossref_primary_10_1016_j_heliyon_2024_e35940
crossref_primary_10_3389_fcell_2020_00189
crossref_primary_10_31083_j_fbl2701031
crossref_primary_10_3389_fimmu_2022_1077335
Cites_doi 10.1038/nrd2829
10.1007/s12275-016-0647-8
10.1172/JCI71307
10.4049/jimmunol.163.3.1498
10.1016/j.cell.2010.01.022
10.1073/pnas.1320440111
10.1016/j.chom.2010.05.010
10.1016/S1567-5769(02)00232-1
10.1093/infdis/jit152
10.1111/j.1469-0691.2005.01318.x
10.1038/nri3495
10.1371/journal.ppat.1002811
10.1093/infdis/jit188
10.1021/jm070436q
10.1111/j.1600-065X.2007.00548.x
10.1016/j.cellsig.2008.05.008
10.1124/jpet.112.200832
10.1158/0008-5472.CAN-14-0870
10.1073/pnas.1207290109
10.1086/430952
10.1016/j.mib.2008.05.011
10.1146/annurev.biochem.76.060605.122847
10.1371/journal.ppat.1004257
10.1056/NEJMra1315399
10.1016/j.bmcl.2009.05.009
10.1016/j.coi.2009.01.003
10.1002/art.38327
10.1042/BJ20101701
10.1128/MCB.01065-12
10.1126/scitranslmed.3004404
10.1074/jbc.M414221200
10.1016/S0167-7012(01)00348-7
10.18632/oncotarget.4320
10.1084/jem.20021787
10.1038/nri2569
10.1038/cr.2010.173
10.1016/j.tibs.2017.02.008
10.1172/JCI63917
10.1146/annurev.immunol.21.120601.141126
10.1038/nri2779
10.1042/BJ20040544
10.1084/jem.20021890
10.1038/nrmicro1815
10.1007/978-1-61779-539-8_18
10.1038/nri3897
10.1371/journal.pone.0039132
10.1038/nrm1498
10.1242/jcs.149831
10.3389/fcell.2016.00031
10.1042/BJ20070797
ContentType Journal Article
Copyright The Author(s) 2018
2018 The Authors. Published under the terms of the CC BY 4.0 license
2018 The Authors. Published under the terms of the CC BY 4.0 license.
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.15252/emmm.201708485
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database (ProQuest)
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 24P
  name: Directory Of Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 4
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 5
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Dayanira Alsina‐Beauchamp et al
EISSN 1757-4684
EndPage n/a
ExternalDocumentID oai_doaj_org_article_939e61b85a3b4a58b2f2dc2991a14ffb
PMC5938613
29661910
10_15252_emmm_201708485
EMMM201708485
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MRC Centre for Medical Mycology at the University of Aberdeen
  funderid: 10.13039/501100000882
– fundername: La Marató TV3 Foundation
  grantid: 20133431
– fundername: Ministerio de Economía y Competitividad
  grantid: SAF2013‐45331‐R; SAF2016‐79792‐R; SAF2014‐52009‐R
  funderid: 10.13039/501100003329
– fundername: ERC Consolidator Grant
  grantid: 310372
  funderid: 10.13039/501100000781
– fundername: Spinoza grant of the Netherlands Organization for Scientific Research
  funderid: 10.13039/501100003246
– fundername: Wellcome Trust
  grantid: 97377; 102705
  funderid: 10.13039/100004440
– fundername: Medical Research Council
  grantid: MR/N006364/1
  funderid: 10.13039/501100000265
– fundername: La Marató TV3 Foundation
  funderid: 20133431
– fundername: MRC Centre for Medical Mycology at the University of Aberdeen
– fundername: Wellcome Trust
  funderid: 97377; 102705
– fundername: Ministerio de Economía y Competitividad
  funderid: SAF2013‐45331‐R; SAF2016‐79792‐R; SAF2014‐52009‐R
– fundername: ERC Consolidator Grant
  funderid: 310372
– fundername: Spinoza grant of the Netherlands Organization for Scientific Research
– fundername: Medical Research Council
  funderid: MR/N006364/1
– fundername: Wellcome Trust
  grantid: 102705
– fundername: European Research Council
  grantid: 310372
– fundername: Wellcome Trust
  grantid: 97377
– fundername: Wellcome Trust
  grantid: 102705/Z/13/Z
– fundername: Medical Research Council
  grantid: MR/N006364/1
– fundername: Wellcome Trust
  grantid: 97377; 102705
– fundername: Ministerio de Economía y Competitividad
  grantid: SAF2013‐45331‐R; SAF2016‐79792‐R; SAF2014‐52009‐R
– fundername: ERC Consolidator Grant
  grantid: 310372
GroupedDBID ---
0R~
1OC
24P
4.4
53G
5DZ
5GY
5VS
7X7
8-0
8-1
8AO
8FE
8FH
8FI
8FJ
AAJSJ
AAMMB
AAZKR
ABOCM
ABUWG
ACCMX
ACGFO
ACGFS
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEFGJ
AEGXH
AENEX
AFBPY
AFKRA
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
C6C
CCPQU
D-9
DIK
DU5
EBD
EBS
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HK~
HMCUK
HYE
HZ~
IAO
IHR
ITC
KQ8
LH4
LK8
LW6
M48
M7P
NNB
O9-
OIG
OK1
OVD
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RHI
RNS
ROL
RPM
SV3
TEORI
UKHRP
WIN
XV2
31~
AAHHS
ABJNI
ACCFJ
ADPDF
ADZOD
AEEZP
AEQDE
AFZJQ
AIWBW
AJBDE
EBLON
GODZA
H13
M~E
OVEED
RHF
AASML
AAYXX
CITATION
NAO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5795-f1532f337d3221ac1dc2bb1c32a7cae1c9d49f5d75322115664186fa8ed5a3ff3
IEDL.DBID 7X7
ISSN 1757-4676
1757-4684
IngestDate Wed Aug 27 01:14:53 EDT 2025
Thu Aug 21 18:16:58 EDT 2025
Fri Sep 05 08:23:17 EDT 2025
Wed Aug 13 11:05:31 EDT 2025
Mon Jul 21 06:03:08 EDT 2025
Tue Jul 01 01:53:00 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Wed Jan 22 16:22:30 EST 2025
Tue Aug 12 01:11:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords kinase inhibitor
infection
p38MAPK
signalling
Candida albicans
Language English
License Attribution
2018 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5795-f1532f337d3221ac1dc2bb1c32a7cae1c9d49f5d75322115664186fa8ed5a3ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9013-5077
0000-0002-2990-7920
OpenAccessLink https://www.proquest.com/docview/2035599651?pq-origsite=%requestingapplication%
PMID 29661910
PQID 2035599651
PQPubID 866378
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_939e61b85a3b4a58b2f2dc2991a14ffb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5938613
proquest_miscellaneous_2026420979
proquest_journals_2035599651
pubmed_primary_29661910
crossref_primary_10_15252_emmm_201708485
crossref_citationtrail_10_15252_emmm_201708485
wiley_primary_10_15252_emmm_201708485_EMMM201708485
springer_journals_10_15252_emmm_201708485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2018
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
– name: Frankfurt
– name: Hoboken
PublicationTitle EMBO molecular medicine
PublicationTitleAbbrev EMBO Mol Med
PublicationTitleAlternate EMBO Mol Med
PublicationYear 2018
Publisher Nature Publishing Group UK
EMBO Press
John Wiley and Sons Inc
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: EMBO Press
– name: John Wiley and Sons Inc
– name: Springer Nature
References 2011; 434
2017; 42
2010; 10
2012; 122
2013; 208
2013; 123
1999; 163
2004; 5
2008; 6
2010; 140
2007; 76
2014; 66
2012; 845
2003; 197
2002; 49
2014; 127
2013; 13
2015; 373
2003; 3
2011; 21
2008; 20
2009; 19
2007; 219
2010; 7
2014; 10
2015; 15
2005; 192
2015; 6
2009; 21
2006; 12
2004; 382
2016; 54
2013; 344
2007; 50
2008; 11
2007; 408
2014; 111
2012; 32
2012; 109
2016; 4
2005; 280
2009; 9
2009; 8
2016; 374
2014; 74
2012; 7
2012; 4
2003; 21
2012; 8
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
Kullberg BJ (e_1_2_9_24_1) 2016; 374
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Netea MG (e_1_2_9_30_1) 1999; 163
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 7
  start-page: 474
  year: 2010
  end-page: 487
  article-title: Dynamic interplay among monocyte‐derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi
  publication-title: Cell Host Microbe
– volume: 66
  start-page: 1208
  year: 2014
  end-page: 1217
  article-title: Alternative p38 MAPKs are essential for collagen‐induced arthritis
  publication-title: Arthritis Rheumatol
– volume: 4
  start-page: 31
  year: 2016
  article-title: p38γ and p38δ mitogen activated protein kinases (MAPKs), new stars in the MAPK galaxy
  publication-title: Front Cell Dev Biol
– volume: 5
  start-page: 875
  year: 2004
  end-page: 885
  article-title: The RAF proteins take centre stage
  publication-title: Nat Rev Mol Cell Biol
– volume: 192
  start-page: 336
  year: 2005
  end-page: 343
  article-title: Mice with disseminated candidiasis die of progressive sepsis
  publication-title: J Infect Dis
– volume: 374
  start-page: 794
  year: 2016
  end-page: 795
  article-title: Invasive candidiasis
  publication-title: N Engl J Med
– volume: 109
  start-page: 11200
  year: 2012
  end-page: 11205
  article-title: p38gamma and p38delta kinases regulate the Toll‐like receptor 4 (TLR4)‐induced cytokine production by controlling ERK1/2 protein kinase pathway activation
  publication-title: Proc Natl Acad Sci USA
– volume: 11
  start-page: 313
  year: 2008
  end-page: 317
  article-title: Fungal killing by mammalian phagocytic cells
  publication-title: Curr Opin Microbiol
– volume: 50
  start-page: 4728
  year: 2007
  end-page: 4745
  article-title: Inhibitors of tumor progression loci‐2 (Tpl2) kinase and tumor necrosis factor alpha (TNF‐alpha) production: selectivity and antiinflammatory activity of novel 8‐substituted‐4‐anilino‐6‐aminoquinoline‐3‐carbonitriles
  publication-title: J Med Chem
– volume: 127
  start-page: 2383
  year: 2014
  end-page: 2390
  article-title: The TLR and IL‐1 signalling network at a glance
  publication-title: J Cell Sci
– volume: 845
  start-page: 277
  year: 2012
  end-page: 287
  article-title: Phagocytosis and intracellular killing of by murine polymorphonuclear neutrophils
  publication-title: Methods Mol Biol
– volume: 197
  start-page: 1119
  year: 2003
  end-page: 1124
  article-title: Dectin‐1 mediates the biological effects of beta‐glucans
  publication-title: J Exp Med
– volume: 10
  start-page: 427
  year: 2010
  end-page: 439
  article-title: Phagocyte partnership during the onset and resolution of inflammation
  publication-title: Nat Rev Immunol
– volume: 49
  start-page: 55
  year: 2002
  end-page: 62
  article-title: Phagocytosis and intracellular killing of blastoconidia by neutrophils and macrophages: a comparison of different microbiological test systems
  publication-title: J Microbiol Methods
– volume: 4
  start-page: 165rv113
  year: 2012
  article-title: Hidden killers: human fungal infections
  publication-title: Sci Transl Med
– volume: 21
  start-page: 30
  year: 2009
  end-page: 37
  article-title: Pattern recognition: recent insights from Dectin‐1
  publication-title: Curr Opin Immunol
– volume: 408
  start-page: 297
  year: 2007
  end-page: 315
  article-title: The selectivity of protein kinase inhibitors: a further update
  publication-title: Biochem J
– volume: 6
  start-page: 12920
  year: 2015
  end-page: 12935
  article-title: Combined deletion of p38gamma and p38delta reduces skin inflammation and protects from carcinogenesis
  publication-title: Oncotarget
– volume: 8
  start-page: e1002811
  year: 2012
  article-title: Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during infections
  publication-title: PLoS Pathog
– volume: 8
  start-page: 480
  year: 2009
  end-page: 499
  article-title: Targeting innate immunity protein kinase signalling in inflammation
  publication-title: Nat Rev Drug Discov
– volume: 219
  start-page: 75
  year: 2007
  end-page: 87
  article-title: Collaboration between the innate immune receptors dectin‐1, TLRs, and Nods
  publication-title: Immunol Rev
– volume: 434
  start-page: 93
  year: 2011
  end-page: 104
  article-title: Novel cross‐talk within the IKK family controls innate immunity
  publication-title: Biochem J
– volume: 280
  start-page: 19472
  year: 2005
  end-page: 19479
  article-title: BIRB796 inhibits all p38 MAPK isoforms and
  publication-title: J Biol Chem
– volume: 122
  start-page: 4231
  year: 2012
  end-page: 4242
  article-title: Tpl2 regulates intestinal myofibroblast HGF release to suppress colitis‐associated tumorigenesis
  publication-title: J Clin Invest
– volume: 19
  start-page: 3485
  year: 2009
  end-page: 3488
  article-title: Selective inhibitors of tumor progression loci‐2 (Tpl2) kinase with potent inhibition of TNF‐alpha production in human whole blood
  publication-title: Bioorg Med Chem Lett
– volume: 54
  start-page: 145
  year: 2016
  end-page: 148
  article-title: Human fungal pathogens: why should we learn?
  publication-title: J Microbiol
– volume: 373
  start-page: 1445
  year: 2015
  end-page: 1456
  article-title: Invasive candidiasis
  publication-title: N Engl J Med
– volume: 76
  start-page: 447
  year: 2007
  end-page: 480
  article-title: Signaling pathways downstream of pattern‐recognition receptors and their cross talk
  publication-title: Annu Rev Biochem
– volume: 344
  start-page: 378
  year: 2013
  end-page: 387
  article-title: The selective SYK inhibitor P505‐15 (PRT062607) inhibits B cell signaling and function and and augments the activity of fludarabine in chronic lymphocytic leukemia
  publication-title: J Pharmacol Exp Ther
– volume: 6
  start-page: 67
  year: 2008
  end-page: 78
  article-title: An integrated model of the recognition of by the innate immune system
  publication-title: Nat Rev Microbiol
– volume: 123
  start-page: 5035
  year: 2013
  end-page: 5051
  article-title: CX3CR1‐dependent renal macrophage survival promotes control and host survival
  publication-title: J Clin Invest
– volume: 21
  start-page: 335
  year: 2003
  end-page: 376
  article-title: Toll‐like receptors
  publication-title: Annu Rev Immunol
– volume: 3
  start-page: 97
  year: 2003
  end-page: 106
  article-title: Regulation of macrophage function by the antioxidant N‐acetylcysteine in mouse‐oxidative stress by endotoxin
  publication-title: Int Immunopharmacol
– volume: 208
  start-page: 690
  year: 2013
  end-page: 698
  article-title: and induce different T‐cell responses in human peripheral blood mononuclear cells
  publication-title: J Infect Dis
– volume: 7
  start-page: e39132
  year: 2012
  article-title: The IkappaB kinase family phosphorylates the Parkinson's disease kinase LRRK2 at Ser935 and Ser910 during Toll‐like receptor signaling
  publication-title: PLoS One
– volume: 20
  start-page: 1625
  year: 2008
  end-page: 1631
  article-title: COX2 expression and Erk1/Erk2 activity mediate Cot‐induced cell migration
  publication-title: Cell Signal
– volume: 32
  start-page: 4684
  year: 2012
  end-page: 4690
  article-title: IkappaB kinase 2 regulates TPL‐2 activation of extracellular signal‐regulated kinases 1 and 2 by direct phosphorylation of TPL‐2 serine 400
  publication-title: Mol Cell Biol
– volume: 111
  start-page: E2394
  year: 2014
  end-page: E2403
  article-title: IkappaB kinase‐induced interaction of TPL‐2 kinase with 14‐3‐3 is essential for Toll‐like receptor activation of ERK‐1 and ‐2 MAP kinases
  publication-title: Proc Natl Acad Sci USA
– volume: 42
  start-page: 431
  year: 2017
  end-page: 442
  article-title: p38gamma and p38delta: from spectators to key physiological players
  publication-title: Trends Biochem Sci
– volume: 208
  start-page: 199
  year: 2013
  end-page: 202
  article-title: Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis
  publication-title: J Infect Dis
– volume: 74
  start-page: 6150
  year: 2014
  end-page: 6160
  article-title: Pro‐oncogenic role of alternative p38 mitogen‐activated protein kinases p38gamma and p38delta, linking inflammation and cancer in colitis‐associated colon cancer
  publication-title: Can Res
– volume: 12
  start-page: 170
  year: 2006
  end-page: 177
  article-title: Inflammatory response and clinical course of adult patients with nosocomial bloodstream infections caused by spp
  publication-title: Clin Microbiol Infect
– volume: 13
  start-page: 679
  year: 2013
  end-page: 692
  article-title: Mitogen‐activated protein kinases in innate immunity
  publication-title: Nat Rev Immunol
– volume: 10
  start-page: e1004257
  year: 2014
  article-title: pathogenicity and epithelial immunity
  publication-title: PLoS Pathog
– volume: 382
  start-page: 393
  year: 2004
  end-page: 409
  article-title: Functions of NF‐kappaB1 and NF‐kappaB2 in immune cell biology
  publication-title: Biochem J
– volume: 9
  start-page: 465
  year: 2009
  end-page: 479
  article-title: Signalling through C‐type lectin receptors: shaping immune responses
  publication-title: Nat Rev Immunol
– volume: 21
  start-page: 131
  year: 2011
  end-page: 145
  article-title: Regulation and function of TPL‐2, an IkappaB kinase‐regulated MAP kinase kinase kinase
  publication-title: Cell Res
– volume: 140
  start-page: 805
  year: 2010
  end-page: 820
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
– volume: 15
  start-page: 630
  year: 2015
  end-page: 642
  article-title: Immune defence against fungal infections
  publication-title: Nat Rev Immunol
– volume: 197
  start-page: 1107
  year: 2003
  end-page: 1117
  article-title: Collaborative induction of inflammatory responses by dectin‐1 and Toll‐like receptor 2
  publication-title: J Exp Med
– volume: 163
  start-page: 1498
  year: 1999
  end-page: 1505
  article-title: Increased susceptibility of TNF‐alpha lymphotoxin‐alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of
  publication-title: J Immunol
– ident: e_1_2_9_16_1
  doi: 10.1038/nrd2829
– ident: e_1_2_9_21_1
  doi: 10.1007/s12275-016-0647-8
– ident: e_1_2_9_27_1
  doi: 10.1172/JCI71307
– volume: 163
  start-page: 1498
  year: 1999
  ident: e_1_2_9_30_1
  article-title: Increased susceptibility of TNF‐alpha lymphotoxin‐alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans
  publication-title: J Immunol
  doi: 10.4049/jimmunol.163.3.1498
– ident: e_1_2_9_42_1
  doi: 10.1016/j.cell.2010.01.022
– ident: e_1_2_9_5_1
  doi: 10.1073/pnas.1320440111
– ident: e_1_2_9_14_1
  doi: 10.1016/j.chom.2010.05.010
– ident: e_1_2_9_45_1
  doi: 10.1016/S1567-5769(02)00232-1
– ident: e_1_2_9_46_1
  doi: 10.1093/infdis/jit152
– ident: e_1_2_9_50_1
  doi: 10.1111/j.1469-0691.2005.01318.x
– ident: e_1_2_9_2_1
  doi: 10.1038/nri3495
– ident: e_1_2_9_28_1
  doi: 10.1371/journal.ppat.1002811
– ident: e_1_2_9_43_1
  doi: 10.1093/infdis/jit188
– ident: e_1_2_9_20_1
  doi: 10.1021/jm070436q
– ident: e_1_2_9_44_1
  doi: 10.1111/j.1600-065X.2007.00548.x
– ident: e_1_2_9_36_1
  doi: 10.1016/j.cellsig.2008.05.008
– ident: e_1_2_9_40_1
  doi: 10.1124/jpet.112.200832
– ident: e_1_2_9_12_1
  doi: 10.1158/0008-5472.CAN-14-0870
– ident: e_1_2_9_35_1
  doi: 10.1073/pnas.1207290109
– ident: e_1_2_9_39_1
  doi: 10.1086/430952
– ident: e_1_2_9_33_1
  doi: 10.1016/j.mib.2008.05.011
– ident: e_1_2_9_26_1
  doi: 10.1146/annurev.biochem.76.060605.122847
– ident: e_1_2_9_29_1
  doi: 10.1371/journal.ppat.1004257
– ident: e_1_2_9_23_1
  doi: 10.1056/NEJMra1315399
– ident: e_1_2_9_51_1
  doi: 10.1016/j.bmcl.2009.05.009
– ident: e_1_2_9_34_1
  doi: 10.1016/j.coi.2009.01.003
– ident: e_1_2_9_10_1
  doi: 10.1002/art.38327
– ident: e_1_2_9_8_1
  doi: 10.1042/BJ20101701
– ident: e_1_2_9_37_1
  doi: 10.1128/MCB.01065-12
– ident: e_1_2_9_7_1
  doi: 10.1126/scitranslmed.3004404
– ident: e_1_2_9_25_1
  doi: 10.1074/jbc.M414221200
– ident: e_1_2_9_47_1
  doi: 10.1016/S0167-7012(01)00348-7
– ident: e_1_2_9_52_1
  doi: 10.18632/oncotarget.4320
– ident: e_1_2_9_18_1
  doi: 10.1084/jem.20021787
– ident: e_1_2_9_19_1
  doi: 10.1038/nri2569
– ident: e_1_2_9_17_1
  doi: 10.1038/cr.2010.173
– ident: e_1_2_9_11_1
  doi: 10.1016/j.tibs.2017.02.008
– ident: e_1_2_9_22_1
  doi: 10.1172/JCI63917
– ident: e_1_2_9_41_1
  doi: 10.1146/annurev.immunol.21.120601.141126
– ident: e_1_2_9_38_1
  doi: 10.1038/nri2779
– ident: e_1_2_9_4_1
  doi: 10.1042/BJ20040544
– ident: e_1_2_9_6_1
  doi: 10.1084/jem.20021890
– volume: 374
  start-page: 794
  year: 2016
  ident: e_1_2_9_24_1
  article-title: Invasive candidiasis
  publication-title: N Engl J Med
– ident: e_1_2_9_31_1
  doi: 10.1038/nrmicro1815
– ident: e_1_2_9_48_1
  doi: 10.1007/978-1-61779-539-8_18
– ident: e_1_2_9_32_1
  doi: 10.1038/nri3897
– ident: e_1_2_9_13_1
  doi: 10.1371/journal.pone.0039132
– ident: e_1_2_9_49_1
  doi: 10.1038/nrm1498
– ident: e_1_2_9_9_1
  doi: 10.1242/jcs.149831
– ident: e_1_2_9_15_1
  doi: 10.3389/fcell.2016.00031
– ident: e_1_2_9_3_1
  doi: 10.1042/BJ20070797
SSID ssj0065618
Score 2.3099358
Snippet Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is...
Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is...
is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal therapies is a medical need...
Abstract Candida albicans is a frequent aetiologic agent of sepsis associated with high mortality in immunocompromised patients. Developing new antifungal...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Animals
Antifungal activity
Antifungal agents
Candida albicans
Candida albicans - immunology
Candida albicans - physiology
Candidiasis
Candidiasis - genetics
Candidiasis - immunology
Candidiasis - microbiology
Clonal deletion
Drug development
Drug resistance
EMBO19
EMBO23
EMBO28
Female
Host-Pathogen Interactions - immunology
Immune response
Immunocompromised hosts
Immunosuppressive agents
infection
Infections
Inflammation
Innate immunity
Kidneys
kinase inhibitor
Leukocytes (neutrophilic)
Macrophages
Macrophages - immunology
Macrophages - metabolism
Macrophages - microbiology
Mice, Inbred C57BL
Mice, Knockout
Mitogen-Activated Protein Kinase 12 - deficiency
Mitogen-Activated Protein Kinase 12 - genetics
Mitogen-Activated Protein Kinase 12 - immunology
Mitogen-Activated Protein Kinase 13 - deficiency
Mitogen-Activated Protein Kinase 13 - genetics
Mitogen-Activated Protein Kinase 13 - immunology
Mortality
Mushrooms
Myeloid cells
Myeloid Cells - immunology
Myeloid Cells - metabolism
Myeloid Cells - microbiology
Neutrophils - immunology
Neutrophils - metabolism
Neutrophils - microbiology
Nitric Oxide Synthase Type II - immunology
Nitric Oxide Synthase Type II - metabolism
Nitric-oxide synthase
p38MAPK
Patients
Reactive Oxygen Species - immunology
Reactive Oxygen Species - metabolism
Research Article
Rodents
Sepsis
Septic shock
Signal Transduction - genetics
Signal Transduction - immunology
signalling
TAK1 protein
Therapeutic applications
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hSiAuiJa_0BYZiQMcwsZxnMRHilpVSOFEpd4i_0KkNlt1t4d9LngOnokZJxuIoOqFS6TETtY7M575JrG_AXhjEWNUPpOpsaVLiZ8kNTw6Q2cyb0ydxXI-zefy9Kz4dC7P_yj1RWvCBnrgQXALJZQvuamlFqbQsjZ5yJ1FJ8o1L0Iw5H0zlW2TqcEHI0iJb_YwNlYpuoJyJPWRucwX_vKStqDziqjk5SweRdr-f2HNv5dMTt9N56g2hqWTx_BoxJPsw_A_duGe7_fg_lBhcrMHD5rx2_kT8M3GXyw7x-hdPXOeqCNo3yVbBnYl6p_fF3T8wUbmhhXTX3WH4JFZ2vmCZrTq8Frv2PVQvt7T2brDwIhBhnVxn8l68xTOTo6_fDxNxyILqZWVkmlAl5cHISqHU5try1G4xnArcl1Z7blVrlBBOkxrsJ2yvYLXZdC1d6iSEMQz2OmXvX8BrEIooLmVtQpZ4TKtPCaPCLGMwodyaxN4vxV1a0cGciqEcdFSJkK6aUk37aSbBN5ON1wN5Bu3dz0i3U3diDU7XkBbakdbau-ypQQOtppvx6m8wp8QxMpWSp7A66kZJyFpS_d-eUN9EFeiGVYqgeeDoUwjyTGhxKQ4S6CamdBsqPOWvvsWib6lEjXCrQTebY3t97BulYOI1niXvNrjpmmms5f_Q3r78BAfWA-rQQ9gZ3194w8Rsa3Nqzg5fwEE5Tsc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELagCNQLgvIXKMhIHOCQNo7jJD4gBKhVhRROrNRb5N8SaZuU3a3UfS54Dp6JGSebKmILl0iJncTxzHi-ie1vCHljAGMULhGxNrmNkZ8k1iwMhlYnTusyCel8qq_5ySz7cipOr9MBDR243BraYT6p2WJ-cPVj_QEM_v2QvSc9dOfnuKmcFUgOL26TO2GyCNfxZeOUAuCW8LMP3GURw-iQDzw_Wx4wcVGByX8b_Px7FeU4lToFusFTHT8g9weIST_2OvGQ3HLtHrnbJ51c75F71TCd_oi4au3mXWMp_r6n1iGbBG7FpJ2nF7z8_fMQj7_oQOawpOpMNYAnqcHNMKBZywautZYu-oz2Ds9WDfhK8Du0CVtPVuvHZHZ89O3zSTzkXYiNKKSIPYyCqee8sGDtTBlmTao1MzxVhVGOGWkz6YWFSAfKMQDMWJl7VTorFPeePyE7bde6Z4QWgA4UM6KUPslsoqSDeBJQl5bwUGZMRA42XV2bgZQcc2PMawxOUDY1yqYeZRORt-MNFz0fx81VP6HsxmpIpB0udIuzerDLWnLpcqZLaLjOlCh16lP4XEDNimXe64jsbyRfb5QTXsGRqC0XLCKvx2KwS5SWal13iXUAaqaJLGREnvaKMrYkhRgT4uQkIsVEhSZNnZa0zffA_S0kLwGBReTdRtmum3VjP_Cgjf_rr_qoqqrx7Pm_P_wF2YWqZb_0c5_srBaX7iXAs5V-FczuDwDrNVs
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BEYgLggIlUJCROMAhNI7jJD7CqlWFFE5U6i3yL0Rqs1V3e9jngufgmZhxsoGIVojLahN7E69nxvNNnPkG4I1FjFH5TKbGli4lfpLU8LgYOpN5Y-oslvNpPpfHJ8WnU3k6kiRRLsyf-_cyl_mBPz-nhHFeEfG7vA13JK66pMqLcrFdchGTxAd56AqrFC2_HDl8rrnAzP1Elv7roOXfb0hO26RzEBu90NFDeDDCR_ZhkPcjuOX7Xbg7FJTc7MK9Ztwqfwy-2fizZecYPZpnzhNTBKVZsmVgF6L--f2APn-wkahhxfRX3SFWZJYSXVBrVh2e6x27HKrVezpad-gH0aewLqaVrDdP4OTo8MviOB1rKqRWVkqmAVe4PAhRObRkri13NjeGW5HrymrPrXKFCtJhFIPtFNwVvC6Drr2TWoQgnsJOv-z9M2AVen7NraxVyAqXaeUxVkREZRRelFubwPvtVLd2JBynuhdnLQUeJJuWZNNOskng7fSDi4Fr4-auH0l2UzciyY4nUHfa0eZaJZQvualx4KbQsjZ5yPHvIiLWvAjBJLC_lXw7Wu4KbyGIhK2UPIHXUzPaHElL9355RX0QRuaZqlQCe4OiTCPJMX7EGDhLoJqp0Gyo85a--xZ5vaUSNaKrBN5tle33sG6cBxG18V_z1R42TTMdPf-PO7yA-_i9Ht7x3Ied9eWVf4k4bG1eRRv8BR1rKrY
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library Open Access (Activated by CARLI)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEYgLggIlUJCROMAhNI7jJD4CalUhBXGgErfIzxKpzVa720N_F_wOfhMzzgNFUCFxWW1ix-v1PPyNY38D8Moixqh8JlNjS5cSP0lqeHSGzmTemDqL6XyaT-XxSfHxq5x2E9JZmIEfYl5wI8uI_poMXJvNlLGHWEP9-TkdJecVUcLLm3ALob0gJc-Lz5MzRrQSl_hwkqxS9AnlyO5DTRwsG1hMTJG__2-g88-9k_ML1CW8jfPT0X24NwJL9m7QhAdww_e7cHtINXm1C3ea8SX6Q_DNlT9bdY7Roj1znjgk6AAmWwV2Ieqf3w_o8wcbKRw2TJ_qDlEks3QEBvVp0-G93rH1kMfe09W2wxkSZxvWxQMn26tHcHJ0-OXDcTpmW0itrJRMA_q-PAhRObRxri13NjeGW5HrymrPrXKFCtJhfIPlFPYVvC6Drr2TWoQgHsNOv-r9E2AVYgLNraxVyAqXaeUxikSsZRQ2yq1N4O001K0dqcgpI8ZZSyEJyaYl2bSzbBJ4PT9wMbBwXF_1Pclurkb02fHGan3ajtbYKqF8yU2NHTeFlrXJQ45_F7Gy5kUIJoH9SfLtaNMb_AlB9Gyl5Am8nIvRGklauverS6qDADPPVKUS2BsUZe5JjpElRsdZAtVChRZdXZb03bfI-C2VqBF3JfBmUrbf3bp2HETUxn-NV3vYNM189fS_nnoGd_F7PewD3Yed7frSP0estjUvojX-Aq9-Nk0
  priority: 102
  providerName: Wiley-Blackwell
Title Myeloid cell deficiency of p38γ/p38δ protects against candidiasis and regulates antifungal immunity
URI https://link.springer.com/article/10.15252/emmm.201708485
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Femmm.201708485
https://www.ncbi.nlm.nih.gov/pubmed/29661910
https://www.proquest.com/docview/2035599651
https://www.proquest.com/docview/2026420979
https://pubmed.ncbi.nlm.nih.gov/PMC5938613
https://doaj.org/article/939e61b85a3b4a58b2f2dc2991a14ffb
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELZoKxAXBOUvUFZG4gCH0DiJk_iE6GqrCilVhai0t8h_aSO1ybK7PexzwXPwTMw43lQRFC6RHHtXjmfG_mZsf0PIOw0YI7cRD5XOTIj8JKFibjI0KrJKFZFL51OeZifn6Zc5n_uA28ofq9zOiW6iNp3GGDk46QmSY2WcfVp8DzFrFO6u-hQaO2SPARLB1A35fHC4AKq4-B6skHkIE0LmqX14zONDe32NF9FZjoTyfLQqOfL-vyHOPw9ODrunY2zrFqfjx-SRR5X0c68GT8g92-6T-32eyc0-eVD6HfSnxJYbe9U1hmLEnhqLBBJ4-5J2NV0kxa8fh_j8ST1_w4rKC9kAhKQa77-AMq0aeNcauuyT2FssrRtYHmGpoY27bbLePCPnx7Nv05PQp1oINc8FD2uY-OI6SXIDBs6kZkbHSjGdxDLX0jItTCpqbsC5gXr0-VJWZLUsrOEyqevkOdltu9a-JDQHQCCZ5oWoo9REUlhwIQFoKQF_yrQOyMftUFfa85BjOoyrCv0RlE2FsqkG2QTk_fCDRU_BcXfTI5Td0Ay5s92LbnlReVOsRCJsxlQBHVep5IWK6xg-F4CyZGldq4AcbCVfeYNeVbfqF5C3QzWYIkpLtra7wTaALuNI5CIgL3pFGXoSg1sJrnEUkHykQqOujmva5tLRfXORFAC6AvJhq2y33bpzHBKnjf8br2pWluVQevXvD39NHkLToj_teUB218sb-wYQ2VpNyE6cnk2c8U3I3tHs9OwrlKbZdOJiHPAs0-I3_XM3PQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXhcEJRXoICRQIJDaJzEm-RQIQpbbWmzQqiVegt-ZYnUJsvuVmh_F5z5CfwmZrJJqhUUTr1ESuxEjmc8_sb2fAPwXCPGiKwnXKX7xiV-Elfx2hga5VmlYq9O55OO-sOj8MOxOF6Dn20sDB2rbG1ibahNpWmNHJ30gMix-oK_mXx1KWsU7a62KTRkk1rBbNcUY01gx75dfEMXbra99x7l_cL3dweH74Zuk2XA1SJKhJvjmPfzIIgM6jaXmhvtK8V14MtIS8t1YsIkFwZxPZaTuxPyuJ_L2BohgzwP8LtXYD2kBZQerO8MRh8_tXMBgqV6hRHn6MhFk9RvyIWEL_wte3pKofA8Ikp7sTIv1ukD_oZ5_zy62e3frqLrenrcvQU3G1zL3i4V8Tas2XIDri4zXS424Fra7OHfAZsu7ElVGEZ7BsxYorCg-E9W5WwSxL--b9H1B2sYJGZMjmWBIJZpisBBdZ4V-Kw0bGrHlHvM0t28wAkaJztW1PEu88VdOLoUMdyDXlmV9gGwCCGJ5FrESe6FxpOJRScWoZ5K8KNcawdet12d6YYJnRJynGTkEZFsMpJN1snGgZfdC5MlCcjFVXdIdl01Yu-uH1TTcdYYgywJEtvnKsaGq1CKWPm5j7-LUF3yMM-VA5ut5LPGpMyy8wHgwLOuGI0BSUuWtjqjOohvfS-JEgfuLxWla4mPji06554D0YoKrTR1taQsvtSE4yIJYoR9Drxqle28WRf2Q1Br4__6KxukadrdPfz3jz-F68PD9CA72BvtP4Ib-Fq8PHu6Cb359Mw-Rnw4V0-aQcjg82WP-99aQXUq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVlRcEJQ_Q4FFAgkOJl7bG9uHClGaqKU4qhCVejP7Gyy1dkhSoTwXPAUHnokZZ-0qgsKpF0v22tZ6Z3bmG-_ON4Q8V4AxEhNwX6q-9pGfxJesMYZaBkbKNGjK-eSj_v5x_P6En6yRn20uDG6rbG1iY6h1rfAfOQTpEZJj9TnrWbct4mhv-Gby1ccKUrjS2pbTEK7Mgt5p6MZcksehWXyDcG62c7AHsn8RhsPBp3f7vqs44CueZNy3MP9DG0WJBj1nQjGtQimZikKRKGGYynScWa4B40M7hj4xS_tWpEZzEVkbwXuvkY0EvD4Eghu7g9HRx9YvAHBq_jaCv058ME99RzTEQx72zNkZpsWzBOnt-YqPbEoJ_A3__rmNs1vLXUXajasc3iI3Hcalb5dKeZusmWqLXF9WvVxskc3creffISZfmNO61BTXD6g2SGeBuaC0tnQSpb--9_D4gzo2iRkVY1ECoKUKs3FAtWclXKs0nZox1iEzeDYvwVmD46Nlk_syX9wlx1cihntkvaor84DQBOCJYIqnmQ1iHYjMQEALsE9m8FKmlEdet0NdKMeKjsU5TguMjlA2Bcqm6GTjkZfdA5MlIcjlt-6i7LrbkMm7uVBPx4UzDEUWZabPZAodl7HgqQxtCJ8LsF2w2Frpke1W8oUzL7PiYjJ45FnXDIYBpSUqU5_jPYB1wyBLMo_cXypK15MQglwI1AOPJCsqtNLV1Zaq_NKQj_MsSgECeuRVq2wX3bp0HKJGG_83XsUgz_Pu7OG_P_wp2YT5X3w4GB0-IjfgqXS5DXWbrM-n5-YxQMW5fOLmICWfr3ra_wY1cnlu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myeloid+cell+deficiency+of+p38%CE%B3%2Fp38%CE%B4+protects+against+candidiasis+and+regulates+antifungal+immunity&rft.jtitle=EMBO+molecular+medicine&rft.au=Dayanira+Alsina%E2%80%90Beauchamp&rft.au=Esc%C3%B3s%2C+Alejandra&rft.au=Fajardo%2C+Pilar&rft.au=Diego+Gonz%C3%A1lez%E2%80%90Romero&rft.date=2018-05-01&rft.pub=EMBO+Press&rft.issn=1757-4676&rft.eissn=1757-4684&rft.volume=10&rft.issue=5&rft_id=info:doi/10.15252%2Femmm.201708485&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4676&client=summon