Mechanism of membrane pore formation by human gasdermin‐D
Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMD Nterm ) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the...
Saved in:
Published in | The EMBO journal Vol. 37; no. 14 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.07.2018
Springer Nature B.V John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0261-4189 1460-2075 1460-2075 |
DOI | 10.15252/embj.201798321 |
Cover
Abstract | Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMD
Nterm
) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMD
Nterm
insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMD
Nterm
inserts and assembles in membranes. We observe GSDMD
Nterm
inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMD
Nterm
assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM, we monitor how GSDMD
Nterm
assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMD
Nterm
transmembrane pore assembly, which is likely shared within the gasdermin protein family.
Synopsis
Gasdermin‐D, which mediates pyroptosis in human and murine cells, is directly observed inserting into lipid membranes and assembling arc‐, slit‐ and ring‐shaped oligomers. The observations translate into a mechanistic model of gasdermin‐D assembling transmembrane lytic pores.
High‐resolution time‐lapse imaging of gasdermin‐D pore formation.
Gasdermin‐D assembles arc‐, slit‐ and ring‐shaped oligomers.
Arc‐ and slit‐shaped pores transform into stable ring‐shaped pores.
Phosphatidylinositide (PI(4,5)P2) increases gasdermin‐D pore formation.
Cholesterol reduces gasdermin‐D pore formation.
Graphical Abstract
High‐resolution atomic force microscopy shows how a pyroptosis‐mediating gasdermin protein inserts into lipid membranes and assembles arc‐, slit‐ and ring‐shaped oligomers. |
---|---|
AbstractList | Gasdermin‐D (
GSDMD
), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases,
GSDMD
inserts its N‐terminal domain (GSDMD
Nterm
) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMD
Nterm
insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (
AFM
) to describe how GSDMD
Nterm
inserts and assembles in membranes. We observe GSDMD
Nterm
inserting into a variety of lipid compositions, among which phosphatidylinositide (
PI
(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMD
Nterm
assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether
GSDMD
has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse
AFM
, we monitor how GSDMD
Nterm
assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMD
Nterm
transmembrane pore assembly, which is likely shared within the gasdermin protein family. Gasdermin-D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N-terminal domain (GSDMD ) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMD insertion, oligomerization, and pore formation are poorly understood. Here, we apply high-resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMD inserts and assembles in membranes. We observe GSDMD inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMD assembles arc-, slit-, and ring-shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase-1, caspase-4, or caspase-5. Using time-lapse AFM, we monitor how GSDMD assembles into arc-shaped oligomers that can transform into larger slit-shaped and finally into stable ring-shaped oligomers. Our observations translate into a mechanistic model of GSDMD transmembrane pore assembly, which is likely shared within the gasdermin protein family. Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMDNterm) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMDNterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMDNterm inserts and assembles in membranes. We observe GSDMDNterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMDNterm assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM, we monitor how GSDMDNterm assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMDNterm transmembrane pore assembly, which is likely shared within the gasdermin protein family. Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMD Nterm ) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMD Nterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMD Nterm inserts and assembles in membranes. We observe GSDMD Nterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMD Nterm assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM, we monitor how GSDMD Nterm assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMD Nterm transmembrane pore assembly, which is likely shared within the gasdermin protein family. Synopsis Gasdermin‐D, which mediates pyroptosis in human and murine cells, is directly observed inserting into lipid membranes and assembling arc‐, slit‐ and ring‐shaped oligomers. The observations translate into a mechanistic model of gasdermin‐D assembling transmembrane lytic pores. High‐resolution time‐lapse imaging of gasdermin‐D pore formation. Gasdermin‐D assembles arc‐, slit‐ and ring‐shaped oligomers. Arc‐ and slit‐shaped pores transform into stable ring‐shaped pores. Phosphatidylinositide (PI(4,5)P2) increases gasdermin‐D pore formation. Cholesterol reduces gasdermin‐D pore formation. Graphical Abstract High‐resolution atomic force microscopy shows how a pyroptosis‐mediating gasdermin protein inserts into lipid membranes and assembles arc‐, slit‐ and ring‐shaped oligomers. Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N‐terminal domain (GSDMDNterm) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMDNterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high‐resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMDNterm inserts and assembles in membranes. We observe GSDMDNterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMDNterm assembles arc‐, slit‐, and ring‐shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase‐1, caspase‐4, or caspase‐5. Using time‐lapse AFM, we monitor how GSDMDNterm assembles into arc‐shaped oligomers that can transform into larger slit‐shaped and finally into stable ring‐shaped oligomers. Our observations translate into a mechanistic model of GSDMDNterm transmembrane pore assembly, which is likely shared within the gasdermin protein family. Synopsis Gasdermin‐D, which mediates pyroptosis in human and murine cells, is directly observed inserting into lipid membranes and assembling arc‐, slit‐ and ring‐shaped oligomers. The observations translate into a mechanistic model of gasdermin‐D assembling transmembrane lytic pores. High‐resolution time‐lapse imaging of gasdermin‐D pore formation. Gasdermin‐D assembles arc‐, slit‐ and ring‐shaped oligomers. Arc‐ and slit‐shaped pores transform into stable ring‐shaped pores. Phosphatidylinositide (PI(4,5)P2) increases gasdermin‐D pore formation. Cholesterol reduces gasdermin‐D pore formation. High‐resolution atomic force microscopy shows how a pyroptosis‐mediating gasdermin protein inserts into lipid membranes and assembles arc‐, slit‐ and ring‐shaped oligomers. Gasdermin-D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N-terminal domain (GSDMDNterm) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMDNterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high-resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMDNterm inserts and assembles in membranes. We observe GSDMDNterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMDNterm assembles arc-, slit-, and ring-shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase-1, caspase-4, or caspase-5. Using time-lapse AFM, we monitor how GSDMDNterm assembles into arc-shaped oligomers that can transform into larger slit-shaped and finally into stable ring-shaped oligomers. Our observations translate into a mechanistic model of GSDMDNterm transmembrane pore assembly, which is likely shared within the gasdermin protein family.Gasdermin-D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts its N-terminal domain (GSDMDNterm) into cellular membranes and assembles large oligomeric complexes permeabilizing the membrane. So far, the mechanisms of GSDMDNterm insertion, oligomerization, and pore formation are poorly understood. Here, we apply high-resolution (≤ 2 nm) atomic force microscopy (AFM) to describe how GSDMDNterm inserts and assembles in membranes. We observe GSDMDNterm inserting into a variety of lipid compositions, among which phosphatidylinositide (PI(4,5)P2) increases and cholesterol reduces insertion. Once inserted, GSDMDNterm assembles arc-, slit-, and ring-shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore formation process is independent on whether GSDMD has been cleaved by caspase-1, caspase-4, or caspase-5. Using time-lapse AFM, we monitor how GSDMDNterm assembles into arc-shaped oligomers that can transform into larger slit-shaped and finally into stable ring-shaped oligomers. Our observations translate into a mechanistic model of GSDMDNterm transmembrane pore assembly, which is likely shared within the gasdermin protein family. |
Author | Mulvihill, Estefania Pfreundschuh, Moritz Hiller, Sebastian Mari, Stefania A Sborgi, Lorenzo Müller, Daniel J |
AuthorAffiliation | 1 Department of Biosystems Science and Engineering Eidgenössische Technische Hochschule (ETH) Zurich Basel Switzerland 2 Biozentrum University of Basel Basel Switzerland |
AuthorAffiliation_xml | – name: 1 Department of Biosystems Science and Engineering Eidgenössische Technische Hochschule (ETH) Zurich Basel Switzerland – name: 2 Biozentrum University of Basel Basel Switzerland |
Author_xml | – sequence: 1 givenname: Estefania orcidid: 0000-0002-7074-2371 surname: Mulvihill fullname: Mulvihill, Estefania organization: Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich – sequence: 2 givenname: Lorenzo surname: Sborgi fullname: Sborgi, Lorenzo organization: Biozentrum, University of Basel – sequence: 3 givenname: Stefania A surname: Mari fullname: Mari, Stefania A organization: Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich – sequence: 4 givenname: Moritz surname: Pfreundschuh fullname: Pfreundschuh, Moritz organization: Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich – sequence: 5 givenname: Sebastian orcidid: 0000-0002-6709-4684 surname: Hiller fullname: Hiller, Sebastian organization: Biozentrum, University of Basel – sequence: 6 givenname: Daniel J orcidid: 0000-0003-3075-0665 surname: Müller fullname: Müller, Daniel J email: daniel.mueller@bsse.ethz.ch organization: Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29898893$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1vEzEUtFArmpaee6tW4tLLtrZ37bVBQir9AtSKC5wtx_s2cbS2g50F5cZP6G_kl-A0bWgrASdLfjPzZt7soi0fPCB0QPAxYZTRE3Dj2THFpJGiouQFGpGa45Lihm2hEaaclDURcgftpjTDGDPRkJdoh0ohhZDVCL29ATPV3iZXhK5wWS5qD8U8RCi6EJ1e2OCL8bKYDk77YqJTC9FZ_-vn7fkrtN3pPsH-_buHvl5efDn7UF5_vvp4dnpdGtZIUlasajUFijuha2E44Zy1dDWSEre4IlRL0EK2eUJFa7iss08wDa9bA4xXe-jdWnc-jB3kP7-IulfzaJ2OSxW0VU8n3k7VJHxXHNeVYCwLHN0LxPBtgLRQziYDfZ-jhiEpihlbLSd1hr5-Bp2FIfocL6O4aCTjYuXo8LGjjZWHu2bAyRpgYkgpQreBEKzumlOr5tSmucxgzxjGLu6unyPZ_h-8N2veD9vD8n9r1MXN-0-PyXhNTpnnJxD_pP3bvt8UT71U |
CitedBy_id | crossref_primary_10_1098_rsob_220366 crossref_primary_10_1038_s41556_024_01474_z crossref_primary_10_1016_j_dci_2024_105139 crossref_primary_10_1016_j_chemphyslip_2020_105026 crossref_primary_10_1042_BST20210706 crossref_primary_10_1007_s10753_018_0912_6 crossref_primary_10_1016_j_smim_2023_101803 crossref_primary_10_1016_j_taap_2023_116387 crossref_primary_10_1016_j_immuni_2019_05_020 crossref_primary_10_1002_JLB_MR0318_124R crossref_primary_10_1038_s41392_024_01801_8 crossref_primary_10_1038_s41467_024_47067_0 crossref_primary_10_4049_jimmunol_2000373 crossref_primary_10_4236_health_2021_135043 crossref_primary_10_1042_BST20210672 crossref_primary_10_3389_fimmu_2020_601405 crossref_primary_10_1146_annurev_immunol_073119_095439 crossref_primary_10_1016_j_apsb_2024_11_011 crossref_primary_10_1016_j_molcel_2023_02_021 crossref_primary_10_5604_01_3001_0014_8985 crossref_primary_10_1016_j_sbi_2021_03_012 crossref_primary_10_1007_s43188_023_00201_4 crossref_primary_10_1016_j_jmb_2021_167297 crossref_primary_10_1016_j_envres_2024_118865 crossref_primary_10_1042_BST20230549 crossref_primary_10_1515_hsz_2022_0321 crossref_primary_10_1007_s10753_021_01439_6 crossref_primary_10_1038_s41467_022_30232_8 crossref_primary_10_3389_fimmu_2020_01840 crossref_primary_10_3390_ijms232416115 crossref_primary_10_7554_eLife_75490 crossref_primary_10_1016_j_intimp_2020_106998 crossref_primary_10_3390_ijms24119455 crossref_primary_10_1073_pnas_2004876117 crossref_primary_10_1016_j_cbi_2020_109052 crossref_primary_10_1186_s12915_020_00936_8 crossref_primary_10_1016_j_cell_2020_02_002 crossref_primary_10_1038_s41467_019_13385_x crossref_primary_10_1134_S1990747825700011 crossref_primary_10_15252_emmm_202115415 crossref_primary_10_1186_s12964_024_01681_z crossref_primary_10_1073_pnas_1818598116 crossref_primary_10_1007_s12264_018_0294_7 crossref_primary_10_4049_jimmunol_2101004 crossref_primary_10_1126_sciimmunol_adg3196 crossref_primary_10_1002_JLB_3MR0420_305R crossref_primary_10_1360_nso_20220018 crossref_primary_10_1016_j_tcb_2023_02_007 crossref_primary_10_3390_ijms22041699 crossref_primary_10_1016_j_ceb_2018_10_006 crossref_primary_10_1177_09287329241296358 crossref_primary_10_3390_cimb46010043 crossref_primary_10_1016_j_preteyeres_2024_101263 crossref_primary_10_1007_s00018_021_04078_0 crossref_primary_10_1186_s13008_024_00114_0 crossref_primary_10_1016_j_cmet_2020_05_003 crossref_primary_10_1128_mbio_03600_21 crossref_primary_10_1016_j_expneurol_2020_113525 crossref_primary_10_1038_s41586_021_03478_3 crossref_primary_10_1073_pnas_1904304116 crossref_primary_10_3389_fimmu_2023_1254150 crossref_primary_10_1016_j_str_2023_08_012 crossref_primary_10_1016_j_cell_2020_04_028 crossref_primary_10_1021_acs_langmuir_0c00833 crossref_primary_10_7554_eLife_81432 crossref_primary_10_3390_ijms221910212 crossref_primary_10_1074_jbc_REV119_008907 crossref_primary_10_15252_embj_2020105753 crossref_primary_10_1002_eji_202048937 crossref_primary_10_1038_s41577_024_00995_w crossref_primary_10_1038_s41598_022_04853_4 crossref_primary_10_1038_s41573_023_00822_2 crossref_primary_10_1016_j_ymthe_2021_03_002 crossref_primary_10_1128_msystems_01106_24 crossref_primary_10_3390_ijms231810494 crossref_primary_10_3390_antiox12081551 crossref_primary_10_1038_s41467_021_27692_9 crossref_primary_10_1016_j_tcb_2021_06_010 crossref_primary_10_3390_cells11081307 crossref_primary_10_3390_ijms241612709 crossref_primary_10_3389_fendo_2019_00778 crossref_primary_10_1038_s41577_019_0228_2 crossref_primary_10_1042_BCJ20210604 crossref_primary_10_1101_cshperspect_a036392 crossref_primary_10_3389_fimmu_2024_1497984 crossref_primary_10_3389_fimmu_2020_581906 crossref_primary_10_1002_adbi_202101166 crossref_primary_10_1038_s41467_025_56398_5 crossref_primary_10_3389_fphar_2020_590453 crossref_primary_10_1002_path_5248 crossref_primary_10_1016_j_intimp_2024_112168 crossref_primary_10_1002_cam4_5178 crossref_primary_10_1016_j_lfs_2024_122966 crossref_primary_10_1038_s41422_020_0295_8 crossref_primary_10_1016_j_celrep_2021_108887 crossref_primary_10_1038_s41419_019_1919_0 crossref_primary_10_1093_abbs_gmaa016 crossref_primary_10_1038_s41580_025_00837_0 crossref_primary_10_5009_gnl18486 crossref_primary_10_1016_j_smim_2022_101699 crossref_primary_10_1038_s41590_023_01526_w crossref_primary_10_1080_10717544_2022_2069302 crossref_primary_10_1085_jgp_202012754 crossref_primary_10_1089_ars_2023_0340 crossref_primary_10_3390_nu13072216 crossref_primary_10_1038_s41564_020_0773_2 crossref_primary_10_4236_jbm_2023_114005 crossref_primary_10_1038_s41467_023_43180_8 crossref_primary_10_1038_s41467_022_32757_4 crossref_primary_10_1039_C9MD00059C crossref_primary_10_3389_fphar_2021_650283 crossref_primary_10_1007_s10753_021_01419_w crossref_primary_10_3389_fimmu_2022_810582 crossref_primary_10_1016_j_lfs_2024_122951 crossref_primary_10_1016_j_cell_2022_06_038 crossref_primary_10_3390_ijms24054528 crossref_primary_10_1111_cpr_13137 crossref_primary_10_3389_fcell_2021_638710 crossref_primary_10_3390_antiox10081275 crossref_primary_10_1016_j_intimp_2023_109725 crossref_primary_10_1016_j_jmb_2021_167251 crossref_primary_10_1016_j_jmb_2021_167378 crossref_primary_10_1038_s41401_022_00887_6 crossref_primary_10_1002_ctm2_1002 crossref_primary_10_1038_s41590_019_0368_3 crossref_primary_10_15252_embj_2022111857 crossref_primary_10_1515_ntrev_2023_0208 crossref_primary_10_1016_j_cca_2020_06_044 crossref_primary_10_1016_j_cis_2020_102177 crossref_primary_10_3389_fimmu_2018_02188 crossref_primary_10_1002_cti2_1186 crossref_primary_10_1016_j_bbi_2020_07_042 crossref_primary_10_3389_fcell_2022_958957 crossref_primary_10_1016_j_jbc_2024_105757 crossref_primary_10_1016_j_celrep_2025_115328 crossref_primary_10_1021_acs_analchem_2c05692 crossref_primary_10_1002_mco2_374 crossref_primary_10_1002_advs_202405834 crossref_primary_10_3389_fendo_2021_663039 crossref_primary_10_1021_acs_analchem_0c03276 crossref_primary_10_1038_s41419_024_07098_3 crossref_primary_10_3390_biom13060899 crossref_primary_10_1007_s11356_023_28365_4 crossref_primary_10_3389_fmed_2023_1303110 crossref_primary_10_1038_s44318_024_00190_6 crossref_primary_10_1007_s00018_021_03914_7 crossref_primary_10_3389_fphar_2022_833588 crossref_primary_10_1126_sciadv_abk3147 crossref_primary_10_1016_j_it_2019_09_005 crossref_primary_10_1038_s42004_024_01400_2 crossref_primary_10_1038_s41467_024_52110_1 crossref_primary_10_1016_j_bcp_2021_114585 crossref_primary_10_3389_fimmu_2021_751533 crossref_primary_10_1016_j_molimm_2022_05_011 crossref_primary_10_1007_s11033_021_06252_w crossref_primary_10_1038_s41590_020_0693_6 crossref_primary_10_1016_j_isci_2020_101070 crossref_primary_10_3390_ijms22010426 crossref_primary_10_15252_embj_2019103397 crossref_primary_10_1016_j_tibs_2024_05_007 crossref_primary_10_3390_life12091324 crossref_primary_10_1016_j_phrs_2020_105131 crossref_primary_10_3389_fimmu_2022_841729 crossref_primary_10_1016_j_jmb_2021_167273 crossref_primary_10_1038_s41581_022_00662_0 crossref_primary_10_3389_fimmu_2022_987453 crossref_primary_10_32604_biocell_2025_059787 crossref_primary_10_3389_fmicb_2021_784009 crossref_primary_10_1084_jem_20190545 crossref_primary_10_1038_s41573_021_00154_z crossref_primary_10_1038_s43586_021_00033_2 crossref_primary_10_3389_fimmu_2022_896473 crossref_primary_10_3389_fonc_2022_989167 crossref_primary_10_1084_jem_20201452 crossref_primary_10_15252_embj_2018100067 crossref_primary_10_1016_j_bbamem_2020_183447 crossref_primary_10_1038_s41418_019_0366_x crossref_primary_10_1016_j_intimp_2023_110846 crossref_primary_10_1101_cshperspect_a036400 crossref_primary_10_1111_jgh_15561 |
Cites_doi | 10.1021/acs.nanolett.5b02963 10.1189/jlb.0912437 10.1021/nl403232z 10.1063/1.1143970 10.1093/emboj/17.6.1598 10.1038/nature18629 10.1371/journal.pbio.1002049 10.1038/cddis.2014.488 10.1038/nature18590 10.1038/nrmicro2070 10.1038/nri.2016.58 10.1021/acs.nanolett.6b04219 10.1038/nrm2330 10.1021/la052687c 10.1038/nature15514 10.1016/j.cell.2014.04.007 10.1038/nchembio.2268 10.1038/nnano.2017.45 10.1038/cr.2015.139 10.1038/cdd.2014.110 10.1038/sj.emboj.7600350 10.1111/imr.12287 10.1038/nature22393 10.1098/rsob.140044 10.1038/ncomms9761 10.1016/S0966-842X(00)01936-3 10.1038/nature15541 10.1038/nnano.2016.303 10.1002/anie.201103991 10.1038/nmeth.2602 10.1074/jbc.270.16.9378 10.1038/nprot.2014.070 10.15252/embj.201694696 10.7554/eLife.04247 10.1016/j.mib.2013.04.004 10.1073/pnas.1607769113 10.1038/srep09623 10.18632/oncotarget.11421 10.1038/nature05185 10.1038/ni.1960 10.1016/j.cell.2005.02.033 10.1038/ncomms14128 10.1016/j.it.2017.01.003 10.15252/embj.201593384 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018 The Authors. Published under the terms of the CC BY 4.0 license 2018 The Authors. Published under the terms of the CC BY 4.0 license. 2018 EMBO |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license – notice: 2018 The Authors. Published under the terms of the CC BY 4.0 license. – notice: 2018 EMBO |
DBID | C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.15252/embj.201798321 |
DatabaseName | Springer Nature OA Free Journals Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
DocumentTitleAlternate | Estefania Mulvihill et al |
EISSN | 1460-2075 |
EndPage | n/a |
ExternalDocumentID | PMC6043855 29898893 10_15252_embj_201798321 EMBJ201798321 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Union Marie Curie Actions Program grantid: FP7‐PEOPLE‐2012‐ITN – fundername: Swiss National Science Foundation grantid: 205320_160199 funderid: 10.13039/501100001711 – fundername: European Union Marie Curie Actions Program funderid: FP7‐PEOPLE‐2012‐ITN – fundername: Swiss National Science Foundation funderid: 205320_160199 – fundername: Swiss National Science Foundation grantid: 205320_160199 |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ACAHQ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFWVQ AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EJD EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM ABJNI AASML AAYXX ABZEH CITATION NAO AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 ESTFP 5PM |
ID | FETCH-LOGICAL-c5791-353da2e20f8a48c61665d25791990d0312a9ea89d61628dc694058ec764dce563 |
IEDL.DBID | C6C |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 18:27:22 EDT 2025 Mon Sep 08 16:09:40 EDT 2025 Fri Jul 25 10:44:31 EDT 2025 Mon Jul 21 05:53:22 EDT 2025 Tue Jul 01 02:06:03 EDT 2025 Thu Apr 24 23:01:32 EDT 2025 Wed Jan 22 16:31:33 EST 2025 Fri Feb 21 02:37:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | time‐lapse high‐resolution atomic force microscopy transmission electron microscopy cell death gasdermin‐D pore assembly inflammation |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2018 The Authors. Published under the terms of the CC BY 4.0 license. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5791-353da2e20f8a48c61665d25791990d0312a9ea89d61628dc694058ec764dce563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6709-4684 0000-0002-7074-2371 0000-0003-3075-0665 |
OpenAccessLink | https://doi.org/10.15252/embj.201798321 |
PMID | 29898893 |
PQID | 2068795686 |
PQPubID | 35985 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6043855 proquest_miscellaneous_2055616214 proquest_journals_2068795686 pubmed_primary_29898893 crossref_primary_10_15252_embj_201798321 crossref_citationtrail_10_15252_embj_201798321 wiley_primary_10_15252_embj_201798321_EMBJ201798321 springer_journals_10_15252_embj_201798321 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 13 July 2018 |
PublicationDateYYYYMMDD | 2018-07-13 |
PublicationDate_xml | – month: 07 year: 2018 text: 13 July 2018 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Springer Nature B.V John Wiley and Sons Inc |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: John Wiley and Sons Inc |
References | Di Paolo, De Camilli (CR10) 2006; 443 Aachoui, Sagulenko, Miao, Stacey (CR1) 2013; 16 Cookson, Brennan (CR8) 2001; 9 Bergsbaken, Fink, Cookson (CR6) 2009; 7 Aglietti, Dueber (CR3) 2017; 38 Salvador‐Gallego, Mund, Cosentino, Schneider, Unsay, Schraermeyer, Engelhardt, Ries, Garcia‐Saez (CR38) 2016; 35 Aziz, Jacob, Wang (CR5) 2014; 5 Czajkowsky, Hotze, Shao, Tweten (CR9) 2004; 23 Palmer, Harris, Freytag, Kehoe, Tranum‐Jensen, Bhakdi (CR29) 1998; 17 Rühl, Broz (CR37) 2016; 7 Wang, Gao, Shi, Ding, Liu, He, Wang, Shao (CR44) 2017; 547 Liu, Zhang, Ruan, Pan, Magupalli, Wu, Lieberman (CR21) 2016; 535 Sonnen, Plitzko, Gilbert (CR41) 2014; 4 Leung, Hodel, Brennan, Lukoyanova, Tran, House, Kondos, Whisstock, Dunstone, Trapani, Voskoboinik, Saibil, Hoogenboom (CR20) 2017; 12 Miao, Leaf, Treuting, Mao, Dors, Sarkar, Warren, Wewers, Aderem (CR27) 2010; 11 Lukoyanova, Kondos, Farabella, Law, Reboul, Caradoc‐Davies, Spicer, Kleifeld, Traore, Ekkel, Voskoboinik, Trapani, Hatfaludi, Oliver, Hotze, Tweten, Whisstock, Topf, Saibil, Dunstone (CR23) 2015; 13 Tilley, Orlova, Gilbert, Andrew, Saibil (CR42) 2005; 121 Leung, Dudkina, Lukoyanova, Hodel, Farabella, Pandurangan, Jahan, Pires Damaso, Osmanovic, Reboul, Dunstone, Andrew, Lonnen, Topf, Saibil, Hoogenboom (CR19) 2014; 3 Pfreundschuh, Martinez‐Martin, Mulvihill, Wegmann, Muller (CR32) 2014; 9 Jorgensen, Miao (CR16) 2015; 265 Podobnik, Marchioretto, Zanetti, Bavdek, Kisovec, Cajnko, Lunelli, Dalla Serra, Anderluh (CR33) 2015; 5 Sborgi, Ruhl, Mulvihill, Pipercevic, Heilig, Stahlberg, Farady, Muller, Broz, Hiller (CR39) 2016; 35 Mulvihill, van Pee, Mari, Muller, Yildiz (CR28) 2015; 15 Richter, Berat, Brisson (CR35) 2006; 22 Kayagaki, Stowe, Lee, O'Rourke, Anderson, Warming, Cuellar, Haley, Roose‐Girma, Phung, Liu, Lill, Li, Wu, Kummerfeld, Zhang, Lee, Snipas, Salvesen, Morris (CR17) 2015; 526 Ding, Wang, Liu, She, Sun, Shi, Sun, Wang, Shao (CR11) 2016; 535 Hutter, Bechhoefer (CR15) 1993; 64 van Meer, Voelker, Feigenson (CR25) 2008; 9 Liu, Sheng, Jung, Wang, Stec, O'Connor, Song, Bikkavilli, Winn, Lee, Baek, Ueda, Levitan, Kim, Cho (CR22) 2017; 13 van Pee, Mulvihill, Muller, Yildiz (CR30) 2016; 16 Aglietti, Estevez, Gupta, Ramirez, Liu, Kayagaki, Ciferri, Dixit, Dueber (CR2) 2016; 113 Dufrene, Martinez‐Martin, Medalsy, Alsteens, Muller (CR12) 2013; 10 Dufrene, Ando, Garcia, Alsteens, Martinez‐Martin, Engel, Gerber, Muller (CR13) 2017; 12 Lamkanfi, Dixit (CR18) 2014; 157 Ramage, Cheneval, Chvei, Graff, Hemmig, Heng, Kocher, Mackenzie, Memmert, Revesz, Wishart (CR34) 1995; 270 Metkar, Marchioretto, Antonini, Lunelli, Wang, Gilbert, Anderluh, Roth, Pooga, Pardo, Heuser, Serra, Froelich (CR26) 2015; 22 Medalsy, Hensen, Muller (CR24) 2011; 50 Aziz, Jacob, Yang, Matsuda, Wang (CR4) 2013; 93 He, Wan, Hu, Chen, Wang, Huang, Yang, Zhong, Han (CR14) 2015; 25 Rogers, Fernandes‐Alnemri, Mayes, Alnemri, Cingolani, Alnemri (CR36) 2017; 8 Broz, Dixit (CR7) 2016; 16 Pfreundschuh, Hensen, Muller (CR31) 2013; 13 Shi, Zhao, Wang, Shi, Wang, Huang, Zhuang, Cai, Wang, Shao (CR40) 2015; 526 Vigano, Diamond, Spreafico, Balachander, Sobota, Mortellaro (CR43) 2015; 6 2015; 13 2010; 11 2015; 15 2017; 8 2015; 6 2015; 5 2015; 265 2004; 23 1993; 64 2008; 9 2013; 93 2015; 526 2016; 16 1995; 270 2016; 35 2014; 157 2015; 25 1998; 17 2016; 7 2014; 5 2014; 4 2014; 3 2013; 16 2005; 121 2013; 10 2013; 13 2017; 38 2006; 22 2001; 9 2017; 13 2015; 22 2017; 12 2011; 50 2016; 113 2009; 7 2016; 535 2014; 9 2006; 443 2017; 547 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 157 start-page: 1013 year: 2014 end-page: 1022 ident: CR18 article-title: Mechanisms and functions of inflammasomes publication-title: Cell – volume: 9 start-page: 1113 year: 2014 end-page: 1130 ident: CR32 article-title: Multiparametric high‐resolution imaging of native proteins by force‐distance curve‐based AFM publication-title: Nat Protoc – volume: 7 start-page: 57481 year: 2016 end-page: 57482 ident: CR37 article-title: The gasdermin‐D pore: executor of pyroptotic cell death publication-title: Oncotarget – volume: 35 start-page: 1766 year: 2016 end-page: 1778 ident: CR39 article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death publication-title: EMBO J – volume: 265 start-page: 130 year: 2015 end-page: 142 ident: CR16 article-title: Pyroptotic cell death defends against intracellular pathogens publication-title: Immunol Rev – volume: 13 start-page: e1002049 year: 2015 ident: CR23 article-title: Conformational changes during pore formation by the perforin‐related protein pleurotolysin publication-title: PLoS Biol – volume: 25 start-page: 1285 year: 2015 end-page: 1298 ident: CR14 article-title: Gasdermin D is an executor of pyroptosis and required for interleukin‐1beta secretion publication-title: Cell Res – volume: 64 start-page: 1868 year: 1993 end-page: 1873 ident: CR15 article-title: Calibration of atomic‐force microscope tips publication-title: Rev Sci Instrum – volume: 15 start-page: 6965 year: 2015 end-page: 6973 ident: CR28 article-title: Directly observing the lipid‐dependent self‐assembly and pore‐forming mechanism of the Cytolytic Toxin Listeriolysin O publication-title: Nano Lett – volume: 5 start-page: 9623 year: 2015 ident: CR33 article-title: Plasticity of listeriolysin O pores and its regulation by pH and unique histidine [corrected] publication-title: Sci Rep – volume: 35 start-page: 389 year: 2016 end-page: 401 ident: CR38 article-title: Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores publication-title: EMBO J – volume: 121 start-page: 247 year: 2005 end-page: 256 ident: CR42 article-title: Structural basis of pore formation by the bacterial toxin pneumolysin publication-title: Cell – volume: 526 start-page: 666 year: 2015 end-page: 671 ident: CR17 article-title: Caspase‐11 cleaves gasdermin D for non‐canonical inflammasome signalling publication-title: Nature – volume: 5 start-page: e1526 year: 2014 ident: CR5 article-title: Revisiting caspases in sepsis publication-title: Cell Death Dis – volume: 6 start-page: 8761 year: 2015 ident: CR43 article-title: Human caspase‐4 and caspase‐5 regulate the one‐step non‐canonical inflammasome activation in monocytes publication-title: Nat Commun – volume: 113 start-page: 7858 year: 2016 end-page: 7863 ident: CR2 article-title: GsdmD p30 elicited by caspase‐11 during pyroptosis forms pores in membranes publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 847 year: 2013 end-page: 854 ident: CR12 article-title: Multiparametric imaging of biological systems by force‐distance curve‐based AFM publication-title: Nat Methods – volume: 9 start-page: 113 year: 2001 end-page: 114 ident: CR8 article-title: Pro‐inflammatory programmed cell death publication-title: Trends Microbiol – volume: 12 start-page: 295 year: 2017 end-page: 307 ident: CR13 article-title: Imaging modes of atomic force microscopy for application in molecular and cell biology publication-title: Nat Nanotechnol – volume: 8 start-page: 14128 year: 2017 ident: CR36 article-title: Cleavage of DFNA5 by caspase‐3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death publication-title: Nat Commun – volume: 11 start-page: 1136 year: 2010 end-page: 1142 ident: CR27 article-title: Caspase‐1‐induced pyroptosis is an innate immune effector mechanism against intracellular bacteria publication-title: Nat Immunol – volume: 443 start-page: 651 year: 2006 end-page: 657 ident: CR10 article-title: Phosphoinositides in cell regulation and membrane dynamics publication-title: Nature – volume: 535 start-page: 111 year: 2016 end-page: 116 ident: CR11 article-title: Pore‐forming activity and structural autoinhibition of the gasdermin family publication-title: Nature – volume: 13 start-page: 5585 year: 2013 end-page: 5593 ident: CR31 article-title: Quantitative imaging of the electrostatic field and potential generated by a transmembrane protein pore at subnanometer resolution publication-title: Nano Lett – volume: 547 start-page: 99 year: 2017 end-page: 103 ident: CR44 article-title: Chemotherapy drugs induce pyroptosis through caspase‐3 cleavage of a gasdermin publication-title: Nature – volume: 93 start-page: 329 year: 2013 end-page: 342 ident: CR4 article-title: Current trends in inflammatory and immunomodulatory mediators in sepsis publication-title: J Leukoc Biol – volume: 270 start-page: 9378 year: 1995 end-page: 9383 ident: CR34 article-title: Expression, refolding, and autocatalytic proteolytic processing of the interleukin‐1 beta‐converting enzyme precursor publication-title: J Biol Chem – volume: 22 start-page: 3497 year: 2006 end-page: 3505 ident: CR35 article-title: Formation of solid‐supported lipid bilayers: an integrated view publication-title: Langmuir – volume: 16 start-page: 319 year: 2013 end-page: 326 ident: CR1 article-title: Inflammasome‐mediated pyroptotic and apoptotic cell death, and defense against infection publication-title: Curr Opin Microbiol – volume: 16 start-page: 7915 year: 2016 end-page: 7924 ident: CR30 article-title: Unraveling the Pore‐Forming Steps of Pneumolysin from Streptococcus pneumoniae publication-title: Nano Lett – volume: 526 start-page: 660 year: 2015 end-page: 665 ident: CR40 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature – volume: 22 start-page: 74 year: 2015 end-page: 85 ident: CR26 article-title: Perforin oligomers form arcs in cellular membranes: a locus for intracellular delivery of granzymes publication-title: Cell Death Differ – volume: 3 start-page: e04247 year: 2014 ident: CR19 article-title: Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol‐dependent cytolysin publication-title: Elife – volume: 50 start-page: 12103 year: 2011 end-page: 12108 ident: CR24 article-title: Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force‐volume AFM publication-title: Angew Chem Int Ed Engl – volume: 16 start-page: 407 year: 2016 end-page: 420 ident: CR7 article-title: Inflammasomes: mechanism of assembly, regulation and signalling publication-title: Nat Rev Immunol – volume: 12 start-page: 467 year: 2017 end-page: 473 ident: CR20 article-title: Real‐time visualization of perforin nanopore assembly publication-title: Nat Nanotechnol – volume: 17 start-page: 1598 year: 1998 end-page: 1605 ident: CR29 article-title: Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization publication-title: EMBO J – volume: 535 start-page: 153 year: 2016 end-page: 158 ident: CR21 article-title: Inflammasome‐activated gasdermin D causes pyroptosis by forming membrane pores publication-title: Nature – volume: 9 start-page: 112 year: 2008 end-page: 124 ident: CR25 article-title: Membrane lipids: where they are and how they behave publication-title: Nat Rev Mol Cell Biol – volume: 23 start-page: 3206 year: 2004 end-page: 3215 ident: CR9 article-title: Vertical collapse of a cytolysin prepore moves its transmembrane beta‐hairpins to the membrane publication-title: EMBO J – volume: 7 start-page: 99 year: 2009 end-page: 109 ident: CR6 article-title: Pyroptosis: host cell death and inflammation publication-title: Nat Rev Microbiol – volume: 38 start-page: 261 year: 2017 end-page: 271 ident: CR3 article-title: Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions publication-title: Trends Immunol – volume: 13 start-page: 268 year: 2017 end-page: 274 ident: CR22 article-title: Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol publication-title: Nat Chem Biol – volume: 4 start-page: 140044 year: 2014 ident: CR41 article-title: Incomplete pneumolysin oligomers form membrane pores publication-title: Open Biol – volume: 9 start-page: 1113 year: 2014 end-page: 1130 article-title: Multiparametric high‐resolution imaging of native proteins by force‐distance curve‐based AFM publication-title: Nat Protoc – volume: 13 start-page: e1002049 year: 2015 article-title: Conformational changes during pore formation by the perforin‐related protein pleurotolysin publication-title: PLoS Biol – volume: 7 start-page: 99 year: 2009 end-page: 109 article-title: Pyroptosis: host cell death and inflammation publication-title: Nat Rev Microbiol – volume: 3 start-page: e04247 year: 2014 article-title: Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol‐dependent cytolysin publication-title: Elife – volume: 38 start-page: 261 year: 2017 end-page: 271 article-title: Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions publication-title: Trends Immunol – volume: 22 start-page: 74 year: 2015 end-page: 85 article-title: Perforin oligomers form arcs in cellular membranes: a locus for intracellular delivery of granzymes publication-title: Cell Death Differ – volume: 5 start-page: 9623 year: 2015 article-title: Plasticity of listeriolysin O pores and its regulation by pH and unique histidine [corrected] publication-title: Sci Rep – volume: 15 start-page: 6965 year: 2015 end-page: 6973 article-title: Directly observing the lipid‐dependent self‐assembly and pore‐forming mechanism of the Cytolytic Toxin Listeriolysin O publication-title: Nano Lett – volume: 13 start-page: 5585 year: 2013 end-page: 5593 article-title: Quantitative imaging of the electrostatic field and potential generated by a transmembrane protein pore at subnanometer resolution publication-title: Nano Lett – volume: 10 start-page: 847 year: 2013 end-page: 854 article-title: Multiparametric imaging of biological systems by force‐distance curve‐based AFM publication-title: Nat Methods – volume: 121 start-page: 247 year: 2005 end-page: 256 article-title: Structural basis of pore formation by the bacterial toxin pneumolysin publication-title: Cell – volume: 5 start-page: e1526 year: 2014 article-title: Revisiting caspases in sepsis publication-title: Cell Death Dis – volume: 265 start-page: 130 year: 2015 end-page: 142 article-title: Pyroptotic cell death defends against intracellular pathogens publication-title: Immunol Rev – volume: 16 start-page: 7915 year: 2016 end-page: 7924 article-title: Unraveling the Pore‐Forming Steps of Pneumolysin from Streptococcus pneumoniae publication-title: Nano Lett – volume: 16 start-page: 407 year: 2016 end-page: 420 article-title: Inflammasomes: mechanism of assembly, regulation and signalling publication-title: Nat Rev Immunol – volume: 9 start-page: 113 year: 2001 end-page: 114 article-title: Pro‐inflammatory programmed cell death publication-title: Trends Microbiol – volume: 157 start-page: 1013 year: 2014 end-page: 1022 article-title: Mechanisms and functions of inflammasomes publication-title: Cell – volume: 11 start-page: 1136 year: 2010 end-page: 1142 article-title: Caspase‐1‐induced pyroptosis is an innate immune effector mechanism against intracellular bacteria publication-title: Nat Immunol – volume: 547 start-page: 99 year: 2017 end-page: 103 article-title: Chemotherapy drugs induce pyroptosis through caspase‐3 cleavage of a gasdermin publication-title: Nature – volume: 35 start-page: 1766 year: 2016 end-page: 1778 article-title: GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death publication-title: EMBO J – volume: 12 start-page: 467 year: 2017 end-page: 473 article-title: Real‐time visualization of perforin nanopore assembly publication-title: Nat Nanotechnol – volume: 113 start-page: 7858 year: 2016 end-page: 7863 article-title: GsdmD p30 elicited by caspase‐11 during pyroptosis forms pores in membranes publication-title: Proc Natl Acad Sci USA – volume: 93 start-page: 329 year: 2013 end-page: 342 article-title: Current trends in inflammatory and immunomodulatory mediators in sepsis publication-title: J Leukoc Biol – volume: 64 start-page: 1868 year: 1993 end-page: 1873 article-title: Calibration of atomic‐force microscope tips publication-title: Rev Sci Instrum – volume: 35 start-page: 389 year: 2016 end-page: 401 article-title: Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores publication-title: EMBO J – volume: 23 start-page: 3206 year: 2004 end-page: 3215 article-title: Vertical collapse of a cytolysin prepore moves its transmembrane beta‐hairpins to the membrane publication-title: EMBO J – volume: 526 start-page: 666 year: 2015 end-page: 671 article-title: Caspase‐11 cleaves gasdermin D for non‐canonical inflammasome signalling publication-title: Nature – volume: 6 start-page: 8761 year: 2015 article-title: Human caspase‐4 and caspase‐5 regulate the one‐step non‐canonical inflammasome activation in monocytes publication-title: Nat Commun – volume: 16 start-page: 319 year: 2013 end-page: 326 article-title: Inflammasome‐mediated pyroptotic and apoptotic cell death, and defense against infection publication-title: Curr Opin Microbiol – volume: 7 start-page: 57481 year: 2016 end-page: 57482 article-title: The gasdermin‐D pore: executor of pyroptotic cell death publication-title: Oncotarget – volume: 443 start-page: 651 year: 2006 end-page: 657 article-title: Phosphoinositides in cell regulation and membrane dynamics publication-title: Nature – volume: 12 start-page: 295 year: 2017 end-page: 307 article-title: Imaging modes of atomic force microscopy for application in molecular and cell biology publication-title: Nat Nanotechnol – volume: 535 start-page: 153 year: 2016 end-page: 158 article-title: Inflammasome‐activated gasdermin D causes pyroptosis by forming membrane pores publication-title: Nature – volume: 13 start-page: 268 year: 2017 end-page: 274 article-title: Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol publication-title: Nat Chem Biol – volume: 4 start-page: 140044 year: 2014 article-title: Incomplete pneumolysin oligomers form membrane pores publication-title: Open Biol – volume: 50 start-page: 12103 year: 2011 end-page: 12108 article-title: Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force‐volume AFM publication-title: Angew Chem Int Ed Engl – volume: 22 start-page: 3497 year: 2006 end-page: 3505 article-title: Formation of solid‐supported lipid bilayers: an integrated view publication-title: Langmuir – volume: 25 start-page: 1285 year: 2015 end-page: 1298 article-title: Gasdermin D is an executor of pyroptosis and required for interleukin‐1beta secretion publication-title: Cell Res – volume: 9 start-page: 112 year: 2008 end-page: 124 article-title: Membrane lipids: where they are and how they behave publication-title: Nat Rev Mol Cell Biol – volume: 270 start-page: 9378 year: 1995 end-page: 9383 article-title: Expression, refolding, and autocatalytic proteolytic processing of the interleukin‐1 beta‐converting enzyme precursor publication-title: J Biol Chem – volume: 8 start-page: 14128 year: 2017 article-title: Cleavage of DFNA5 by caspase‐3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death publication-title: Nat Commun – volume: 526 start-page: 660 year: 2015 end-page: 665 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature – volume: 535 start-page: 111 year: 2016 end-page: 116 article-title: Pore‐forming activity and structural autoinhibition of the gasdermin family publication-title: Nature – volume: 17 start-page: 1598 year: 1998 end-page: 1605 article-title: Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization publication-title: EMBO J – ident: e_1_2_8_29_1 doi: 10.1021/acs.nanolett.5b02963 – ident: e_1_2_8_5_1 doi: 10.1189/jlb.0912437 – ident: e_1_2_8_32_1 doi: 10.1021/nl403232z – ident: e_1_2_8_16_1 doi: 10.1063/1.1143970 – ident: e_1_2_8_30_1 doi: 10.1093/emboj/17.6.1598 – ident: e_1_2_8_22_1 doi: 10.1038/nature18629 – ident: e_1_2_8_24_1 doi: 10.1371/journal.pbio.1002049 – ident: e_1_2_8_6_1 doi: 10.1038/cddis.2014.488 – ident: e_1_2_8_12_1 doi: 10.1038/nature18590 – ident: e_1_2_8_7_1 doi: 10.1038/nrmicro2070 – ident: e_1_2_8_8_1 doi: 10.1038/nri.2016.58 – ident: e_1_2_8_31_1 doi: 10.1021/acs.nanolett.6b04219 – ident: e_1_2_8_26_1 doi: 10.1038/nrm2330 – ident: e_1_2_8_36_1 doi: 10.1021/la052687c – ident: e_1_2_8_41_1 doi: 10.1038/nature15514 – ident: e_1_2_8_19_1 doi: 10.1016/j.cell.2014.04.007 – ident: e_1_2_8_23_1 doi: 10.1038/nchembio.2268 – ident: e_1_2_8_14_1 doi: 10.1038/nnano.2017.45 – ident: e_1_2_8_15_1 doi: 10.1038/cr.2015.139 – ident: e_1_2_8_27_1 doi: 10.1038/cdd.2014.110 – ident: e_1_2_8_10_1 doi: 10.1038/sj.emboj.7600350 – ident: e_1_2_8_17_1 doi: 10.1111/imr.12287 – ident: e_1_2_8_45_1 doi: 10.1038/nature22393 – ident: e_1_2_8_42_1 doi: 10.1098/rsob.140044 – ident: e_1_2_8_44_1 doi: 10.1038/ncomms9761 – ident: e_1_2_8_9_1 doi: 10.1016/S0966-842X(00)01936-3 – ident: e_1_2_8_18_1 doi: 10.1038/nature15541 – ident: e_1_2_8_21_1 doi: 10.1038/nnano.2016.303 – ident: e_1_2_8_25_1 doi: 10.1002/anie.201103991 – ident: e_1_2_8_13_1 doi: 10.1038/nmeth.2602 – ident: e_1_2_8_35_1 doi: 10.1074/jbc.270.16.9378 – ident: e_1_2_8_33_1 doi: 10.1038/nprot.2014.070 – ident: e_1_2_8_40_1 doi: 10.15252/embj.201694696 – ident: e_1_2_8_20_1 doi: 10.7554/eLife.04247 – ident: e_1_2_8_2_1 doi: 10.1016/j.mib.2013.04.004 – ident: e_1_2_8_3_1 doi: 10.1073/pnas.1607769113 – ident: e_1_2_8_34_1 doi: 10.1038/srep09623 – ident: e_1_2_8_38_1 doi: 10.18632/oncotarget.11421 – ident: e_1_2_8_11_1 doi: 10.1038/nature05185 – ident: e_1_2_8_28_1 doi: 10.1038/ni.1960 – ident: e_1_2_8_43_1 doi: 10.1016/j.cell.2005.02.033 – ident: e_1_2_8_37_1 doi: 10.1038/ncomms14128 – ident: e_1_2_8_4_1 doi: 10.1016/j.it.2017.01.003 – ident: e_1_2_8_39_1 doi: 10.15252/embj.201593384 |
SSID | ssj0005871 |
Score | 2.6323624 |
Snippet | Gasdermin‐D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts... Gasdermin-D (GSDMD), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts... Gasdermin‐D ( GSDMD ), a member of the gasdermin protein family, mediates pyroptosis in human and murine cells. Cleaved by inflammatory caspases, GSDMD inserts... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Assembling Assembly Atomic force microscopy Caspase Caspases - metabolism Cell death Cell Membrane - metabolism Cholesterol EMBO07 EMBO19 gasdermin‐D pore assembly Humans Inflammation Insertion Inserts Lipid membranes Liposomes - metabolism Membranes Metals Microscopy, Atomic Force Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Oligomerization Oligomers Pore formation Pores Porosity Protein Multimerization Protein Transport Proteins Pyroptosis Recombinant Proteins - genetics Recombinant Proteins - metabolism Time-Lapse Imaging time‐lapse high‐resolution atomic force microscopy transmission electron microscopy |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTt0wEB0BVQUbRGkL4SUjddEu0t44tuOoq_ISQgKxKFJ3keM4cBH3XsSFBTs-gW_kS5hxEqMIoUrsEo3z8NgTn9jjcwC-qcwRibmJZSVcLBCCx6XEwBO5qDObWOJboWyLE3V4Jo7-yS6bkPbCNPwQYcKNIsN_rynATTntFHuINdSNykvKzcpyUtuZhQ8I7VPq5FycvmR5aP_P5adZRKLzlt2HbvGrf4P-wPQKbb5Omgwrp31c6wemgyVYbBEl-9N0gU8w48bL8LHRmLxfhvndTtLtM_w-drTRdzgdsUnNRvhmOFI5hhDcsbCLkZX3zCv3sXMzrXyuzNPD494XODvY_7t7GLfqCbGVWZ7EqUwrwx0f1NoIbVWilKw4mXAAqjCWucmd0XmFFq4rq3LEbtrZTAmso1TpV5gbT8ZuFZixmjsK_yxFAOJsyTWttg1qO8hqU-UR_OxcV9iWWpwULq4K-sUgXxfk6yL4OoLv4YLrhlXj7aIbXVsUbXhN0apIJF1pFcF2MKMzabUDHTe5ozKk_Kl4IiJYaZouPIto5zUitQiyXqOGAkS63beMhxeefFvR0qmUEfzomv_ltd6sQur7x_-qWuwf7xyFs7V3XbUOC3isafY5STdg7vbmzm0ibLott3xgPAPKbwve priority: 102 providerName: Wiley-Blackwell |
Title | Mechanism of membrane pore formation by human gasdermin‐D |
URI | https://link.springer.com/article/10.15252/embj.201798321 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201798321 https://www.ncbi.nlm.nih.gov/pubmed/29898893 https://www.proquest.com/docview/2068795686 https://www.proquest.com/docview/2055616214 https://pubmed.ncbi.nlm.nih.gov/PMC6043855 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHoRXV_1RQQPeqhu0yRN8aRVEWHFgwt7K22a-sDdFVcP3vwJ_kZ_iTPdtrqoiLeWSR-ZyTRfM5NvALZVYInEPHFlJqwrEIK7qUTHE6HIA-MZ4luhbIsLddYW5x3ZKUmSaC_M1_i95JLv2256RxlYQUg1dcZhUuJXl4ZypKLPXA5d_FkViynC02HJ4fPDDUann2-Y8ntqZB0fHUWvxfRzOgezJW5kh0NDz8OY7TVgalhJ8qUB01FVuG0BDlqWtvPeDrqsn7MuvhnOR5Yh0Las3qvI0hdW1Odj18kgKzJi3l_fjhehfXpyFZ25ZY0E18gg9Fxf-lnCLW_mOhHaKE8pmXES4TSTocfyJLSJDjOUcJ0ZFSJC09YESmAfpfKXYKLX79kVYInR3JKTBz7CDGtSrimm1sxNM8iTLHRgr1JdbEoCcapjcR_TjwTpOiZdx7WuHdipL3gYcmf83nS9skVcOtEApYpKoSutHNiqxahMimmg4vrP1IbqeyruCQeWh6arn0Xk8hrxmAPBiFHrBkStPSrp3d4UFNuKAqRSOrBbmf_ztX7tgl-Mj7-6Gp-0js7rs9V_PGENZvBY08qy56_DxNPjs91ASPSUbsI4F5ebhVN8AHTKAS4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4CMEF8aY8g8QBDoU1TdJUnGCAxmOcQOJWtWkKQ2xDjB124yfwG_kl2F1XmAAhjq3TNrFr5UvsfAbYVoElEvPYlamwrkAI7iYSHU-EIguMZ4hvhbItrlTtRpzfytuCJInOwnyN30su-b5tJg-UgRWEVFNnFMYpbEkk-VVV_czl0PnKKt9MEZ4OCw6fH14wPP18w5TfUyPL-Ogwes2nn9MZmC5wIzvsG3oWRmxrDib6lSR7czBZHRRum4eDuqXjvI1Ok7Uz1sSe4XxkGQJty8qziizpsbw-H7uLO2meEfP--na8ADenJ9fVmlvUSHCNDELP9aWfxtzySqZjoY3ylJIpJxFOMyl6LI9DG-swRQnXqVEhIjRtTaAEjlEqfxHGWu2WXQYWG80tOXngI8ywJuGaYmqVzFSCLE5DB_YGqotMQSBOdSweI1pIkK4j0nVU6tqBnfKBpz53xu9N1wa2iAon6qBUUSl0pZUDW6UYlUkxDVRcu0ttqL6n4p5wYKlvuvJbRC6vEY85EAwZtWxA1NrDklbjPqfYVhQgldKB3YH5P7v16xD8_P_4a6jRSf3ovLxa-ccXNmGydl2_jC7Pri5WYQrva9pl9vw1GHt57tp1hEcvyUbuGh-mqANG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61i_q4VAX6SEvBSD3QQ8rGsR1bPW2BFd0CqtQicYsS2wGqbnbVXQ7c-An8xv6SzuSFVhRVHJNxHh5n5M-Z8fcBvFeJJxLzLJRO-FAgBA9ziYEnjCgSG1niW6FqiyO1fyxGJ_Kkqc2ZtdXubUqy3tNALE3lfHvqilavh2_7cf6T6rISQ0o7D2FJS2Nw7bU0GIy-j25qPHS14qp-sohIm4bb5x-3WJyWbmHN2yWTXd50EdVW09LwOTxr8CQb1B_AMjzw5Qo8qhUmL1fgyU4r6LYKnw49bfM9n43ZpGBjfDOcpzxDAO5Zt4eR5Zes0u1jp9nMVZUyf66ud1_A8XDvx85-2GgnhFYmJgpjGbuMe94vdCa0VZFS0nEy4fTjMJJ5ZnymjUML184qg8hNe5sogX2UKn4JvXJS-tfAMqu5p-BPYoQf3uZcU66tX9h-UmTOBPCxdV1qG2Jx0rf4ldICg3ydkq_TztcBbHUXTGtOjbubrrVjkTbBNUOrIol0pVUAm50ZnUm5DnTc5ILakO6n4pEI4FU9dN2ziHReI04LIFkY1K4BUW4vWsrzs4p6W1HiVMoAPrTDf_Nad3Yhrr6P_3U13Tv8POqO3tzjCRvw-NvuMD34cvT1LTzF05p-PkfxGvTmvy_8O0RN83y9iY2_ZIINBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+membrane+pore+formation+by+human+gasdermin%E2%80%90D&rft.jtitle=The+EMBO+journal&rft.au=Mulvihill%2C+Estefania&rft.au=Sborgi%2C+Lorenzo&rft.au=Mari%2C+Stefania+A&rft.au=Pfreundschuh%2C+Moritz&rft.date=2018-07-13&rft.pub=Nature+Publishing+Group+UK&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=37&rft.issue=14&rft_id=info:doi/10.15252%2Fembj.201798321&rft.externalDocID=10_15252_embj_201798321 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |