Semisupervised adaptive learning models for IDH1 mutation status prediction

The mutation status of isocitrate dehydrogenase1 (IDH1) in glioma is critical information for the diagnosis, treatment, and prognosis. Accurately determining such information from MRI data has emerged as a significant research challenge in recent years. Existing techniques for this problem often suf...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 5; p. e0321404
Main Authors Liang, Fengning, Cao, Yaru, Zhao, Teng, Xu, Qian, Zhu, Hong
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 05.05.2025
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0321404

Cover

More Information
Summary:The mutation status of isocitrate dehydrogenase1 (IDH1) in glioma is critical information for the diagnosis, treatment, and prognosis. Accurately determining such information from MRI data has emerged as a significant research challenge in recent years. Existing techniques for this problem often suffer from various limitations, such as the data waste and instability issues. To address such issues, we present a semisupervised adaptive deep learning model based on radiomics and rough sets for predicting the mutation status of IDH1 from MRI data. Firstly, our model uses a rough set algorithm to remove the redundant medical image features extracted by radiomics, while adding pseudo-labels for non-labeled data via statistical. T-tests to mitigate the common issue of insufficient datasets in medical imaging analysis. Then, it applies a Sand Cat Swarm Optimization (SCSO) algorithm to optimize the weight of pseudo-label data. Finally, our model adopts U-Net and CRNN to construct UCNet, a semisupervised classification model for classifying IDH1 mutation status. To validate our models, we use a preoperative MRI dataset with 316 glioma patients to evaluate the performance. Our study suggests that the prediction accuracy of glioma IDH1 mutation status reaches 95.63%. Our experimental results suggest that the study can effectively improve the utilization of glioma imaging data and the accuracy of intelligent diagnosis of glioma IDH1 mutation status.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0321404