Mechanism of membrane pore formation by human gasdermin‐D

Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMD Nterm ) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 37; no. 14
Main Authors Mulvihill, Estefania, Sborgi, Lorenzo, Mari, Stefania A, Pfreundschuh, Moritz, Hiller, Sebastian, Müller, Daniel J
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.07.2018
Springer Nature B.V
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0261-4189
1460-2075
1460-2075
DOI10.15252/embj.201798321

Cover

Abstract Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMD Nterm ) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMD Nterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMD Nterm inserts and assembles in membranes. We observe GSDMD Nterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMD Nterm assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM, we monitor how GSDMD Nterm assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMD Nterm transmembrane pore assembly, which is likely shared within the gasdermin protein family. Synopsis Gasdermin‐D, which mediates pyroptosis in human and murine cells, is directly observed inserting into lipid membranes and assembling arc‐, slit‐ and ring‐shaped oligomers. The observations translate into a mechanistic model of gasdermin‐D assembling transmembrane lytic pores. High‐resolution time‐lapse imaging of gasdermin‐D pore formation. Gasdermin‐D assembles arc‐, slit‐ and ring‐shaped oligomers. Arc‐ and slit‐shaped pores transform into stable ring‐shaped pores. Phosphatidylinositide (PI(4,5)P2) increases gasdermin‐D pore formation. Cholesterol reduces gasdermin‐D pore formation. Graphical Abstract High‐resolution atomic force microscopy shows how a pyroptosis‐mediating gasdermin protein inserts into lipid membranes and assembles arc‐, slit‐ and ring‐shaped oligomers.
AbstractList Gasdermin‐D ( GSDMD ), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMD Nterm ) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMD Nterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy ( AFM ) to describe how GSDMD Nterm inserts and assembles in membranes. We observe GSDMD Nterm inserting into a variety of lipid compositions, among which phosphatidylinositide ( PI (4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMD Nterm assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM , we monitor how GSDMD Nterm assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMD Nterm transmembrane pore assembly, which is likely shared within the gasdermin protein family.
Gasdermin-D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N-terminal domain (GSDMD ) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMD insertion, oligomerization, and pore formation are poorly understood. Here, we apply high-resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMD inserts and assembles in membranes. We observe GSDMD inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMD assembles arc-, slit-, and ring-shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase-1, caspase-4, or caspase-5. Using time-lapse AFM, we monitor how GSDMD assembles into arc-shaped oligomers that can transform into larger slit-shaped and finally into stable ring-shaped oligomers. Our observations translate into a mechanistic model of GSDMD transmembrane pore assembly, which is likely shared within the gasdermin protein family.
Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMDNterm) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMDNterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMDNterm inserts and assembles in membranes. We observe GSDMDNterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMDNterm assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM, we monitor how GSDMDNterm assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMDNterm transmembrane pore assembly, which is likely shared within the gasdermin protein family.
Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMD Nterm ) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMD Nterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMD Nterm inserts and assembles in membranes. We observe GSDMD Nterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMD Nterm assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM, we monitor how GSDMD Nterm assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMD Nterm transmembrane pore assembly, which is likely shared within the gasdermin protein family. Synopsis Gasdermin‐D, which mediates pyroptosis in human and murine cells, is directly observed inserting into lipid membranes and assembling arc‐, slit‐ and ring‐shaped oligomers. The observations translate into a mechanistic model of gasdermin‐D assembling transmembrane lytic pores. High‐resolution time‐lapse imaging of gasdermin‐D pore formation. Gasdermin‐D assembles arc‐, slit‐ and ring‐shaped oligomers. Arc‐ and slit‐shaped pores transform into stable ring‐shaped pores. Phosphatidylinositide (PI(4,5)P2) increases gasdermin‐D pore formation. Cholesterol reduces gasdermin‐D pore formation. Graphical Abstract High‐resolution atomic force microscopy shows how a pyroptosis‐mediating gasdermin protein inserts into lipid membranes and assembles arc‐, slit‐ and ring‐shaped oligomers.
Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMDNterm) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMDNterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMDNterm inserts and assembles in membranes. We observe GSDMDNterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMDNterm assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM, we monitor how GSDMDNterm assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMDNterm transmembrane pore assembly, which is likely shared within the gasdermin protein family. Synopsis Gasdermin‐D, which mediates pyroptosis in human and murine cells, is directly observed inserting into lipid membranes and assembling arc‐, slit‐ and ring‐shaped oligomers. The observations translate into a mechanistic model of gasdermin‐D assembling transmembrane lytic pores. High‐resolution time‐lapse imaging of gasdermin‐D pore formation. Gasdermin‐D assembles arc‐, slit‐ and ring‐shaped oligomers. Arc‐ and slit‐shaped pores transform into stable ring‐shaped pores. Phosphatidylinositide (PI(4,5)P2) increases gasdermin‐D pore formation. Cholesterol reduces gasdermin‐D pore formation. High‐resolution atomic force microscopy shows how a pyroptosis‐mediating gasdermin protein inserts into lipid membranes and assembles arc‐, slit‐ and ring‐shaped oligomers.
Gasdermin-D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N-terminal domain (GSDMDNterm) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMDNterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high-resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMDNterm inserts and assembles in membranes. We observe GSDMDNterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMDNterm assembles arc-, slit-, and ring-shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase-1, caspase-4, or caspase-5. Using time-lapse AFM, we monitor how GSDMDNterm assembles into arc-shaped oligomers that can transform into larger slit-shaped and finally into stable ring-shaped oligomers. Our observations translate into a mechanistic model of GSDMDNterm transmembrane pore assembly, which is likely shared within the gasdermin protein family.Gasdermin-D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N-terminal domain (GSDMDNterm) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMDNterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high-resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMDNterm inserts and assembles in membranes. We observe GSDMDNterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMDNterm assembles arc-, slit-, and ring-shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase-1, caspase-4, or caspase-5. Using time-lapse AFM, we monitor how GSDMDNterm assembles into arc-shaped oligomers that can transform into larger slit-shaped and finally into stable ring-shaped oligomers. Our observations translate into a mechanistic model of GSDMDNterm transmembrane pore assembly, which is likely shared within the gasdermin protein family.
Author Mulvihill, Estefania
Pfreundschuh, Moritz
Hiller, Sebastian
Mari, Stefania A
Sborgi, Lorenzo
Müller, Daniel J
AuthorAffiliation 1 Department of Biosystems Science and Engineering Eidgenössische Technische Hochschule (ETH) Zurich Basel Switzerland
2 Biozentrum University of Basel Basel Switzerland
AuthorAffiliation_xml – name: 1 Department of Biosystems Science and Engineering Eidgenössische Technische Hochschule (ETH) Zurich Basel Switzerland
– name: 2 Biozentrum University of Basel Basel Switzerland
Author_xml – sequence: 1
  givenname: Estefania
  orcidid: 0000-0002-7074-2371
  surname: Mulvihill
  fullname: Mulvihill, Estefania
  organization: Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich
– sequence: 2
  givenname: Lorenzo
  surname: Sborgi
  fullname: Sborgi, Lorenzo
  organization: Biozentrum, University of Basel
– sequence: 3
  givenname: Stefania A
  surname: Mari
  fullname: Mari, Stefania A
  organization: Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich
– sequence: 4
  givenname: Moritz
  surname: Pfreundschuh
  fullname: Pfreundschuh, Moritz
  organization: Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich
– sequence: 5
  givenname: Sebastian
  orcidid: 0000-0002-6709-4684
  surname: Hiller
  fullname: Hiller, Sebastian
  organization: Biozentrum, University of Basel
– sequence: 6
  givenname: Daniel J
  orcidid: 0000-0003-3075-0665
  surname: Müller
  fullname: Müller, Daniel J
  email: daniel.mueller@bsse.ethz.ch
  organization: Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29898893$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1vEzEUtFArmpaee6tW4tLLtrZ37bVBQir9AtSKC5wtx_s2cbS2g50F5cZP6G_kl-A0bWgrASdLfjPzZt7soi0fPCB0QPAxYZTRE3Dj2THFpJGiouQFGpGa45Lihm2hEaaclDURcgftpjTDGDPRkJdoh0ohhZDVCL29ATPV3iZXhK5wWS5qD8U8RCi6EJ1e2OCL8bKYDk77YqJTC9FZ_-vn7fkrtN3pPsH-_buHvl5efDn7UF5_vvp4dnpdGtZIUlasajUFijuha2E44Zy1dDWSEre4IlRL0EK2eUJFa7iss08wDa9bA4xXe-jdWnc-jB3kP7-IulfzaJ2OSxW0VU8n3k7VJHxXHNeVYCwLHN0LxPBtgLRQziYDfZ-jhiEpihlbLSd1hr5-Bp2FIfocL6O4aCTjYuXo8LGjjZWHu2bAyRpgYkgpQreBEKzumlOr5tSmucxgzxjGLu6unyPZ_h-8N2veD9vD8n9r1MXN-0-PyXhNTpnnJxD_pP3bvt8UT71U
CitedBy_id crossref_primary_10_1098_rsob_220366
crossref_primary_10_1038_s41556_024_01474_z
crossref_primary_10_1016_j_dci_2024_105139
crossref_primary_10_1016_j_chemphyslip_2020_105026
crossref_primary_10_1042_BST20210706
crossref_primary_10_1007_s10753_018_0912_6
crossref_primary_10_1016_j_smim_2023_101803
crossref_primary_10_1016_j_taap_2023_116387
crossref_primary_10_1016_j_immuni_2019_05_020
crossref_primary_10_1002_JLB_MR0318_124R
crossref_primary_10_1038_s41392_024_01801_8
crossref_primary_10_1038_s41467_024_47067_0
crossref_primary_10_4049_jimmunol_2000373
crossref_primary_10_4236_health_2021_135043
crossref_primary_10_1042_BST20210672
crossref_primary_10_3389_fimmu_2020_601405
crossref_primary_10_1146_annurev_immunol_073119_095439
crossref_primary_10_1016_j_apsb_2024_11_011
crossref_primary_10_1016_j_molcel_2023_02_021
crossref_primary_10_5604_01_3001_0014_8985
crossref_primary_10_1016_j_sbi_2021_03_012
crossref_primary_10_1007_s43188_023_00201_4
crossref_primary_10_1016_j_jmb_2021_167297
crossref_primary_10_1016_j_envres_2024_118865
crossref_primary_10_1042_BST20230549
crossref_primary_10_1515_hsz_2022_0321
crossref_primary_10_1007_s10753_021_01439_6
crossref_primary_10_1038_s41467_022_30232_8
crossref_primary_10_3389_fimmu_2020_01840
crossref_primary_10_3390_ijms232416115
crossref_primary_10_7554_eLife_75490
crossref_primary_10_1016_j_intimp_2020_106998
crossref_primary_10_3390_ijms24119455
crossref_primary_10_1073_pnas_2004876117
crossref_primary_10_1016_j_cbi_2020_109052
crossref_primary_10_1186_s12915_020_00936_8
crossref_primary_10_1016_j_cell_2020_02_002
crossref_primary_10_1038_s41467_019_13385_x
crossref_primary_10_1134_S1990747825700011
crossref_primary_10_15252_emmm_202115415
crossref_primary_10_1186_s12964_024_01681_z
crossref_primary_10_1073_pnas_1818598116
crossref_primary_10_1007_s12264_018_0294_7
crossref_primary_10_4049_jimmunol_2101004
crossref_primary_10_1126_sciimmunol_adg3196
crossref_primary_10_1002_JLB_3MR0420_305R
crossref_primary_10_1360_nso_20220018
crossref_primary_10_1016_j_tcb_2023_02_007
crossref_primary_10_3390_ijms22041699
crossref_primary_10_1016_j_ceb_2018_10_006
crossref_primary_10_1177_09287329241296358
crossref_primary_10_3390_cimb46010043
crossref_primary_10_1016_j_preteyeres_2024_101263
crossref_primary_10_1007_s00018_021_04078_0
crossref_primary_10_1186_s13008_024_00114_0
crossref_primary_10_1016_j_cmet_2020_05_003
crossref_primary_10_1128_mbio_03600_21
crossref_primary_10_1016_j_expneurol_2020_113525
crossref_primary_10_1038_s41586_021_03478_3
crossref_primary_10_1073_pnas_1904304116
crossref_primary_10_3389_fimmu_2023_1254150
crossref_primary_10_1016_j_str_2023_08_012
crossref_primary_10_1016_j_cell_2020_04_028
crossref_primary_10_1021_acs_langmuir_0c00833
crossref_primary_10_7554_eLife_81432
crossref_primary_10_3390_ijms221910212
crossref_primary_10_1074_jbc_REV119_008907
crossref_primary_10_15252_embj_2020105753
crossref_primary_10_1002_eji_202048937
crossref_primary_10_1038_s41577_024_00995_w
crossref_primary_10_1038_s41598_022_04853_4
crossref_primary_10_1038_s41573_023_00822_2
crossref_primary_10_1016_j_ymthe_2021_03_002
crossref_primary_10_1128_msystems_01106_24
crossref_primary_10_3390_ijms231810494
crossref_primary_10_3390_antiox12081551
crossref_primary_10_1038_s41467_021_27692_9
crossref_primary_10_1016_j_tcb_2021_06_010
crossref_primary_10_3390_cells11081307
crossref_primary_10_3390_ijms241612709
crossref_primary_10_3389_fendo_2019_00778
crossref_primary_10_1038_s41577_019_0228_2
crossref_primary_10_1042_BCJ20210604
crossref_primary_10_1101_cshperspect_a036392
crossref_primary_10_3389_fimmu_2024_1497984
crossref_primary_10_3389_fimmu_2020_581906
crossref_primary_10_1002_adbi_202101166
crossref_primary_10_1038_s41467_025_56398_5
crossref_primary_10_3389_fphar_2020_590453
crossref_primary_10_1002_path_5248
crossref_primary_10_1016_j_intimp_2024_112168
crossref_primary_10_1002_cam4_5178
crossref_primary_10_1016_j_lfs_2024_122966
crossref_primary_10_1038_s41422_020_0295_8
crossref_primary_10_1016_j_celrep_2021_108887
crossref_primary_10_1038_s41419_019_1919_0
crossref_primary_10_1093_abbs_gmaa016
crossref_primary_10_1038_s41580_025_00837_0
crossref_primary_10_5009_gnl18486
crossref_primary_10_1016_j_smim_2022_101699
crossref_primary_10_1038_s41590_023_01526_w
crossref_primary_10_1080_10717544_2022_2069302
crossref_primary_10_1085_jgp_202012754
crossref_primary_10_1089_ars_2023_0340
crossref_primary_10_3390_nu13072216
crossref_primary_10_1038_s41564_020_0773_2
crossref_primary_10_4236_jbm_2023_114005
crossref_primary_10_1038_s41467_023_43180_8
crossref_primary_10_1038_s41467_022_32757_4
crossref_primary_10_1039_C9MD00059C
crossref_primary_10_3389_fphar_2021_650283
crossref_primary_10_1007_s10753_021_01419_w
crossref_primary_10_3389_fimmu_2022_810582
crossref_primary_10_1016_j_lfs_2024_122951
crossref_primary_10_1016_j_cell_2022_06_038
crossref_primary_10_3390_ijms24054528
crossref_primary_10_1111_cpr_13137
crossref_primary_10_3389_fcell_2021_638710
crossref_primary_10_3390_antiox10081275
crossref_primary_10_1016_j_intimp_2023_109725
crossref_primary_10_1016_j_jmb_2021_167251
crossref_primary_10_1016_j_jmb_2021_167378
crossref_primary_10_1038_s41401_022_00887_6
crossref_primary_10_1002_ctm2_1002
crossref_primary_10_1038_s41590_019_0368_3
crossref_primary_10_15252_embj_2022111857
crossref_primary_10_1515_ntrev_2023_0208
crossref_primary_10_1016_j_cca_2020_06_044
crossref_primary_10_1016_j_cis_2020_102177
crossref_primary_10_3389_fimmu_2018_02188
crossref_primary_10_1002_cti2_1186
crossref_primary_10_1016_j_bbi_2020_07_042
crossref_primary_10_3389_fcell_2022_958957
crossref_primary_10_1016_j_jbc_2024_105757
crossref_primary_10_1016_j_celrep_2025_115328
crossref_primary_10_1021_acs_analchem_2c05692
crossref_primary_10_1002_mco2_374
crossref_primary_10_1002_advs_202405834
crossref_primary_10_3389_fendo_2021_663039
crossref_primary_10_1021_acs_analchem_0c03276
crossref_primary_10_1038_s41419_024_07098_3
crossref_primary_10_3390_biom13060899
crossref_primary_10_1007_s11356_023_28365_4
crossref_primary_10_3389_fmed_2023_1303110
crossref_primary_10_1038_s44318_024_00190_6
crossref_primary_10_1007_s00018_021_03914_7
crossref_primary_10_3389_fphar_2022_833588
crossref_primary_10_1126_sciadv_abk3147
crossref_primary_10_1016_j_it_2019_09_005
crossref_primary_10_1038_s42004_024_01400_2
crossref_primary_10_1038_s41467_024_52110_1
crossref_primary_10_1016_j_bcp_2021_114585
crossref_primary_10_3389_fimmu_2021_751533
crossref_primary_10_1016_j_molimm_2022_05_011
crossref_primary_10_1007_s11033_021_06252_w
crossref_primary_10_1038_s41590_020_0693_6
crossref_primary_10_1016_j_isci_2020_101070
crossref_primary_10_3390_ijms22010426
crossref_primary_10_15252_embj_2019103397
crossref_primary_10_1016_j_tibs_2024_05_007
crossref_primary_10_3390_life12091324
crossref_primary_10_1016_j_phrs_2020_105131
crossref_primary_10_3389_fimmu_2022_841729
crossref_primary_10_1016_j_jmb_2021_167273
crossref_primary_10_1038_s41581_022_00662_0
crossref_primary_10_3389_fimmu_2022_987453
crossref_primary_10_32604_biocell_2025_059787
crossref_primary_10_3389_fmicb_2021_784009
crossref_primary_10_1084_jem_20190545
crossref_primary_10_1038_s41573_021_00154_z
crossref_primary_10_1038_s43586_021_00033_2
crossref_primary_10_3389_fimmu_2022_896473
crossref_primary_10_3389_fonc_2022_989167
crossref_primary_10_1084_jem_20201452
crossref_primary_10_15252_embj_2018100067
crossref_primary_10_1016_j_bbamem_2020_183447
crossref_primary_10_1038_s41418_019_0366_x
crossref_primary_10_1016_j_intimp_2023_110846
crossref_primary_10_1101_cshperspect_a036400
crossref_primary_10_1111_jgh_15561
Cites_doi 10.1021/acs.nanolett.5b02963
10.1189/jlb.0912437
10.1021/nl403232z
10.1063/1.1143970
10.1093/emboj/17.6.1598
10.1038/nature18629
10.1371/journal.pbio.1002049
10.1038/cddis.2014.488
10.1038/nature18590
10.1038/nrmicro2070
10.1038/nri.2016.58
10.1021/acs.nanolett.6b04219
10.1038/nrm2330
10.1021/la052687c
10.1038/nature15514
10.1016/j.cell.2014.04.007
10.1038/nchembio.2268
10.1038/nnano.2017.45
10.1038/cr.2015.139
10.1038/cdd.2014.110
10.1038/sj.emboj.7600350
10.1111/imr.12287
10.1038/nature22393
10.1098/rsob.140044
10.1038/ncomms9761
10.1016/S0966-842X(00)01936-3
10.1038/nature15541
10.1038/nnano.2016.303
10.1002/anie.201103991
10.1038/nmeth.2602
10.1074/jbc.270.16.9378
10.1038/nprot.2014.070
10.15252/embj.201694696
10.7554/eLife.04247
10.1016/j.mib.2013.04.004
10.1073/pnas.1607769113
10.1038/srep09623
10.18632/oncotarget.11421
10.1038/nature05185
10.1038/ni.1960
10.1016/j.cell.2005.02.033
10.1038/ncomms14128
10.1016/j.it.2017.01.003
10.15252/embj.201593384
ContentType Journal Article
Copyright The Author(s) 2018
2018 The Authors. Published under the terms of the CC BY 4.0 license
2018 The Authors. Published under the terms of the CC BY 4.0 license.
2018 EMBO
Copyright_xml – notice: The Author(s) 2018
– notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license
– notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license.
– notice: 2018 EMBO
DBID C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
DOI 10.15252/embj.201798321
DatabaseName Springer Nature OA Free Journals
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Virology and AIDS Abstracts


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Estefania Mulvihill et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC6043855
29898893
10_15252_embj_201798321
EMBJ201798321
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Union Marie Curie Actions Program
  grantid: FP7‐PEOPLE‐2012‐ITN
– fundername: Swiss National Science Foundation
  grantid: 205320_160199
  funderid: 10.13039/501100001711
– fundername: European Union Marie Curie Actions Program
  funderid: FP7‐PEOPLE‐2012‐ITN
– fundername: Swiss National Science Foundation
  funderid: 205320_160199
– fundername: Swiss National Science Foundation
  grantid: 205320_160199
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
ABJNI
AASML
AAYXX
ABZEH
CITATION
NAO
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c5791-353da2e20f8a48c61665d25791990d0312a9ea89d61628dc694058ec764dce563
IEDL.DBID C6C
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 18:27:22 EDT 2025
Mon Sep 08 16:09:40 EDT 2025
Fri Jul 25 10:44:31 EDT 2025
Mon Jul 21 05:53:22 EDT 2025
Tue Jul 01 02:06:03 EDT 2025
Thu Apr 24 23:01:32 EDT 2025
Wed Jan 22 16:31:33 EST 2025
Fri Feb 21 02:37:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords time‐lapse high‐resolution atomic force microscopy
transmission electron microscopy
cell death
gasdermin‐D pore assembly
inflammation
Language English
License Attribution-NonCommercial-NoDerivs
2018 The Authors. Published under the terms of the CC BY 4.0 license.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5791-353da2e20f8a48c61665d25791990d0312a9ea89d61628dc694058ec764dce563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6709-4684
0000-0002-7074-2371
0000-0003-3075-0665
OpenAccessLink https://doi.org/10.15252/embj.201798321
PMID 29898893
PQID 2068795686
PQPubID 35985
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6043855
proquest_miscellaneous_2055616214
proquest_journals_2068795686
pubmed_primary_29898893
crossref_primary_10_15252_embj_201798321
crossref_citationtrail_10_15252_embj_201798321
wiley_primary_10_15252_embj_201798321_EMBJ201798321
springer_journals_10_15252_embj_201798321
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 13 July 2018
PublicationDateYYYYMMDD 2018-07-13
PublicationDate_xml – month: 07
  year: 2018
  text: 13 July 2018
  day: 13
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2018
Publisher Nature Publishing Group UK
Springer Nature B.V
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: John Wiley and Sons Inc
References Di Paolo, De Camilli (CR10) 2006; 443
Aachoui, Sagulenko, Miao, Stacey (CR1) 2013; 16
Cookson, Brennan (CR8) 2001; 9
Bergsbaken, Fink, Cookson (CR6) 2009; 7
Aglietti, Dueber (CR3) 2017; 38
Salvador‐Gallego, Mund, Cosentino, Schneider, Unsay, Schraermeyer, Engelhardt, Ries, Garcia‐Saez (CR38) 2016; 35
Aziz, Jacob, Wang (CR5) 2014; 5
Czajkowsky, Hotze, Shao, Tweten (CR9) 2004; 23
Palmer, Harris, Freytag, Kehoe, Tranum‐Jensen, Bhakdi (CR29) 1998; 17
Rühl, Broz (CR37) 2016; 7
Wang, Gao, Shi, Ding, Liu, He, Wang, Shao (CR44) 2017; 547
Liu, Zhang, Ruan, Pan, Magupalli, Wu, Lieberman (CR21) 2016; 535
Sonnen, Plitzko, Gilbert (CR41) 2014; 4
Leung, Hodel, Brennan, Lukoyanova, Tran, House, Kondos, Whisstock, Dunstone, Trapani, Voskoboinik, Saibil, Hoogenboom (CR20) 2017; 12
Miao, Leaf, Treuting, Mao, Dors, Sarkar, Warren, Wewers, Aderem (CR27) 2010; 11
Lukoyanova, Kondos, Farabella, Law, Reboul, Caradoc‐Davies, Spicer, Kleifeld, Traore, Ekkel, Voskoboinik, Trapani, Hatfaludi, Oliver, Hotze, Tweten, Whisstock, Topf, Saibil, Dunstone (CR23) 2015; 13
Tilley, Orlova, Gilbert, Andrew, Saibil (CR42) 2005; 121
Leung, Dudkina, Lukoyanova, Hodel, Farabella, Pandurangan, Jahan, Pires Damaso, Osmanovic, Reboul, Dunstone, Andrew, Lonnen, Topf, Saibil, Hoogenboom (CR19) 2014; 3
Pfreundschuh, Martinez‐Martin, Mulvihill, Wegmann, Muller (CR32) 2014; 9
Jorgensen, Miao (CR16) 2015; 265
Podobnik, Marchioretto, Zanetti, Bavdek, Kisovec, Cajnko, Lunelli, Dalla Serra, Anderluh (CR33) 2015; 5
Sborgi, Ruhl, Mulvihill, Pipercevic, Heilig, Stahlberg, Farady, Muller, Broz, Hiller (CR39) 2016; 35
Mulvihill, van Pee, Mari, Muller, Yildiz (CR28) 2015; 15
Richter, Berat, Brisson (CR35) 2006; 22
Kayagaki, Stowe, Lee, O'Rourke, Anderson, Warming, Cuellar, Haley, Roose‐Girma, Phung, Liu, Lill, Li, Wu, Kummerfeld, Zhang, Lee, Snipas, Salvesen, Morris (CR17) 2015; 526
Ding, Wang, Liu, She, Sun, Shi, Sun, Wang, Shao (CR11) 2016; 535
Hutter, Bechhoefer (CR15) 1993; 64
van Meer, Voelker, Feigenson (CR25) 2008; 9
Liu, Sheng, Jung, Wang, Stec, O'Connor, Song, Bikkavilli, Winn, Lee, Baek, Ueda, Levitan, Kim, Cho (CR22) 2017; 13
van Pee, Mulvihill, Muller, Yildiz (CR30) 2016; 16
Aglietti, Estevez, Gupta, Ramirez, Liu, Kayagaki, Ciferri, Dixit, Dueber (CR2) 2016; 113
Dufrene, Martinez‐Martin, Medalsy, Alsteens, Muller (CR12) 2013; 10
Dufrene, Ando, Garcia, Alsteens, Martinez‐Martin, Engel, Gerber, Muller (CR13) 2017; 12
Lamkanfi, Dixit (CR18) 2014; 157
Ramage, Cheneval, Chvei, Graff, Hemmig, Heng, Kocher, Mackenzie, Memmert, Revesz, Wishart (CR34) 1995; 270
Metkar, Marchioretto, Antonini, Lunelli, Wang, Gilbert, Anderluh, Roth, Pooga, Pardo, Heuser, Serra, Froelich (CR26) 2015; 22
Medalsy, Hensen, Muller (CR24) 2011; 50
Aziz, Jacob, Yang, Matsuda, Wang (CR4) 2013; 93
He, Wan, Hu, Chen, Wang, Huang, Yang, Zhong, Han (CR14) 2015; 25
Rogers, Fernandes‐Alnemri, Mayes, Alnemri, Cingolani, Alnemri (CR36) 2017; 8
Broz, Dixit (CR7) 2016; 16
Pfreundschuh, Hensen, Muller (CR31) 2013; 13
Shi, Zhao, Wang, Shi, Wang, Huang, Zhuang, Cai, Wang, Shao (CR40) 2015; 526
Vigano, Diamond, Spreafico, Balachander, Sobota, Mortellaro (CR43) 2015; 6
2015; 13
2010; 11
2015; 15
2017; 8
2015; 6
2015; 5
2015; 265
2004; 23
1993; 64
2008; 9
2013; 93
2015; 526
2016; 16
1995; 270
2016; 35
2014; 157
2015; 25
1998; 17
2016; 7
2014; 5
2014; 4
2014; 3
2013; 16
2005; 121
2013; 10
2013; 13
2017; 38
2006; 22
2001; 9
2017; 13
2015; 22
2017; 12
2011; 50
2016; 113
2009; 7
2016; 535
2014; 9
2006; 443
2017; 547
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 157
  start-page: 1013
  year: 2014
  end-page: 1022
  ident: CR18
  article-title: Mechanisms and functions of inflammasomes
  publication-title: Cell
– volume: 9
  start-page: 1113
  year: 2014
  end-page: 1130
  ident: CR32
  article-title: Multiparametric high‐resolution imaging of native proteins by force‐distance curve‐based AFM
  publication-title: Nat Protoc
– volume: 7
  start-page: 57481
  year: 2016
  end-page: 57482
  ident: CR37
  article-title: The gasdermin‐D pore: executor of pyroptotic cell death
  publication-title: Oncotarget
– volume: 35
  start-page: 1766
  year: 2016
  end-page: 1778
  ident: CR39
  article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
  publication-title: EMBO J
– volume: 265
  start-page: 130
  year: 2015
  end-page: 142
  ident: CR16
  article-title: Pyroptotic cell death defends against intracellular pathogens
  publication-title: Immunol Rev
– volume: 13
  start-page: e1002049
  year: 2015
  ident: CR23
  article-title: Conformational changes during pore formation by the perforin‐related protein pleurotolysin
  publication-title: PLoS Biol
– volume: 25
  start-page: 1285
  year: 2015
  end-page: 1298
  ident: CR14
  article-title: Gasdermin D is an executor of pyroptosis and required for interleukin‐1beta secretion
  publication-title: Cell Res
– volume: 64
  start-page: 1868
  year: 1993
  end-page: 1873
  ident: CR15
  article-title: Calibration of atomic‐force microscope tips
  publication-title: Rev Sci Instrum
– volume: 15
  start-page: 6965
  year: 2015
  end-page: 6973
  ident: CR28
  article-title: Directly observing the lipid‐dependent self‐assembly and pore‐forming mechanism of the Cytolytic Toxin Listeriolysin O
  publication-title: Nano Lett
– volume: 5
  start-page: 9623
  year: 2015
  ident: CR33
  article-title: Plasticity of listeriolysin O pores and its regulation by pH and unique histidine [corrected]
  publication-title: Sci Rep
– volume: 35
  start-page: 389
  year: 2016
  end-page: 401
  ident: CR38
  article-title: Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores
  publication-title: EMBO J
– volume: 121
  start-page: 247
  year: 2005
  end-page: 256
  ident: CR42
  article-title: Structural basis of pore formation by the bacterial toxin pneumolysin
  publication-title: Cell
– volume: 526
  start-page: 666
  year: 2015
  end-page: 671
  ident: CR17
  article-title: Caspase‐11 cleaves gasdermin D for non‐canonical inflammasome signalling
  publication-title: Nature
– volume: 5
  start-page: e1526
  year: 2014
  ident: CR5
  article-title: Revisiting caspases in sepsis
  publication-title: Cell Death Dis
– volume: 6
  start-page: 8761
  year: 2015
  ident: CR43
  article-title: Human caspase‐4 and caspase‐5 regulate the one‐step non‐canonical inflammasome activation in monocytes
  publication-title: Nat Commun
– volume: 113
  start-page: 7858
  year: 2016
  end-page: 7863
  ident: CR2
  article-title: GsdmD p30 elicited by caspase‐11 during pyroptosis forms pores in membranes
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 847
  year: 2013
  end-page: 854
  ident: CR12
  article-title: Multiparametric imaging of biological systems by force‐distance curve‐based AFM
  publication-title: Nat Methods
– volume: 9
  start-page: 113
  year: 2001
  end-page: 114
  ident: CR8
  article-title: Pro‐inflammatory programmed cell death
  publication-title: Trends Microbiol
– volume: 12
  start-page: 295
  year: 2017
  end-page: 307
  ident: CR13
  article-title: Imaging modes of atomic force microscopy for application in molecular and cell biology
  publication-title: Nat Nanotechnol
– volume: 8
  start-page: 14128
  year: 2017
  ident: CR36
  article-title: Cleavage of DFNA5 by caspase‐3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death
  publication-title: Nat Commun
– volume: 11
  start-page: 1136
  year: 2010
  end-page: 1142
  ident: CR27
  article-title: Caspase‐1‐induced pyroptosis is an innate immune effector mechanism against intracellular bacteria
  publication-title: Nat Immunol
– volume: 443
  start-page: 651
  year: 2006
  end-page: 657
  ident: CR10
  article-title: Phosphoinositides in cell regulation and membrane dynamics
  publication-title: Nature
– volume: 535
  start-page: 111
  year: 2016
  end-page: 116
  ident: CR11
  article-title: Pore‐forming activity and structural autoinhibition of the gasdermin family
  publication-title: Nature
– volume: 13
  start-page: 5585
  year: 2013
  end-page: 5593
  ident: CR31
  article-title: Quantitative imaging of the electrostatic field and potential generated by a transmembrane protein pore at subnanometer resolution
  publication-title: Nano Lett
– volume: 547
  start-page: 99
  year: 2017
  end-page: 103
  ident: CR44
  article-title: Chemotherapy drugs induce pyroptosis through caspase‐3 cleavage of a gasdermin
  publication-title: Nature
– volume: 93
  start-page: 329
  year: 2013
  end-page: 342
  ident: CR4
  article-title: Current trends in inflammatory and immunomodulatory mediators in sepsis
  publication-title: J Leukoc Biol
– volume: 270
  start-page: 9378
  year: 1995
  end-page: 9383
  ident: CR34
  article-title: Expression, refolding, and autocatalytic proteolytic processing of the interleukin‐1 beta‐converting enzyme precursor
  publication-title: J Biol Chem
– volume: 22
  start-page: 3497
  year: 2006
  end-page: 3505
  ident: CR35
  article-title: Formation of solid‐supported lipid bilayers: an integrated view
  publication-title: Langmuir
– volume: 16
  start-page: 319
  year: 2013
  end-page: 326
  ident: CR1
  article-title: Inflammasome‐mediated pyroptotic and apoptotic cell death, and defense against infection
  publication-title: Curr Opin Microbiol
– volume: 16
  start-page: 7915
  year: 2016
  end-page: 7924
  ident: CR30
  article-title: Unraveling the Pore‐Forming Steps of Pneumolysin from Streptococcus pneumoniae
  publication-title: Nano Lett
– volume: 526
  start-page: 660
  year: 2015
  end-page: 665
  ident: CR40
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
– volume: 22
  start-page: 74
  year: 2015
  end-page: 85
  ident: CR26
  article-title: Perforin oligomers form arcs in cellular membranes: a locus for intracellular delivery of granzymes
  publication-title: Cell Death Differ
– volume: 3
  start-page: e04247
  year: 2014
  ident: CR19
  article-title: Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol‐dependent cytolysin
  publication-title: Elife
– volume: 50
  start-page: 12103
  year: 2011
  end-page: 12108
  ident: CR24
  article-title: Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force‐volume AFM
  publication-title: Angew Chem Int Ed Engl
– volume: 16
  start-page: 407
  year: 2016
  end-page: 420
  ident: CR7
  article-title: Inflammasomes: mechanism of assembly, regulation and signalling
  publication-title: Nat Rev Immunol
– volume: 12
  start-page: 467
  year: 2017
  end-page: 473
  ident: CR20
  article-title: Real‐time visualization of perforin nanopore assembly
  publication-title: Nat Nanotechnol
– volume: 17
  start-page: 1598
  year: 1998
  end-page: 1605
  ident: CR29
  article-title: Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization
  publication-title: EMBO J
– volume: 535
  start-page: 153
  year: 2016
  end-page: 158
  ident: CR21
  article-title: Inflammasome‐activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
– volume: 9
  start-page: 112
  year: 2008
  end-page: 124
  ident: CR25
  article-title: Membrane lipids: where they are and how they behave
  publication-title: Nat Rev Mol Cell Biol
– volume: 23
  start-page: 3206
  year: 2004
  end-page: 3215
  ident: CR9
  article-title: Vertical collapse of a cytolysin prepore moves its transmembrane beta‐hairpins to the membrane
  publication-title: EMBO J
– volume: 7
  start-page: 99
  year: 2009
  end-page: 109
  ident: CR6
  article-title: Pyroptosis: host cell death and inflammation
  publication-title: Nat Rev Microbiol
– volume: 38
  start-page: 261
  year: 2017
  end-page: 271
  ident: CR3
  article-title: Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions
  publication-title: Trends Immunol
– volume: 13
  start-page: 268
  year: 2017
  end-page: 274
  ident: CR22
  article-title: Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol
  publication-title: Nat Chem Biol
– volume: 4
  start-page: 140044
  year: 2014
  ident: CR41
  article-title: Incomplete pneumolysin oligomers form membrane pores
  publication-title: Open Biol
– volume: 9
  start-page: 1113
  year: 2014
  end-page: 1130
  article-title: Multiparametric high‐resolution imaging of native proteins by force‐distance curve‐based AFM
  publication-title: Nat Protoc
– volume: 13
  start-page: e1002049
  year: 2015
  article-title: Conformational changes during pore formation by the perforin‐related protein pleurotolysin
  publication-title: PLoS Biol
– volume: 7
  start-page: 99
  year: 2009
  end-page: 109
  article-title: Pyroptosis: host cell death and inflammation
  publication-title: Nat Rev Microbiol
– volume: 3
  start-page: e04247
  year: 2014
  article-title: Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol‐dependent cytolysin
  publication-title: Elife
– volume: 38
  start-page: 261
  year: 2017
  end-page: 271
  article-title: Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions
  publication-title: Trends Immunol
– volume: 22
  start-page: 74
  year: 2015
  end-page: 85
  article-title: Perforin oligomers form arcs in cellular membranes: a locus for intracellular delivery of granzymes
  publication-title: Cell Death Differ
– volume: 5
  start-page: 9623
  year: 2015
  article-title: Plasticity of listeriolysin O pores and its regulation by pH and unique histidine [corrected]
  publication-title: Sci Rep
– volume: 15
  start-page: 6965
  year: 2015
  end-page: 6973
  article-title: Directly observing the lipid‐dependent self‐assembly and pore‐forming mechanism of the Cytolytic Toxin Listeriolysin O
  publication-title: Nano Lett
– volume: 13
  start-page: 5585
  year: 2013
  end-page: 5593
  article-title: Quantitative imaging of the electrostatic field and potential generated by a transmembrane protein pore at subnanometer resolution
  publication-title: Nano Lett
– volume: 10
  start-page: 847
  year: 2013
  end-page: 854
  article-title: Multiparametric imaging of biological systems by force‐distance curve‐based AFM
  publication-title: Nat Methods
– volume: 121
  start-page: 247
  year: 2005
  end-page: 256
  article-title: Structural basis of pore formation by the bacterial toxin pneumolysin
  publication-title: Cell
– volume: 5
  start-page: e1526
  year: 2014
  article-title: Revisiting caspases in sepsis
  publication-title: Cell Death Dis
– volume: 265
  start-page: 130
  year: 2015
  end-page: 142
  article-title: Pyroptotic cell death defends against intracellular pathogens
  publication-title: Immunol Rev
– volume: 16
  start-page: 7915
  year: 2016
  end-page: 7924
  article-title: Unraveling the Pore‐Forming Steps of Pneumolysin from Streptococcus pneumoniae
  publication-title: Nano Lett
– volume: 16
  start-page: 407
  year: 2016
  end-page: 420
  article-title: Inflammasomes: mechanism of assembly, regulation and signalling
  publication-title: Nat Rev Immunol
– volume: 9
  start-page: 113
  year: 2001
  end-page: 114
  article-title: Pro‐inflammatory programmed cell death
  publication-title: Trends Microbiol
– volume: 157
  start-page: 1013
  year: 2014
  end-page: 1022
  article-title: Mechanisms and functions of inflammasomes
  publication-title: Cell
– volume: 11
  start-page: 1136
  year: 2010
  end-page: 1142
  article-title: Caspase‐1‐induced pyroptosis is an innate immune effector mechanism against intracellular bacteria
  publication-title: Nat Immunol
– volume: 547
  start-page: 99
  year: 2017
  end-page: 103
  article-title: Chemotherapy drugs induce pyroptosis through caspase‐3 cleavage of a gasdermin
  publication-title: Nature
– volume: 35
  start-page: 1766
  year: 2016
  end-page: 1778
  article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
  publication-title: EMBO J
– volume: 12
  start-page: 467
  year: 2017
  end-page: 473
  article-title: Real‐time visualization of perforin nanopore assembly
  publication-title: Nat Nanotechnol
– volume: 113
  start-page: 7858
  year: 2016
  end-page: 7863
  article-title: GsdmD p30 elicited by caspase‐11 during pyroptosis forms pores in membranes
  publication-title: Proc Natl Acad Sci USA
– volume: 93
  start-page: 329
  year: 2013
  end-page: 342
  article-title: Current trends in inflammatory and immunomodulatory mediators in sepsis
  publication-title: J Leukoc Biol
– volume: 64
  start-page: 1868
  year: 1993
  end-page: 1873
  article-title: Calibration of atomic‐force microscope tips
  publication-title: Rev Sci Instrum
– volume: 35
  start-page: 389
  year: 2016
  end-page: 401
  article-title: Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores
  publication-title: EMBO J
– volume: 23
  start-page: 3206
  year: 2004
  end-page: 3215
  article-title: Vertical collapse of a cytolysin prepore moves its transmembrane beta‐hairpins to the membrane
  publication-title: EMBO J
– volume: 526
  start-page: 666
  year: 2015
  end-page: 671
  article-title: Caspase‐11 cleaves gasdermin D for non‐canonical inflammasome signalling
  publication-title: Nature
– volume: 6
  start-page: 8761
  year: 2015
  article-title: Human caspase‐4 and caspase‐5 regulate the one‐step non‐canonical inflammasome activation in monocytes
  publication-title: Nat Commun
– volume: 16
  start-page: 319
  year: 2013
  end-page: 326
  article-title: Inflammasome‐mediated pyroptotic and apoptotic cell death, and defense against infection
  publication-title: Curr Opin Microbiol
– volume: 7
  start-page: 57481
  year: 2016
  end-page: 57482
  article-title: The gasdermin‐D pore: executor of pyroptotic cell death
  publication-title: Oncotarget
– volume: 443
  start-page: 651
  year: 2006
  end-page: 657
  article-title: Phosphoinositides in cell regulation and membrane dynamics
  publication-title: Nature
– volume: 12
  start-page: 295
  year: 2017
  end-page: 307
  article-title: Imaging modes of atomic force microscopy for application in molecular and cell biology
  publication-title: Nat Nanotechnol
– volume: 535
  start-page: 153
  year: 2016
  end-page: 158
  article-title: Inflammasome‐activated gasdermin D causes pyroptosis by forming membrane pores
  publication-title: Nature
– volume: 13
  start-page: 268
  year: 2017
  end-page: 274
  article-title: Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol
  publication-title: Nat Chem Biol
– volume: 4
  start-page: 140044
  year: 2014
  article-title: Incomplete pneumolysin oligomers form membrane pores
  publication-title: Open Biol
– volume: 50
  start-page: 12103
  year: 2011
  end-page: 12108
  article-title: Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force‐volume AFM
  publication-title: Angew Chem Int Ed Engl
– volume: 22
  start-page: 3497
  year: 2006
  end-page: 3505
  article-title: Formation of solid‐supported lipid bilayers: an integrated view
  publication-title: Langmuir
– volume: 25
  start-page: 1285
  year: 2015
  end-page: 1298
  article-title: Gasdermin D is an executor of pyroptosis and required for interleukin‐1beta secretion
  publication-title: Cell Res
– volume: 9
  start-page: 112
  year: 2008
  end-page: 124
  article-title: Membrane lipids: where they are and how they behave
  publication-title: Nat Rev Mol Cell Biol
– volume: 270
  start-page: 9378
  year: 1995
  end-page: 9383
  article-title: Expression, refolding, and autocatalytic proteolytic processing of the interleukin‐1 beta‐converting enzyme precursor
  publication-title: J Biol Chem
– volume: 8
  start-page: 14128
  year: 2017
  article-title: Cleavage of DFNA5 by caspase‐3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death
  publication-title: Nat Commun
– volume: 526
  start-page: 660
  year: 2015
  end-page: 665
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
– volume: 535
  start-page: 111
  year: 2016
  end-page: 116
  article-title: Pore‐forming activity and structural autoinhibition of the gasdermin family
  publication-title: Nature
– volume: 17
  start-page: 1598
  year: 1998
  end-page: 1605
  article-title: Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization
  publication-title: EMBO J
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.nanolett.5b02963
– ident: e_1_2_8_5_1
  doi: 10.1189/jlb.0912437
– ident: e_1_2_8_32_1
  doi: 10.1021/nl403232z
– ident: e_1_2_8_16_1
  doi: 10.1063/1.1143970
– ident: e_1_2_8_30_1
  doi: 10.1093/emboj/17.6.1598
– ident: e_1_2_8_22_1
  doi: 10.1038/nature18629
– ident: e_1_2_8_24_1
  doi: 10.1371/journal.pbio.1002049
– ident: e_1_2_8_6_1
  doi: 10.1038/cddis.2014.488
– ident: e_1_2_8_12_1
  doi: 10.1038/nature18590
– ident: e_1_2_8_7_1
  doi: 10.1038/nrmicro2070
– ident: e_1_2_8_8_1
  doi: 10.1038/nri.2016.58
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.nanolett.6b04219
– ident: e_1_2_8_26_1
  doi: 10.1038/nrm2330
– ident: e_1_2_8_36_1
  doi: 10.1021/la052687c
– ident: e_1_2_8_41_1
  doi: 10.1038/nature15514
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cell.2014.04.007
– ident: e_1_2_8_23_1
  doi: 10.1038/nchembio.2268
– ident: e_1_2_8_14_1
  doi: 10.1038/nnano.2017.45
– ident: e_1_2_8_15_1
  doi: 10.1038/cr.2015.139
– ident: e_1_2_8_27_1
  doi: 10.1038/cdd.2014.110
– ident: e_1_2_8_10_1
  doi: 10.1038/sj.emboj.7600350
– ident: e_1_2_8_17_1
  doi: 10.1111/imr.12287
– ident: e_1_2_8_45_1
  doi: 10.1038/nature22393
– ident: e_1_2_8_42_1
  doi: 10.1098/rsob.140044
– ident: e_1_2_8_44_1
  doi: 10.1038/ncomms9761
– ident: e_1_2_8_9_1
  doi: 10.1016/S0966-842X(00)01936-3
– ident: e_1_2_8_18_1
  doi: 10.1038/nature15541
– ident: e_1_2_8_21_1
  doi: 10.1038/nnano.2016.303
– ident: e_1_2_8_25_1
  doi: 10.1002/anie.201103991
– ident: e_1_2_8_13_1
  doi: 10.1038/nmeth.2602
– ident: e_1_2_8_35_1
  doi: 10.1074/jbc.270.16.9378
– ident: e_1_2_8_33_1
  doi: 10.1038/nprot.2014.070
– ident: e_1_2_8_40_1
  doi: 10.15252/embj.201694696
– ident: e_1_2_8_20_1
  doi: 10.7554/eLife.04247
– ident: e_1_2_8_2_1
  doi: 10.1016/j.mib.2013.04.004
– ident: e_1_2_8_3_1
  doi: 10.1073/pnas.1607769113
– ident: e_1_2_8_34_1
  doi: 10.1038/srep09623
– ident: e_1_2_8_38_1
  doi: 10.18632/oncotarget.11421
– ident: e_1_2_8_11_1
  doi: 10.1038/nature05185
– ident: e_1_2_8_28_1
  doi: 10.1038/ni.1960
– ident: e_1_2_8_43_1
  doi: 10.1016/j.cell.2005.02.033
– ident: e_1_2_8_37_1
  doi: 10.1038/ncomms14128
– ident: e_1_2_8_4_1
  doi: 10.1016/j.it.2017.01.003
– ident: e_1_2_8_39_1
  doi: 10.15252/embj.201593384
SSID ssj0005871
Score 2.6323624
Snippet Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts...
Gasdermin-D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts...
Gasdermin‐D ( GSDMD ), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Assembling
Assembly
Atomic force microscopy
Caspase
Caspases - metabolism
Cell death
Cell Membrane - metabolism
Cholesterol
EMBO07
EMBO19
gasdermin‐D pore assembly
Humans
Inflammation
Insertion
Inserts
Lipid membranes
Liposomes - metabolism
Membranes
Metals
Microscopy, Atomic Force
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Oligomerization
Oligomers
Pore formation
Pores
Porosity
Protein Multimerization
Protein Transport
Proteins
Pyroptosis
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Time-Lapse Imaging
time‐lapse high‐resolution atomic force microscopy
transmission electron microscopy
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTt0wEB0BVQUbRGkL4SUjddEu0t44tuOoq_ISQgKxKFJ3keM4cBH3XsSFBTs-gW_kS5hxEqMIoUrsEo3z8NgTn9jjcwC-qcwRibmJZSVcLBCCx6XEwBO5qDObWOJboWyLE3V4Jo7-yS6bkPbCNPwQYcKNIsN_rynATTntFHuINdSNykvKzcpyUtuZhQ8I7VPq5FycvmR5aP_P5adZRKLzlt2HbvGrf4P-wPQKbb5Omgwrp31c6wemgyVYbBEl-9N0gU8w48bL8LHRmLxfhvndTtLtM_w-drTRdzgdsUnNRvhmOFI5hhDcsbCLkZX3zCv3sXMzrXyuzNPD494XODvY_7t7GLfqCbGVWZ7EqUwrwx0f1NoIbVWilKw4mXAAqjCWucmd0XmFFq4rq3LEbtrZTAmso1TpV5gbT8ZuFZixmjsK_yxFAOJsyTWttg1qO8hqU-UR_OxcV9iWWpwULq4K-sUgXxfk6yL4OoLv4YLrhlXj7aIbXVsUbXhN0apIJF1pFcF2MKMzabUDHTe5ozKk_Kl4IiJYaZouPIto5zUitQiyXqOGAkS63beMhxeefFvR0qmUEfzomv_ltd6sQur7x_-qWuwf7xyFs7V3XbUOC3isafY5STdg7vbmzm0ibLott3xgPAPKbwve
  priority: 102
  providerName: Wiley-Blackwell
Title Mechanism of membrane pore formation by human gasdermin‐D
URI https://link.springer.com/article/10.15252/embj.201798321
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201798321
https://www.ncbi.nlm.nih.gov/pubmed/29898893
https://www.proquest.com/docview/2068795686
https://www.proquest.com/docview/2055616214
https://pubmed.ncbi.nlm.nih.gov/PMC6043855
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHoRXV_1RQQPeqhu0yRN8aRVEWHFgwt7K22a-sDdFVcP3vwJ_kZ_iTPdtrqoiLeWSR-ZyTRfM5NvALZVYInEPHFlJqwrEIK7qUTHE6HIA-MZ4luhbIsLddYW5x3ZKUmSaC_M1_i95JLv2256RxlYQUg1dcZhUuJXl4ZypKLPXA5d_FkViynC02HJ4fPDDUann2-Y8ntqZB0fHUWvxfRzOgezJW5kh0NDz8OY7TVgalhJ8qUB01FVuG0BDlqWtvPeDrqsn7MuvhnOR5Yh0Las3qvI0hdW1Odj18kgKzJi3l_fjhehfXpyFZ25ZY0E18gg9Fxf-lnCLW_mOhHaKE8pmXES4TSTocfyJLSJDjOUcJ0ZFSJC09YESmAfpfKXYKLX79kVYInR3JKTBz7CDGtSrimm1sxNM8iTLHRgr1JdbEoCcapjcR_TjwTpOiZdx7WuHdipL3gYcmf83nS9skVcOtEApYpKoSutHNiqxahMimmg4vrP1IbqeyruCQeWh6arn0Xk8hrxmAPBiFHrBkStPSrp3d4UFNuKAqRSOrBbmf_ztX7tgl-Mj7-6Gp-0js7rs9V_PGENZvBY08qy56_DxNPjs91ASPSUbsI4F5ebhVN8AHTKAS4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4CMEF8aY8g8QBDoU1TdJUnGCAxmOcQOJWtWkKQ2xDjB124yfwG_kl2F1XmAAhjq3TNrFr5UvsfAbYVoElEvPYlamwrkAI7iYSHU-EIguMZ4hvhbItrlTtRpzfytuCJInOwnyN30su-b5tJg-UgRWEVFNnFMYpbEkk-VVV_czl0PnKKt9MEZ4OCw6fH14wPP18w5TfUyPL-Ogwes2nn9MZmC5wIzvsG3oWRmxrDib6lSR7czBZHRRum4eDuqXjvI1Ok7Uz1sSe4XxkGQJty8qziizpsbw-H7uLO2meEfP--na8ADenJ9fVmlvUSHCNDELP9aWfxtzySqZjoY3ylJIpJxFOMyl6LI9DG-swRQnXqVEhIjRtTaAEjlEqfxHGWu2WXQYWG80tOXngI8ywJuGaYmqVzFSCLE5DB_YGqotMQSBOdSweI1pIkK4j0nVU6tqBnfKBpz53xu9N1wa2iAon6qBUUSl0pZUDW6UYlUkxDVRcu0ttqL6n4p5wYKlvuvJbRC6vEY85EAwZtWxA1NrDklbjPqfYVhQgldKB3YH5P7v16xD8_P_4a6jRSf3ovLxa-ccXNmGydl2_jC7Pri5WYQrva9pl9vw1GHt57tp1hEcvyUbuGh-mqANG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61i_q4VAX6SEvBSD3QQ8rGsR1bPW2BFd0CqtQicYsS2wGqbnbVXQ7c-An8xv6SzuSFVhRVHJNxHh5n5M-Z8fcBvFeJJxLzLJRO-FAgBA9ziYEnjCgSG1niW6FqiyO1fyxGJ_Kkqc2ZtdXubUqy3tNALE3lfHvqilavh2_7cf6T6rISQ0o7D2FJS2Nw7bU0GIy-j25qPHS14qp-sohIm4bb5x-3WJyWbmHN2yWTXd50EdVW09LwOTxr8CQb1B_AMjzw5Qo8qhUmL1fgyU4r6LYKnw49bfM9n43ZpGBjfDOcpzxDAO5Zt4eR5Zes0u1jp9nMVZUyf66ud1_A8XDvx85-2GgnhFYmJgpjGbuMe94vdCa0VZFS0nEy4fTjMJJ5ZnymjUML184qg8hNe5sogX2UKn4JvXJS-tfAMqu5p-BPYoQf3uZcU66tX9h-UmTOBPCxdV1qG2Jx0rf4ldICg3ydkq_TztcBbHUXTGtOjbubrrVjkTbBNUOrIol0pVUAm50ZnUm5DnTc5ILakO6n4pEI4FU9dN2ziHReI04LIFkY1K4BUW4vWsrzs4p6W1HiVMoAPrTDf_Nad3Yhrr6P_3U13Tv8POqO3tzjCRvw-NvuMD34cvT1LTzF05p-PkfxGvTmvy_8O0RN83y9iY2_ZIINBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+membrane+pore+formation+by+human+gasdermin%E2%80%90D&rft.jtitle=The+EMBO+journal&rft.au=Mulvihill%2C+Estefania&rft.au=Sborgi%2C+Lorenzo&rft.au=Mari%2C+Stefania+A&rft.au=Pfreundschuh%2C+Moritz&rft.date=2018-07-13&rft.pub=Nature+Publishing+Group+UK&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=37&rft.issue=14&rft_id=info:doi/10.15252%2Fembj.201798321&rft.externalDocID=10_15252_embj_201798321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon