Structure of an endogenous yeast 26S proteasome reveals two major conformational states

The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeli...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 10; pp. 2642 - 2647
Main Authors Luan, Bai, 栾白, Huang, Xiuliang, 黄修良, Wu, Jianping, Mei, Ziqing, Wang, Yiwei, Xue, Xiaobin, Yan, Chuangye, Wang, Jiawei, Finley, Daniel J., Shi, Yigong, 施一公, Wang, Feng, 王丰
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 08.03.2016
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1601561113

Cover

Abstract The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.
AbstractList The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.
The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.
The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-A resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.
The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-A resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP- gamma S and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.
Mechanistic understanding of proteasome function requires elucidation of its three-dimensional structure. Previous investigations have revealed increasingly detailed information on the overall organization of the yeast 26S proteasome. In this study, we further improved the resolution of cryo-EM structures of endogenous proteasomes from Saccharomyces cerevisiae . These structures reveal two distinct conformational states, which appear to correspond to different states of ATP hydrolysis and substrate binding. This information may guide future functional analysis of the proteasome. The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.
Mechanistic understanding of proteasome function requires elucidation of its three-dimensional structure. Previous investigations have revealed increasingly detailed information on the overall organization of the yeast 26S proteasome. In this study, we further improved the resolution of cryo-EM structures of endogenous proteasomes from Saccharomyces cerevisiae. These structures reveal two distinct conformational states, which appear to correspond to different states of ATP hydrolysis and substrate binding. This information may guide future functional analysis of the proteasome. The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.
SignificanceMechanistic understanding of proteasome function requires elucidation of its three-dimensional structure. Previous investigations have revealed increasingly detailed information on the overall organization of the yeast 26S proteasome. In this study, we further improved the resolution of cryo-EM structures of endogenous proteasomes from Saccharomyces cerevisiae. These structures reveal two distinct conformational states, which appear to correspond to different states of ATP hydrolysis and substrate binding. This information may guide future functional analysis of the proteasome. The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.
Author Finley, Daniel J.
Huang, Xiuliang
Mei, Ziqing
Wang, Jiawei
Wang, Yiwei
Luan, Bai
Yan, Chuangye
王丰
施一公
Wang, Feng
Wu, Jianping
栾白
Xue, Xiaobin
Shi, Yigong
黄修良
Author_xml – sequence: 1
  givenname: Bai
  surname: Luan
  fullname: Luan, Bai
  organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 2
  fullname: 栾白
  organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Xiuliang
  surname: Huang
  fullname: Huang, Xiuliang
  organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 4
  fullname: 黄修良
  organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 5
  givenname: Jianping
  surname: Wu
  fullname: Wu, Jianping
  organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 6
  givenname: Ziqing
  surname: Mei
  fullname: Mei, Ziqing
  organization: Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 10081, China
– sequence: 7
  givenname: Yiwei
  surname: Wang
  fullname: Wang, Yiwei
  organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 8
  givenname: Xiaobin
  surname: Xue
  fullname: Xue, Xiaobin
  organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 9
  givenname: Chuangye
  surname: Yan
  fullname: Yan, Chuangye
  organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 10
  givenname: Jiawei
  surname: Wang
  fullname: Wang, Jiawei
  organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 11
  givenname: Daniel J.
  surname: Finley
  fullname: Finley, Daniel J.
  organization: Department of Cell Biology, Harvard Medical School, Boston, MA 02115
– sequence: 12
  givenname: Yigong
  surname: Shi
  fullname: Shi, Yigong
  organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 13
  fullname: 施一公
  organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 14
  givenname: Feng
  surname: Wang
  fullname: Wang, Feng
  organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 15
  fullname: 王丰
  organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26929360$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxS1URLeFMyeQJS5IKO2M44_kgoQqvqRKHAriaHkdp2SV2IvttNr_Hm93oaUHymk0mt8bvXlzRA588I6Q5wgnCKo-XXuTTlACComI9SOyQGixkryFA7IAYKpqOOOH5CilFQC0ooEn5JDJlrW1hAX5fpHjbPMcHQ09NZ4634VL58Oc6MaZlCmTF3QdQy5NmByN7sqZMdF8HehkViFSG3wf4mTyELwZacomu_SUPO4L5p7t6zH59uH917NP1fmXj5_P3p1XVqgmV9L0AtuuZwKVQFjyUgQ6FNzKrrjsWM2FWbYMOiFNxxoUFhEasMr2isv6mMBu7-zXZnNtxlGv4zCZuNEIepuR3makbzMqkrc7yXpeTq6zzudobmXBDPrviR9-6MtwpblqoW2bsuD1fkEMP2eXsp6GZN04Gu9KbhpVI1jNykH_gSqGXErFC_rqHroKcyyJ3lC8rrcfK9TLu-b_uP790QKIHWBjSCm6Xtsh3_ym3DKM_0jl9J7u4Rzf7K1sBw_TL3b0KuUQ7_jmspHA6l8Fs9rw
CitedBy_id crossref_primary_10_1016_j_celrep_2018_12_042
crossref_primary_10_1074_jbc_RA120_014576
crossref_primary_10_1093_abbs_gmy176
crossref_primary_10_1128_AAC_00448_19
crossref_primary_10_1042_BST20200382
crossref_primary_10_3390_cells11030421
crossref_primary_10_1111_mmi_13695
crossref_primary_10_1016_j_str_2016_07_005
crossref_primary_10_1146_annurev_biochem_013118_111429
crossref_primary_10_1051_jbio_2021005
crossref_primary_10_1016_j_tibs_2022_06_006
crossref_primary_10_1038_s41467_018_03509_0
crossref_primary_10_1073_pnas_1902931116
crossref_primary_10_1016_j_bbapap_2020_140583
crossref_primary_10_1111_febs_15638
crossref_primary_10_1016_j_jmb_2017_09_015
crossref_primary_10_1146_annurev_biochem_062917_011931
crossref_primary_10_1038_nsmb_3273
crossref_primary_10_1093_jnen_nlab029
crossref_primary_10_1016_j_str_2020_07_011
crossref_primary_10_1016_j_bbamcr_2019_118617
crossref_primary_10_1007_s11515_017_1439_1
crossref_primary_10_1021_jasms_4c00381
crossref_primary_10_1038_s41467_018_04731_6
crossref_primary_10_1016_j_str_2020_07_010
crossref_primary_10_1016_j_molcel_2017_07_023
crossref_primary_10_1038_cr_2017_12
crossref_primary_10_1038_s41467_018_03785_w
crossref_primary_10_1073_pnas_1621129114
crossref_primary_10_1128_msystems_00418_21
crossref_primary_10_1063_5_0015191
crossref_primary_10_1016_j_ejmech_2018_01_013
crossref_primary_10_1016_j_molcel_2019_01_018
crossref_primary_10_1107_S2059798319015924
crossref_primary_10_9729_AM_2018_48_1_1
crossref_primary_10_1080_10409238_2016_1230087
crossref_primary_10_1038_s41467_019_13906_8
crossref_primary_10_1016_j_str_2017_04_002
crossref_primary_10_1016_j_jbc_2023_102870
crossref_primary_10_1038_s41416_022_01829_z
crossref_primary_10_1038_cr_2016_86
crossref_primary_10_1038_nrd_2018_77
crossref_primary_10_1093_jb_mvw091
crossref_primary_10_1017_S0033583516000160
crossref_primary_10_1016_j_jmb_2017_05_027
crossref_primary_10_1073_pnas_1612922114
crossref_primary_10_1016_j_biocel_2016_08_008
crossref_primary_10_1073_pnas_1608050113
crossref_primary_10_1073_pnas_1614614113
crossref_primary_10_1038_s41586_018_0736_4
crossref_primary_10_1016_j_celrep_2022_110918
crossref_primary_10_1038_s41467_022_34691_x
crossref_primary_10_1146_annurev_biophys_070816_033719
crossref_primary_10_3389_fonc_2019_00761
crossref_primary_10_3390_ijms24032221
crossref_primary_10_1016_j_molcel_2017_06_007
crossref_primary_10_1016_j_chembiol_2017_02_013
crossref_primary_10_1074_mcp_M116_065326
crossref_primary_10_1371_journal_pone_0225145
crossref_primary_10_1016_j_molcel_2021_06_028
crossref_primary_10_3389_fcell_2022_875124
crossref_primary_10_3390_biom11111600
Cites_doi 10.1038/nature10774
10.1038/nsmb.2616
10.1073/pnas.1119394109
10.1016/j.molcel.2009.04.021
10.1016/j.str.2011.06.010
10.1073/pnas.1305782110
10.1073/pnas.1120559109
10.1073/pnas.1213333109
10.1016/S0969-2126(02)00748-7
10.1038/nature09780
10.1371/journal.pbio.0040267
10.1107/S0907444902016657
10.1016/S1047-8477(03)00069-8
10.1016/j.bbrc.2013.04.069
10.1093/emboj/19.1.94
10.1038/386463a0
10.1016/j.bbrc.2010.05.061
10.1126/science.1075898
10.1016/j.molcel.2012.03.026
10.1091/mbc.e06-07-0635
10.7554/eLife.13027
10.1016/j.jsb.2012.09.006
10.1016/j.str.2013.06.023
10.1016/j.cell.2015.09.022
10.1126/science.7725097
10.1107/S0907444904019158
10.1038/nsmb1335
10.1073/pnas.1400546111
10.1038/nature01071
10.1016/j.molcel.2013.12.009
10.1038/nsmb.2771
10.1002/jcc.20084
10.1038/nmeth.2472
10.1038/nmeth.2727
10.1016/j.tibs.2015.10.009
10.1073/pnas.1510449112
10.1073/pnas.1403409111
10.1016/j.ultramic.2013.06.004
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Mar 8, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Mar 8, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1073/pnas.1601561113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts

Algology Mycology and Protozoology Abstracts (Microbiology C)
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Structure of an endogenous yeast proteasome
EISSN 1091-6490
EndPage 2647
ExternalDocumentID 10.1073/pnas.1601561113
PMC4790998
3990372601
26929360
10_1073_pnas_1601561113
26468602
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM043601
– fundername: NIGMS NIH HHS
  grantid: R37-GM043601
– fundername: NIGMS NIH HHS
  grantid: R37 GM043601
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 31270764
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 31100524
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 31321062; and 31430020
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R37-GM043601
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
AFOSN
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
.GJ
3O-
692
6TJ
79B
AAYJJ
ACKIV
ADTOC
ADXHL
AFHIN
AFQQW
AS~
HGD
HQ3
HTVGU
MVM
NEJ
NHB
P-O
UNPAY
VOH
WHG
ZCG
ID FETCH-LOGICAL-c578t-6af519df2517510b417551e154c6d269d2345ab920d56ad2815c11080c7cf7463
IEDL.DBID UNPAY
ISSN 0027-8424
1091-6490
IngestDate Wed Oct 29 11:52:25 EDT 2025
Tue Sep 30 16:58:07 EDT 2025
Thu Oct 02 05:56:39 EDT 2025
Fri Sep 05 11:45:14 EDT 2025
Mon Jun 30 07:40:39 EDT 2025
Thu Apr 03 06:57:55 EDT 2025
Wed Oct 01 02:37:00 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Thu Oct 09 22:06:34 EDT 2025
Thu Oct 30 12:05:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords proteasome
cryo-EM
protein degradation
structure
Language English
License http://www.pnas.org/preview_site/misc/userlicense.xhtml
Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c578t-6af519df2517510b417551e154c6d269d2345ab920d56ad2815c11080c7cf7463
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
1B.L. and X.H. contributed equally to this work.
Contributed by Yigong Shi, February 4, 2016 (sent for review January 5, 2016; reviewed by Aaron Ciechanover and Huilin Li)
Author contributions: B.L., X.H., Y.S., and F.W. designed research; B.L., X.H., J. Wu, Z.M., Y.W., X.X., and F.W. performed research; B.L., X.H., J. Wu, C.Y., J. Wang, D.J.F., Y.S., and F.W. analyzed data; and B.L., X.H., J. Wu, D.J.F., Y.S., and F.W. wrote the paper.
Reviewers: A.C., Technion–Israel Institute of Technology; and H.L., Stony Brook University.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.pnas.org/content/pnas/113/10/2642.full.pdf
PMID 26929360
PQID 1774332936
PQPubID 42026
PageCount 6
ParticipantIDs unpaywall_primary_10_1073_pnas_1601561113
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4790998
proquest_miscellaneous_1785232751
proquest_miscellaneous_1772146674
proquest_journals_1774332936
pubmed_primary_26929360
crossref_citationtrail_10_1073_pnas_1601561113
crossref_primary_10_1073_pnas_1601561113
pnas_primary_10_1073_pnas_1601561113
jstor_primary_26468602
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-08
PublicationDateYYYYMMDD 2016-03-08
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAbbrev Proc Natl Acad Sci USA
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Adams 2002; 58
Sakata 2012; 109
Dong 2011; 19
Śledź 2013; 110
Fukunaga, Kudo, Toh-e, Tanaka, Saeki 2010; 396
DeLano 2002
Pathare 2014; 111
Worden, Padovani, Martin 2014; 21
Kleijnen 2007; 14
Verma 2002; 298
Sharon, Taverner, Ambroggio, Deshaies, Robinson 2006; 4
Kucukelbir, Sigworth, Tagare 2014; 11
Emsley, Cowtan 2004; 60
Chen 2013; 135
Wang 2011; 471
Estrin, Lopez-Blanco, Chacón, Martin 2013; 21
Leggett, Glickman, Finley 2005; 301
Isono 2007; 18
Löwe 1995; 268
Groll 1997; 386
Li 2013; 10
Beck 2012; 109
Unno 2002; 10
Aufderheide 2015; 112
Lasker 2012; 109
Tomko 2015; 163
Unverdorben 2014; 111
Mindell, Grigorieff 2003; 142
Zhang 2009; 34
Tomko, Hochstrasser 2014; 53
Lander 2012; 482
Dambacher, Worden, Herzik, Martin, Lander 2016; 5
Pettersen 2004; 25
da Fonseca, He, Morris 2012; 46
Scheres 2012; 180
Thrower, Hoffman, Rechsteiner, Pickart 2000; 19
Matyskiela, Lander, Martin 2013; 20
Bohn 2013; 435
Finley, Chen, Walters 2016; 41
Yao, Cohen 2002; 419
Lander GC (e_1_3_4_8_2) 2012; 482
Beck F (e_1_3_4_13_2) 2012; 109
Dong KC (e_1_3_4_36_2) 2011; 19
Leggett DS (e_1_3_4_20_2) 2005; 301
Matyskiela ME (e_1_3_4_15_2) 2013; 20
Finley D (e_1_3_4_1_2) 2016; 41
Thrower JS (e_1_3_4_27_2) 2000; 19
Mindell JA (e_1_3_4_38_2) 2003; 142
Löwe J (e_1_3_4_9_2) 1995; 268
Groll M (e_1_3_4_10_2) 1997; 386
Worden EJ (e_1_3_4_23_2) 2014; 21
Yao T (e_1_3_4_2_2) 2002; 419
Tomko RJ (e_1_3_4_21_2) 2014; 53
Scheres SH (e_1_3_4_31_2) 2012; 180
Śledź P (e_1_3_4_16_2) 2013; 110
Emsley P (e_1_3_4_32_2) 2004; 60
Unno M (e_1_3_4_11_2) 2002; 10
Pathare GR (e_1_3_4_22_2) 2014; 111
Lasker K (e_1_3_4_12_2) 2012; 109
Isono E (e_1_3_4_25_2) 2007; 18
Chen S (e_1_3_4_39_2) 2013; 135
Fukunaga K (e_1_3_4_26_2) 2010; 396
da Fonseca PC (e_1_3_4_14_2) 2012; 46
Aufderheide A (e_1_3_4_18_2) 2015; 112
Sharon M (e_1_3_4_24_2) 2006; 4
Adams PD (e_1_3_4_34_2) 2002; 58
Sakata E (e_1_3_4_28_2) 2012; 109
Wang F (e_1_3_4_7_2) 2011; 471
Bohn S (e_1_3_4_19_2) 2013; 435
e_1_3_4_35_2
Kucukelbir A (e_1_3_4_40_2) 2014; 11
Tomko RJ (e_1_3_4_5_2) 2015; 163
Kleijnen MF (e_1_3_4_30_2) 2007; 14
Pettersen EF (e_1_3_4_33_2) 2004; 25
Verma R (e_1_3_4_3_2) 2002; 298
Unverdorben P (e_1_3_4_17_2) 2014; 111
Estrin E (e_1_3_4_4_2) 2013; 21
Zhang F (e_1_3_4_6_2) 2009; 34
Dambacher CM (e_1_3_4_29_2) 2016; 5
Li X (e_1_3_4_37_2) 2013; 10
26744777 - Elife. 2016;5:e13027
23644547 - Nat Methods. 2013 Jun;10(6):584-90
24412063 - Mol Cell. 2014 Feb 6;53(3):433-43
12781660 - J Struct Biol. 2003 Jun;142(3):334-47
7725097 - Science. 1995 Apr 28;268(5210):533-9
22927375 - Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14870-5
15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
23643786 - Biochem Biophys Res Commun. 2013 May 31;435(2):250-4
12183636 - Science. 2002 Oct 18;298(5593):611-5
22307589 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1380-7
16869714 - PLoS Biol. 2006 Aug;4(8):e267
12393927 - Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54
26451487 - Cell. 2015 Oct 8;163(2):432-44
21368759 - Nature. 2011 Mar 17;471(7338):331-5
23911091 - Structure. 2013 Sep 3;21(9):1624-35
21827942 - Structure. 2011 Aug 10;19(8):1053-63
26643069 - Trends Biochem Sci. 2016 Jan;41(1):77-93
24463465 - Nat Struct Mol Biol. 2014 Mar;21(3):220-7
26130806 - Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8626-31
23589842 - Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7264-9
24213166 - Nat Methods. 2014 Jan;11(1):63-5
15264254 - J Comput Chem. 2004 Oct;25(13):1605-12
22500737 - Mol Cell. 2012 Apr 13;46(1):54-66
23872039 - Ultramicroscopy. 2013 Dec;135:24-35
9087403 - Nature. 1997 Apr 3;386(6624):463-71
22237024 - Nature. 2012 Feb 9;482(7384):186-91
23000701 - J Struct Biol. 2012 Dec;180(3):519-30
12353037 - Nature. 2002 Sep 26;419(6905):403-7
15917626 - Methods Mol Biol. 2005;301:57-70
24706844 - Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5544-9
24516147 - Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2984-9
17135287 - Mol Biol Cell. 2007 Feb;18(2):569-80
18026118 - Nat Struct Mol Biol. 2007 Dec;14(12):1180-8
23770819 - Nat Struct Mol Biol. 2013 Jul;20(7):781-8
19481527 - Mol Cell. 2009 May 14;34(4):473-84
12015144 - Structure. 2002 May;10(5):609-18
10619848 - EMBO J. 2000 Jan 4;19(1):94-102
20471955 - Biochem Biophys Res Commun. 2010 Jun 11;396(4):1048-53
22215586 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1479-84
References_xml – volume: 21
  start-page: 220
  year: 2014
  end-page: 227
  article-title: Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
  publication-title: Nat Struct Mol Biol
– volume: 19
  start-page: 1053
  year: 2011
  end-page: 1063
  article-title: Preparation of distinct ubiquitin chain reagents of high purity and yield
  publication-title: Structure
– volume: 163
  start-page: 432
  year: 2015
  end-page: 444
  article-title: A single α helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly
  publication-title: Cell
– volume: 142
  start-page: 334
  year: 2003
  end-page: 347
  article-title: Accurate determination of local defocus and specimen tilt in electron microscopy
  publication-title: J Struct Biol
– volume: 109
  start-page: 1380
  year: 2012
  end-page: 1387
  article-title: Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
  publication-title: Proc Natl Acad Sci USA
– volume: 180
  start-page: 519
  year: 2012
  end-page: 530
  article-title: RELION: Implementation of a Bayesian approach to cryo-EM structure determination
  publication-title: J Struct Biol
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  article-title: Coot: Model-building tools for molecular graphics
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 14
  start-page: 1180
  year: 2007
  end-page: 1188
  article-title: Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites
  publication-title: Nat Struct Mol Biol
– volume: 5
  start-page: e13027
  year: 2016
  article-title: Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
  publication-title: eLife
– volume: 482
  start-page: 186
  year: 2012
  end-page: 191
  article-title: Complete subunit architecture of the proteasome regulatory particle
  publication-title: Nature
– volume: 111
  start-page: 5544
  year: 2014
  end-page: 5549
  article-title: Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
  publication-title: Proc Natl Acad Sci USA
– volume: 396
  start-page: 1048
  year: 2010
  end-page: 1053
  article-title: Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae
  publication-title: Biochem Biophys Res Commun
– year: 2002
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  article-title: UCSF Chimera—A visualization system for exploratory research and analysis
  publication-title: J Comput Chem
– volume: 419
  start-page: 403
  year: 2002
  end-page: 407
  article-title: A cryptic protease couples deubiquitination and degradation by the proteasome
  publication-title: Nature
– volume: 58
  start-page: 1948
  year: 2002
  end-page: 1954
  article-title: PHENIX: Building new software for automated crystallographic structure determination
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 111
  start-page: 2984
  year: 2014
  end-page: 2989
  article-title: Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11
  publication-title: Proc Natl Acad Sci USA
– volume: 471
  start-page: 331
  year: 2011
  end-page: 335
  article-title: Structure and mechanism of the hexameric MecA-ClpC molecular machine
  publication-title: Nature
– volume: 20
  start-page: 781
  year: 2013
  end-page: 788
  article-title: Conformational switching of the 26S proteasome enables substrate degradation
  publication-title: Nat Struct Mol Biol
– volume: 10
  start-page: 609
  year: 2002
  end-page: 618
  article-title: The structure of the mammalian 20S proteasome at 2.75 Å resolution
  publication-title: Structure
– volume: 10
  start-page: 584
  year: 2013
  end-page: 590
  article-title: Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM
  publication-title: Nat Methods
– volume: 109
  start-page: 1479
  year: 2012
  end-page: 1484
  article-title: Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy
  publication-title: Proc Natl Acad Sci USA
– volume: 298
  start-page: 611
  year: 2002
  end-page: 615
  article-title: Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
  publication-title: Science
– volume: 53
  start-page: 433
  year: 2014
  end-page: 443
  article-title: The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis
  publication-title: Mol Cell
– volume: 19
  start-page: 94
  year: 2000
  end-page: 102
  article-title: Recognition of the polyubiquitin proteolytic signal
  publication-title: EMBO J
– volume: 11
  start-page: 63
  year: 2014
  end-page: 65
  article-title: Quantifying the local resolution of cryo-EM density maps
  publication-title: Nat Methods
– volume: 41
  start-page: 77
  year: 2016
  end-page: 93
  article-title: Gates, channels, and switches: Elements of the proteasome machine
  publication-title: Trends Biochem Sci
– volume: 21
  start-page: 1624
  year: 2013
  end-page: 1635
  article-title: Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid
  publication-title: Structure
– volume: 386
  start-page: 463
  year: 1997
  end-page: 471
  article-title: Structure of 20S proteasome from yeast at 2.4 Å resolution
  publication-title: Nature
– volume: 268
  start-page: 533
  year: 1995
  end-page: 539
  article-title: Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution
  publication-title: Science
– volume: 110
  start-page: 7264
  year: 2013
  end-page: 7269
  article-title: Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
  publication-title: Proc Natl Acad Sci USA
– volume: 112
  start-page: 8626
  year: 2015
  end-page: 8631
  article-title: Structural characterization of the interaction of Ubp6 with the 26S proteasome
  publication-title: Proc Natl Acad Sci USA
– volume: 135
  start-page: 24
  year: 2013
  end-page: 35
  article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy
  publication-title: Ultramicroscopy
– volume: 18
  start-page: 569
  year: 2007
  end-page: 580
  article-title: The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome
  publication-title: Mol Biol Cell
– volume: 301
  start-page: 57
  year: 2005
  end-page: 70
  article-title: Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast
  publication-title: Methods Mol Biol
– volume: 109
  start-page: 14870
  year: 2012
  end-page: 14875
  article-title: Near-atomic resolution structural model of the yeast 26S proteasome
  publication-title: Proc Natl Acad Sci USA
– volume: 46
  start-page: 54
  year: 2012
  end-page: 66
  article-title: Molecular model of the human 26S proteasome
  publication-title: Mol Cell
– volume: 4
  start-page: e267
  year: 2006
  article-title: Structural organization of the 19S proteasome lid: Insights from MS of intact complexes
  publication-title: PLoS Biol
– volume: 34
  start-page: 473
  year: 2009
  end-page: 484
  article-title: Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
  publication-title: Mol Cell
– volume: 435
  start-page: 250
  year: 2013
  end-page: 254
  article-title: Localization of the regulatory particle subunit Sem1 in the 26S proteasome
  publication-title: Biochem Biophys Res Commun
– volume: 482
  start-page: 186
  year: 2012
  ident: e_1_3_4_8_2
  article-title: Complete subunit architecture of the proteasome regulatory particle
  publication-title: Nature
  doi: 10.1038/nature10774
– volume: 20
  start-page: 781
  year: 2013
  ident: e_1_3_4_15_2
  article-title: Conformational switching of the 26S proteasome enables substrate degradation
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2616
– volume: 109
  start-page: 1479
  year: 2012
  ident: e_1_3_4_28_2
  article-title: Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1119394109
– volume: 34
  start-page: 473
  year: 2009
  ident: e_1_3_4_6_2
  article-title: Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.04.021
– volume: 19
  start-page: 1053
  year: 2011
  ident: e_1_3_4_36_2
  article-title: Preparation of distinct ubiquitin chain reagents of high purity and yield
  publication-title: Structure
  doi: 10.1016/j.str.2011.06.010
– volume: 110
  start-page: 7264
  year: 2013
  ident: e_1_3_4_16_2
  article-title: Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1305782110
– volume: 109
  start-page: 1380
  year: 2012
  ident: e_1_3_4_12_2
  article-title: Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1120559109
– volume: 109
  start-page: 14870
  year: 2012
  ident: e_1_3_4_13_2
  article-title: Near-atomic resolution structural model of the yeast 26S proteasome
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1213333109
– volume: 10
  start-page: 609
  year: 2002
  ident: e_1_3_4_11_2
  article-title: The structure of the mammalian 20S proteasome at 2.75 Å resolution
  publication-title: Structure
  doi: 10.1016/S0969-2126(02)00748-7
– volume: 471
  start-page: 331
  year: 2011
  ident: e_1_3_4_7_2
  article-title: Structure and mechanism of the hexameric MecA-ClpC molecular machine
  publication-title: Nature
  doi: 10.1038/nature09780
– volume: 4
  start-page: e267
  year: 2006
  ident: e_1_3_4_24_2
  article-title: Structural organization of the 19S proteasome lid: Insights from MS of intact complexes
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040267
– volume: 58
  start-page: 1948
  year: 2002
  ident: e_1_3_4_34_2
  article-title: PHENIX: Building new software for automated crystallographic structure determination
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444902016657
– volume: 142
  start-page: 334
  year: 2003
  ident: e_1_3_4_38_2
  article-title: Accurate determination of local defocus and specimen tilt in electron microscopy
  publication-title: J Struct Biol
  doi: 10.1016/S1047-8477(03)00069-8
– volume: 435
  start-page: 250
  year: 2013
  ident: e_1_3_4_19_2
  article-title: Localization of the regulatory particle subunit Sem1 in the 26S proteasome
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2013.04.069
– volume: 19
  start-page: 94
  year: 2000
  ident: e_1_3_4_27_2
  article-title: Recognition of the polyubiquitin proteolytic signal
  publication-title: EMBO J
  doi: 10.1093/emboj/19.1.94
– volume: 386
  start-page: 463
  year: 1997
  ident: e_1_3_4_10_2
  article-title: Structure of 20S proteasome from yeast at 2.4 Å resolution
  publication-title: Nature
  doi: 10.1038/386463a0
– volume: 396
  start-page: 1048
  year: 2010
  ident: e_1_3_4_26_2
  article-title: Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2010.05.061
– volume: 298
  start-page: 611
  year: 2002
  ident: e_1_3_4_3_2
  article-title: Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
  publication-title: Science
  doi: 10.1126/science.1075898
– volume: 46
  start-page: 54
  year: 2012
  ident: e_1_3_4_14_2
  article-title: Molecular model of the human 26S proteasome
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.03.026
– volume: 18
  start-page: 569
  year: 2007
  ident: e_1_3_4_25_2
  article-title: The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e06-07-0635
– volume: 5
  start-page: e13027
  year: 2016
  ident: e_1_3_4_29_2
  article-title: Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition
  publication-title: eLife
  doi: 10.7554/eLife.13027
– volume: 180
  start-page: 519
  year: 2012
  ident: e_1_3_4_31_2
  article-title: RELION: Implementation of a Bayesian approach to cryo-EM structure determination
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2012.09.006
– volume: 21
  start-page: 1624
  year: 2013
  ident: e_1_3_4_4_2
  article-title: Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid
  publication-title: Structure
  doi: 10.1016/j.str.2013.06.023
– volume: 163
  start-page: 432
  year: 2015
  ident: e_1_3_4_5_2
  article-title: A single α helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.022
– volume: 301
  start-page: 57
  year: 2005
  ident: e_1_3_4_20_2
  article-title: Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast
  publication-title: Methods Mol Biol
– volume: 268
  start-page: 533
  year: 1995
  ident: e_1_3_4_9_2
  article-title: Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution
  publication-title: Science
  doi: 10.1126/science.7725097
– volume: 60
  start-page: 2126
  year: 2004
  ident: e_1_3_4_32_2
  article-title: Coot: Model-building tools for molecular graphics
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444904019158
– volume: 14
  start-page: 1180
  year: 2007
  ident: e_1_3_4_30_2
  article-title: Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb1335
– volume: 111
  start-page: 2984
  year: 2014
  ident: e_1_3_4_22_2
  article-title: Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1400546111
– ident: e_1_3_4_35_2
– volume: 419
  start-page: 403
  year: 2002
  ident: e_1_3_4_2_2
  article-title: A cryptic protease couples deubiquitination and degradation by the proteasome
  publication-title: Nature
  doi: 10.1038/nature01071
– volume: 53
  start-page: 433
  year: 2014
  ident: e_1_3_4_21_2
  article-title: The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.12.009
– volume: 21
  start-page: 220
  year: 2014
  ident: e_1_3_4_23_2
  article-title: Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2771
– volume: 25
  start-page: 1605
  year: 2004
  ident: e_1_3_4_33_2
  article-title: UCSF Chimera—A visualization system for exploratory research and analysis
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20084
– volume: 10
  start-page: 584
  year: 2013
  ident: e_1_3_4_37_2
  article-title: Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2472
– volume: 11
  start-page: 63
  year: 2014
  ident: e_1_3_4_40_2
  article-title: Quantifying the local resolution of cryo-EM density maps
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2727
– volume: 41
  start-page: 77
  year: 2016
  ident: e_1_3_4_1_2
  article-title: Gates, channels, and switches: Elements of the proteasome machine
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2015.10.009
– volume: 112
  start-page: 8626
  year: 2015
  ident: e_1_3_4_18_2
  article-title: Structural characterization of the interaction of Ubp6 with the 26S proteasome
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1510449112
– volume: 111
  start-page: 5544
  year: 2014
  ident: e_1_3_4_17_2
  article-title: Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1403409111
– volume: 135
  start-page: 24
  year: 2013
  ident: e_1_3_4_39_2
  article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2013.06.004
– reference: 23643786 - Biochem Biophys Res Commun. 2013 May 31;435(2):250-4
– reference: 21368759 - Nature. 2011 Mar 17;471(7338):331-5
– reference: 26130806 - Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8626-31
– reference: 18026118 - Nat Struct Mol Biol. 2007 Dec;14(12):1180-8
– reference: 9087403 - Nature. 1997 Apr 3;386(6624):463-71
– reference: 22927375 - Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14870-5
– reference: 20471955 - Biochem Biophys Res Commun. 2010 Jun 11;396(4):1048-53
– reference: 24412063 - Mol Cell. 2014 Feb 6;53(3):433-43
– reference: 24463465 - Nat Struct Mol Biol. 2014 Mar;21(3):220-7
– reference: 26451487 - Cell. 2015 Oct 8;163(2):432-44
– reference: 22307589 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1380-7
– reference: 26643069 - Trends Biochem Sci. 2016 Jan;41(1):77-93
– reference: 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
– reference: 12183636 - Science. 2002 Oct 18;298(5593):611-5
– reference: 23770819 - Nat Struct Mol Biol. 2013 Jul;20(7):781-8
– reference: 19481527 - Mol Cell. 2009 May 14;34(4):473-84
– reference: 23589842 - Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7264-9
– reference: 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12
– reference: 17135287 - Mol Biol Cell. 2007 Feb;18(2):569-80
– reference: 24516147 - Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2984-9
– reference: 23644547 - Nat Methods. 2013 Jun;10(6):584-90
– reference: 16869714 - PLoS Biol. 2006 Aug;4(8):e267
– reference: 22237024 - Nature. 2012 Feb 9;482(7384):186-91
– reference: 7725097 - Science. 1995 Apr 28;268(5210):533-9
– reference: 12015144 - Structure. 2002 May;10(5):609-18
– reference: 12781660 - J Struct Biol. 2003 Jun;142(3):334-47
– reference: 21827942 - Structure. 2011 Aug 10;19(8):1053-63
– reference: 26744777 - Elife. 2016;5:e13027
– reference: 23911091 - Structure. 2013 Sep 3;21(9):1624-35
– reference: 23872039 - Ultramicroscopy. 2013 Dec;135:24-35
– reference: 22215586 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1479-84
– reference: 24706844 - Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5544-9
– reference: 24213166 - Nat Methods. 2014 Jan;11(1):63-5
– reference: 22500737 - Mol Cell. 2012 Apr 13;46(1):54-66
– reference: 12353037 - Nature. 2002 Sep 26;419(6905):403-7
– reference: 23000701 - J Struct Biol. 2012 Dec;180(3):519-30
– reference: 10619848 - EMBO J. 2000 Jan 4;19(1):94-102
– reference: 12393927 - Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54
– reference: 15917626 - Methods Mol Biol. 2005;301:57-70
SSID ssj0009580
Score 2.456755
Snippet The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures...
SignificanceMechanistic understanding of proteasome function requires elucidation of its three-dimensional structure. Previous investigations have revealed...
Mechanistic understanding of proteasome function requires elucidation of its three-dimensional structure. Previous investigations have revealed increasingly...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2642
SubjectTerms Adenosine triphosphatase
ATP
Biochemical analysis
Biochemistry
Biological Sciences
Cryoelectron Microscopy - methods
Crystallography, X-Ray
Enzymatic activity
Eukaryotes
Models, Molecular
Proteasome Endopeptidase Complex - chemistry
Proteasome Endopeptidase Complex - metabolism
Proteasome Endopeptidase Complex - ultrastructure
Protein Conformation
Proteins
Proteolysis
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - ultrastructure
Substrate Specificity
Yeast
Yeasts
Title Structure of an endogenous yeast 26S proteasome reveals two major conformational states
URI https://www.jstor.org/stable/26468602
https://www.pnas.org/doi/10.1073/pnas.1601561113
https://www.ncbi.nlm.nih.gov/pubmed/26929360
https://www.proquest.com/docview/1774332936
https://www.proquest.com/docview/1772146674
https://www.proquest.com/docview/1785232751
https://pubmed.ncbi.nlm.nih.gov/PMC4790998
https://www.pnas.org/content/pnas/113/10/2642.full.pdf
UnpaywallVersion publishedVersion
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB616QEuQIGCoVSL1EN7cBLv0z5WiFIhUSGVqOFkre21eKR21CSqyq9nZv2g4VX1ZMk7a3u9MzufvTPfAOwXEc9EnpmwNFyFUpQ8zGzsQlmi-sjY2jKnbOQPp_pkIt9P1XQDdJcLQ2GV88ou_CY-RWvj0juiE6MoEmjiI3TgfEi_pofzotyELa0Qgw9ga3L68ehzE8-By65sqtmiMwy1TMYdp48R_lr0SwW_W6jK-po7aiISieYUhf4GOf-MnLy3qub2-srOZjfc0vFDOO8G1ESjfB-ultkw__Eb1-PdR_wIHrRIlR01qrUNG656DNvtWrBgBy1h9eETOD_zJLSrS8fqktmKuaqoG_JXdk21gRjXZ8wzQthFfeEY0Uah2rPlVc0u7Lf6kuET9WmUeFOf5rR4CpPjt5_enIRtwYYwR8NfhtqWCAiLkmjQ0NYziQcVOURpuS64TgoupLJZwseF0rbgcaRySkMY50SOJLXYgUFVV-45MJGZuMBzyuRcCssT7BKX2iUZegoTqwCG3bylectmTkU1ZqnfVTcipVeY_proAA76DvOGyOPfojteEXo5nAFNtboC2Peit_bf7TQnbVcEbEacLQSCKx3A674ZbZk2aGzlcEpIhuqsayP_JxMrRMH4fgN41ijjjedM6AbjAMyamvYCxCW-3lJ9_eI5xaVJ8FshDuCwV-jbhvniDrIv4T4iTe2D9-JdGKBauleI5pbZHmy-m0Z7rQH_BJYqRcY
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QEuQIFCoCAj9dAekt34mRwrRFUhUSGVVcspchJHBbbJqrurqvx6ZpwHXV5VT5HicRLHM54v8cw3ALtlzHNR5CasDFehFBUPc5u4UFaoPjKxtiooG_njsT6ayg9n6mwDdJ8LQ2GV89ou_CY-RWvj0jumE-M4FmjiY3TgPKJf09G8rO7BplaIwUewOT3-dPCljefAZVe21WzRGYZappOe08cIfy36pYLfLVRlfc0dtRGJRHOKQn-DnH9GTt5f1XN7fWVnsxtu6fARnPYDaqNRvkerZR4VP37jerz7iB_Dww6psoNWtbZgw9VPYKtbCxZsryOs3n8KpyeehHZ16VhTMVszV5dNS_7Krqk2EOP6hHlGCLtoLhwj2ihUe7a8atiF_dZcMnyiIY0Sb-rTnBbPYHr4_vO7o7Ar2BAWaPjLUNsKAWFZEQ0a2nou8aBihyit0CXXacmFVDZP-aRU2pY8iVVBaQiTgsiRpBbbMKqb2r0AJnKTlHhOmYJLYXmKXZJKuzRHT2ESFUDUz1tWdGzmVFRjlvlddSMyeoXZr4kOYG_oMG-JPP4tuu0VYZDDGdBUqyuAXS96a_-dXnOybkXAZsTZQiC40gG8HZrRlmmDxtYOp4RkqM66NvJ_MolCFIzvN4DnrTLeeM6UbjAJwKyp6SBAXOLrLfXXc88pLk2K3wpJAPuDQt82zJd3kH0FDxBpah-8l-zACNXSvUY0t8zfdKb7E_kwRNU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+of+an+endogenous+yeast+26S+proteasome+reveals+two+major+conformational+states&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Luan%2C+Bai&rft.au=Huang%2C+Xiuliang&rft.au=Wu%2C+Jianping&rft.au=Mei%2C+Ziqing&rft.date=2016-03-08&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=10&rft.spage=2642&rft.epage=2647&rft_id=info:doi/10.1073%2Fpnas.1601561113&rft.externalDocID=10.1073%2Fpnas.1601561113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon