Infiltrative and drug‐resistant slow‐cycling cells support metabolic heterogeneity in glioblastoma
Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic spec...
Saved in:
Published in | The EMBO journal Vol. 37; no. 23 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.12.2018
Springer Nature B.V John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0261-4189 1460-2075 1460-2075 |
DOI | 10.15252/embj.201798772 |
Cover
Abstract | Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow‐cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose‐deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7‐related metabolic pathways is a viable therapeutic strategy.
Synopsis
Transcriptomic and metabolomic profiling of primary brain tumor cells demonstrate that functionally different glioblastoma (GBM) cell subpopulations depend on distinct metabolic pathways for their growth and survival. More invasive slow cycling tumor cells rely on oxidative phosphorylation and lipid metabolism, suggesting targetable candidates for the inhibition of treatment‐resistant tumors.
Patient‐derived GBM cells contain fast‐cycling cells (FCCs) relying on aerobic glycolysis and slow‐cycling cells (SCCs) depending on mitochondrial oxidative phosphorylation
in vivo
.
SCCs show increased resistance, invasion, and metabolic gene signatures characteristic of recurrent tumors.
SCCs show increased levels of metabolites and components involved in lipid metabolism, storage, and transport.
Block of FABP7‐dependent exogenous fatty acid uptake decreases resistance of SCCs to chemotherapy and glucose deprivation.
Graphical Abstract
Oxidative phosphorylation and lipid metabolism specify distinct energetic set‐up of invasive brain tumor cells. |
---|---|
AbstractList | Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast-cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow-cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose-deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7-related metabolic pathways is a viable therapeutic strategy. Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow‐cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose‐deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7‐related metabolic pathways is a viable therapeutic strategy. Synopsis Transcriptomic and metabolomic profiling of primary brain tumor cells demonstrate that functionally different glioblastoma (GBM) cell subpopulations depend on distinct metabolic pathways for their growth and survival. More invasive slow cycling tumor cells rely on oxidative phosphorylation and lipid metabolism, suggesting targetable candidates for the inhibition of treatment‐resistant tumors. Patient‐derived GBM cells contain fast‐cycling cells (FCCs) relying on aerobic glycolysis and slow‐cycling cells (SCCs) depending on mitochondrial oxidative phosphorylation in vivo . SCCs show increased resistance, invasion, and metabolic gene signatures characteristic of recurrent tumors. SCCs show increased levels of metabolites and components involved in lipid metabolism, storage, and transport. Block of FABP7‐dependent exogenous fatty acid uptake decreases resistance of SCCs to chemotherapy and glucose deprivation. Graphical Abstract Oxidative phosphorylation and lipid metabolism specify distinct energetic set‐up of invasive brain tumor cells. Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells ( FCC s) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma ( GBM ) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM , in which FCC s harness aerobic glycolysis, and slow‐cycling cells ( SCC s) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCC s display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCC s also demonstrate increased lipid contents that are specifically metabolized under glucose‐deprived conditions. Fatty acid transport in SCC s is targetable by pharmacological inhibition or genomic deletion of FABP 7, both of which sensitize SCC s to metabolic stress. Furthermore, FABP 7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP 7 is central to lipid metabolism in SCC s and that targeting FABP 7‐related metabolic pathways is a viable therapeutic strategy. Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow‐cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose‐deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7‐related metabolic pathways is a viable therapeutic strategy. Synopsis Transcriptomic and metabolomic profiling of primary brain tumor cells demonstrate that functionally different glioblastoma (GBM) cell subpopulations depend on distinct metabolic pathways for their growth and survival. More invasive slow cycling tumor cells rely on oxidative phosphorylation and lipid metabolism, suggesting targetable candidates for the inhibition of treatment‐resistant tumors. Patient‐derived GBM cells contain fast‐cycling cells (FCCs) relying on aerobic glycolysis and slow‐cycling cells (SCCs) depending on mitochondrial oxidative phosphorylation in vivo. SCCs show increased resistance, invasion, and metabolic gene signatures characteristic of recurrent tumors. SCCs show increased levels of metabolites and components involved in lipid metabolism, storage, and transport. Block of FABP7‐dependent exogenous fatty acid uptake decreases resistance of SCCs to chemotherapy and glucose deprivation. Oxidative phosphorylation and lipid metabolism specify distinct energetic set‐up of invasive brain tumor cells. Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast-cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow-cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose-deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7-related metabolic pathways is a viable therapeutic strategy.Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast-cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow-cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose-deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7-related metabolic pathways is a viable therapeutic strategy. |
Author | Suzuki‐Hatano, Silveli Kubilis, Paul Reynolds, Brent A Deleyrolle, Loic P Dajac, Kyle Mitchell, Duane A Jimenez‐Pascual, Ana Schmoll Massari, Michael Moneypenny, Craig Siebzehnrubl, Florian A Yang, Changlin Vuong, Alvin Huang, Jianping Loche, Tyler Garrett, Timothy J Andrews, Nicholas Sarkisian, Matthew R Sayour, Elias J Patel, Jaimin Hoang‐Minh, Lan B Pacak, Christina A Amin, Krisha |
AuthorAffiliation | 4 Department of Neurosurgery McKnight Brain Institute University of Florida Gainesville FL USA 2 Preston A. Wells, Jr. Center for Brain Tumor Therapy University of Florida Gainesville FL USA 3 European Cancer Stem Cell Research Institute Cardiff University School of Biosciences Cardiff UK 5 Department of Pediatrics College of Medicine University of Florida Gainesville FL USA 1 Department of Neuroscience McKnight Brain Institute University of Florida Gainesville FL USA 6 Department of Pathology, Immunology and Laboratory Medicine University of Florida Gainesville FL USA 7 Interdisciplinary Center for Biotechnology Research University of Florida Gainesville FL USA |
AuthorAffiliation_xml | – name: 6 Department of Pathology, Immunology and Laboratory Medicine University of Florida Gainesville FL USA – name: 7 Interdisciplinary Center for Biotechnology Research University of Florida Gainesville FL USA – name: 1 Department of Neuroscience McKnight Brain Institute University of Florida Gainesville FL USA – name: 4 Department of Neurosurgery McKnight Brain Institute University of Florida Gainesville FL USA – name: 2 Preston A. Wells, Jr. Center for Brain Tumor Therapy University of Florida Gainesville FL USA – name: 5 Department of Pediatrics College of Medicine University of Florida Gainesville FL USA – name: 3 European Cancer Stem Cell Research Institute Cardiff University School of Biosciences Cardiff UK |
Author_xml | – sequence: 1 givenname: Lan B surname: Hoang‐Minh fullname: Hoang‐Minh, Lan B organization: Department of Neuroscience, McKnight Brain Institute, University of Florida, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida – sequence: 2 givenname: Florian A surname: Siebzehnrubl fullname: Siebzehnrubl, Florian A organization: European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences – sequence: 3 givenname: Changlin surname: Yang fullname: Yang, Changlin organization: Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Department of Neurosurgery, McKnight Brain Institute, University of Florida – sequence: 4 givenname: Silveli surname: Suzuki‐Hatano fullname: Suzuki‐Hatano, Silveli organization: Department of Pediatrics, College of Medicine, University of Florida – sequence: 5 givenname: Kyle surname: Dajac fullname: Dajac, Kyle organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida – sequence: 6 givenname: Tyler surname: Loche fullname: Loche, Tyler organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida – sequence: 7 givenname: Nicholas surname: Andrews fullname: Andrews, Nicholas organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida – sequence: 8 givenname: Michael surname: Schmoll Massari fullname: Schmoll Massari, Michael organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida – sequence: 9 givenname: Jaimin surname: Patel fullname: Patel, Jaimin organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida – sequence: 10 givenname: Krisha surname: Amin fullname: Amin, Krisha organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida – sequence: 11 givenname: Alvin surname: Vuong fullname: Vuong, Alvin organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida – sequence: 12 givenname: Ana surname: Jimenez‐Pascual fullname: Jimenez‐Pascual, Ana organization: European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences – sequence: 13 givenname: Paul surname: Kubilis fullname: Kubilis, Paul organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida – sequence: 14 givenname: Timothy J surname: Garrett fullname: Garrett, Timothy J organization: Department of Pathology, Immunology and Laboratory Medicine, University of Florida – sequence: 15 givenname: Craig surname: Moneypenny fullname: Moneypenny, Craig organization: Interdisciplinary Center for Biotechnology Research, University of Florida – sequence: 16 givenname: Christina A surname: Pacak fullname: Pacak, Christina A organization: Department of Pediatrics, College of Medicine, University of Florida – sequence: 17 givenname: Jianping surname: Huang fullname: Huang, Jianping organization: Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Department of Neurosurgery, McKnight Brain Institute, University of Florida – sequence: 18 givenname: Elias J surname: Sayour fullname: Sayour, Elias J organization: Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Department of Neurosurgery, McKnight Brain Institute, University of Florida – sequence: 19 givenname: Duane A surname: Mitchell fullname: Mitchell, Duane A organization: Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Department of Neurosurgery, McKnight Brain Institute, University of Florida – sequence: 20 givenname: Matthew R surname: Sarkisian fullname: Sarkisian, Matthew R organization: Department of Neuroscience, McKnight Brain Institute, University of Florida, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida – sequence: 21 givenname: Brent A orcidid: 0000-0001-6273-7014 surname: Reynolds fullname: Reynolds, Brent A email: brent.reynolds@neurosurgery.ufl.edu organization: Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Department of Neurosurgery, McKnight Brain Institute, University of Florida – sequence: 22 givenname: Loic P orcidid: 0000-0002-1129-744X surname: Deleyrolle fullname: Deleyrolle, Loic P email: loic.deleyrolle@neurosurgery.ufl.edu organization: Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Department of Neurosurgery, McKnight Brain Institute, University of Florida |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30322894$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAURS1URKeFNTsUiQ2btPZzEjsskKAqUFTEBtaW4zipR4492E6r2fEJfCNfgsO0pVSqWFmyz71-990DtOe80wg9J_iI1FDDsZ669RFgwlrOGDxCK1I1uATM6j20wtCQsiK83UcHMa4xxjVn5Anap5gC8LZaoeHMDcamIJO51IV0fdGHefz142fQ0cQkXSqi9Vf5Qm2VNW4slLY2FnHebHxIxaST7Lw1qrjQSQc_aqdN2hbGFaM1vrMyJj_Jp-jxIG3Uz67PQ_Tt_enXk4_l-ZcPZydvz0tVsxZK6DpQfTUwkEChahqtCG-4UgpaWqmhpVwORElKqVR1L_uuw4pzBtAPg-oUPURvdr6buZt0r7TL0azYBDPJsBVeGvHvizMXYvSXogHWcF5lg1fXBsF_n3VMYjJxiSyd9nMUQJbdQtvijL68h679HFyOl6mKYE5Zs1Av7k50O8pNBRmod4AKPsagB6FMynX4ZUBjBcHiT9ViqVrcVp11x_d0N9YPK17vFFfG6u3_cHH6-d2nu2K8E8esc6MOf9M-9N9v2DDSNA |
CitedBy_id | crossref_primary_10_1016_j_canlet_2022_215713 crossref_primary_10_3390_ijms25052529 crossref_primary_10_3389_fphar_2023_1186064 crossref_primary_10_1016_j_cmet_2020_12_008 crossref_primary_10_1016_j_cmet_2020_12_009 crossref_primary_10_1016_j_semcancer_2022_05_003 crossref_primary_10_1038_s41467_025_56547_w crossref_primary_10_1002_advs_202413367 crossref_primary_10_3389_fimmu_2022_831636 crossref_primary_10_1038_s41467_022_29137_3 crossref_primary_10_1038_s41420_025_02390_3 crossref_primary_10_1007_s43152_024_00057_2 crossref_primary_10_3390_ijms222312709 crossref_primary_10_1016_j_tranon_2023_101722 crossref_primary_10_3390_genes12010099 crossref_primary_10_1016_j_addr_2022_114415 crossref_primary_10_1186_s43046_024_00240_4 crossref_primary_10_1021_acs_bioconjchem_4c00287 crossref_primary_10_3389_fphar_2022_840440 crossref_primary_10_1016_j_celrep_2024_115142 crossref_primary_10_3390_cancers12113126 crossref_primary_10_1089_ars_2022_0088 crossref_primary_10_1093_neuonc_noad239 crossref_primary_10_1080_15384047_2021_1992233 crossref_primary_10_1158_0008_5472_CAN_22_2370 crossref_primary_10_3390_cancers15051519 crossref_primary_10_1016_j_critrevonc_2020_102995 crossref_primary_10_1186_s40478_021_01205_7 crossref_primary_10_1172_JCI163448 crossref_primary_10_1172_jci_insight_126140 crossref_primary_10_3390_cells9092081 crossref_primary_10_3390_ijms241814365 crossref_primary_10_3390_biomedicines10061308 crossref_primary_10_1186_s13046_019_1228_6 crossref_primary_10_1039_D0AN02381G crossref_primary_10_1186_s40170_024_00364_0 crossref_primary_10_1172_JCI136779 crossref_primary_10_3390_v15051086 crossref_primary_10_3389_fonc_2022_1022716 crossref_primary_10_1093_jnen_nlab092 crossref_primary_10_1016_j_semcancer_2021_04_021 crossref_primary_10_1016_j_cmet_2019_04_004 crossref_primary_10_3390_cancers15102709 crossref_primary_10_1186_s43556_020_00012_1 crossref_primary_10_1038_s43018_023_00556_5 crossref_primary_10_1111_ejn_16357 crossref_primary_10_3390_cancers13010009 crossref_primary_10_1038_s41467_020_15219_7 crossref_primary_10_3389_fimmu_2023_1288027 crossref_primary_10_3390_cancers13040717 crossref_primary_10_1016_j_trecan_2022_09_005 crossref_primary_10_1016_j_celrep_2023_112472 crossref_primary_10_3389_fonc_2022_901951 crossref_primary_10_3892_ijo_2022_5428 crossref_primary_10_1002_1878_0261_13571 crossref_primary_10_1111_jcmm_14507 crossref_primary_10_1007_s11010_023_04861_6 crossref_primary_10_1016_j_drudis_2024_103980 crossref_primary_10_3389_fonc_2021_743814 crossref_primary_10_1038_s41420_024_01797_8 crossref_primary_10_1016_j_yexcr_2019_03_003 crossref_primary_10_3390_nu13082664 crossref_primary_10_1101_gad_324301_119 crossref_primary_10_1158_2159_8290_CD_18_1308 crossref_primary_10_1016_j_biomaterials_2022_121711 crossref_primary_10_1016_j_semcancer_2023_04_004 crossref_primary_10_1158_2326_6066_CIR_23_0721 crossref_primary_10_3390_cancers13030399 crossref_primary_10_1038_s44321_025_00195_6 crossref_primary_10_1002_advs_202100978 crossref_primary_10_1039_D1NR02128A crossref_primary_10_1016_j_drup_2021_100797 crossref_primary_10_1172_JCI138276 crossref_primary_10_3390_cancers15225315 crossref_primary_10_3892_or_2023_8681 crossref_primary_10_5115_acb_23_158 crossref_primary_10_1016_j_semcancer_2022_03_023 crossref_primary_10_1126_sciadv_aaz4125 crossref_primary_10_1158_0008_5472_CAN_23_3643 crossref_primary_10_1038_s41419_020_2297_3 crossref_primary_10_3892_mmr_2025_13448 crossref_primary_10_3390_cancers14051126 crossref_primary_10_3390_cells10030705 crossref_primary_10_3390_metabo15030201 crossref_primary_10_1007_s00018_020_03569_w crossref_primary_10_1093_neuonc_noaa283 crossref_primary_10_3390_ijms24119137 crossref_primary_10_3390_ijms24044217 crossref_primary_10_3390_cells11050805 crossref_primary_10_3390_cancers14215377 crossref_primary_10_1038_s42255_023_00963_z crossref_primary_10_1007_s43152_020_00010_z crossref_primary_10_3390_cells13110938 crossref_primary_10_1002_1873_3468_14820 crossref_primary_10_3389_fonc_2022_995498 crossref_primary_10_3390_cancers11091231 crossref_primary_10_1158_1078_0432_CCR_20_1065 crossref_primary_10_3389_fcell_2021_693215 crossref_primary_10_1016_j_bbadis_2024_167637 crossref_primary_10_3390_futurepharmacol5010007 crossref_primary_10_1016_j_actbio_2024_06_023 crossref_primary_10_3390_pharmaceutics16060728 crossref_primary_10_3390_cancers15153843 crossref_primary_10_3390_cells8070715 crossref_primary_10_1016_j_slasd_2025_100213 crossref_primary_10_3390_ijms23020604 crossref_primary_10_3389_fonc_2020_01631 crossref_primary_10_1093_noajnl_vdae142 crossref_primary_10_1172_JCI139542 crossref_primary_10_1002_ctd2_287 crossref_primary_10_1038_s41388_021_02139_z crossref_primary_10_1016_j_chembiol_2021_11_002 crossref_primary_10_1101_gad_350693_123 crossref_primary_10_1016_j_celrep_2021_109588 crossref_primary_10_1016_j_isci_2024_110064 crossref_primary_10_1038_s44318_024_00176_4 crossref_primary_10_1186_s12943_025_02258_1 crossref_primary_10_1093_neuonc_noad134 crossref_primary_10_15252_msb_20209522 crossref_primary_10_1038_s41591_021_01233_9 crossref_primary_10_1093_neuonc_noae106 |
Cites_doi | 10.1016/j.celrep.2014.08.056 10.1016/j.celrep.2016.12.064 10.1126/science.aad0501 10.1001/jama.1926.02680200071042 10.1073/pnas.1106704108 10.1523/JNEUROSCI.4590-13.2014 10.1182/blood.V99.1.319 10.1080/15216540152845902 10.1038/onc.2017.212 10.1002/path.4366 10.1089/scd.2011.0477 10.1038/onc.2010.215 10.1016/j.cell.2014.11.025 10.1126/science.1254257 10.1016/j.ccr.2012.08.014 10.1016/j.cell.2015.12.034 10.1385/CBB:39:3:279 10.1186/1471-2407-6-97 10.1016/j.cell.2013.06.005 10.18632/oncotarget.6854 10.1016/j.ccr.2013.05.003 10.3389/fimmu.2016.00156 10.1186/s13046-016-0303-5 10.1038/ncb1998 10.1038/onc.2010.35 10.1016/j.ccell.2014.10.001 10.1093/brain/awr081 10.1126/science.1260419 10.1016/j.cmet.2012.05.001 10.1038/nature07385 10.1158/1078-0432.CCR-15-0916 10.1038/sj.onc.1210508 10.1093/nar/gku1003 10.1001/jama.2015.16669 10.1038/nature11287 10.1038/ncomms12329 10.1007/s10585-009-9260-0 10.1002/stem.2042 10.1016/j.nbd.2014.05.003 10.1016/j.stem.2012.12.013 10.1016/j.stem.2016.11.004 10.1038/nature14587 10.1002/stem.1837 10.1158/1078-0432.CCR-15-0490 10.1038/nature07976 10.1158/1078-0432.CCR-07-0658 10.1089/ars.2009.2692 10.1111/pin.12109 10.1016/j.jmb.2007.04.073 10.1371/journal.pone.0094200 10.1038/oncsis.2015.49 10.1007/s11060-013-1340-y 10.1016/j.cell.2009.07.011 10.1371/journal.pone.0038842 10.5402/2012/217162 10.1124/jpet.111.184341 10.1056/NEJMoa043330 10.1038/nature20123 10.1158/0008-5472.CAN-04-4229 10.1038/nature05844 10.1371/journal.pone.0024665 10.1016/S0891-5849(00)00302-6 10.4161/auto.7.5.14811 10.1080/15548627.2016.1190074 10.1016/j.ccr.2014.05.005 10.1093/neuonc/now128 10.1371/journal.pone.0052113 10.1093/brain/aws042 10.1016/j.cell.2015.01.043 10.1016/S1476-5586(04)80047-2 10.1093/neuonc/nou121 10.1016/j.stem.2008.02.009 10.1038/nature16071 10.1186/s12885-016-2906-9 10.1111/jnc.12204 10.1101/sqb.2016.81.030981 10.1038/cdd.2014.105 10.1007/978-1-61779-145-1_4 10.1016/j.tem.2011.02.003 10.1002/emmm.201302827 10.1016/j.cmpb.2007.11.017 10.1074/jbc.M110.164046 10.1007/978-1-4899-3242-6 10.1038/nature23666 10.1038/nrc3038 10.1016/j.cell.2009.12.007 10.1038/nature13611 10.1016/j.cell.2010.04.020 10.1126/science.aai8478 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018 The Authors 2018 The Authors. 2018 EMBO |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018 The Authors – notice: 2018 The Authors. – notice: 2018 EMBO |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.15252/embj.201798772 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Lan B Hoang‐Minh et al |
EISSN | 1460-2075 |
EndPage | n/a |
ExternalDocumentID | PMC6276884 30322894 10_15252_embj_201798772 EMBJ201798772 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Tenovus Cancer Care grantid: TIG2015/L19 funderid: 10.13039/501100000723 – fundername: Preston A. Wells, Jr. Brain Tumor Fund – fundername: Cancer Research UK Cardiff Center funderid: 10.13039/501100000289 – fundername: American Cancer Society (ACS) grantid: RSG‐13‐031‐01‐DDC funderid: 10.13039/100000048 – fundername: Preston A. Wells, Jr. Brain Tumor Research Fund – fundername: Preston A. Wells, Jr. Endowment grantid: 00107592; 1K08CA199224‐01A1 – fundername: American Brain Tumor Association (ABTA) grantid: DG1800014 funderid: 10.13039/100001453 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: 1S10OD020026 funderid: 10.13039/100000054 – fundername: Accelerate Brain Cancer Cure (ABC2) funderid: 10.13039/100001438 – fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: R24 NS086554‐01 funderid: 10.13039/100000065 – fundername: Accelerate Brain Cancer Cure (ABC2) – fundername: American Brain Tumor Association (ABTA) funderid: DG1800014 – fundername: Tenovus Cancer Care funderid: TIG2015/L19 – fundername: American Cancer Society (ACS) funderid: RSG‐13‐031‐01‐DDC – fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS) funderid: R24 NS086554‐01 – fundername: Preston A. Wells, Jr. Endowment funderid: 00107592; 1K08CA199224‐01A1 – fundername: HHS | NIH | National Cancer Institute (NCI) funderid: 1S10OD020026 – fundername: Robert P. Apkarian Integrated Electron Microscopy Core (RPAIEMC) – fundername: American Brain Tumor Association (ABTA) grantid: DG1800014 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: 1S10OD020026 – fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: R24 NS086554‐01 – fundername: Tenovus Cancer Care grantid: TIG2015/L19 – fundername: American Cancer Society (ACS) grantid: RSG‐13‐031‐01‐DDC |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EJD EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI AASML AAYXX ABZEH CITATION NAO NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 RC3 7X8 AJAOE ESTFP 5PM |
ID | FETCH-LOGICAL-c5792-2bb2cd4f72a232466ec1868ccc2934cf938af1ca333ac5dadbb0c88722dffcbc3 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 14:00:11 EDT 2025 Sun Sep 28 09:43:58 EDT 2025 Fri Jul 25 19:35:13 EDT 2025 Wed Feb 19 02:42:10 EST 2025 Thu Apr 24 22:53:50 EDT 2025 Tue Jul 01 01:47:20 EDT 2025 Wed Jan 22 16:56:19 EST 2025 Fri Feb 21 02:37:31 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | metabolism glioblastoma brain cancer cancer stem cells slow‐cycling cells |
Language | English |
License | 2018 The Authors. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5792-2bb2cd4f72a232466ec1868ccc2934cf938af1ca333ac5dadbb0c88722dffcbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work |
ORCID | 0000-0002-1129-744X 0000-0001-6273-7014 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embj.201798772 |
PMID | 30322894 |
PQID | 2141083760 |
PQPubID | 35985 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6276884 proquest_miscellaneous_2120752990 proquest_journals_2141083760 pubmed_primary_30322894 crossref_citationtrail_10_15252_embj_201798772 crossref_primary_10_15252_embj_201798772 wiley_primary_10_15252_embj_201798772_EMBJ201798772 springer_journals_10_15252_embj_201798772 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 03 December 2018 |
PublicationDateYYYYMMDD | 2018-12-03 |
PublicationDate_xml | – month: 12 year: 2018 text: 03 December 2018 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
References | Belounis, Nyalendo, Le Gall, Imbriglio, Mahma, Teira, Beaunoyer, Cournoyer, Haddad, Vassal, Sartelet (CR3) 2016; 16 Lin, Patel, Affleck, Wilson, Turnbull, Joshi, Maxwell, Stoll (CR41) 2017; 19 Marin‐Valencia, Yang, Mashimo, Cho, Baek, Yang, Rajagopalan, Maddie, Vemireddy, Zhao, Cai, Good, Tu, Hatanpaa, Mickey, Mates, Pascual, Maher, Malloy, Deberardinis (CR42) 2012; 15 Hensley, Faubert, Yuan, Lev‐Cohain, Jin, Kim, Jiang, Ko, Skelton, Loudat, Wodzak, Klimko, McMillan, Butt, Ni, Oliver, Torrealba, Malloy, Kernstine, Lenkinski (CR28) 2016; 164 McCullagh, Nelder (CR45) 1989 Osswald, Jung, Sahm, Solecki, Venkataramani, Blaes, Weil, Horstmann, Wiestler, Syed, Huang, Ratliff, Karimian Jazi, Kurz, Schmenger, Lemke, Gommel, Pauli, Liao, Haring (CR1000) 2015; 528 Pece, Tosoni, Confalonieri, Mazzarol, Vecchi, Ronzoni, Bernard, Viale, Pelicci, Di Fiore (CR53) 2010; 140 (CR8) 2008; 455 Noto, De Vitis, Pisanu, Roscilli, Ricci, Catizone, Sorrentino, Chianese, Taglialatela‐Scafati, Trisciuoglio, Del Bufalo, Di Martile, Di Napoli, Ruco, Costantini, Jakopin, Budillon, Melino, Del Sal, Ciliberto (CR49) 2017; 36 De Paepe (CR16) 2012; 2012 Blachly‐Dyson, Forte (CR5) 2001; 52 Hoang‐Minh, Deleyrolle, Siebzehnrubl, Ugartemendia, Futch, Griffith, Breunig, De Leon, Mitchell, Semple‐Rowland, Reynolds, Sarkisian (CR29) 2016; 7 Chandra, Samali, Orrenius (CR12) 2000; 29 Stoll, Makin, Sweet, Trevelyan, Miwa, Horner, Turnbull (CR68) 2015; 33 Bredel, Bredel, Juric, Harsh, Vogel, Recht, Sikic (CR6) 2005; 65 Lan, Jorg, Cavalli, Richards, Nguyen, Vanner, Guilhamon, Lee, Kushida, Pellacani, Park, Coutinho, Whetstone, Selvadurai, Che, Luu, Carles, Moksa, Rastegar, Head (CR36) 2017; 549 Shoshan‐Barmatz, Gincel (CR62) 2003; 39 Depner, Zum Buttel, Bogurcu, Cuesta, Aburto, Seidel, Finkelmeier, Foss, Hofmann, Kaulich, Barbus, Segarra, Reifenberger, Garvalov, Acker, Acker‐Palmer (CR21) 2016; 7 Li, Condello, Thomes‐Pepin, Ma, Xia, Hurley, Matei, Cheng (CR39) 2017; 20 Graham, Jorgensen, Allan, Pearson, Alcorn, Richmond, Holyoake (CR26) 2002; 99 Szklarczyk, Franceschini, Wyder, Forslund, Heller, Huerta‐Cepas, Simonovic, Roth, Santos, Tsafou, Kuhn, Bork, Jensen, von Mering (CR71) 2015; 43 Beloribi‐Djefaflia, Vasseur, Guillaumond (CR2) 2016; 5 Siebzehnrubl, Vedam‐Mai, Azari, Reynolds, Deleyrolle (CR63) 2011; 750 Sarkisian, Siebzehnrubl, Hoang‐Minh, Deleyrolle, Silver, Siebzehnrubl, Guadiana, Srivinasan, Semple‐Rowland, Harrison, Steindler, Reynolds (CR60) 2014; 117 Dong, Czaja (CR22) 2011; 22 White, Mehnert, Chan (CR83) 2015; 21 Stupp, Taillibert, Kanner, Kesari, Steinberg, Toms, Taylor, Lieberman, Silvani, Fink, Barnett, Zhu, Henson, Engelhard, Chen, Tran, Sroubek, Tran, Hottinger, Landolfi (CR70) 2015; 314 Velazquez, Graef (CR77) 2016; 12 Hoogenboom, Suda, Engel, Fotiadis (CR30) 2007; 370 Wellner, Schubert, Burk, Schmalhofer, Zhu, Sonntag, Waldvogel, Vannier, Darling, zur Hausen, Brunton, Morton, Sansom, Schuler, Stemmler, Herzberger, Hopt, Keck, Brabletz, Brabletz (CR82) 2009; 11 Mashimo, Pichumani, Vemireddy, Hatanpaa, Singh, Sirasanagandla, Nannepaga, Piccirillo, Kovacs, Foong, Huang, Barnett, Mickey, DeBerardinis, Tu, Maher, Bachoo (CR44) 2014; 159 Bensaad, Favaro, Lewis, Peck, Lord, Collins, Pinnick, Wigfield, Buffa, Li, Zhang, Wakelam, Karpe, Schulze, Harris (CR4) 2014; 9 Chu, Goldman, Kelly, He, Waliczek, Kordower (CR14) 2014; 69 Candelario, Shuttleworth, Cunningham (CR9) 2013; 125 Conrad, Fueyo, Gomez‐Manzano (CR15) 2014; 16 Furuhashi, Tuncman, Gorgun, Makowski, Atsumi, Vaillancourt, Kono, Babaev, Fazio, Linton, Sulsky, Robl, Parker, Hotamisligil (CR24) 2007; 447 Shimono, Zabala, Cho, Lobo, Dalerba, Qian, Diehn, Liu, Panula, Chiao, Dirbas, Somlo, Pera, Lao, Clarke (CR61) 2009; 138 Roesch, Fukunaga‐Kalabis, Schmidt, Zabierowski, Brafford, Vultur, Basu, Gimotty, Vogt, Herlyn (CR57) 2010; 141 Li, Candelario, Thomas, Wang, Wright, Messier, Cunningham (CR38) 2014; 34 Morihiro, Yasumoto, Vaidyan, Sadahiro, Uchida, Inamura, Sharifi, Ideguchi, Nomura, Tokuda, Kashiwabara, Ishii, Ikeda, Owada, Suzuki (CR48) 2013; 63 Qi, Song, Peng, Wang, Long, Yu, Li, Fang, Wu, Luo, Zhen, Zhou, Chen, Mai, Liu, Fang (CR55) 2012; 7 Klein, Gerster, Andersen, Tarima, Perme (CR33) 2008; 89 Aigner, Dampier, Descovich, Mikula, Sultan, Schreiber, Mikulits, Brabletz, Strand, Obrist, Sommergruber, Schweifer, Wernitznig, Beug, Foisner, Eger (CR1) 2007; 26 Dembinski, Krauss (CR20) 2009; 26 Kaczocha, Rebecchi, Ralph, Teng, Berger, Galbavy, Elmes, Glaser, Wang, Rizzo, Deutsch, Ojima (CR32) 2014; 9 Zhang, Wang, Shu, Jin, Liu, Wang, Yang (CR88) 2010; 285 Caro, Kishan, Norberg, Stanley, Chapuy, Ficarro, Polak, Tondera, Gounarides, Yin, Zhou, Green, Chen, Monti, Marto, Shipp, Danial (CR10) 2012; 22 Chaffer, Marjanovic, Lee, Bell, Kleer, Reinhardt, D'Alessio, Young, Weinberg (CR11) 2013; 154 Salazar‐Ramiro, Ramirez‐Ortega, Perez de la Cruz, Hernandez‐Pedro, Gonzalez‐Esquivel, Sotelo, Pineda (CR59) 2016; 7 Deleyrolle, Harding, Cato, Siebzehnrubl, Rahman, Azari, Olson, Gabrielli, Osborne, Vescovi, Reynolds (CR18) 2011; 134 Warburg (CR81) 1926; 87 Zeuner, Francescangeli, Contavalli, Zapparelli, Apuzzo, Eramo, Baiocchi, De Angelis, Biffoni, Sette, Todaro, Stassi, De Maria (CR87) 2014; 21 Tirosh, Venteicher, Hebert, Escalante, Patel, Yizhak, Fisher, Rodman, Mount, Filbin, Neftel, Desai, Nyman, Izar, Luo, Francis, Patel, Onozato, Riggi, Livak (CR74) 2016; 539 Rhodes, Yu, Shanker, Deshpande, Varambally, Ghosh, Barrette, Pandey, Chinnaiyan (CR56) 2004; 6 De Rosa, Pellegatta, Rossi, Tunici, Magnoni, Speranza, Malusa, Miragliotta, Mori, Finocchiaro, Bakker (CR17) 2012; 7 Gao, Choi, Kang, Youn, Cho (CR25) 2010; 29 Oshimori, Oristian, Fuchs (CR51) 2015; 160 Singh, Settleman (CR66) 2010; 29 Martuscello, Vedam‐Mai, McCarthy, Schmoll, Jundi, Louviere, Griffith, Skinner, Suslov, Deleyrolle, Reynolds (CR43) 2016; 22 Venteicher, Tirosh, Hebert, Yizhak, Neftel, Filbin, Hovestadt, Escalante, Shaw, Rodman, Gillespie, Dionne, Luo, Ravichandran, Mylvaganam, Mount, Onozato, Nahed, Wakimoto, Curry (CR78) 2017; 355 Singh, Kaushik, Wang, Xiang, Novak, Komatsu, Tanaka, Cuervo, Czaja (CR65) 2009; 458 Viale, Pettazzoni, Lyssiotis, Ying, Sanchez, Marchesini, Carugo, Green, Seth, Giuliani, Kost‐Alimova, Muller, Colla, Nezi, Genovese, Deem, Kapoor, Yao, Brunetto, Kang (CR79) 2014; 514 Patel, Tirosh, Trombetta, Shalek, Gillespie, Wakimoto, Cahill, Nahed, Curry, Martuza, Louis, Rozenblatt‐Rosen, Suva, Regev, Bernstein (CR52) 2014; 344 Singh, Kollipara, Vemireddy, Yang, Sun, Regmi, Klingler, Hatanpaa, Raisanen, Cho, Sirasanagandla, Nannepaga, Piccirillo, Mashimo, Wang, Humphries, Mickey, Maher, Zheng, Kim (CR67) 2017; 18 Wolf (CR84) 2014; 26 Chen, Li, Yu, McKay, Burns, Kernie, Parada (CR13) 2012; 488 Guo, White (CR27) 2017; 81 Zhou, Guo, Kruh, Vicini, Wang, Gallo (CR89) 2007; 13 Tirosh, Izar, Prakadan, Wadsworth, Treacy, Trombetta, Rotem, Rodman, Lian, Murphy, Fallahi‐Sichani, Dutton‐Regester, Lin, Cohen, Shah, Lu, Genshaft, Hughes, Ziegler, Kazer (CR73) 2016; 352 Vlashi, Lagadec, Vergnes, Matsutani, Masui, Poulou, Popescu, Della Donna, Evers, Dekmezian, Reue, Christofk, Mischel, Pajonk (CR80) 2011; 108 Dutoit, Herold‐Mende, Hilf, Schoor, Beckhove, Bucher, Dorsch, Flohr, Fritsche, Lewandrowski, Lohr, Rammensee, Stevanovic, Trautwein, Vass, Walter, Walker, Weinschenk, Singh‐Jasuja, Dietrich (CR23) 2012; 135 Koppenol, Bounds, Dang (CR34) 2011; 11 Lagadinou, Sach, Callahan, Rossi, Neering, Minhajuddin, Ashton, Pei, Grose, O'Dwyer, Liesveld, Brookes, Becker, Jordan (CR35) 2013; 12 Campos, Gal, Baader, Schneider, Sliwinski, Gassel, Bageritz, Grabe, von Deimling, Beckhove, Mogler, Goidts, Unterberg, Eckstein, Herold‐Mende (CR7) 2014; 234 Yan, Xu, Dai, Qian, Sun, Gong (CR86) 2016; 35 Perera, Stoykova, Nicolay, Ross, Fitamant, Boukhali, Lengrand, Deshpande, Selig, Ferrone, Settleman, Stephanopoulos, Dyson, Zoncu, Ramaswamy, Haas, Bardeesy (CR54) 2015; 524 Uhlen, Fagerberg, Hallstrom, Lindskog, Oksvold, Mardinoglu, Sivertsson, Kampf, Sjostedt, Asplund, Olsson, Edlund, Lundberg, Navani, Szigyarto, Odeberg, Djureinovic, Takanen, Hober, Alm (CR75) 2015; 347 Mei, Ni, Manley, Bockus, Kassel, Luyendyk, Copple, Ding (CR46) 2011; 339 Roesch, Vultur, Bogeski, Wang, Zimmermann, Speicher, Korbel, Laschke, Gimotty, Philipp, Krause, Patzold, Villanueva, Krepler, Fukunaga‐Kalabis, Hoth, Bastian, Vogt, Herlyn (CR58) 2013; 23 Oliva, Moellering, Gillespie, Griguer (CR50) 2011; 6 Stupp, Mason, van den Bent, Weller, Fisher, Taphoorn, Belanger, Brandes, Marosi, Bogdahn, Curschmann, Janzer, Ludwin, Gorlia, Allgeier, Lacombe, Cairncross, Eisenhauer, Mirimanoff (CR69) 2005; 352 Jegga, Schneider, Ouyang, Zhang (CR31) 2011; 7 Tirinato, Liberale, Di Franco, Candeloro, Benfante, La Rocca, Potze, Marotta, Ruffilli, Rajamanickam, Malerba, De Angelis, Falqui, Carbone, Todaro, Medema, Stassi, Di Fabrizio (CR72) 2015; 33 Liang, Bollen, Aldape, Gupta (CR40) 2006; 6 Deleyrolle, Rohaus, Fortin, Reynolds, Azari (CR19) 2012; 62 Landriscina, Maddalena, Laudiero, Esposito (CR37) 2009; 11 Siebzehnrubl, Silver, Tugertimur, Deleyrolle, Siebzehnrubl, Sarkisian, Devers, Yachnis, Kupper, Neal, Nabilsi, Kladde, Suslov, Brabletz, Brabletz, Reynolds, Steindler (CR64) 2013; 5 Vanner, Remke, Gallo, Selvadurai, Coutinho, Lee, Kushida, Head, Morrissy, Zhu, Aviv, Voisin, Clarke, Li, Mungall, Moore, Ma, Jones, Marra, Malkin (CR76) 2014; 26 Wong, Liu, Ridky, Cassarino, Segal, Chang (CR85) 2008; 2 Moore, Houghton, Lyle (CR47) 2012; 21 2012; 2012 2017; 81 2015; 347 2013; 23 2015; 33 2002; 99 2013; 63 2014; 26 2013; 125 2014; 69 2011; 11 2004; 6 2010; 141 2005; 65 2010; 140 2012; 15 2016b; 539 2012; 488 2008; 2 2013; 5 2017; 355 2011; 750 2016; 35 2014; 21 2009; 11 2016a; 352 2012; 135 2007; 370 2017; 36 2010; 29 2013; 12 2015; 43 2014; 16 2011; 22 1926; 87 2013; 154 2014; 9 2012; 22 2012; 21 2001; 52 2007; 26 1989 2012; 62 2014; 514 2017; 20 2015; 160 2014; 117 2000; 29 2011; 339 2007; 447 2005; 352 2006; 6 2015; 528 2010; 285 2003; 39 2015; 524 2016; 16 2011; 6 2011; 134 2016; 164 2007; 13 2009; 26 2011; 7 2014; 159 2009; 138 2016; 12 2014; 234 2009; 458 2016; 5 2017; 549 2016; 7 2011; 108 2015; 314 2015; 21 2008; 89 2017; 19 2017; 18 2008; 455 2012; 7 2014; 34 2016; 22 2014; 344 Deleyrolle LP (e_1_2_9_20_1) 2012; 62 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 234 start-page: 23 year: 2014 end-page: 33 ident: CR7 article-title: Aberrant self‐renewal and quiescence contribute to the aggressiveness of glioblastoma publication-title: J Pathol – volume: 39 start-page: 279 year: 2003 end-page: 292 ident: CR62 article-title: The voltage‐dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death publication-title: Cell Biochem Biophys – volume: 108 start-page: 16062 year: 2011 end-page: 16067 ident: CR80 article-title: Metabolic state of glioma stem cells and nontumorigenic cells publication-title: Proc Natl Acad Sci USA – volume: 5 start-page: e189 year: 2016 ident: CR2 article-title: Lipid metabolic reprogramming in cancer cells publication-title: Oncogenesis – volume: 7 start-page: 7029 year: 2016 end-page: 7043 ident: CR29 article-title: Disruption of KIF3A in patient‐derived glioblastoma cells: effects on ciliogenesis, hedgehog sensitivity, and tumorigenesis publication-title: Oncotarget – volume: 33 start-page: 35 year: 2015 end-page: 44 ident: CR72 article-title: Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging publication-title: Stem Cells – volume: 87 start-page: 1671 year: 1926 ident: CR81 article-title: Ueber den stoffwechsel der tumoren: arbeiten aus dem Kaiser Wilhelm‐institut für biologie, Berlin‐Dahlem publication-title: JAMA – volume: 52 start-page: 113 year: 2001 end-page: 118 ident: CR5 article-title: VDAC channels publication-title: IUBMB Life – volume: 81 start-page: 73 year: 2017 end-page: 78 ident: CR27 article-title: Autophagy, metabolism, and cancer publication-title: Cold Spring Harb Symp Quant Biol – volume: 21 start-page: 1822 year: 2012 end-page: 1830 ident: CR47 article-title: Slow‐cycling therapy‐resistant cancer cells publication-title: Stem Cells Dev – volume: 16 start-page: 891 year: 2016 ident: CR3 article-title: Autophagy is associated with chemoresistance in neuroblastoma publication-title: BMC Cancer – volume: 7 start-page: 477 year: 2011 end-page: 489 ident: CR31 article-title: Systems biology of the autophagy‐lysosomal pathway publication-title: Autophagy – volume: 99 start-page: 319 year: 2002 end-page: 325 ident: CR26 article-title: Primitive, quiescent, Philadelphia‐positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 publication-title: Blood – volume: 13 start-page: 4271 year: 2007 end-page: 4279 ident: CR89 article-title: Predicting human tumor drug concentrations from a preclinical pharmacokinetic model of temozolomide brain disposition publication-title: Clin Cancer Res – volume: 455 start-page: 1061 year: 2008 end-page: 1068 ident: CR8 article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways publication-title: Nature – volume: 514 start-page: 628 year: 2014 end-page: 632 ident: CR79 article-title: Oncogene ablation‐resistant pancreatic cancer cells depend on mitochondrial function publication-title: Nature – volume: 21 start-page: 1877 year: 2014 end-page: 1888 ident: CR87 article-title: Elimination of quiescent/slow‐proliferating cancer stem cells by Bcl‐XL inhibition in non‐small cell lung cancer publication-title: Cell Death Differ – volume: 29 start-page: 4741 year: 2010 end-page: 4751 ident: CR66 article-title: EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer publication-title: Oncogene – volume: 36 start-page: 4671 year: 2017 end-page: 4672 ident: CR49 article-title: Stearoyl‐CoA‐desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ publication-title: Oncogene – volume: 65 start-page: 4088 year: 2005 end-page: 4096 ident: CR6 article-title: High‐resolution genome‐wide mapping of genetic alterations in human glial brain tumors publication-title: Cancer Res – volume: 488 start-page: 522 year: 2012 end-page: 526 ident: CR13 article-title: A restricted cell population propagates glioblastoma growth after chemotherapy publication-title: Nature – volume: 6 start-page: 1 year: 2004 end-page: 6 ident: CR56 article-title: ONCOMINE: a cancer microarray database and integrated data‐mining platform publication-title: Neoplasia – volume: 347 start-page: 1260419 year: 2015 ident: CR75 article-title: Proteomics. Tissue‐based map of the human proteome publication-title: Science – volume: 34 start-page: 16713 year: 2014 end-page: 16719 ident: CR38 article-title: Hypoxia inducible factor‐1alpha (HIF‐1alpha) is required for neural stem cell maintenance and vascular stability in the adult mouse SVZ publication-title: J Neurosci – volume: 352 start-page: 987 year: 2005 end-page: 996 ident: CR69 article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma publication-title: N Engl J Med – volume: 29 start-page: 2672 year: 2010 end-page: 2680 ident: CR25 article-title: CD24 cells from hierarchically organized ovarian cancer are enriched in cancer stem cells publication-title: Oncogene – volume: 6 start-page: 97 year: 2006 ident: CR40 article-title: Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR‐overexpressing glioblastoma publication-title: BMC Cancer – volume: 134 start-page: 1331 year: 2011 end-page: 1343 ident: CR18 article-title: Evidence for label‐retaining tumour‐initiating cells in human glioblastoma publication-title: Brain – volume: 125 start-page: 420 year: 2013 end-page: 429 ident: CR9 article-title: Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor‐1alpha expression publication-title: J Neurochem – volume: 447 start-page: 959 year: 2007 end-page: 965 ident: CR24 article-title: Treatment of diabetes and atherosclerosis by inhibiting fatty‐acid‐binding protein aP2 publication-title: Nature – volume: 539 start-page: 309 year: 2016 end-page: 313 ident: CR74 article-title: Single‐cell RNA‐seq supports a developmental hierarchy in human oligodendroglioma publication-title: Nature – volume: 12 start-page: 1409 year: 2016 end-page: 1410 ident: CR77 article-title: Autophagy regulation depends on ER homeostasis controlled by lipid droplets publication-title: Autophagy – volume: 43 start-page: D447 year: 2015 end-page: D452 ident: CR71 article-title: STRING v10: protein‐protein interaction networks, integrated over the tree of life publication-title: Nucleic Acids Res – volume: 26 start-page: 33 year: 2014 end-page: 47 ident: CR76 article-title: Quiescent Sox(2+) cells drive hierarchical growth and relapse in Sonic Hedgehog Subgroup medulloblastoma publication-title: Cancer Cell – volume: 2 start-page: 333 year: 2008 end-page: 344 ident: CR85 article-title: Module map of stem cell genes guides creation of epithelial cancer stem cells publication-title: Cell Stem Cell – volume: 26 start-page: 611 year: 2009 end-page: 623 ident: CR20 article-title: Characterization and functional analysis of a slow cycling stem cell‐like subpopulation in pancreas adenocarcinoma publication-title: Clin Exp Metastasis – volume: 15 start-page: 827 year: 2012 end-page: 837 ident: CR42 article-title: Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain publication-title: Cell Metab – volume: 29 start-page: 323 year: 2000 end-page: 333 ident: CR12 article-title: Triggering and modulation of apoptosis by oxidative stress publication-title: Free Radic Biol Med – volume: 750 start-page: 61 year: 2011 end-page: 77 ident: CR63 article-title: Isolation and characterization of adult neural stem cells publication-title: Methods Mol Biol – volume: 16 start-page: 1025 year: 2014 end-page: 1026 ident: CR15 article-title: Intratumoral heterogeneity and intraclonal plasticity: from Warburg to oxygen and back again publication-title: Neuro Oncol – volume: 11 start-page: 2701 year: 2009 end-page: 2716 ident: CR37 article-title: Adaptation to oxidative stress, chemoresistance, and cell survival publication-title: Antioxid Redox Signal – volume: 140 start-page: 62 year: 2010 end-page: 73 ident: CR53 article-title: Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content publication-title: Cell – volume: 164 start-page: 681 year: 2016 end-page: 694 ident: CR28 article-title: Metabolic heterogeneity in human lung tumors publication-title: Cell – volume: 35 start-page: 23 year: 2016 ident: CR86 article-title: Targeting autophagy to sensitive glioma to temozolomide treatment publication-title: J Exp Clin Cancer Res – volume: 9 start-page: 349 year: 2014 end-page: 365 ident: CR4 article-title: Fatty acid uptake and lipid storage induced by HIF‐1alpha contribute to cell growth and survival after hypoxia‐reoxygenation publication-title: Cell Rep – volume: 7 start-page: 156 year: 2016 ident: CR59 article-title: Role of redox status in development of glioblastoma publication-title: Front Immunol – volume: 352 start-page: 189 year: 2016 end-page: 196 ident: CR73 article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single‐cell RNA‐seq publication-title: Science – volume: 11 start-page: 1487 year: 2009 end-page: 1495 ident: CR82 article-title: The EMT‐activator ZEB1 promotes tumorigenicity by repressing stemness‐inhibiting microRNAs publication-title: Nat Cell Biol – volume: 135 start-page: 1042 year: 2012 end-page: 1054 ident: CR23 article-title: Exploiting the glioblastoma peptidome to discover novel tumour‐associated antigens for immunotherapy publication-title: Brain – volume: 22 start-page: 2482 year: 2016 end-page: 2495 ident: CR43 article-title: A supplemented high‐fat low‐carbohydrate diet for the treatment of glioblastoma publication-title: Clin Cancer Res – volume: 20 start-page: 303 year: 2017 end-page: 314 ident: CR39 article-title: Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells publication-title: Cell Stem Cell – volume: 19 start-page: 43 year: 2017 end-page: 54 ident: CR41 article-title: Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells publication-title: Neuro Oncol – volume: 154 start-page: 61 year: 2013 end-page: 74 ident: CR11 article-title: Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity publication-title: Cell – volume: 22 start-page: 234 year: 2011 end-page: 240 ident: CR22 article-title: Regulation of lipid droplets by autophagy publication-title: Trends Endocrinol Metab – volume: 89 start-page: 289 year: 2008 end-page: 300 ident: CR33 article-title: SAS and R functions to compute pseudo‐values for censored data regression publication-title: Comput Methods Programs Biomed – volume: 62 start-page: 3918 year: 2012 ident: CR19 article-title: Identification and isolation of slow‐dividing cells in human glioblastoma using carboxy fluorescein succinimidyl ester (CFSE) publication-title: J Vis Exp – volume: 159 start-page: 1603 year: 2014 end-page: 1614 ident: CR44 article-title: Acetate is a bioenergetic substrate for human glioblastoma and brain metastases publication-title: Cell – volume: 160 start-page: 963 year: 2015 end-page: 976 ident: CR51 article-title: TGF‐beta promotes heterogeneity and drug resistance in squamous cell carcinoma publication-title: Cell – volume: 6 start-page: e24665 year: 2011 ident: CR50 article-title: Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production publication-title: PLoS One – volume: 355 start-page: eaai8478 year: 2017 ident: CR78 article-title: Decoupling genetics, lineages, and microenvironment in IDH‐mutant gliomas by single‐cell RNA‐seq publication-title: Science – volume: 69 start-page: 1 year: 2014 end-page: 14 ident: CR14 article-title: Abnormal alpha‐synuclein reduces nigral voltage‐dependent anion channel 1 in sporadic and experimental Parkinson's disease publication-title: Neurobiol Dis – year: 1989 ident: CR45 publication-title: Generalized linear models – volume: 5 start-page: 1196 year: 2013 end-page: 1212 ident: CR64 article-title: The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance publication-title: EMBO Mol Med – volume: 63 start-page: 546 year: 2013 end-page: 553 ident: CR48 article-title: Fatty acid binding protein 7 as a marker of glioma stem cells publication-title: Pathol Int – volume: 11 start-page: 325 year: 2011 end-page: 337 ident: CR34 article-title: Otto Warburg's contributions to current concepts of cancer metabolism publication-title: Nat Rev Cancer – volume: 26 start-page: 6979 year: 2007 end-page: 6988 ident: CR1 article-title: The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity publication-title: Oncogene – volume: 314 start-page: 2535 year: 2015 end-page: 2543 ident: CR70 article-title: Maintenance therapy with tumor‐treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial publication-title: JAMA – volume: 22 start-page: 547 year: 2012 end-page: 560 ident: CR10 article-title: Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma publication-title: Cancer Cell – volume: 524 start-page: 361 year: 2015 end-page: 365 ident: CR54 article-title: Transcriptional control of autophagy‐lysosome function drives pancreatic cancer metabolism publication-title: Nature – volume: 9 start-page: e94200 year: 2014 ident: CR32 article-title: Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia publication-title: PLoS One – volume: 138 start-page: 592 year: 2009 end-page: 603 ident: CR61 article-title: Downregulation of miRNA‐200c links breast cancer stem cells with normal stem cells publication-title: Cell – volume: 21 start-page: 5037 year: 2015 end-page: 5046 ident: CR83 article-title: Autophagy, metabolism, and cancer publication-title: Clin Cancer Res – volume: 26 start-page: 788 year: 2014 end-page: 795 ident: CR84 article-title: Is reliance on mitochondrial respiration a “chink in the armor” of therapy‐resistant cancer? publication-title: Cancer Cell – volume: 2012 start-page: 15 year: 2012 ident: CR16 article-title: Mitochondrial markers for cancer: relevance to diagnosis, therapy, and prognosis and general understanding of malignant disease mechanisms publication-title: ISRN Pathol – volume: 285 start-page: 40461 year: 2010 end-page: 40471 ident: CR88 article-title: Activation of AMP‐activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition publication-title: J Biol Chem – volume: 339 start-page: 487 year: 2011 end-page: 498 ident: CR46 article-title: Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes publication-title: J Pharmacol Exp Ther – volume: 370 start-page: 246 year: 2007 end-page: 255 ident: CR30 article-title: The supramolecular assemblies of voltage‐dependent anion channels in the native membrane publication-title: J Mol Biol – volume: 7 start-page: e52113 year: 2012 ident: CR17 article-title: A radial glia gene marker, fatty acid binding protein 7 (FABP7), is involved in proliferation and invasion of glioblastoma cells publication-title: PLoS One – volume: 549 start-page: 227 year: 2017 end-page: 232 ident: CR36 article-title: Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy publication-title: Nature – volume: 344 start-page: 1396 year: 2014 end-page: 1401 ident: CR52 article-title: Single‐cell RNA‐seq highlights intratumoral heterogeneity in primary glioblastoma publication-title: Science – volume: 141 start-page: 583 year: 2010 end-page: 594 ident: CR57 article-title: A temporarily distinct subpopulation of slow‐cycling melanoma cells is required for continuous tumor growth publication-title: Cell – volume: 458 start-page: 1131 year: 2009 end-page: 1135 ident: CR65 article-title: Autophagy regulates lipid metabolism publication-title: Nature – volume: 117 start-page: 15 year: 2014 end-page: 24 ident: CR60 article-title: Detection of primary cilia in human glioblastoma publication-title: J Neurooncol – volume: 23 start-page: 811 year: 2013 end-page: 825 ident: CR58 article-title: Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow‐cycling JARID1B(high) cells publication-title: Cancer Cell – volume: 12 start-page: 329 year: 2013 end-page: 341 ident: CR35 article-title: BCL‐2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells publication-title: Cell Stem Cell – volume: 18 start-page: 961 year: 2017 end-page: 976 ident: CR67 article-title: Oncogenes activate an autonomous transcriptional regulatory circuit that drives glioblastoma publication-title: Cell Rep – volume: 7 start-page: 12329 year: 2016 ident: CR21 article-title: EphrinB2 repression through ZEB2 mediates tumour invasion and anti‐angiogenic resistance publication-title: Nat Commun – volume: 7 start-page: e38842 year: 2012 ident: CR55 article-title: ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma publication-title: PLoS One – volume: 33 start-page: 2306 year: 2015 end-page: 2319 ident: CR68 article-title: Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity publication-title: Stem Cells – volume: 528 start-page: 93 year: 2015 end-page: 98 ident: CR1000 article-title: Brain tumour cells interconnect to a functional and resistant network publication-title: Nature – volume: 138 start-page: 592 year: 2009 end-page: 603 article-title: Downregulation of miRNA‐200c links breast cancer stem cells with normal stem cells publication-title: Cell – volume: 69 start-page: 1 year: 2014 end-page: 14 article-title: Abnormal alpha‐synuclein reduces nigral voltage‐dependent anion channel 1 in sporadic and experimental Parkinson's disease publication-title: Neurobiol Dis – volume: 22 start-page: 234 year: 2011 end-page: 240 article-title: Regulation of lipid droplets by autophagy publication-title: Trends Endocrinol Metab – volume: 99 start-page: 319 year: 2002 end-page: 325 article-title: Primitive, quiescent, Philadelphia‐positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 publication-title: Blood – volume: 29 start-page: 4741 year: 2010 end-page: 4751 article-title: EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer publication-title: Oncogene – volume: 21 start-page: 1877 year: 2014 end-page: 1888 article-title: Elimination of quiescent/slow‐proliferating cancer stem cells by Bcl‐XL inhibition in non‐small cell lung cancer publication-title: Cell Death Differ – volume: 5 start-page: e189 year: 2016 article-title: Lipid metabolic reprogramming in cancer cells publication-title: Oncogenesis – volume: 26 start-page: 611 year: 2009 end-page: 623 article-title: Characterization and functional analysis of a slow cycling stem cell‐like subpopulation in pancreas adenocarcinoma publication-title: Clin Exp Metastasis – volume: 7 start-page: 156 year: 2016 article-title: Role of redox status in development of glioblastoma publication-title: Front Immunol – volume: 9 start-page: 349 year: 2014 end-page: 365 article-title: Fatty acid uptake and lipid storage induced by HIF‐1alpha contribute to cell growth and survival after hypoxia‐reoxygenation publication-title: Cell Rep – volume: 11 start-page: 2701 year: 2009 end-page: 2716 article-title: Adaptation to oxidative stress, chemoresistance, and cell survival publication-title: Antioxid Redox Signal – volume: 514 start-page: 628 year: 2014 end-page: 632 article-title: Oncogene ablation‐resistant pancreatic cancer cells depend on mitochondrial function publication-title: Nature – volume: 285 start-page: 40461 year: 2010 end-page: 40471 article-title: Activation of AMP‐activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition publication-title: J Biol Chem – volume: 33 start-page: 35 year: 2015 end-page: 44 article-title: Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging publication-title: Stem Cells – volume: 134 start-page: 1331 year: 2011 end-page: 1343 article-title: Evidence for label‐retaining tumour‐initiating cells in human glioblastoma publication-title: Brain – year: 1989 – volume: 13 start-page: 4271 year: 2007 end-page: 4279 article-title: Predicting human tumor drug concentrations from a preclinical pharmacokinetic model of temozolomide brain disposition publication-title: Clin Cancer Res – volume: 65 start-page: 4088 year: 2005 end-page: 4096 article-title: High‐resolution genome‐wide mapping of genetic alterations in human glial brain tumors publication-title: Cancer Res – volume: 7 start-page: 477 year: 2011 end-page: 489 article-title: Systems biology of the autophagy‐lysosomal pathway publication-title: Autophagy – volume: 117 start-page: 15 year: 2014 end-page: 24 article-title: Detection of primary cilia in human glioblastoma publication-title: J Neurooncol – volume: 29 start-page: 2672 year: 2010 end-page: 2680 article-title: CD24 cells from hierarchically organized ovarian cancer are enriched in cancer stem cells publication-title: Oncogene – volume: 125 start-page: 420 year: 2013 end-page: 429 article-title: Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor‐1alpha expression publication-title: J Neurochem – volume: 11 start-page: 325 year: 2011 end-page: 337 article-title: Otto Warburg's contributions to current concepts of cancer metabolism publication-title: Nat Rev Cancer – volume: 26 start-page: 6979 year: 2007 end-page: 6988 article-title: The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity publication-title: Oncogene – volume: 154 start-page: 61 year: 2013 end-page: 74 article-title: Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity publication-title: Cell – volume: 16 start-page: 1025 year: 2014 end-page: 1026 article-title: Intratumoral heterogeneity and intraclonal plasticity: from Warburg to oxygen and back again publication-title: Neuro Oncol – volume: 164 start-page: 681 year: 2016 end-page: 694 article-title: Metabolic heterogeneity in human lung tumors publication-title: Cell – volume: 36 start-page: 4671 year: 2017 end-page: 4672 article-title: Stearoyl‐CoA‐desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ publication-title: Oncogene – volume: 160 start-page: 963 year: 2015 end-page: 976 article-title: TGF‐beta promotes heterogeneity and drug resistance in squamous cell carcinoma publication-title: Cell – volume: 33 start-page: 2306 year: 2015 end-page: 2319 article-title: Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity publication-title: Stem Cells – volume: 9 start-page: e94200 year: 2014 article-title: Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia publication-title: PLoS One – volume: 6 start-page: 97 year: 2006 article-title: Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR‐overexpressing glioblastoma publication-title: BMC Cancer – volume: 528 start-page: 93 year: 2015 end-page: 98 article-title: Brain tumour cells interconnect to a functional and resistant network publication-title: Nature – volume: 52 start-page: 113 year: 2001 end-page: 118 article-title: VDAC channels publication-title: IUBMB Life – volume: 339 start-page: 487 year: 2011 end-page: 498 article-title: Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes publication-title: J Pharmacol Exp Ther – volume: 26 start-page: 33 year: 2014 end-page: 47 article-title: Quiescent Sox(2+) cells drive hierarchical growth and relapse in Sonic Hedgehog Subgroup medulloblastoma publication-title: Cancer Cell – volume: 7 start-page: e52113 year: 2012 article-title: A radial glia gene marker, fatty acid binding protein 7 (FABP7), is involved in proliferation and invasion of glioblastoma cells publication-title: PLoS One – volume: 34 start-page: 16713 year: 2014 end-page: 16719 article-title: Hypoxia inducible factor‐1alpha (HIF‐1alpha) is required for neural stem cell maintenance and vascular stability in the adult mouse SVZ publication-title: J Neurosci – volume: 35 start-page: 23 year: 2016 article-title: Targeting autophagy to sensitive glioma to temozolomide treatment publication-title: J Exp Clin Cancer Res – volume: 22 start-page: 547 year: 2012 end-page: 560 article-title: Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma publication-title: Cancer Cell – volume: 62 start-page: 3918 year: 2012 article-title: Identification and isolation of slow‐dividing cells in human glioblastoma using carboxy fluorescein succinimidyl ester (CFSE) publication-title: J Vis Exp – volume: 43 start-page: D447 year: 2015 end-page: D452 article-title: STRING v10: protein‐protein interaction networks, integrated over the tree of life publication-title: Nucleic Acids Res – volume: 18 start-page: 961 year: 2017 end-page: 976 article-title: Oncogenes activate an autonomous transcriptional regulatory circuit that drives glioblastoma publication-title: Cell Rep – volume: 39 start-page: 279 year: 2003 end-page: 292 article-title: The voltage‐dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death publication-title: Cell Biochem Biophys – volume: 524 start-page: 361 year: 2015 end-page: 365 article-title: Transcriptional control of autophagy‐lysosome function drives pancreatic cancer metabolism publication-title: Nature – volume: 352 start-page: 987 year: 2005 end-page: 996 article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma publication-title: N Engl J Med – volume: 26 start-page: 788 year: 2014 end-page: 795 article-title: Is reliance on mitochondrial respiration a “chink in the armor” of therapy‐resistant cancer? publication-title: Cancer Cell – volume: 22 start-page: 2482 year: 2016 end-page: 2495 article-title: A supplemented high‐fat low‐carbohydrate diet for the treatment of glioblastoma publication-title: Clin Cancer Res – volume: 29 start-page: 323 year: 2000 end-page: 333 article-title: Triggering and modulation of apoptosis by oxidative stress publication-title: Free Radic Biol Med – volume: 135 start-page: 1042 year: 2012 end-page: 1054 article-title: Exploiting the glioblastoma peptidome to discover novel tumour‐associated antigens for immunotherapy publication-title: Brain – volume: 314 start-page: 2535 year: 2015 end-page: 2543 article-title: Maintenance therapy with tumor‐treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial publication-title: JAMA – volume: 370 start-page: 246 year: 2007 end-page: 255 article-title: The supramolecular assemblies of voltage‐dependent anion channels in the native membrane publication-title: J Mol Biol – volume: 19 start-page: 43 year: 2017 end-page: 54 article-title: Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells publication-title: Neuro Oncol – volume: 23 start-page: 811 year: 2013 end-page: 825 article-title: Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow‐cycling JARID1B(high) cells publication-title: Cancer Cell – volume: 108 start-page: 16062 year: 2011 end-page: 16067 article-title: Metabolic state of glioma stem cells and nontumorigenic cells publication-title: Proc Natl Acad Sci USA – volume: 344 start-page: 1396 year: 2014 end-page: 1401 article-title: Single‐cell RNA‐seq highlights intratumoral heterogeneity in primary glioblastoma publication-title: Science – volume: 2 start-page: 333 year: 2008 end-page: 344 article-title: Module map of stem cell genes guides creation of epithelial cancer stem cells publication-title: Cell Stem Cell – volume: 5 start-page: 1196 year: 2013 end-page: 1212 article-title: The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance publication-title: EMBO Mol Med – volume: 750 start-page: 61 year: 2011 end-page: 77 article-title: Isolation and characterization of adult neural stem cells publication-title: Methods Mol Biol – volume: 539 start-page: 309 year: 2016b end-page: 313 article-title: Single‐cell RNA‐seq supports a developmental hierarchy in human oligodendroglioma publication-title: Nature – volume: 21 start-page: 1822 year: 2012 end-page: 1830 article-title: Slow‐cycling therapy‐resistant cancer cells publication-title: Stem Cells Dev – volume: 2012 start-page: 15 year: 2012 article-title: Mitochondrial markers for cancer: relevance to diagnosis, therapy, and prognosis and general understanding of malignant disease mechanisms publication-title: ISRN Pathol – volume: 20 start-page: 303 year: 2017 end-page: 314 article-title: Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells publication-title: Cell Stem Cell – volume: 159 start-page: 1603 year: 2014 end-page: 1614 article-title: Acetate is a bioenergetic substrate for human glioblastoma and brain metastases publication-title: Cell – volume: 87 start-page: 1671 year: 1926 article-title: Ueber den stoffwechsel der tumoren: arbeiten aus dem Kaiser Wilhelm‐institut für biologie, Berlin‐Dahlem publication-title: JAMA – volume: 89 start-page: 289 year: 2008 end-page: 300 article-title: SAS and R functions to compute pseudo‐values for censored data regression publication-title: Comput Methods Programs Biomed – volume: 12 start-page: 329 year: 2013 end-page: 341 article-title: BCL‐2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells publication-title: Cell Stem Cell – volume: 7 start-page: 7029 year: 2016 end-page: 7043 article-title: Disruption of KIF3A in patient‐derived glioblastoma cells: effects on ciliogenesis, hedgehog sensitivity, and tumorigenesis publication-title: Oncotarget – volume: 15 start-page: 827 year: 2012 end-page: 837 article-title: Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain publication-title: Cell Metab – volume: 12 start-page: 1409 year: 2016 end-page: 1410 article-title: Autophagy regulation depends on ER homeostasis controlled by lipid droplets publication-title: Autophagy – volume: 16 start-page: 891 year: 2016 article-title: Autophagy is associated with chemoresistance in neuroblastoma publication-title: BMC Cancer – volume: 455 start-page: 1061 year: 2008 end-page: 1068 article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways publication-title: Nature – volume: 347 start-page: 1260419 year: 2015 article-title: Proteomics. Tissue‐based map of the human proteome publication-title: Science – volume: 549 start-page: 227 year: 2017 end-page: 232 article-title: Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy publication-title: Nature – volume: 6 start-page: e24665 year: 2011 article-title: Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production publication-title: PLoS One – volume: 21 start-page: 5037 year: 2015 end-page: 5046 article-title: Autophagy, metabolism, and cancer publication-title: Clin Cancer Res – volume: 234 start-page: 23 year: 2014 end-page: 33 article-title: Aberrant self‐renewal and quiescence contribute to the aggressiveness of glioblastoma publication-title: J Pathol – volume: 447 start-page: 959 year: 2007 end-page: 965 article-title: Treatment of diabetes and atherosclerosis by inhibiting fatty‐acid‐binding protein aP2 publication-title: Nature – volume: 458 start-page: 1131 year: 2009 end-page: 1135 article-title: Autophagy regulates lipid metabolism publication-title: Nature – volume: 6 start-page: 1 year: 2004 end-page: 6 article-title: ONCOMINE: a cancer microarray database and integrated data‐mining platform publication-title: Neoplasia – volume: 355 start-page: eaai8478 year: 2017 article-title: Decoupling genetics, lineages, and microenvironment in IDH‐mutant gliomas by single‐cell RNA‐seq publication-title: Science – volume: 7 start-page: e38842 year: 2012 article-title: ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma publication-title: PLoS One – volume: 11 start-page: 1487 year: 2009 end-page: 1495 article-title: The EMT‐activator ZEB1 promotes tumorigenicity by repressing stemness‐inhibiting microRNAs publication-title: Nat Cell Biol – volume: 352 start-page: 189 year: 2016a end-page: 196 article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single‐cell RNA‐seq publication-title: Science – volume: 81 start-page: 73 year: 2017 end-page: 78 article-title: Autophagy, metabolism, and cancer publication-title: Cold Spring Harb Symp Quant Biol – volume: 63 start-page: 546 year: 2013 end-page: 553 article-title: Fatty acid binding protein 7 as a marker of glioma stem cells publication-title: Pathol Int – volume: 488 start-page: 522 year: 2012 end-page: 526 article-title: A restricted cell population propagates glioblastoma growth after chemotherapy publication-title: Nature – volume: 7 start-page: 12329 year: 2016 article-title: EphrinB2 repression through ZEB2 mediates tumour invasion and anti‐angiogenic resistance publication-title: Nat Commun – volume: 140 start-page: 62 year: 2010 end-page: 73 article-title: Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content publication-title: Cell – volume: 141 start-page: 583 year: 2010 end-page: 594 article-title: A temporarily distinct subpopulation of slow‐cycling melanoma cells is required for continuous tumor growth publication-title: Cell – ident: e_1_2_9_5_1 doi: 10.1016/j.celrep.2014.08.056 – ident: e_1_2_9_69_1 doi: 10.1016/j.celrep.2016.12.064 – ident: e_1_2_9_75_1 doi: 10.1126/science.aad0501 – ident: e_1_2_9_83_1 doi: 10.1001/jama.1926.02680200071042 – ident: e_1_2_9_82_1 doi: 10.1073/pnas.1106704108 – ident: e_1_2_9_39_1 doi: 10.1523/JNEUROSCI.4590-13.2014 – ident: e_1_2_9_27_1 doi: 10.1182/blood.V99.1.319 – ident: e_1_2_9_6_1 doi: 10.1080/15216540152845902 – ident: e_1_2_9_50_1 doi: 10.1038/onc.2017.212 – ident: e_1_2_9_8_1 doi: 10.1002/path.4366 – ident: e_1_2_9_48_1 doi: 10.1089/scd.2011.0477 – ident: e_1_2_9_68_1 doi: 10.1038/onc.2010.215 – ident: e_1_2_9_45_1 doi: 10.1016/j.cell.2014.11.025 – ident: e_1_2_9_54_1 doi: 10.1126/science.1254257 – ident: e_1_2_9_11_1 doi: 10.1016/j.ccr.2012.08.014 – ident: e_1_2_9_29_1 doi: 10.1016/j.cell.2015.12.034 – ident: e_1_2_9_64_1 doi: 10.1385/CBB:39:3:279 – ident: e_1_2_9_41_1 doi: 10.1186/1471-2407-6-97 – ident: e_1_2_9_12_1 doi: 10.1016/j.cell.2013.06.005 – ident: e_1_2_9_30_1 doi: 10.18632/oncotarget.6854 – ident: e_1_2_9_60_1 doi: 10.1016/j.ccr.2013.05.003 – ident: e_1_2_9_61_1 doi: 10.3389/fimmu.2016.00156 – ident: e_1_2_9_88_1 doi: 10.1186/s13046-016-0303-5 – ident: e_1_2_9_84_1 doi: 10.1038/ncb1998 – ident: e_1_2_9_26_1 doi: 10.1038/onc.2010.35 – ident: e_1_2_9_86_1 doi: 10.1016/j.ccell.2014.10.001 – ident: e_1_2_9_19_1 doi: 10.1093/brain/awr081 – ident: e_1_2_9_77_1 doi: 10.1126/science.1260419 – ident: e_1_2_9_43_1 doi: 10.1016/j.cmet.2012.05.001 – ident: e_1_2_9_9_1 doi: 10.1038/nature07385 – ident: e_1_2_9_44_1 doi: 10.1158/1078-0432.CCR-15-0916 – ident: e_1_2_9_2_1 doi: 10.1038/sj.onc.1210508 – ident: e_1_2_9_73_1 doi: 10.1093/nar/gku1003 – ident: e_1_2_9_72_1 doi: 10.1001/jama.2015.16669 – ident: e_1_2_9_14_1 doi: 10.1038/nature11287 – ident: e_1_2_9_22_1 doi: 10.1038/ncomms12329 – ident: e_1_2_9_21_1 doi: 10.1007/s10585-009-9260-0 – ident: e_1_2_9_70_1 doi: 10.1002/stem.2042 – ident: e_1_2_9_15_1 doi: 10.1016/j.nbd.2014.05.003 – ident: e_1_2_9_36_1 doi: 10.1016/j.stem.2012.12.013 – ident: e_1_2_9_40_1 doi: 10.1016/j.stem.2016.11.004 – ident: e_1_2_9_56_1 doi: 10.1038/nature14587 – ident: e_1_2_9_74_1 doi: 10.1002/stem.1837 – ident: e_1_2_9_85_1 doi: 10.1158/1078-0432.CCR-15-0490 – ident: e_1_2_9_67_1 doi: 10.1038/nature07976 – ident: e_1_2_9_91_1 doi: 10.1158/1078-0432.CCR-07-0658 – ident: e_1_2_9_38_1 doi: 10.1089/ars.2009.2692 – ident: e_1_2_9_49_1 doi: 10.1111/pin.12109 – ident: e_1_2_9_31_1 doi: 10.1016/j.jmb.2007.04.073 – ident: e_1_2_9_33_1 doi: 10.1371/journal.pone.0094200 – ident: e_1_2_9_3_1 doi: 10.1038/oncsis.2015.49 – ident: e_1_2_9_62_1 doi: 10.1007/s11060-013-1340-y – ident: e_1_2_9_63_1 doi: 10.1016/j.cell.2009.07.011 – ident: e_1_2_9_57_1 doi: 10.1371/journal.pone.0038842 – volume: 62 start-page: 3918 year: 2012 ident: e_1_2_9_20_1 article-title: Identification and isolation of slow‐dividing cells in human glioblastoma using carboxy fluorescein succinimidyl ester (CFSE) publication-title: J Vis Exp – ident: e_1_2_9_17_1 doi: 10.5402/2012/217162 – ident: e_1_2_9_47_1 doi: 10.1124/jpet.111.184341 – ident: e_1_2_9_71_1 doi: 10.1056/NEJMoa043330 – ident: e_1_2_9_76_1 doi: 10.1038/nature20123 – ident: e_1_2_9_7_1 doi: 10.1158/0008-5472.CAN-04-4229 – ident: e_1_2_9_25_1 doi: 10.1038/nature05844 – ident: e_1_2_9_51_1 doi: 10.1371/journal.pone.0024665 – ident: e_1_2_9_13_1 doi: 10.1016/S0891-5849(00)00302-6 – ident: e_1_2_9_32_1 doi: 10.4161/auto.7.5.14811 – ident: e_1_2_9_79_1 doi: 10.1080/15548627.2016.1190074 – ident: e_1_2_9_78_1 doi: 10.1016/j.ccr.2014.05.005 – ident: e_1_2_9_42_1 doi: 10.1093/neuonc/now128 – ident: e_1_2_9_18_1 doi: 10.1371/journal.pone.0052113 – ident: e_1_2_9_24_1 doi: 10.1093/brain/aws042 – ident: e_1_2_9_52_1 doi: 10.1016/j.cell.2015.01.043 – ident: e_1_2_9_58_1 doi: 10.1016/S1476-5586(04)80047-2 – ident: e_1_2_9_16_1 doi: 10.1093/neuonc/nou121 – ident: e_1_2_9_87_1 doi: 10.1016/j.stem.2008.02.009 – ident: e_1_2_9_53_1 doi: 10.1038/nature16071 – ident: e_1_2_9_4_1 doi: 10.1186/s12885-016-2906-9 – ident: e_1_2_9_10_1 doi: 10.1111/jnc.12204 – ident: e_1_2_9_28_1 doi: 10.1101/sqb.2016.81.030981 – ident: e_1_2_9_89_1 doi: 10.1038/cdd.2014.105 – ident: e_1_2_9_65_1 doi: 10.1007/978-1-61779-145-1_4 – ident: e_1_2_9_23_1 doi: 10.1016/j.tem.2011.02.003 – ident: e_1_2_9_66_1 doi: 10.1002/emmm.201302827 – ident: e_1_2_9_34_1 doi: 10.1016/j.cmpb.2007.11.017 – ident: e_1_2_9_90_1 doi: 10.1074/jbc.M110.164046 – ident: e_1_2_9_46_1 doi: 10.1007/978-1-4899-3242-6 – ident: e_1_2_9_37_1 doi: 10.1038/nature23666 – ident: e_1_2_9_35_1 doi: 10.1038/nrc3038 – ident: e_1_2_9_55_1 doi: 10.1016/j.cell.2009.12.007 – ident: e_1_2_9_81_1 doi: 10.1038/nature13611 – ident: e_1_2_9_59_1 doi: 10.1016/j.cell.2010.04.020 – ident: e_1_2_9_80_1 doi: 10.1126/science.aai8478 |
SSID | ssj0005871 |
Score | 2.6058226 |
Snippet | Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells (FCCs) that have impaired... Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast-cycling cells (FCCs) that have impaired... Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells ( FCC s) that have impaired... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Acid resistance Brain Brain cancer Brain tumors cancer stem cells Chemoresistance Chemotherapy Clonal deletion Deprivation Drug resistance EMBO03 EMBO21 EMBO39 Fatty acids Glioblastoma Glucose Glycolysis Heterogeneity Lipid metabolism Lipids Metabolic pathways Metabolism Metabolites Metabolomics Mitochondria Oxidation resistance Oxidative metabolism Oxidative phosphorylation Pharmacology Phosphorylation slow‐cycling cells Subpopulations Survival Transport Tumor cells Tumors |
Title | Infiltrative and drug‐resistant slow‐cycling cells support metabolic heterogeneity in glioblastoma |
URI | https://link.springer.com/article/10.15252/embj.201798772 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201798772 https://www.ncbi.nlm.nih.gov/pubmed/30322894 https://www.proquest.com/docview/2141083760 https://www.proquest.com/docview/2120752990 https://pubmed.ncbi.nlm.nih.gov/PMC6276884 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6hIgQXBOUvpSAjcYDDQteJE-cIq1alUjlRqbfIntjboKxTdbNCvfUReEaehJkkm7IqFeKWxE4ce8aeb-zxZ4C3ZPPIbijyTpx2k0Sn1KWMzieocE97I6euY-A7_poeniRHp-p0IEnivTB_rt8rqeRHt7DfOQIrI-c4o7H2rqJRl1V5ls6uYzl051l1kynJVOcDh89fPrBpfm5gypuhkeP66CZ67czPwSN4OOBG8akX9GO448I23OtPkrzchvuz9cFtT8B_Cb6q257SW5hQivJiNf919ZM8a0aLoRXLuvlBD_CSN0bOBc_eL8Vydc5gXCxcS5pRVyjOOFamIRVzhNVFFcS8rhpLeLttFuYpnBzsf5sdTobjFKjhs1xOpLUSy8Rn0jCMSlOHzJWPiGTyE_R5rI2foonj2KAqTWntHtIYJGXpPVqMn8FWaIJ7AcJ4dASFfKmmPkGSKeMc7fJE2dhQp47gw7qVCxy4xvnIi7pgn4PFUrBYilEsEbwbXzjvaTZuz7q7Flsx9LdlITlcVXOATwRvxmRqd25AE1yz4jyS8BGb3wie91IeyyJDLsn1TCLINuQ_ZmAW7s2UUJ11bNypJI9N05vv15py_Vu3ViHuVOlfVS32jz8fjXc7_1HCS3hA17qLu4l3Yau9WLlXhJ5a-7rrOb8BjHUV4w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VoIpeUEtfobR1pR7aw7as83KO7Qq0UJYTSNwie2IvqbIJYrNC3PgJ_Mb-ks4k2dAVRVWP8SOJPbbnG3v8DcBH0nmkN0KyTqyyg0BFNKW0SgYY4q5yWg5tw8A3OY7Gp8HhWXjWkSTxXZg_z-9DGcqvdmZ-sgdWTMZxTGvtOh9bMkn-KBrd-XKoxrJqNlOCoUo6Dp-_vGBV_dzDlPddI_vz0VX02qif_aew2eFG8a0V9DN4ZMsteNxGkrzego3RMnDbc3AHpcuLuqX0FrrMRHa5mP66uSXLmtFiWYt5UV1RAl7zxcip4N37uZgvLhiMi5mtaWQUOYpz9pWpaIhZwuoiL8W0yCtDeLuuZvoFnO7vnYzGgy6cAnV8nMiBNEZiFrhYaoZRUWSRufIRkVR-gC7xlXZD1L7vawwznRmzi7QGSZk5hwb9l7BWVqV9DUI7tASFXBYOXYAkU8Y5yiZBaHxNk9qDL8teTrHjGueQF0XKNgeLJWWxpL1YPPjUV7hoaTYeLrqzFFvazbd5KtldVbGDjwcf-mzqd-5AXdpqwWUk4SNWvx68aqXcf4sUuSTTM_AgXpF_X4BZuFdzyvy8YeOOJFlsimp-Xo6Uu996sAl-M5T-1dR0b_L9sH_a_o8vvIeN8cnkKD06OP7xBp5Qump8cPwdWKsvF_YtIanavGtm0W_F-RjS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQKx4XBAVKoICROMBhadd5OceldNUutEKCSr1F9sTeBmWdVZMV6o2fwG_klzCTV7UqFeIYx3nYM858k3z5hrE3GPMwboSYnRhpRoGMcEkpmYwghD1plRibRoHv-CQ6PA1mZ-FZx82perZ7_0my_aeBVJpcvbvMbF-vR-yahf5OvKwYU-YYn8CbMkwSzL02J5PZ19kVx0M2GVfzkiUYy6TT9vnLKdbD0jWseZ0yOXw3XUe1TViaPmD3OzzJJ60DPGS3jNtit9sKk5db7O5-X9DtEbNHzuZF3Up9c-Uynl2s5r9__sKMm1Ckq3lVlD-wAS7ph8k5p7f6Fa9WSwLpfGFq9JgiB35OHJoSXc8ghue54_MiLzXi8LpcqMfsdHrwbf9w1JVZQIPEiRgJrQVkgY2FIngVRQZIQx8AEAoEYBNfKjsG5fu-gjBTmdZ7gM8mITJrQYP_hG240pmnjCsLBiGSzcKxDQBtTfhHmiQIta9wsXvsfT_LKXQa5FQKo0gpFyGzpGSWdDCLx94OByxb-Y2bu-70Zku7dVilgmiskog_Hns97MZ5pwlUzpQr6iMQN1FY9th2a-XhWhjgBaakgcfiNfsPHUide32Py88ble5IYCYn8ch3vadc3daNQ_AbV_rXUNOD4w-zYevZf1zhFbvz5eM0_Xx08uk5u4fNsqHm-Dtso75YmRcIsGr9sltGfwAvpSKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infiltrative+and+drug-resistant+slow-cycling+cells+support+metabolic+heterogeneity+in+glioblastoma&rft.jtitle=The+EMBO+journal&rft.au=Hoang-Minh%2C+Lan+B&rft.au=Siebzehnrubl%2C+Florian+A&rft.au=Yang%2C+Changlin&rft.au=Suzuki-Hatano%2C+Silveli&rft.date=2018-12-03&rft.eissn=1460-2075&rft_id=info:doi/10.15252%2Fembj.201798772&rft_id=info%3Apmid%2F30322894&rft.externalDocID=30322894 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |