Infiltrative and drug‐resistant slow‐cycling cells support metabolic heterogeneity in glioblastoma

Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic spec...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 37; no. 23
Main Authors Hoang‐Minh, Lan B, Siebzehnrubl, Florian A, Yang, Changlin, Suzuki‐Hatano, Silveli, Dajac, Kyle, Loche, Tyler, Andrews, Nicholas, Schmoll Massari, Michael, Patel, Jaimin, Amin, Krisha, Vuong, Alvin, Jimenez‐Pascual, Ana, Kubilis, Paul, Garrett, Timothy J, Moneypenny, Craig, Pacak, Christina A, Huang, Jianping, Sayour, Elias J, Mitchell, Duane A, Sarkisian, Matthew R, Reynolds, Brent A, Deleyrolle, Loic P
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.12.2018
Springer Nature B.V
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0261-4189
1460-2075
1460-2075
DOI10.15252/embj.201798772

Cover

Abstract Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow‐cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose‐deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7‐related metabolic pathways is a viable therapeutic strategy. Synopsis Transcriptomic and metabolomic profiling of primary brain tumor cells demonstrate that functionally different glioblastoma (GBM) cell subpopulations depend on distinct metabolic pathways for their growth and survival. More invasive slow cycling tumor cells rely on oxidative phosphorylation and lipid metabolism, suggesting targetable candidates for the inhibition of treatment‐resistant tumors. Patient‐derived GBM cells contain fast‐cycling cells (FCCs) relying on aerobic glycolysis and slow‐cycling cells (SCCs) depending on mitochondrial oxidative phosphorylation in vivo . SCCs show increased resistance, invasion, and metabolic gene signatures characteristic of recurrent tumors. SCCs show increased levels of metabolites and components involved in lipid metabolism, storage, and transport. Block of FABP7‐dependent exogenous fatty acid uptake decreases resistance of SCCs to chemotherapy and glucose deprivation. Graphical Abstract Oxidative phosphorylation and lipid metabolism specify distinct energetic set‐up of invasive brain tumor cells.
AbstractList Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast-cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow-cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose-deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7-related metabolic pathways is a viable therapeutic strategy.
Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow‐cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose‐deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7‐related metabolic pathways is a viable therapeutic strategy. Synopsis Transcriptomic and metabolomic profiling of primary brain tumor cells demonstrate that functionally different glioblastoma (GBM) cell subpopulations depend on distinct metabolic pathways for their growth and survival. More invasive slow cycling tumor cells rely on oxidative phosphorylation and lipid metabolism, suggesting targetable candidates for the inhibition of treatment‐resistant tumors. Patient‐derived GBM cells contain fast‐cycling cells (FCCs) relying on aerobic glycolysis and slow‐cycling cells (SCCs) depending on mitochondrial oxidative phosphorylation in vivo . SCCs show increased resistance, invasion, and metabolic gene signatures characteristic of recurrent tumors. SCCs show increased levels of metabolites and components involved in lipid metabolism, storage, and transport. Block of FABP7‐dependent exogenous fatty acid uptake decreases resistance of SCCs to chemotherapy and glucose deprivation. Graphical Abstract Oxidative phosphorylation and lipid metabolism specify distinct energetic set‐up of invasive brain tumor cells.
Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells ( FCC s) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma ( GBM ) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM , in which FCC s harness aerobic glycolysis, and slow‐cycling cells ( SCC s) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCC s display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCC s also demonstrate increased lipid contents that are specifically metabolized under glucose‐deprived conditions. Fatty acid transport in SCC s is targetable by pharmacological inhibition or genomic deletion of FABP 7, both of which sensitize SCC s to metabolic stress. Furthermore, FABP 7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP 7 is central to lipid metabolism in SCC s and that targeting FABP 7‐related metabolic pathways is a viable therapeutic strategy.
Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow‐cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose‐deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7‐related metabolic pathways is a viable therapeutic strategy. Synopsis Transcriptomic and metabolomic profiling of primary brain tumor cells demonstrate that functionally different glioblastoma (GBM) cell subpopulations depend on distinct metabolic pathways for their growth and survival. More invasive slow cycling tumor cells rely on oxidative phosphorylation and lipid metabolism, suggesting targetable candidates for the inhibition of treatment‐resistant tumors. Patient‐derived GBM cells contain fast‐cycling cells (FCCs) relying on aerobic glycolysis and slow‐cycling cells (SCCs) depending on mitochondrial oxidative phosphorylation in vivo. SCCs show increased resistance, invasion, and metabolic gene signatures characteristic of recurrent tumors. SCCs show increased levels of metabolites and components involved in lipid metabolism, storage, and transport. Block of FABP7‐dependent exogenous fatty acid uptake decreases resistance of SCCs to chemotherapy and glucose deprivation. Oxidative phosphorylation and lipid metabolism specify distinct energetic set‐up of invasive brain tumor cells.
Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast-cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow-cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose-deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7-related metabolic pathways is a viable therapeutic strategy.Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast-cycling cells (FCCs) that have impaired mitochondrial function and rely on aerobic glycolysis. Here, we characterize the metabolic landscape of glioblastoma (GBM) and explore metabolic specificities as targetable vulnerabilities. Our studies highlight the metabolic heterogeneity in GBM, in which FCCs harness aerobic glycolysis, and slow-cycling cells (SCCs) preferentially utilize mitochondrial oxidative phosphorylation for their functions. SCCs display enhanced invasion and chemoresistance, suggesting their important role in tumor recurrence. SCCs also demonstrate increased lipid contents that are specifically metabolized under glucose-deprived conditions. Fatty acid transport in SCCs is targetable by pharmacological inhibition or genomic deletion of FABP7, both of which sensitize SCCs to metabolic stress. Furthermore, FABP7 inhibition, whether alone or in combination with glycolysis inhibition, leads to overall increased survival. Our studies reveal the existence of GBM cell subpopulations with distinct metabolic requirements and suggest that FABP7 is central to lipid metabolism in SCCs and that targeting FABP7-related metabolic pathways is a viable therapeutic strategy.
Author Suzuki‐Hatano, Silveli
Kubilis, Paul
Reynolds, Brent A
Deleyrolle, Loic P
Dajac, Kyle
Mitchell, Duane A
Jimenez‐Pascual, Ana
Schmoll Massari, Michael
Moneypenny, Craig
Siebzehnrubl, Florian A
Yang, Changlin
Vuong, Alvin
Huang, Jianping
Loche, Tyler
Garrett, Timothy J
Andrews, Nicholas
Sarkisian, Matthew R
Sayour, Elias J
Patel, Jaimin
Hoang‐Minh, Lan B
Pacak, Christina A
Amin, Krisha
AuthorAffiliation 4 Department of Neurosurgery McKnight Brain Institute University of Florida Gainesville FL USA
2 Preston A. Wells, Jr. Center for Brain Tumor Therapy University of Florida Gainesville FL USA
3 European Cancer Stem Cell Research Institute Cardiff University School of Biosciences Cardiff UK
5 Department of Pediatrics College of Medicine University of Florida Gainesville FL USA
1 Department of Neuroscience McKnight Brain Institute University of Florida Gainesville FL USA
6 Department of Pathology, Immunology and Laboratory Medicine University of Florida Gainesville FL USA
7 Interdisciplinary Center for Biotechnology Research University of Florida Gainesville FL USA
AuthorAffiliation_xml – name: 6 Department of Pathology, Immunology and Laboratory Medicine University of Florida Gainesville FL USA
– name: 7 Interdisciplinary Center for Biotechnology Research University of Florida Gainesville FL USA
– name: 1 Department of Neuroscience McKnight Brain Institute University of Florida Gainesville FL USA
– name: 4 Department of Neurosurgery McKnight Brain Institute University of Florida Gainesville FL USA
– name: 2 Preston A. Wells, Jr. Center for Brain Tumor Therapy University of Florida Gainesville FL USA
– name: 5 Department of Pediatrics College of Medicine University of Florida Gainesville FL USA
– name: 3 European Cancer Stem Cell Research Institute Cardiff University School of Biosciences Cardiff UK
Author_xml – sequence: 1
  givenname: Lan B
  surname: Hoang‐Minh
  fullname: Hoang‐Minh, Lan B
  organization: Department of Neuroscience, McKnight Brain Institute, University of Florida, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida
– sequence: 2
  givenname: Florian A
  surname: Siebzehnrubl
  fullname: Siebzehnrubl, Florian A
  organization: European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences
– sequence: 3
  givenname: Changlin
  surname: Yang
  fullname: Yang, Changlin
  organization: Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Department of Neurosurgery, McKnight Brain Institute, University of Florida
– sequence: 4
  givenname: Silveli
  surname: Suzuki‐Hatano
  fullname: Suzuki‐Hatano, Silveli
  organization: Department of Pediatrics, College of Medicine, University of Florida
– sequence: 5
  givenname: Kyle
  surname: Dajac
  fullname: Dajac, Kyle
  organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida
– sequence: 6
  givenname: Tyler
  surname: Loche
  fullname: Loche, Tyler
  organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida
– sequence: 7
  givenname: Nicholas
  surname: Andrews
  fullname: Andrews, Nicholas
  organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida
– sequence: 8
  givenname: Michael
  surname: Schmoll Massari
  fullname: Schmoll Massari, Michael
  organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida
– sequence: 9
  givenname: Jaimin
  surname: Patel
  fullname: Patel, Jaimin
  organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida
– sequence: 10
  givenname: Krisha
  surname: Amin
  fullname: Amin, Krisha
  organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida
– sequence: 11
  givenname: Alvin
  surname: Vuong
  fullname: Vuong, Alvin
  organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida
– sequence: 12
  givenname: Ana
  surname: Jimenez‐Pascual
  fullname: Jimenez‐Pascual, Ana
  organization: European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences
– sequence: 13
  givenname: Paul
  surname: Kubilis
  fullname: Kubilis, Paul
  organization: Department of Neurosurgery, McKnight Brain Institute, University of Florida
– sequence: 14
  givenname: Timothy J
  surname: Garrett
  fullname: Garrett, Timothy J
  organization: Department of Pathology, Immunology and Laboratory Medicine, University of Florida
– sequence: 15
  givenname: Craig
  surname: Moneypenny
  fullname: Moneypenny, Craig
  organization: Interdisciplinary Center for Biotechnology Research, University of Florida
– sequence: 16
  givenname: Christina A
  surname: Pacak
  fullname: Pacak, Christina A
  organization: Department of Pediatrics, College of Medicine, University of Florida
– sequence: 17
  givenname: Jianping
  surname: Huang
  fullname: Huang, Jianping
  organization: Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Department of Neurosurgery, McKnight Brain Institute, University of Florida
– sequence: 18
  givenname: Elias J
  surname: Sayour
  fullname: Sayour, Elias J
  organization: Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Department of Neurosurgery, McKnight Brain Institute, University of Florida
– sequence: 19
  givenname: Duane A
  surname: Mitchell
  fullname: Mitchell, Duane A
  organization: Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Department of Neurosurgery, McKnight Brain Institute, University of Florida
– sequence: 20
  givenname: Matthew R
  surname: Sarkisian
  fullname: Sarkisian, Matthew R
  organization: Department of Neuroscience, McKnight Brain Institute, University of Florida, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida
– sequence: 21
  givenname: Brent A
  orcidid: 0000-0001-6273-7014
  surname: Reynolds
  fullname: Reynolds, Brent A
  email: brent.reynolds@neurosurgery.ufl.edu
  organization: Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Department of Neurosurgery, McKnight Brain Institute, University of Florida
– sequence: 22
  givenname: Loic P
  orcidid: 0000-0002-1129-744X
  surname: Deleyrolle
  fullname: Deleyrolle, Loic P
  email: loic.deleyrolle@neurosurgery.ufl.edu
  organization: Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Department of Neurosurgery, McKnight Brain Institute, University of Florida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30322894$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1URKeFNTsUiQ2btPZzEjsskKAqUFTEBtaW4zipR4492E6r2fEJfCNfgsO0pVSqWFmyz71-990DtOe80wg9J_iI1FDDsZ669RFgwlrOGDxCK1I1uATM6j20wtCQsiK83UcHMa4xxjVn5Anap5gC8LZaoeHMDcamIJO51IV0fdGHefz142fQ0cQkXSqi9Vf5Qm2VNW4slLY2FnHebHxIxaST7Lw1qrjQSQc_aqdN2hbGFaM1vrMyJj_Jp-jxIG3Uz67PQ_Tt_enXk4_l-ZcPZydvz0tVsxZK6DpQfTUwkEChahqtCG-4UgpaWqmhpVwORElKqVR1L_uuw4pzBtAPg-oUPURvdr6buZt0r7TL0azYBDPJsBVeGvHvizMXYvSXogHWcF5lg1fXBsF_n3VMYjJxiSyd9nMUQJbdQtvijL68h679HFyOl6mKYE5Zs1Av7k50O8pNBRmod4AKPsagB6FMynX4ZUBjBcHiT9ViqVrcVp11x_d0N9YPK17vFFfG6u3_cHH6-d2nu2K8E8esc6MOf9M-9N9v2DDSNA
CitedBy_id crossref_primary_10_1016_j_canlet_2022_215713
crossref_primary_10_3390_ijms25052529
crossref_primary_10_3389_fphar_2023_1186064
crossref_primary_10_1016_j_cmet_2020_12_008
crossref_primary_10_1016_j_cmet_2020_12_009
crossref_primary_10_1016_j_semcancer_2022_05_003
crossref_primary_10_1038_s41467_025_56547_w
crossref_primary_10_1002_advs_202413367
crossref_primary_10_3389_fimmu_2022_831636
crossref_primary_10_1038_s41467_022_29137_3
crossref_primary_10_1038_s41420_025_02390_3
crossref_primary_10_1007_s43152_024_00057_2
crossref_primary_10_3390_ijms222312709
crossref_primary_10_1016_j_tranon_2023_101722
crossref_primary_10_3390_genes12010099
crossref_primary_10_1016_j_addr_2022_114415
crossref_primary_10_1186_s43046_024_00240_4
crossref_primary_10_1021_acs_bioconjchem_4c00287
crossref_primary_10_3389_fphar_2022_840440
crossref_primary_10_1016_j_celrep_2024_115142
crossref_primary_10_3390_cancers12113126
crossref_primary_10_1089_ars_2022_0088
crossref_primary_10_1093_neuonc_noad239
crossref_primary_10_1080_15384047_2021_1992233
crossref_primary_10_1158_0008_5472_CAN_22_2370
crossref_primary_10_3390_cancers15051519
crossref_primary_10_1016_j_critrevonc_2020_102995
crossref_primary_10_1186_s40478_021_01205_7
crossref_primary_10_1172_JCI163448
crossref_primary_10_1172_jci_insight_126140
crossref_primary_10_3390_cells9092081
crossref_primary_10_3390_ijms241814365
crossref_primary_10_3390_biomedicines10061308
crossref_primary_10_1186_s13046_019_1228_6
crossref_primary_10_1039_D0AN02381G
crossref_primary_10_1186_s40170_024_00364_0
crossref_primary_10_1172_JCI136779
crossref_primary_10_3390_v15051086
crossref_primary_10_3389_fonc_2022_1022716
crossref_primary_10_1093_jnen_nlab092
crossref_primary_10_1016_j_semcancer_2021_04_021
crossref_primary_10_1016_j_cmet_2019_04_004
crossref_primary_10_3390_cancers15102709
crossref_primary_10_1186_s43556_020_00012_1
crossref_primary_10_1038_s43018_023_00556_5
crossref_primary_10_1111_ejn_16357
crossref_primary_10_3390_cancers13010009
crossref_primary_10_1038_s41467_020_15219_7
crossref_primary_10_3389_fimmu_2023_1288027
crossref_primary_10_3390_cancers13040717
crossref_primary_10_1016_j_trecan_2022_09_005
crossref_primary_10_1016_j_celrep_2023_112472
crossref_primary_10_3389_fonc_2022_901951
crossref_primary_10_3892_ijo_2022_5428
crossref_primary_10_1002_1878_0261_13571
crossref_primary_10_1111_jcmm_14507
crossref_primary_10_1007_s11010_023_04861_6
crossref_primary_10_1016_j_drudis_2024_103980
crossref_primary_10_3389_fonc_2021_743814
crossref_primary_10_1038_s41420_024_01797_8
crossref_primary_10_1016_j_yexcr_2019_03_003
crossref_primary_10_3390_nu13082664
crossref_primary_10_1101_gad_324301_119
crossref_primary_10_1158_2159_8290_CD_18_1308
crossref_primary_10_1016_j_biomaterials_2022_121711
crossref_primary_10_1016_j_semcancer_2023_04_004
crossref_primary_10_1158_2326_6066_CIR_23_0721
crossref_primary_10_3390_cancers13030399
crossref_primary_10_1038_s44321_025_00195_6
crossref_primary_10_1002_advs_202100978
crossref_primary_10_1039_D1NR02128A
crossref_primary_10_1016_j_drup_2021_100797
crossref_primary_10_1172_JCI138276
crossref_primary_10_3390_cancers15225315
crossref_primary_10_3892_or_2023_8681
crossref_primary_10_5115_acb_23_158
crossref_primary_10_1016_j_semcancer_2022_03_023
crossref_primary_10_1126_sciadv_aaz4125
crossref_primary_10_1158_0008_5472_CAN_23_3643
crossref_primary_10_1038_s41419_020_2297_3
crossref_primary_10_3892_mmr_2025_13448
crossref_primary_10_3390_cancers14051126
crossref_primary_10_3390_cells10030705
crossref_primary_10_3390_metabo15030201
crossref_primary_10_1007_s00018_020_03569_w
crossref_primary_10_1093_neuonc_noaa283
crossref_primary_10_3390_ijms24119137
crossref_primary_10_3390_ijms24044217
crossref_primary_10_3390_cells11050805
crossref_primary_10_3390_cancers14215377
crossref_primary_10_1038_s42255_023_00963_z
crossref_primary_10_1007_s43152_020_00010_z
crossref_primary_10_3390_cells13110938
crossref_primary_10_1002_1873_3468_14820
crossref_primary_10_3389_fonc_2022_995498
crossref_primary_10_3390_cancers11091231
crossref_primary_10_1158_1078_0432_CCR_20_1065
crossref_primary_10_3389_fcell_2021_693215
crossref_primary_10_1016_j_bbadis_2024_167637
crossref_primary_10_3390_futurepharmacol5010007
crossref_primary_10_1016_j_actbio_2024_06_023
crossref_primary_10_3390_pharmaceutics16060728
crossref_primary_10_3390_cancers15153843
crossref_primary_10_3390_cells8070715
crossref_primary_10_1016_j_slasd_2025_100213
crossref_primary_10_3390_ijms23020604
crossref_primary_10_3389_fonc_2020_01631
crossref_primary_10_1093_noajnl_vdae142
crossref_primary_10_1172_JCI139542
crossref_primary_10_1002_ctd2_287
crossref_primary_10_1038_s41388_021_02139_z
crossref_primary_10_1016_j_chembiol_2021_11_002
crossref_primary_10_1101_gad_350693_123
crossref_primary_10_1016_j_celrep_2021_109588
crossref_primary_10_1016_j_isci_2024_110064
crossref_primary_10_1038_s44318_024_00176_4
crossref_primary_10_1186_s12943_025_02258_1
crossref_primary_10_1093_neuonc_noad134
crossref_primary_10_15252_msb_20209522
crossref_primary_10_1038_s41591_021_01233_9
crossref_primary_10_1093_neuonc_noae106
Cites_doi 10.1016/j.celrep.2014.08.056
10.1016/j.celrep.2016.12.064
10.1126/science.aad0501
10.1001/jama.1926.02680200071042
10.1073/pnas.1106704108
10.1523/JNEUROSCI.4590-13.2014
10.1182/blood.V99.1.319
10.1080/15216540152845902
10.1038/onc.2017.212
10.1002/path.4366
10.1089/scd.2011.0477
10.1038/onc.2010.215
10.1016/j.cell.2014.11.025
10.1126/science.1254257
10.1016/j.ccr.2012.08.014
10.1016/j.cell.2015.12.034
10.1385/CBB:39:3:279
10.1186/1471-2407-6-97
10.1016/j.cell.2013.06.005
10.18632/oncotarget.6854
10.1016/j.ccr.2013.05.003
10.3389/fimmu.2016.00156
10.1186/s13046-016-0303-5
10.1038/ncb1998
10.1038/onc.2010.35
10.1016/j.ccell.2014.10.001
10.1093/brain/awr081
10.1126/science.1260419
10.1016/j.cmet.2012.05.001
10.1038/nature07385
10.1158/1078-0432.CCR-15-0916
10.1038/sj.onc.1210508
10.1093/nar/gku1003
10.1001/jama.2015.16669
10.1038/nature11287
10.1038/ncomms12329
10.1007/s10585-009-9260-0
10.1002/stem.2042
10.1016/j.nbd.2014.05.003
10.1016/j.stem.2012.12.013
10.1016/j.stem.2016.11.004
10.1038/nature14587
10.1002/stem.1837
10.1158/1078-0432.CCR-15-0490
10.1038/nature07976
10.1158/1078-0432.CCR-07-0658
10.1089/ars.2009.2692
10.1111/pin.12109
10.1016/j.jmb.2007.04.073
10.1371/journal.pone.0094200
10.1038/oncsis.2015.49
10.1007/s11060-013-1340-y
10.1016/j.cell.2009.07.011
10.1371/journal.pone.0038842
10.5402/2012/217162
10.1124/jpet.111.184341
10.1056/NEJMoa043330
10.1038/nature20123
10.1158/0008-5472.CAN-04-4229
10.1038/nature05844
10.1371/journal.pone.0024665
10.1016/S0891-5849(00)00302-6
10.4161/auto.7.5.14811
10.1080/15548627.2016.1190074
10.1016/j.ccr.2014.05.005
10.1093/neuonc/now128
10.1371/journal.pone.0052113
10.1093/brain/aws042
10.1016/j.cell.2015.01.043
10.1016/S1476-5586(04)80047-2
10.1093/neuonc/nou121
10.1016/j.stem.2008.02.009
10.1038/nature16071
10.1186/s12885-016-2906-9
10.1111/jnc.12204
10.1101/sqb.2016.81.030981
10.1038/cdd.2014.105
10.1007/978-1-61779-145-1_4
10.1016/j.tem.2011.02.003
10.1002/emmm.201302827
10.1016/j.cmpb.2007.11.017
10.1074/jbc.M110.164046
10.1007/978-1-4899-3242-6
10.1038/nature23666
10.1038/nrc3038
10.1016/j.cell.2009.12.007
10.1038/nature13611
10.1016/j.cell.2010.04.020
10.1126/science.aai8478
ContentType Journal Article
Copyright The Author(s) 2018
2018 The Authors
2018 The Authors.
2018 EMBO
Copyright_xml – notice: The Author(s) 2018
– notice: 2018 The Authors
– notice: 2018 The Authors.
– notice: 2018 EMBO
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.201798772
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Virology and AIDS Abstracts



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Lan B Hoang‐Minh et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC6276884
30322894
10_15252_embj_201798772
EMBJ201798772
Genre article
Journal Article
GrantInformation_xml – fundername: Tenovus Cancer Care
  grantid: TIG2015/L19
  funderid: 10.13039/501100000723
– fundername: Preston A. Wells, Jr. Brain Tumor Fund
– fundername: Cancer Research UK Cardiff Center
  funderid: 10.13039/501100000289
– fundername: American Cancer Society (ACS)
  grantid: RSG‐13‐031‐01‐DDC
  funderid: 10.13039/100000048
– fundername: Preston A. Wells, Jr. Brain Tumor Research Fund
– fundername: Preston A. Wells, Jr. Endowment
  grantid: 00107592; 1K08CA199224‐01A1
– fundername: American Brain Tumor Association (ABTA)
  grantid: DG1800014
  funderid: 10.13039/100001453
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: 1S10OD020026
  funderid: 10.13039/100000054
– fundername: Accelerate Brain Cancer Cure (ABC2)
  funderid: 10.13039/100001438
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: R24 NS086554‐01
  funderid: 10.13039/100000065
– fundername: Accelerate Brain Cancer Cure (ABC2)
– fundername: American Brain Tumor Association (ABTA)
  funderid: DG1800014
– fundername: Tenovus Cancer Care
  funderid: TIG2015/L19
– fundername: American Cancer Society (ACS)
  funderid: RSG‐13‐031‐01‐DDC
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  funderid: R24 NS086554‐01
– fundername: Preston A. Wells, Jr. Endowment
  funderid: 00107592; 1K08CA199224‐01A1
– fundername: HHS | NIH | National Cancer Institute (NCI)
  funderid: 1S10OD020026
– fundername: Robert P. Apkarian Integrated Electron Microscopy Core (RPAIEMC)
– fundername: American Brain Tumor Association (ABTA)
  grantid: DG1800014
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: 1S10OD020026
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: R24 NS086554‐01
– fundername: Tenovus Cancer Care
  grantid: TIG2015/L19
– fundername: American Cancer Society (ACS)
  grantid: RSG‐13‐031‐01‐DDC
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
AASML
AAYXX
ABZEH
CITATION
NAO
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
AJAOE
ESTFP
5PM
ID FETCH-LOGICAL-c5792-2bb2cd4f72a232466ec1868ccc2934cf938af1ca333ac5dadbb0c88722dffcbc3
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 14:00:11 EDT 2025
Sun Sep 28 09:43:58 EDT 2025
Fri Jul 25 19:35:13 EDT 2025
Wed Feb 19 02:42:10 EST 2025
Thu Apr 24 22:53:50 EDT 2025
Tue Jul 01 01:47:20 EDT 2025
Wed Jan 22 16:56:19 EST 2025
Fri Feb 21 02:37:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords metabolism
glioblastoma
brain cancer
cancer stem cells
slow‐cycling cells
Language English
License 2018 The Authors.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5792-2bb2cd4f72a232466ec1868ccc2934cf938af1ca333ac5dadbb0c88722dffcbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
ORCID 0000-0002-1129-744X
0000-0001-6273-7014
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embj.201798772
PMID 30322894
PQID 2141083760
PQPubID 35985
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6276884
proquest_miscellaneous_2120752990
proquest_journals_2141083760
pubmed_primary_30322894
crossref_citationtrail_10_15252_embj_201798772
crossref_primary_10_15252_embj_201798772
wiley_primary_10_15252_embj_201798772_EMBJ201798772
springer_journals_10_15252_embj_201798772
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 03 December 2018
PublicationDateYYYYMMDD 2018-12-03
PublicationDate_xml – month: 12
  year: 2018
  text: 03 December 2018
  day: 03
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2018
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References Belounis, Nyalendo, Le Gall, Imbriglio, Mahma, Teira, Beaunoyer, Cournoyer, Haddad, Vassal, Sartelet (CR3) 2016; 16
Lin, Patel, Affleck, Wilson, Turnbull, Joshi, Maxwell, Stoll (CR41) 2017; 19
Marin‐Valencia, Yang, Mashimo, Cho, Baek, Yang, Rajagopalan, Maddie, Vemireddy, Zhao, Cai, Good, Tu, Hatanpaa, Mickey, Mates, Pascual, Maher, Malloy, Deberardinis (CR42) 2012; 15
Hensley, Faubert, Yuan, Lev‐Cohain, Jin, Kim, Jiang, Ko, Skelton, Loudat, Wodzak, Klimko, McMillan, Butt, Ni, Oliver, Torrealba, Malloy, Kernstine, Lenkinski (CR28) 2016; 164
McCullagh, Nelder (CR45) 1989
Osswald, Jung, Sahm, Solecki, Venkataramani, Blaes, Weil, Horstmann, Wiestler, Syed, Huang, Ratliff, Karimian Jazi, Kurz, Schmenger, Lemke, Gommel, Pauli, Liao, Haring (CR1000) 2015; 528
Pece, Tosoni, Confalonieri, Mazzarol, Vecchi, Ronzoni, Bernard, Viale, Pelicci, Di Fiore (CR53) 2010; 140
(CR8) 2008; 455
Noto, De Vitis, Pisanu, Roscilli, Ricci, Catizone, Sorrentino, Chianese, Taglialatela‐Scafati, Trisciuoglio, Del Bufalo, Di Martile, Di Napoli, Ruco, Costantini, Jakopin, Budillon, Melino, Del Sal, Ciliberto (CR49) 2017; 36
De Paepe (CR16) 2012; 2012
Blachly‐Dyson, Forte (CR5) 2001; 52
Hoang‐Minh, Deleyrolle, Siebzehnrubl, Ugartemendia, Futch, Griffith, Breunig, De Leon, Mitchell, Semple‐Rowland, Reynolds, Sarkisian (CR29) 2016; 7
Chandra, Samali, Orrenius (CR12) 2000; 29
Stoll, Makin, Sweet, Trevelyan, Miwa, Horner, Turnbull (CR68) 2015; 33
Bredel, Bredel, Juric, Harsh, Vogel, Recht, Sikic (CR6) 2005; 65
Lan, Jorg, Cavalli, Richards, Nguyen, Vanner, Guilhamon, Lee, Kushida, Pellacani, Park, Coutinho, Whetstone, Selvadurai, Che, Luu, Carles, Moksa, Rastegar, Head (CR36) 2017; 549
Shoshan‐Barmatz, Gincel (CR62) 2003; 39
Depner, Zum Buttel, Bogurcu, Cuesta, Aburto, Seidel, Finkelmeier, Foss, Hofmann, Kaulich, Barbus, Segarra, Reifenberger, Garvalov, Acker, Acker‐Palmer (CR21) 2016; 7
Li, Condello, Thomes‐Pepin, Ma, Xia, Hurley, Matei, Cheng (CR39) 2017; 20
Graham, Jorgensen, Allan, Pearson, Alcorn, Richmond, Holyoake (CR26) 2002; 99
Szklarczyk, Franceschini, Wyder, Forslund, Heller, Huerta‐Cepas, Simonovic, Roth, Santos, Tsafou, Kuhn, Bork, Jensen, von Mering (CR71) 2015; 43
Beloribi‐Djefaflia, Vasseur, Guillaumond (CR2) 2016; 5
Siebzehnrubl, Vedam‐Mai, Azari, Reynolds, Deleyrolle (CR63) 2011; 750
Sarkisian, Siebzehnrubl, Hoang‐Minh, Deleyrolle, Silver, Siebzehnrubl, Guadiana, Srivinasan, Semple‐Rowland, Harrison, Steindler, Reynolds (CR60) 2014; 117
Dong, Czaja (CR22) 2011; 22
White, Mehnert, Chan (CR83) 2015; 21
Stupp, Taillibert, Kanner, Kesari, Steinberg, Toms, Taylor, Lieberman, Silvani, Fink, Barnett, Zhu, Henson, Engelhard, Chen, Tran, Sroubek, Tran, Hottinger, Landolfi (CR70) 2015; 314
Velazquez, Graef (CR77) 2016; 12
Hoogenboom, Suda, Engel, Fotiadis (CR30) 2007; 370
Wellner, Schubert, Burk, Schmalhofer, Zhu, Sonntag, Waldvogel, Vannier, Darling, zur Hausen, Brunton, Morton, Sansom, Schuler, Stemmler, Herzberger, Hopt, Keck, Brabletz, Brabletz (CR82) 2009; 11
Mashimo, Pichumani, Vemireddy, Hatanpaa, Singh, Sirasanagandla, Nannepaga, Piccirillo, Kovacs, Foong, Huang, Barnett, Mickey, DeBerardinis, Tu, Maher, Bachoo (CR44) 2014; 159
Bensaad, Favaro, Lewis, Peck, Lord, Collins, Pinnick, Wigfield, Buffa, Li, Zhang, Wakelam, Karpe, Schulze, Harris (CR4) 2014; 9
Chu, Goldman, Kelly, He, Waliczek, Kordower (CR14) 2014; 69
Candelario, Shuttleworth, Cunningham (CR9) 2013; 125
Conrad, Fueyo, Gomez‐Manzano (CR15) 2014; 16
Furuhashi, Tuncman, Gorgun, Makowski, Atsumi, Vaillancourt, Kono, Babaev, Fazio, Linton, Sulsky, Robl, Parker, Hotamisligil (CR24) 2007; 447
Shimono, Zabala, Cho, Lobo, Dalerba, Qian, Diehn, Liu, Panula, Chiao, Dirbas, Somlo, Pera, Lao, Clarke (CR61) 2009; 138
Roesch, Fukunaga‐Kalabis, Schmidt, Zabierowski, Brafford, Vultur, Basu, Gimotty, Vogt, Herlyn (CR57) 2010; 141
Li, Candelario, Thomas, Wang, Wright, Messier, Cunningham (CR38) 2014; 34
Morihiro, Yasumoto, Vaidyan, Sadahiro, Uchida, Inamura, Sharifi, Ideguchi, Nomura, Tokuda, Kashiwabara, Ishii, Ikeda, Owada, Suzuki (CR48) 2013; 63
Qi, Song, Peng, Wang, Long, Yu, Li, Fang, Wu, Luo, Zhen, Zhou, Chen, Mai, Liu, Fang (CR55) 2012; 7
Klein, Gerster, Andersen, Tarima, Perme (CR33) 2008; 89
Aigner, Dampier, Descovich, Mikula, Sultan, Schreiber, Mikulits, Brabletz, Strand, Obrist, Sommergruber, Schweifer, Wernitznig, Beug, Foisner, Eger (CR1) 2007; 26
Dembinski, Krauss (CR20) 2009; 26
Kaczocha, Rebecchi, Ralph, Teng, Berger, Galbavy, Elmes, Glaser, Wang, Rizzo, Deutsch, Ojima (CR32) 2014; 9
Zhang, Wang, Shu, Jin, Liu, Wang, Yang (CR88) 2010; 285
Caro, Kishan, Norberg, Stanley, Chapuy, Ficarro, Polak, Tondera, Gounarides, Yin, Zhou, Green, Chen, Monti, Marto, Shipp, Danial (CR10) 2012; 22
Chaffer, Marjanovic, Lee, Bell, Kleer, Reinhardt, D'Alessio, Young, Weinberg (CR11) 2013; 154
Salazar‐Ramiro, Ramirez‐Ortega, Perez de la Cruz, Hernandez‐Pedro, Gonzalez‐Esquivel, Sotelo, Pineda (CR59) 2016; 7
Deleyrolle, Harding, Cato, Siebzehnrubl, Rahman, Azari, Olson, Gabrielli, Osborne, Vescovi, Reynolds (CR18) 2011; 134
Warburg (CR81) 1926; 87
Zeuner, Francescangeli, Contavalli, Zapparelli, Apuzzo, Eramo, Baiocchi, De Angelis, Biffoni, Sette, Todaro, Stassi, De Maria (CR87) 2014; 21
Tirosh, Venteicher, Hebert, Escalante, Patel, Yizhak, Fisher, Rodman, Mount, Filbin, Neftel, Desai, Nyman, Izar, Luo, Francis, Patel, Onozato, Riggi, Livak (CR74) 2016; 539
Rhodes, Yu, Shanker, Deshpande, Varambally, Ghosh, Barrette, Pandey, Chinnaiyan (CR56) 2004; 6
De Rosa, Pellegatta, Rossi, Tunici, Magnoni, Speranza, Malusa, Miragliotta, Mori, Finocchiaro, Bakker (CR17) 2012; 7
Gao, Choi, Kang, Youn, Cho (CR25) 2010; 29
Oshimori, Oristian, Fuchs (CR51) 2015; 160
Singh, Settleman (CR66) 2010; 29
Martuscello, Vedam‐Mai, McCarthy, Schmoll, Jundi, Louviere, Griffith, Skinner, Suslov, Deleyrolle, Reynolds (CR43) 2016; 22
Venteicher, Tirosh, Hebert, Yizhak, Neftel, Filbin, Hovestadt, Escalante, Shaw, Rodman, Gillespie, Dionne, Luo, Ravichandran, Mylvaganam, Mount, Onozato, Nahed, Wakimoto, Curry (CR78) 2017; 355
Singh, Kaushik, Wang, Xiang, Novak, Komatsu, Tanaka, Cuervo, Czaja (CR65) 2009; 458
Viale, Pettazzoni, Lyssiotis, Ying, Sanchez, Marchesini, Carugo, Green, Seth, Giuliani, Kost‐Alimova, Muller, Colla, Nezi, Genovese, Deem, Kapoor, Yao, Brunetto, Kang (CR79) 2014; 514
Patel, Tirosh, Trombetta, Shalek, Gillespie, Wakimoto, Cahill, Nahed, Curry, Martuza, Louis, Rozenblatt‐Rosen, Suva, Regev, Bernstein (CR52) 2014; 344
Singh, Kollipara, Vemireddy, Yang, Sun, Regmi, Klingler, Hatanpaa, Raisanen, Cho, Sirasanagandla, Nannepaga, Piccirillo, Mashimo, Wang, Humphries, Mickey, Maher, Zheng, Kim (CR67) 2017; 18
Wolf (CR84) 2014; 26
Chen, Li, Yu, McKay, Burns, Kernie, Parada (CR13) 2012; 488
Guo, White (CR27) 2017; 81
Zhou, Guo, Kruh, Vicini, Wang, Gallo (CR89) 2007; 13
Tirosh, Izar, Prakadan, Wadsworth, Treacy, Trombetta, Rotem, Rodman, Lian, Murphy, Fallahi‐Sichani, Dutton‐Regester, Lin, Cohen, Shah, Lu, Genshaft, Hughes, Ziegler, Kazer (CR73) 2016; 352
Vlashi, Lagadec, Vergnes, Matsutani, Masui, Poulou, Popescu, Della Donna, Evers, Dekmezian, Reue, Christofk, Mischel, Pajonk (CR80) 2011; 108
Dutoit, Herold‐Mende, Hilf, Schoor, Beckhove, Bucher, Dorsch, Flohr, Fritsche, Lewandrowski, Lohr, Rammensee, Stevanovic, Trautwein, Vass, Walter, Walker, Weinschenk, Singh‐Jasuja, Dietrich (CR23) 2012; 135
Koppenol, Bounds, Dang (CR34) 2011; 11
Lagadinou, Sach, Callahan, Rossi, Neering, Minhajuddin, Ashton, Pei, Grose, O'Dwyer, Liesveld, Brookes, Becker, Jordan (CR35) 2013; 12
Campos, Gal, Baader, Schneider, Sliwinski, Gassel, Bageritz, Grabe, von Deimling, Beckhove, Mogler, Goidts, Unterberg, Eckstein, Herold‐Mende (CR7) 2014; 234
Yan, Xu, Dai, Qian, Sun, Gong (CR86) 2016; 35
Perera, Stoykova, Nicolay, Ross, Fitamant, Boukhali, Lengrand, Deshpande, Selig, Ferrone, Settleman, Stephanopoulos, Dyson, Zoncu, Ramaswamy, Haas, Bardeesy (CR54) 2015; 524
Uhlen, Fagerberg, Hallstrom, Lindskog, Oksvold, Mardinoglu, Sivertsson, Kampf, Sjostedt, Asplund, Olsson, Edlund, Lundberg, Navani, Szigyarto, Odeberg, Djureinovic, Takanen, Hober, Alm (CR75) 2015; 347
Mei, Ni, Manley, Bockus, Kassel, Luyendyk, Copple, Ding (CR46) 2011; 339
Roesch, Vultur, Bogeski, Wang, Zimmermann, Speicher, Korbel, Laschke, Gimotty, Philipp, Krause, Patzold, Villanueva, Krepler, Fukunaga‐Kalabis, Hoth, Bastian, Vogt, Herlyn (CR58) 2013; 23
Oliva, Moellering, Gillespie, Griguer (CR50) 2011; 6
Stupp, Mason, van den Bent, Weller, Fisher, Taphoorn, Belanger, Brandes, Marosi, Bogdahn, Curschmann, Janzer, Ludwin, Gorlia, Allgeier, Lacombe, Cairncross, Eisenhauer, Mirimanoff (CR69) 2005; 352
Jegga, Schneider, Ouyang, Zhang (CR31) 2011; 7
Tirinato, Liberale, Di Franco, Candeloro, Benfante, La Rocca, Potze, Marotta, Ruffilli, Rajamanickam, Malerba, De Angelis, Falqui, Carbone, Todaro, Medema, Stassi, Di Fabrizio (CR72) 2015; 33
Liang, Bollen, Aldape, Gupta (CR40) 2006; 6
Deleyrolle, Rohaus, Fortin, Reynolds, Azari (CR19) 2012; 62
Landriscina, Maddalena, Laudiero, Esposito (CR37) 2009; 11
Siebzehnrubl, Silver, Tugertimur, Deleyrolle, Siebzehnrubl, Sarkisian, Devers, Yachnis, Kupper, Neal, Nabilsi, Kladde, Suslov, Brabletz, Brabletz, Reynolds, Steindler (CR64) 2013; 5
Vanner, Remke, Gallo, Selvadurai, Coutinho, Lee, Kushida, Head, Morrissy, Zhu, Aviv, Voisin, Clarke, Li, Mungall, Moore, Ma, Jones, Marra, Malkin (CR76) 2014; 26
Wong, Liu, Ridky, Cassarino, Segal, Chang (CR85) 2008; 2
Moore, Houghton, Lyle (CR47) 2012; 21
2012; 2012
2017; 81
2015; 347
2013; 23
2015; 33
2002; 99
2013; 63
2014; 26
2013; 125
2014; 69
2011; 11
2004; 6
2010; 141
2005; 65
2010; 140
2012; 15
2016b; 539
2012; 488
2008; 2
2013; 5
2017; 355
2011; 750
2016; 35
2014; 21
2009; 11
2016a; 352
2012; 135
2007; 370
2017; 36
2010; 29
2013; 12
2015; 43
2014; 16
2011; 22
1926; 87
2013; 154
2014; 9
2012; 22
2012; 21
2001; 52
2007; 26
1989
2012; 62
2014; 514
2017; 20
2015; 160
2014; 117
2000; 29
2011; 339
2007; 447
2005; 352
2006; 6
2015; 528
2010; 285
2003; 39
2015; 524
2016; 16
2011; 6
2011; 134
2016; 164
2007; 13
2009; 26
2011; 7
2014; 159
2009; 138
2016; 12
2014; 234
2009; 458
2016; 5
2017; 549
2016; 7
2011; 108
2015; 314
2015; 21
2008; 89
2017; 19
2017; 18
2008; 455
2012; 7
2014; 34
2016; 22
2014; 344
Deleyrolle LP (e_1_2_9_20_1) 2012; 62
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 234
  start-page: 23
  year: 2014
  end-page: 33
  ident: CR7
  article-title: Aberrant self‐renewal and quiescence contribute to the aggressiveness of glioblastoma
  publication-title: J Pathol
– volume: 39
  start-page: 279
  year: 2003
  end-page: 292
  ident: CR62
  article-title: The voltage‐dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death
  publication-title: Cell Biochem Biophys
– volume: 108
  start-page: 16062
  year: 2011
  end-page: 16067
  ident: CR80
  article-title: Metabolic state of glioma stem cells and nontumorigenic cells
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: e189
  year: 2016
  ident: CR2
  article-title: Lipid metabolic reprogramming in cancer cells
  publication-title: Oncogenesis
– volume: 7
  start-page: 7029
  year: 2016
  end-page: 7043
  ident: CR29
  article-title: Disruption of KIF3A in patient‐derived glioblastoma cells: effects on ciliogenesis, hedgehog sensitivity, and tumorigenesis
  publication-title: Oncotarget
– volume: 33
  start-page: 35
  year: 2015
  end-page: 44
  ident: CR72
  article-title: Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging
  publication-title: Stem Cells
– volume: 87
  start-page: 1671
  year: 1926
  ident: CR81
  article-title: Ueber den stoffwechsel der tumoren: arbeiten aus dem Kaiser Wilhelm‐institut für biologie, Berlin‐Dahlem
  publication-title: JAMA
– volume: 52
  start-page: 113
  year: 2001
  end-page: 118
  ident: CR5
  article-title: VDAC channels
  publication-title: IUBMB Life
– volume: 81
  start-page: 73
  year: 2017
  end-page: 78
  ident: CR27
  article-title: Autophagy, metabolism, and cancer
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 21
  start-page: 1822
  year: 2012
  end-page: 1830
  ident: CR47
  article-title: Slow‐cycling therapy‐resistant cancer cells
  publication-title: Stem Cells Dev
– volume: 16
  start-page: 891
  year: 2016
  ident: CR3
  article-title: Autophagy is associated with chemoresistance in neuroblastoma
  publication-title: BMC Cancer
– volume: 7
  start-page: 477
  year: 2011
  end-page: 489
  ident: CR31
  article-title: Systems biology of the autophagy‐lysosomal pathway
  publication-title: Autophagy
– volume: 99
  start-page: 319
  year: 2002
  end-page: 325
  ident: CR26
  article-title: Primitive, quiescent, Philadelphia‐positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571
  publication-title: Blood
– volume: 13
  start-page: 4271
  year: 2007
  end-page: 4279
  ident: CR89
  article-title: Predicting human tumor drug concentrations from a preclinical pharmacokinetic model of temozolomide brain disposition
  publication-title: Clin Cancer Res
– volume: 455
  start-page: 1061
  year: 2008
  end-page: 1068
  ident: CR8
  article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways
  publication-title: Nature
– volume: 514
  start-page: 628
  year: 2014
  end-page: 632
  ident: CR79
  article-title: Oncogene ablation‐resistant pancreatic cancer cells depend on mitochondrial function
  publication-title: Nature
– volume: 21
  start-page: 1877
  year: 2014
  end-page: 1888
  ident: CR87
  article-title: Elimination of quiescent/slow‐proliferating cancer stem cells by Bcl‐XL inhibition in non‐small cell lung cancer
  publication-title: Cell Death Differ
– volume: 29
  start-page: 4741
  year: 2010
  end-page: 4751
  ident: CR66
  article-title: EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer
  publication-title: Oncogene
– volume: 36
  start-page: 4671
  year: 2017
  end-page: 4672
  ident: CR49
  article-title: Stearoyl‐CoA‐desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ
  publication-title: Oncogene
– volume: 65
  start-page: 4088
  year: 2005
  end-page: 4096
  ident: CR6
  article-title: High‐resolution genome‐wide mapping of genetic alterations in human glial brain tumors
  publication-title: Cancer Res
– volume: 488
  start-page: 522
  year: 2012
  end-page: 526
  ident: CR13
  article-title: A restricted cell population propagates glioblastoma growth after chemotherapy
  publication-title: Nature
– volume: 6
  start-page: 1
  year: 2004
  end-page: 6
  ident: CR56
  article-title: ONCOMINE: a cancer microarray database and integrated data‐mining platform
  publication-title: Neoplasia
– volume: 347
  start-page: 1260419
  year: 2015
  ident: CR75
  article-title: Proteomics. Tissue‐based map of the human proteome
  publication-title: Science
– volume: 34
  start-page: 16713
  year: 2014
  end-page: 16719
  ident: CR38
  article-title: Hypoxia inducible factor‐1alpha (HIF‐1alpha) is required for neural stem cell maintenance and vascular stability in the adult mouse SVZ
  publication-title: J Neurosci
– volume: 352
  start-page: 987
  year: 2005
  end-page: 996
  ident: CR69
  article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma
  publication-title: N Engl J Med
– volume: 29
  start-page: 2672
  year: 2010
  end-page: 2680
  ident: CR25
  article-title: CD24 cells from hierarchically organized ovarian cancer are enriched in cancer stem cells
  publication-title: Oncogene
– volume: 6
  start-page: 97
  year: 2006
  ident: CR40
  article-title: Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR‐overexpressing glioblastoma
  publication-title: BMC Cancer
– volume: 134
  start-page: 1331
  year: 2011
  end-page: 1343
  ident: CR18
  article-title: Evidence for label‐retaining tumour‐initiating cells in human glioblastoma
  publication-title: Brain
– volume: 125
  start-page: 420
  year: 2013
  end-page: 429
  ident: CR9
  article-title: Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor‐1alpha expression
  publication-title: J Neurochem
– volume: 447
  start-page: 959
  year: 2007
  end-page: 965
  ident: CR24
  article-title: Treatment of diabetes and atherosclerosis by inhibiting fatty‐acid‐binding protein aP2
  publication-title: Nature
– volume: 539
  start-page: 309
  year: 2016
  end-page: 313
  ident: CR74
  article-title: Single‐cell RNA‐seq supports a developmental hierarchy in human oligodendroglioma
  publication-title: Nature
– volume: 12
  start-page: 1409
  year: 2016
  end-page: 1410
  ident: CR77
  article-title: Autophagy regulation depends on ER homeostasis controlled by lipid droplets
  publication-title: Autophagy
– volume: 43
  start-page: D447
  year: 2015
  end-page: D452
  ident: CR71
  article-title: STRING v10: protein‐protein interaction networks, integrated over the tree of life
  publication-title: Nucleic Acids Res
– volume: 26
  start-page: 33
  year: 2014
  end-page: 47
  ident: CR76
  article-title: Quiescent Sox(2+) cells drive hierarchical growth and relapse in Sonic Hedgehog Subgroup medulloblastoma
  publication-title: Cancer Cell
– volume: 2
  start-page: 333
  year: 2008
  end-page: 344
  ident: CR85
  article-title: Module map of stem cell genes guides creation of epithelial cancer stem cells
  publication-title: Cell Stem Cell
– volume: 26
  start-page: 611
  year: 2009
  end-page: 623
  ident: CR20
  article-title: Characterization and functional analysis of a slow cycling stem cell‐like subpopulation in pancreas adenocarcinoma
  publication-title: Clin Exp Metastasis
– volume: 15
  start-page: 827
  year: 2012
  end-page: 837
  ident: CR42
  article-title: Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain
  publication-title: Cell Metab
– volume: 29
  start-page: 323
  year: 2000
  end-page: 333
  ident: CR12
  article-title: Triggering and modulation of apoptosis by oxidative stress
  publication-title: Free Radic Biol Med
– volume: 750
  start-page: 61
  year: 2011
  end-page: 77
  ident: CR63
  article-title: Isolation and characterization of adult neural stem cells
  publication-title: Methods Mol Biol
– volume: 16
  start-page: 1025
  year: 2014
  end-page: 1026
  ident: CR15
  article-title: Intratumoral heterogeneity and intraclonal plasticity: from Warburg to oxygen and back again
  publication-title: Neuro Oncol
– volume: 11
  start-page: 2701
  year: 2009
  end-page: 2716
  ident: CR37
  article-title: Adaptation to oxidative stress, chemoresistance, and cell survival
  publication-title: Antioxid Redox Signal
– volume: 140
  start-page: 62
  year: 2010
  end-page: 73
  ident: CR53
  article-title: Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content
  publication-title: Cell
– volume: 164
  start-page: 681
  year: 2016
  end-page: 694
  ident: CR28
  article-title: Metabolic heterogeneity in human lung tumors
  publication-title: Cell
– volume: 35
  start-page: 23
  year: 2016
  ident: CR86
  article-title: Targeting autophagy to sensitive glioma to temozolomide treatment
  publication-title: J Exp Clin Cancer Res
– volume: 9
  start-page: 349
  year: 2014
  end-page: 365
  ident: CR4
  article-title: Fatty acid uptake and lipid storage induced by HIF‐1alpha contribute to cell growth and survival after hypoxia‐reoxygenation
  publication-title: Cell Rep
– volume: 7
  start-page: 156
  year: 2016
  ident: CR59
  article-title: Role of redox status in development of glioblastoma
  publication-title: Front Immunol
– volume: 352
  start-page: 189
  year: 2016
  end-page: 196
  ident: CR73
  article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single‐cell RNA‐seq
  publication-title: Science
– volume: 11
  start-page: 1487
  year: 2009
  end-page: 1495
  ident: CR82
  article-title: The EMT‐activator ZEB1 promotes tumorigenicity by repressing stemness‐inhibiting microRNAs
  publication-title: Nat Cell Biol
– volume: 135
  start-page: 1042
  year: 2012
  end-page: 1054
  ident: CR23
  article-title: Exploiting the glioblastoma peptidome to discover novel tumour‐associated antigens for immunotherapy
  publication-title: Brain
– volume: 22
  start-page: 2482
  year: 2016
  end-page: 2495
  ident: CR43
  article-title: A supplemented high‐fat low‐carbohydrate diet for the treatment of glioblastoma
  publication-title: Clin Cancer Res
– volume: 20
  start-page: 303
  year: 2017
  end-page: 314
  ident: CR39
  article-title: Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells
  publication-title: Cell Stem Cell
– volume: 19
  start-page: 43
  year: 2017
  end-page: 54
  ident: CR41
  article-title: Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells
  publication-title: Neuro Oncol
– volume: 154
  start-page: 61
  year: 2013
  end-page: 74
  ident: CR11
  article-title: Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity
  publication-title: Cell
– volume: 22
  start-page: 234
  year: 2011
  end-page: 240
  ident: CR22
  article-title: Regulation of lipid droplets by autophagy
  publication-title: Trends Endocrinol Metab
– volume: 89
  start-page: 289
  year: 2008
  end-page: 300
  ident: CR33
  article-title: SAS and R functions to compute pseudo‐values for censored data regression
  publication-title: Comput Methods Programs Biomed
– volume: 62
  start-page: 3918
  year: 2012
  ident: CR19
  article-title: Identification and isolation of slow‐dividing cells in human glioblastoma using carboxy fluorescein succinimidyl ester (CFSE)
  publication-title: J Vis Exp
– volume: 159
  start-page: 1603
  year: 2014
  end-page: 1614
  ident: CR44
  article-title: Acetate is a bioenergetic substrate for human glioblastoma and brain metastases
  publication-title: Cell
– volume: 160
  start-page: 963
  year: 2015
  end-page: 976
  ident: CR51
  article-title: TGF‐beta promotes heterogeneity and drug resistance in squamous cell carcinoma
  publication-title: Cell
– volume: 6
  start-page: e24665
  year: 2011
  ident: CR50
  article-title: Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production
  publication-title: PLoS One
– volume: 355
  start-page: eaai8478
  year: 2017
  ident: CR78
  article-title: Decoupling genetics, lineages, and microenvironment in IDH‐mutant gliomas by single‐cell RNA‐seq
  publication-title: Science
– volume: 69
  start-page: 1
  year: 2014
  end-page: 14
  ident: CR14
  article-title: Abnormal alpha‐synuclein reduces nigral voltage‐dependent anion channel 1 in sporadic and experimental Parkinson's disease
  publication-title: Neurobiol Dis
– year: 1989
  ident: CR45
  publication-title: Generalized linear models
– volume: 5
  start-page: 1196
  year: 2013
  end-page: 1212
  ident: CR64
  article-title: The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance
  publication-title: EMBO Mol Med
– volume: 63
  start-page: 546
  year: 2013
  end-page: 553
  ident: CR48
  article-title: Fatty acid binding protein 7 as a marker of glioma stem cells
  publication-title: Pathol Int
– volume: 11
  start-page: 325
  year: 2011
  end-page: 337
  ident: CR34
  article-title: Otto Warburg's contributions to current concepts of cancer metabolism
  publication-title: Nat Rev Cancer
– volume: 26
  start-page: 6979
  year: 2007
  end-page: 6988
  ident: CR1
  article-title: The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity
  publication-title: Oncogene
– volume: 314
  start-page: 2535
  year: 2015
  end-page: 2543
  ident: CR70
  article-title: Maintenance therapy with tumor‐treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial
  publication-title: JAMA
– volume: 22
  start-page: 547
  year: 2012
  end-page: 560
  ident: CR10
  article-title: Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma
  publication-title: Cancer Cell
– volume: 524
  start-page: 361
  year: 2015
  end-page: 365
  ident: CR54
  article-title: Transcriptional control of autophagy‐lysosome function drives pancreatic cancer metabolism
  publication-title: Nature
– volume: 9
  start-page: e94200
  year: 2014
  ident: CR32
  article-title: Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia
  publication-title: PLoS One
– volume: 138
  start-page: 592
  year: 2009
  end-page: 603
  ident: CR61
  article-title: Downregulation of miRNA‐200c links breast cancer stem cells with normal stem cells
  publication-title: Cell
– volume: 21
  start-page: 5037
  year: 2015
  end-page: 5046
  ident: CR83
  article-title: Autophagy, metabolism, and cancer
  publication-title: Clin Cancer Res
– volume: 26
  start-page: 788
  year: 2014
  end-page: 795
  ident: CR84
  article-title: Is reliance on mitochondrial respiration a “chink in the armor” of therapy‐resistant cancer?
  publication-title: Cancer Cell
– volume: 2012
  start-page: 15
  year: 2012
  ident: CR16
  article-title: Mitochondrial markers for cancer: relevance to diagnosis, therapy, and prognosis and general understanding of malignant disease mechanisms
  publication-title: ISRN Pathol
– volume: 285
  start-page: 40461
  year: 2010
  end-page: 40471
  ident: CR88
  article-title: Activation of AMP‐activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition
  publication-title: J Biol Chem
– volume: 339
  start-page: 487
  year: 2011
  end-page: 498
  ident: CR46
  article-title: Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes
  publication-title: J Pharmacol Exp Ther
– volume: 370
  start-page: 246
  year: 2007
  end-page: 255
  ident: CR30
  article-title: The supramolecular assemblies of voltage‐dependent anion channels in the native membrane
  publication-title: J Mol Biol
– volume: 7
  start-page: e52113
  year: 2012
  ident: CR17
  article-title: A radial glia gene marker, fatty acid binding protein 7 (FABP7), is involved in proliferation and invasion of glioblastoma cells
  publication-title: PLoS One
– volume: 549
  start-page: 227
  year: 2017
  end-page: 232
  ident: CR36
  article-title: Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy
  publication-title: Nature
– volume: 344
  start-page: 1396
  year: 2014
  end-page: 1401
  ident: CR52
  article-title: Single‐cell RNA‐seq highlights intratumoral heterogeneity in primary glioblastoma
  publication-title: Science
– volume: 141
  start-page: 583
  year: 2010
  end-page: 594
  ident: CR57
  article-title: A temporarily distinct subpopulation of slow‐cycling melanoma cells is required for continuous tumor growth
  publication-title: Cell
– volume: 458
  start-page: 1131
  year: 2009
  end-page: 1135
  ident: CR65
  article-title: Autophagy regulates lipid metabolism
  publication-title: Nature
– volume: 117
  start-page: 15
  year: 2014
  end-page: 24
  ident: CR60
  article-title: Detection of primary cilia in human glioblastoma
  publication-title: J Neurooncol
– volume: 23
  start-page: 811
  year: 2013
  end-page: 825
  ident: CR58
  article-title: Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow‐cycling JARID1B(high) cells
  publication-title: Cancer Cell
– volume: 12
  start-page: 329
  year: 2013
  end-page: 341
  ident: CR35
  article-title: BCL‐2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells
  publication-title: Cell Stem Cell
– volume: 18
  start-page: 961
  year: 2017
  end-page: 976
  ident: CR67
  article-title: Oncogenes activate an autonomous transcriptional regulatory circuit that drives glioblastoma
  publication-title: Cell Rep
– volume: 7
  start-page: 12329
  year: 2016
  ident: CR21
  article-title: EphrinB2 repression through ZEB2 mediates tumour invasion and anti‐angiogenic resistance
  publication-title: Nat Commun
– volume: 7
  start-page: e38842
  year: 2012
  ident: CR55
  article-title: ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma
  publication-title: PLoS One
– volume: 33
  start-page: 2306
  year: 2015
  end-page: 2319
  ident: CR68
  article-title: Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity
  publication-title: Stem Cells
– volume: 528
  start-page: 93
  year: 2015
  end-page: 98
  ident: CR1000
  article-title: Brain tumour cells interconnect to a functional and resistant network
  publication-title: Nature
– volume: 138
  start-page: 592
  year: 2009
  end-page: 603
  article-title: Downregulation of miRNA‐200c links breast cancer stem cells with normal stem cells
  publication-title: Cell
– volume: 69
  start-page: 1
  year: 2014
  end-page: 14
  article-title: Abnormal alpha‐synuclein reduces nigral voltage‐dependent anion channel 1 in sporadic and experimental Parkinson's disease
  publication-title: Neurobiol Dis
– volume: 22
  start-page: 234
  year: 2011
  end-page: 240
  article-title: Regulation of lipid droplets by autophagy
  publication-title: Trends Endocrinol Metab
– volume: 99
  start-page: 319
  year: 2002
  end-page: 325
  article-title: Primitive, quiescent, Philadelphia‐positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571
  publication-title: Blood
– volume: 29
  start-page: 4741
  year: 2010
  end-page: 4751
  article-title: EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer
  publication-title: Oncogene
– volume: 21
  start-page: 1877
  year: 2014
  end-page: 1888
  article-title: Elimination of quiescent/slow‐proliferating cancer stem cells by Bcl‐XL inhibition in non‐small cell lung cancer
  publication-title: Cell Death Differ
– volume: 5
  start-page: e189
  year: 2016
  article-title: Lipid metabolic reprogramming in cancer cells
  publication-title: Oncogenesis
– volume: 26
  start-page: 611
  year: 2009
  end-page: 623
  article-title: Characterization and functional analysis of a slow cycling stem cell‐like subpopulation in pancreas adenocarcinoma
  publication-title: Clin Exp Metastasis
– volume: 7
  start-page: 156
  year: 2016
  article-title: Role of redox status in development of glioblastoma
  publication-title: Front Immunol
– volume: 9
  start-page: 349
  year: 2014
  end-page: 365
  article-title: Fatty acid uptake and lipid storage induced by HIF‐1alpha contribute to cell growth and survival after hypoxia‐reoxygenation
  publication-title: Cell Rep
– volume: 11
  start-page: 2701
  year: 2009
  end-page: 2716
  article-title: Adaptation to oxidative stress, chemoresistance, and cell survival
  publication-title: Antioxid Redox Signal
– volume: 514
  start-page: 628
  year: 2014
  end-page: 632
  article-title: Oncogene ablation‐resistant pancreatic cancer cells depend on mitochondrial function
  publication-title: Nature
– volume: 285
  start-page: 40461
  year: 2010
  end-page: 40471
  article-title: Activation of AMP‐activated protein kinase by temozolomide contributes to apoptosis in glioblastoma cells via p53 activation and mTORC1 inhibition
  publication-title: J Biol Chem
– volume: 33
  start-page: 35
  year: 2015
  end-page: 44
  article-title: Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging
  publication-title: Stem Cells
– volume: 134
  start-page: 1331
  year: 2011
  end-page: 1343
  article-title: Evidence for label‐retaining tumour‐initiating cells in human glioblastoma
  publication-title: Brain
– year: 1989
– volume: 13
  start-page: 4271
  year: 2007
  end-page: 4279
  article-title: Predicting human tumor drug concentrations from a preclinical pharmacokinetic model of temozolomide brain disposition
  publication-title: Clin Cancer Res
– volume: 65
  start-page: 4088
  year: 2005
  end-page: 4096
  article-title: High‐resolution genome‐wide mapping of genetic alterations in human glial brain tumors
  publication-title: Cancer Res
– volume: 7
  start-page: 477
  year: 2011
  end-page: 489
  article-title: Systems biology of the autophagy‐lysosomal pathway
  publication-title: Autophagy
– volume: 117
  start-page: 15
  year: 2014
  end-page: 24
  article-title: Detection of primary cilia in human glioblastoma
  publication-title: J Neurooncol
– volume: 29
  start-page: 2672
  year: 2010
  end-page: 2680
  article-title: CD24 cells from hierarchically organized ovarian cancer are enriched in cancer stem cells
  publication-title: Oncogene
– volume: 125
  start-page: 420
  year: 2013
  end-page: 429
  article-title: Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor‐1alpha expression
  publication-title: J Neurochem
– volume: 11
  start-page: 325
  year: 2011
  end-page: 337
  article-title: Otto Warburg's contributions to current concepts of cancer metabolism
  publication-title: Nat Rev Cancer
– volume: 26
  start-page: 6979
  year: 2007
  end-page: 6988
  article-title: The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity
  publication-title: Oncogene
– volume: 154
  start-page: 61
  year: 2013
  end-page: 74
  article-title: Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity
  publication-title: Cell
– volume: 16
  start-page: 1025
  year: 2014
  end-page: 1026
  article-title: Intratumoral heterogeneity and intraclonal plasticity: from Warburg to oxygen and back again
  publication-title: Neuro Oncol
– volume: 164
  start-page: 681
  year: 2016
  end-page: 694
  article-title: Metabolic heterogeneity in human lung tumors
  publication-title: Cell
– volume: 36
  start-page: 4671
  year: 2017
  end-page: 4672
  article-title: Stearoyl‐CoA‐desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ
  publication-title: Oncogene
– volume: 160
  start-page: 963
  year: 2015
  end-page: 976
  article-title: TGF‐beta promotes heterogeneity and drug resistance in squamous cell carcinoma
  publication-title: Cell
– volume: 33
  start-page: 2306
  year: 2015
  end-page: 2319
  article-title: Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity
  publication-title: Stem Cells
– volume: 9
  start-page: e94200
  year: 2014
  article-title: Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia
  publication-title: PLoS One
– volume: 6
  start-page: 97
  year: 2006
  article-title: Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR‐overexpressing glioblastoma
  publication-title: BMC Cancer
– volume: 528
  start-page: 93
  year: 2015
  end-page: 98
  article-title: Brain tumour cells interconnect to a functional and resistant network
  publication-title: Nature
– volume: 52
  start-page: 113
  year: 2001
  end-page: 118
  article-title: VDAC channels
  publication-title: IUBMB Life
– volume: 339
  start-page: 487
  year: 2011
  end-page: 498
  article-title: Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes
  publication-title: J Pharmacol Exp Ther
– volume: 26
  start-page: 33
  year: 2014
  end-page: 47
  article-title: Quiescent Sox(2+) cells drive hierarchical growth and relapse in Sonic Hedgehog Subgroup medulloblastoma
  publication-title: Cancer Cell
– volume: 7
  start-page: e52113
  year: 2012
  article-title: A radial glia gene marker, fatty acid binding protein 7 (FABP7), is involved in proliferation and invasion of glioblastoma cells
  publication-title: PLoS One
– volume: 34
  start-page: 16713
  year: 2014
  end-page: 16719
  article-title: Hypoxia inducible factor‐1alpha (HIF‐1alpha) is required for neural stem cell maintenance and vascular stability in the adult mouse SVZ
  publication-title: J Neurosci
– volume: 35
  start-page: 23
  year: 2016
  article-title: Targeting autophagy to sensitive glioma to temozolomide treatment
  publication-title: J Exp Clin Cancer Res
– volume: 22
  start-page: 547
  year: 2012
  end-page: 560
  article-title: Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma
  publication-title: Cancer Cell
– volume: 62
  start-page: 3918
  year: 2012
  article-title: Identification and isolation of slow‐dividing cells in human glioblastoma using carboxy fluorescein succinimidyl ester (CFSE)
  publication-title: J Vis Exp
– volume: 43
  start-page: D447
  year: 2015
  end-page: D452
  article-title: STRING v10: protein‐protein interaction networks, integrated over the tree of life
  publication-title: Nucleic Acids Res
– volume: 18
  start-page: 961
  year: 2017
  end-page: 976
  article-title: Oncogenes activate an autonomous transcriptional regulatory circuit that drives glioblastoma
  publication-title: Cell Rep
– volume: 39
  start-page: 279
  year: 2003
  end-page: 292
  article-title: The voltage‐dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death
  publication-title: Cell Biochem Biophys
– volume: 524
  start-page: 361
  year: 2015
  end-page: 365
  article-title: Transcriptional control of autophagy‐lysosome function drives pancreatic cancer metabolism
  publication-title: Nature
– volume: 352
  start-page: 987
  year: 2005
  end-page: 996
  article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma
  publication-title: N Engl J Med
– volume: 26
  start-page: 788
  year: 2014
  end-page: 795
  article-title: Is reliance on mitochondrial respiration a “chink in the armor” of therapy‐resistant cancer?
  publication-title: Cancer Cell
– volume: 22
  start-page: 2482
  year: 2016
  end-page: 2495
  article-title: A supplemented high‐fat low‐carbohydrate diet for the treatment of glioblastoma
  publication-title: Clin Cancer Res
– volume: 29
  start-page: 323
  year: 2000
  end-page: 333
  article-title: Triggering and modulation of apoptosis by oxidative stress
  publication-title: Free Radic Biol Med
– volume: 135
  start-page: 1042
  year: 2012
  end-page: 1054
  article-title: Exploiting the glioblastoma peptidome to discover novel tumour‐associated antigens for immunotherapy
  publication-title: Brain
– volume: 314
  start-page: 2535
  year: 2015
  end-page: 2543
  article-title: Maintenance therapy with tumor‐treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial
  publication-title: JAMA
– volume: 370
  start-page: 246
  year: 2007
  end-page: 255
  article-title: The supramolecular assemblies of voltage‐dependent anion channels in the native membrane
  publication-title: J Mol Biol
– volume: 19
  start-page: 43
  year: 2017
  end-page: 54
  article-title: Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells
  publication-title: Neuro Oncol
– volume: 23
  start-page: 811
  year: 2013
  end-page: 825
  article-title: Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow‐cycling JARID1B(high) cells
  publication-title: Cancer Cell
– volume: 108
  start-page: 16062
  year: 2011
  end-page: 16067
  article-title: Metabolic state of glioma stem cells and nontumorigenic cells
  publication-title: Proc Natl Acad Sci USA
– volume: 344
  start-page: 1396
  year: 2014
  end-page: 1401
  article-title: Single‐cell RNA‐seq highlights intratumoral heterogeneity in primary glioblastoma
  publication-title: Science
– volume: 2
  start-page: 333
  year: 2008
  end-page: 344
  article-title: Module map of stem cell genes guides creation of epithelial cancer stem cells
  publication-title: Cell Stem Cell
– volume: 5
  start-page: 1196
  year: 2013
  end-page: 1212
  article-title: The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance
  publication-title: EMBO Mol Med
– volume: 750
  start-page: 61
  year: 2011
  end-page: 77
  article-title: Isolation and characterization of adult neural stem cells
  publication-title: Methods Mol Biol
– volume: 539
  start-page: 309
  year: 2016b
  end-page: 313
  article-title: Single‐cell RNA‐seq supports a developmental hierarchy in human oligodendroglioma
  publication-title: Nature
– volume: 21
  start-page: 1822
  year: 2012
  end-page: 1830
  article-title: Slow‐cycling therapy‐resistant cancer cells
  publication-title: Stem Cells Dev
– volume: 2012
  start-page: 15
  year: 2012
  article-title: Mitochondrial markers for cancer: relevance to diagnosis, therapy, and prognosis and general understanding of malignant disease mechanisms
  publication-title: ISRN Pathol
– volume: 20
  start-page: 303
  year: 2017
  end-page: 314
  article-title: Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells
  publication-title: Cell Stem Cell
– volume: 159
  start-page: 1603
  year: 2014
  end-page: 1614
  article-title: Acetate is a bioenergetic substrate for human glioblastoma and brain metastases
  publication-title: Cell
– volume: 87
  start-page: 1671
  year: 1926
  article-title: Ueber den stoffwechsel der tumoren: arbeiten aus dem Kaiser Wilhelm‐institut für biologie, Berlin‐Dahlem
  publication-title: JAMA
– volume: 89
  start-page: 289
  year: 2008
  end-page: 300
  article-title: SAS and R functions to compute pseudo‐values for censored data regression
  publication-title: Comput Methods Programs Biomed
– volume: 12
  start-page: 329
  year: 2013
  end-page: 341
  article-title: BCL‐2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells
  publication-title: Cell Stem Cell
– volume: 7
  start-page: 7029
  year: 2016
  end-page: 7043
  article-title: Disruption of KIF3A in patient‐derived glioblastoma cells: effects on ciliogenesis, hedgehog sensitivity, and tumorigenesis
  publication-title: Oncotarget
– volume: 15
  start-page: 827
  year: 2012
  end-page: 837
  article-title: Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain
  publication-title: Cell Metab
– volume: 12
  start-page: 1409
  year: 2016
  end-page: 1410
  article-title: Autophagy regulation depends on ER homeostasis controlled by lipid droplets
  publication-title: Autophagy
– volume: 16
  start-page: 891
  year: 2016
  article-title: Autophagy is associated with chemoresistance in neuroblastoma
  publication-title: BMC Cancer
– volume: 455
  start-page: 1061
  year: 2008
  end-page: 1068
  article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways
  publication-title: Nature
– volume: 347
  start-page: 1260419
  year: 2015
  article-title: Proteomics. Tissue‐based map of the human proteome
  publication-title: Science
– volume: 549
  start-page: 227
  year: 2017
  end-page: 232
  article-title: Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy
  publication-title: Nature
– volume: 6
  start-page: e24665
  year: 2011
  article-title: Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production
  publication-title: PLoS One
– volume: 21
  start-page: 5037
  year: 2015
  end-page: 5046
  article-title: Autophagy, metabolism, and cancer
  publication-title: Clin Cancer Res
– volume: 234
  start-page: 23
  year: 2014
  end-page: 33
  article-title: Aberrant self‐renewal and quiescence contribute to the aggressiveness of glioblastoma
  publication-title: J Pathol
– volume: 447
  start-page: 959
  year: 2007
  end-page: 965
  article-title: Treatment of diabetes and atherosclerosis by inhibiting fatty‐acid‐binding protein aP2
  publication-title: Nature
– volume: 458
  start-page: 1131
  year: 2009
  end-page: 1135
  article-title: Autophagy regulates lipid metabolism
  publication-title: Nature
– volume: 6
  start-page: 1
  year: 2004
  end-page: 6
  article-title: ONCOMINE: a cancer microarray database and integrated data‐mining platform
  publication-title: Neoplasia
– volume: 355
  start-page: eaai8478
  year: 2017
  article-title: Decoupling genetics, lineages, and microenvironment in IDH‐mutant gliomas by single‐cell RNA‐seq
  publication-title: Science
– volume: 7
  start-page: e38842
  year: 2012
  article-title: ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma
  publication-title: PLoS One
– volume: 11
  start-page: 1487
  year: 2009
  end-page: 1495
  article-title: The EMT‐activator ZEB1 promotes tumorigenicity by repressing stemness‐inhibiting microRNAs
  publication-title: Nat Cell Biol
– volume: 352
  start-page: 189
  year: 2016a
  end-page: 196
  article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single‐cell RNA‐seq
  publication-title: Science
– volume: 81
  start-page: 73
  year: 2017
  end-page: 78
  article-title: Autophagy, metabolism, and cancer
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 63
  start-page: 546
  year: 2013
  end-page: 553
  article-title: Fatty acid binding protein 7 as a marker of glioma stem cells
  publication-title: Pathol Int
– volume: 488
  start-page: 522
  year: 2012
  end-page: 526
  article-title: A restricted cell population propagates glioblastoma growth after chemotherapy
  publication-title: Nature
– volume: 7
  start-page: 12329
  year: 2016
  article-title: EphrinB2 repression through ZEB2 mediates tumour invasion and anti‐angiogenic resistance
  publication-title: Nat Commun
– volume: 140
  start-page: 62
  year: 2010
  end-page: 73
  article-title: Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content
  publication-title: Cell
– volume: 141
  start-page: 583
  year: 2010
  end-page: 594
  article-title: A temporarily distinct subpopulation of slow‐cycling melanoma cells is required for continuous tumor growth
  publication-title: Cell
– ident: e_1_2_9_5_1
  doi: 10.1016/j.celrep.2014.08.056
– ident: e_1_2_9_69_1
  doi: 10.1016/j.celrep.2016.12.064
– ident: e_1_2_9_75_1
  doi: 10.1126/science.aad0501
– ident: e_1_2_9_83_1
  doi: 10.1001/jama.1926.02680200071042
– ident: e_1_2_9_82_1
  doi: 10.1073/pnas.1106704108
– ident: e_1_2_9_39_1
  doi: 10.1523/JNEUROSCI.4590-13.2014
– ident: e_1_2_9_27_1
  doi: 10.1182/blood.V99.1.319
– ident: e_1_2_9_6_1
  doi: 10.1080/15216540152845902
– ident: e_1_2_9_50_1
  doi: 10.1038/onc.2017.212
– ident: e_1_2_9_8_1
  doi: 10.1002/path.4366
– ident: e_1_2_9_48_1
  doi: 10.1089/scd.2011.0477
– ident: e_1_2_9_68_1
  doi: 10.1038/onc.2010.215
– ident: e_1_2_9_45_1
  doi: 10.1016/j.cell.2014.11.025
– ident: e_1_2_9_54_1
  doi: 10.1126/science.1254257
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ccr.2012.08.014
– ident: e_1_2_9_29_1
  doi: 10.1016/j.cell.2015.12.034
– ident: e_1_2_9_64_1
  doi: 10.1385/CBB:39:3:279
– ident: e_1_2_9_41_1
  doi: 10.1186/1471-2407-6-97
– ident: e_1_2_9_12_1
  doi: 10.1016/j.cell.2013.06.005
– ident: e_1_2_9_30_1
  doi: 10.18632/oncotarget.6854
– ident: e_1_2_9_60_1
  doi: 10.1016/j.ccr.2013.05.003
– ident: e_1_2_9_61_1
  doi: 10.3389/fimmu.2016.00156
– ident: e_1_2_9_88_1
  doi: 10.1186/s13046-016-0303-5
– ident: e_1_2_9_84_1
  doi: 10.1038/ncb1998
– ident: e_1_2_9_26_1
  doi: 10.1038/onc.2010.35
– ident: e_1_2_9_86_1
  doi: 10.1016/j.ccell.2014.10.001
– ident: e_1_2_9_19_1
  doi: 10.1093/brain/awr081
– ident: e_1_2_9_77_1
  doi: 10.1126/science.1260419
– ident: e_1_2_9_43_1
  doi: 10.1016/j.cmet.2012.05.001
– ident: e_1_2_9_9_1
  doi: 10.1038/nature07385
– ident: e_1_2_9_44_1
  doi: 10.1158/1078-0432.CCR-15-0916
– ident: e_1_2_9_2_1
  doi: 10.1038/sj.onc.1210508
– ident: e_1_2_9_73_1
  doi: 10.1093/nar/gku1003
– ident: e_1_2_9_72_1
  doi: 10.1001/jama.2015.16669
– ident: e_1_2_9_14_1
  doi: 10.1038/nature11287
– ident: e_1_2_9_22_1
  doi: 10.1038/ncomms12329
– ident: e_1_2_9_21_1
  doi: 10.1007/s10585-009-9260-0
– ident: e_1_2_9_70_1
  doi: 10.1002/stem.2042
– ident: e_1_2_9_15_1
  doi: 10.1016/j.nbd.2014.05.003
– ident: e_1_2_9_36_1
  doi: 10.1016/j.stem.2012.12.013
– ident: e_1_2_9_40_1
  doi: 10.1016/j.stem.2016.11.004
– ident: e_1_2_9_56_1
  doi: 10.1038/nature14587
– ident: e_1_2_9_74_1
  doi: 10.1002/stem.1837
– ident: e_1_2_9_85_1
  doi: 10.1158/1078-0432.CCR-15-0490
– ident: e_1_2_9_67_1
  doi: 10.1038/nature07976
– ident: e_1_2_9_91_1
  doi: 10.1158/1078-0432.CCR-07-0658
– ident: e_1_2_9_38_1
  doi: 10.1089/ars.2009.2692
– ident: e_1_2_9_49_1
  doi: 10.1111/pin.12109
– ident: e_1_2_9_31_1
  doi: 10.1016/j.jmb.2007.04.073
– ident: e_1_2_9_33_1
  doi: 10.1371/journal.pone.0094200
– ident: e_1_2_9_3_1
  doi: 10.1038/oncsis.2015.49
– ident: e_1_2_9_62_1
  doi: 10.1007/s11060-013-1340-y
– ident: e_1_2_9_63_1
  doi: 10.1016/j.cell.2009.07.011
– ident: e_1_2_9_57_1
  doi: 10.1371/journal.pone.0038842
– volume: 62
  start-page: 3918
  year: 2012
  ident: e_1_2_9_20_1
  article-title: Identification and isolation of slow‐dividing cells in human glioblastoma using carboxy fluorescein succinimidyl ester (CFSE)
  publication-title: J Vis Exp
– ident: e_1_2_9_17_1
  doi: 10.5402/2012/217162
– ident: e_1_2_9_47_1
  doi: 10.1124/jpet.111.184341
– ident: e_1_2_9_71_1
  doi: 10.1056/NEJMoa043330
– ident: e_1_2_9_76_1
  doi: 10.1038/nature20123
– ident: e_1_2_9_7_1
  doi: 10.1158/0008-5472.CAN-04-4229
– ident: e_1_2_9_25_1
  doi: 10.1038/nature05844
– ident: e_1_2_9_51_1
  doi: 10.1371/journal.pone.0024665
– ident: e_1_2_9_13_1
  doi: 10.1016/S0891-5849(00)00302-6
– ident: e_1_2_9_32_1
  doi: 10.4161/auto.7.5.14811
– ident: e_1_2_9_79_1
  doi: 10.1080/15548627.2016.1190074
– ident: e_1_2_9_78_1
  doi: 10.1016/j.ccr.2014.05.005
– ident: e_1_2_9_42_1
  doi: 10.1093/neuonc/now128
– ident: e_1_2_9_18_1
  doi: 10.1371/journal.pone.0052113
– ident: e_1_2_9_24_1
  doi: 10.1093/brain/aws042
– ident: e_1_2_9_52_1
  doi: 10.1016/j.cell.2015.01.043
– ident: e_1_2_9_58_1
  doi: 10.1016/S1476-5586(04)80047-2
– ident: e_1_2_9_16_1
  doi: 10.1093/neuonc/nou121
– ident: e_1_2_9_87_1
  doi: 10.1016/j.stem.2008.02.009
– ident: e_1_2_9_53_1
  doi: 10.1038/nature16071
– ident: e_1_2_9_4_1
  doi: 10.1186/s12885-016-2906-9
– ident: e_1_2_9_10_1
  doi: 10.1111/jnc.12204
– ident: e_1_2_9_28_1
  doi: 10.1101/sqb.2016.81.030981
– ident: e_1_2_9_89_1
  doi: 10.1038/cdd.2014.105
– ident: e_1_2_9_65_1
  doi: 10.1007/978-1-61779-145-1_4
– ident: e_1_2_9_23_1
  doi: 10.1016/j.tem.2011.02.003
– ident: e_1_2_9_66_1
  doi: 10.1002/emmm.201302827
– ident: e_1_2_9_34_1
  doi: 10.1016/j.cmpb.2007.11.017
– ident: e_1_2_9_90_1
  doi: 10.1074/jbc.M110.164046
– ident: e_1_2_9_46_1
  doi: 10.1007/978-1-4899-3242-6
– ident: e_1_2_9_37_1
  doi: 10.1038/nature23666
– ident: e_1_2_9_35_1
  doi: 10.1038/nrc3038
– ident: e_1_2_9_55_1
  doi: 10.1016/j.cell.2009.12.007
– ident: e_1_2_9_81_1
  doi: 10.1038/nature13611
– ident: e_1_2_9_59_1
  doi: 10.1016/j.cell.2010.04.020
– ident: e_1_2_9_80_1
  doi: 10.1126/science.aai8478
SSID ssj0005871
Score 2.6058226
Snippet Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells (FCCs) that have impaired...
Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast-cycling cells (FCCs) that have impaired...
Metabolic reprogramming has been described in rapidly growing tumors, which are thought to mostly contain fast‐cycling cells ( FCC s) that have impaired...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Acid resistance
Brain
Brain cancer
Brain tumors
cancer stem cells
Chemoresistance
Chemotherapy
Clonal deletion
Deprivation
Drug resistance
EMBO03
EMBO21
EMBO39
Fatty acids
Glioblastoma
Glucose
Glycolysis
Heterogeneity
Lipid metabolism
Lipids
Metabolic pathways
Metabolism
Metabolites
Metabolomics
Mitochondria
Oxidation resistance
Oxidative metabolism
Oxidative phosphorylation
Pharmacology
Phosphorylation
slow‐cycling cells
Subpopulations
Survival
Transport
Tumor cells
Tumors
Title Infiltrative and drug‐resistant slow‐cycling cells support metabolic heterogeneity in glioblastoma
URI https://link.springer.com/article/10.15252/embj.201798772
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201798772
https://www.ncbi.nlm.nih.gov/pubmed/30322894
https://www.proquest.com/docview/2141083760
https://www.proquest.com/docview/2120752990
https://pubmed.ncbi.nlm.nih.gov/PMC6276884
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6hIgQXBOUvpSAjcYDDQteJE-cIq1alUjlRqbfIntjboKxTdbNCvfUReEaehJkkm7IqFeKWxE4ce8aeb-zxZ4C3ZPPIbijyTpx2k0Sn1KWMzieocE97I6euY-A7_poeniRHp-p0IEnivTB_rt8rqeRHt7DfOQIrI-c4o7H2rqJRl1V5ls6uYzl051l1kynJVOcDh89fPrBpfm5gypuhkeP66CZ67czPwSN4OOBG8akX9GO448I23OtPkrzchvuz9cFtT8B_Cb6q257SW5hQivJiNf919ZM8a0aLoRXLuvlBD_CSN0bOBc_eL8Vydc5gXCxcS5pRVyjOOFamIRVzhNVFFcS8rhpLeLttFuYpnBzsf5sdTobjFKjhs1xOpLUSy8Rn0jCMSlOHzJWPiGTyE_R5rI2foonj2KAqTWntHtIYJGXpPVqMn8FWaIJ7AcJ4dASFfKmmPkGSKeMc7fJE2dhQp47gw7qVCxy4xvnIi7pgn4PFUrBYilEsEbwbXzjvaTZuz7q7Flsx9LdlITlcVXOATwRvxmRqd25AE1yz4jyS8BGb3wie91IeyyJDLsn1TCLINuQ_ZmAW7s2UUJ11bNypJI9N05vv15py_Vu3ViHuVOlfVS32jz8fjXc7_1HCS3hA17qLu4l3Yau9WLlXhJ5a-7rrOb8BjHUV4w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VoIpeUEtfobR1pR7aw7as83KO7Qq0UJYTSNwie2IvqbIJYrNC3PgJ_Mb-ks4k2dAVRVWP8SOJPbbnG3v8DcBH0nmkN0KyTqyyg0BFNKW0SgYY4q5yWg5tw8A3OY7Gp8HhWXjWkSTxXZg_z-9DGcqvdmZ-sgdWTMZxTGvtOh9bMkn-KBrd-XKoxrJqNlOCoUo6Dp-_vGBV_dzDlPddI_vz0VX02qif_aew2eFG8a0V9DN4ZMsteNxGkrzego3RMnDbc3AHpcuLuqX0FrrMRHa5mP66uSXLmtFiWYt5UV1RAl7zxcip4N37uZgvLhiMi5mtaWQUOYpz9pWpaIhZwuoiL8W0yCtDeLuuZvoFnO7vnYzGgy6cAnV8nMiBNEZiFrhYaoZRUWSRufIRkVR-gC7xlXZD1L7vawwznRmzi7QGSZk5hwb9l7BWVqV9DUI7tASFXBYOXYAkU8Y5yiZBaHxNk9qDL8teTrHjGueQF0XKNgeLJWWxpL1YPPjUV7hoaTYeLrqzFFvazbd5KtldVbGDjwcf-mzqd-5AXdpqwWUk4SNWvx68aqXcf4sUuSTTM_AgXpF_X4BZuFdzyvy8YeOOJFlsimp-Xo6Uu996sAl-M5T-1dR0b_L9sH_a_o8vvIeN8cnkKD06OP7xBp5Qump8cPwdWKsvF_YtIanavGtm0W_F-RjS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQKx4XBAVKoICROMBhadd5OceldNUutEKCSr1F9sTeBmWdVZMV6o2fwG_klzCTV7UqFeIYx3nYM858k3z5hrE3GPMwboSYnRhpRoGMcEkpmYwghD1plRibRoHv-CQ6PA1mZ-FZx82perZ7_0my_aeBVJpcvbvMbF-vR-yahf5OvKwYU-YYn8CbMkwSzL02J5PZ19kVx0M2GVfzkiUYy6TT9vnLKdbD0jWseZ0yOXw3XUe1TViaPmD3OzzJJ60DPGS3jNtit9sKk5db7O5-X9DtEbNHzuZF3Up9c-Uynl2s5r9__sKMm1Ckq3lVlD-wAS7ph8k5p7f6Fa9WSwLpfGFq9JgiB35OHJoSXc8ghue54_MiLzXi8LpcqMfsdHrwbf9w1JVZQIPEiRgJrQVkgY2FIngVRQZIQx8AEAoEYBNfKjsG5fu-gjBTmdZ7gM8mITJrQYP_hG240pmnjCsLBiGSzcKxDQBtTfhHmiQIta9wsXvsfT_LKXQa5FQKo0gpFyGzpGSWdDCLx94OByxb-Y2bu-70Zku7dVilgmiskog_Hns97MZ5pwlUzpQr6iMQN1FY9th2a-XhWhjgBaakgcfiNfsPHUide32Py88ble5IYCYn8ch3vadc3daNQ_AbV_rXUNOD4w-zYevZf1zhFbvz5eM0_Xx08uk5u4fNsqHm-Dtso75YmRcIsGr9sltGfwAvpSKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infiltrative+and+drug-resistant+slow-cycling+cells+support+metabolic+heterogeneity+in+glioblastoma&rft.jtitle=The+EMBO+journal&rft.au=Hoang-Minh%2C+Lan+B&rft.au=Siebzehnrubl%2C+Florian+A&rft.au=Yang%2C+Changlin&rft.au=Suzuki-Hatano%2C+Silveli&rft.date=2018-12-03&rft.eissn=1460-2075&rft_id=info:doi/10.15252%2Fembj.201798772&rft_id=info%3Apmid%2F30322894&rft.externalDocID=30322894
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon