Semisupervised adaptive learning models for IDH1 mutation status prediction
The mutation status of isocitrate dehydrogenase1 (IDH1) in glioma is critical information for the diagnosis, treatment, and prognosis. Accurately determining such information from MRI data has emerged as a significant research challenge in recent years. Existing techniques for this problem often suf...
Saved in:
| Published in | PloS one Vol. 20; no. 5; p. e0321404 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
05.05.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0321404 |
Cover
| Summary: | The mutation status of isocitrate dehydrogenase1 (IDH1) in glioma is critical information for the diagnosis, treatment, and prognosis. Accurately determining such information from MRI data has emerged as a significant research challenge in recent years. Existing techniques for this problem often suffer from various limitations, such as the data waste and instability issues. To address such issues, we present a semisupervised adaptive deep learning model based on radiomics and rough sets for predicting the mutation status of IDH1 from MRI data. Firstly, our model uses a rough set algorithm to remove the redundant medical image features extracted by radiomics, while adding pseudo-labels for non-labeled data via statistical. T-tests to mitigate the common issue of insufficient datasets in medical imaging analysis. Then, it applies a Sand Cat Swarm Optimization (SCSO) algorithm to optimize the weight of pseudo-label data. Finally, our model adopts U-Net and CRNN to construct UCNet, a semisupervised classification model for classifying IDH1 mutation status. To validate our models, we use a preoperative MRI dataset with 316 glioma patients to evaluate the performance. Our study suggests that the prediction accuracy of glioma IDH1 mutation status reaches 95.63%. Our experimental results suggest that the study can effectively improve the utilization of glioma imaging data and the accuracy of intelligent diagnosis of glioma IDH1 mutation status. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0321404 |