Structure of an endogenous yeast 26S proteasome reveals two major conformational states
The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeli...
        Saved in:
      
    
          | Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 10; pp. 2642 - 2647 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          National Academy of Sciences
    
        08.03.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0027-8424 1091-6490 1091-6490  | 
| DOI | 10.1073/pnas.1601561113 | 
Cover
| Abstract | The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. | 
    
|---|---|
| AbstractList | The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-A resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-A resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP- gamma S and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. Mechanistic understanding of proteasome function requires elucidation of its three-dimensional structure. Previous investigations have revealed increasingly detailed information on the overall organization of the yeast 26S proteasome. In this study, we further improved the resolution of cryo-EM structures of endogenous proteasomes from Saccharomyces cerevisiae . These structures reveal two distinct conformational states, which appear to correspond to different states of ATP hydrolysis and substrate binding. This information may guide future functional analysis of the proteasome. The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. Mechanistic understanding of proteasome function requires elucidation of its three-dimensional structure. Previous investigations have revealed increasingly detailed information on the overall organization of the yeast 26S proteasome. In this study, we further improved the resolution of cryo-EM structures of endogenous proteasomes from Saccharomyces cerevisiae. These structures reveal two distinct conformational states, which appear to correspond to different states of ATP hydrolysis and substrate binding. This information may guide future functional analysis of the proteasome. The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function. SignificanceMechanistic understanding of proteasome function requires elucidation of its three-dimensional structure. Previous investigations have revealed increasingly detailed information on the overall organization of the yeast 26S proteasome. In this study, we further improved the resolution of cryo-EM structures of endogenous proteasomes from Saccharomyces cerevisiae. These structures reveal two distinct conformational states, which appear to correspond to different states of ATP hydrolysis and substrate binding. This information may guide future functional analysis of the proteasome. The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures of the endogenous 26S proteasome from Saccharomyces cerevisiae at 4.6- to 6.3-Å resolution. The fine features of the cryo-EM maps allow modeling of 18 subunits in the regulatory particle and 28 in the core particle. The proteasome exhibits two distinct conformational states, designated M1 and M2, which correspond to those reported previously for the proteasome purified in the presence of ATP-γS and ATP, respectively. These conformations also correspond to those of the proteasome in the presence and absence of exogenous substrate. Structure-guided biochemical analysis reveals enhanced deubiquitylating enzyme activity of Rpn11 upon assembly of the lid. Our structures serve as a molecular basis for mechanistic understanding of proteasome function.  | 
    
| Author | Finley, Daniel J. Huang, Xiuliang Mei, Ziqing Wang, Jiawei Wang, Yiwei Luan, Bai Yan, Chuangye 王丰 施一公 Wang, Feng Wu, Jianping 栾白 Xue, Xiaobin Shi, Yigong 黄修良  | 
    
| Author_xml | – sequence: 1 givenname: Bai surname: Luan fullname: Luan, Bai organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 2 fullname: 栾白 organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Xiuliang surname: Huang fullname: Huang, Xiuliang organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 4 fullname: 黄修良 organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Jianping surname: Wu fullname: Wu, Jianping organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 6 givenname: Ziqing surname: Mei fullname: Mei, Ziqing organization: Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 10081, China – sequence: 7 givenname: Yiwei surname: Wang fullname: Wang, Yiwei organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 8 givenname: Xiaobin surname: Xue fullname: Xue, Xiaobin organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 9 givenname: Chuangye surname: Yan fullname: Yan, Chuangye organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 10 givenname: Jiawei surname: Wang fullname: Wang, Jiawei organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 11 givenname: Daniel J. surname: Finley fullname: Finley, Daniel J. organization: Department of Cell Biology, Harvard Medical School, Boston, MA 02115 – sequence: 12 givenname: Yigong surname: Shi fullname: Shi, Yigong organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 13 fullname: 施一公 organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 14 givenname: Feng surname: Wang fullname: Wang, Feng organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China – sequence: 15 fullname: 王丰 organization: Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26929360$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkc1v1DAQxS1URLeFMyeQJS5IKO2M44_kgoQqvqRKHAriaHkdp2SV2IvttNr_Hm93oaUHymk0mt8bvXlzRA588I6Q5wgnCKo-XXuTTlACComI9SOyQGixkryFA7IAYKpqOOOH5CilFQC0ooEn5JDJlrW1hAX5fpHjbPMcHQ09NZ4634VL58Oc6MaZlCmTF3QdQy5NmByN7sqZMdF8HehkViFSG3wf4mTyELwZacomu_SUPO4L5p7t6zH59uH917NP1fmXj5_P3p1XVqgmV9L0AtuuZwKVQFjyUgQ6FNzKrrjsWM2FWbYMOiFNxxoUFhEasMr2isv6mMBu7-zXZnNtxlGv4zCZuNEIepuR3makbzMqkrc7yXpeTq6zzudobmXBDPrviR9-6MtwpblqoW2bsuD1fkEMP2eXsp6GZN04Gu9KbhpVI1jNykH_gSqGXErFC_rqHroKcyyJ3lC8rrcfK9TLu-b_uP790QKIHWBjSCm6Xtsh3_ym3DKM_0jl9J7u4Rzf7K1sBw_TL3b0KuUQ7_jmspHA6l8Fs9rw | 
    
| CitedBy_id | crossref_primary_10_1016_j_celrep_2018_12_042 crossref_primary_10_1074_jbc_RA120_014576 crossref_primary_10_1093_abbs_gmy176 crossref_primary_10_1128_AAC_00448_19 crossref_primary_10_1042_BST20200382 crossref_primary_10_3390_cells11030421 crossref_primary_10_1111_mmi_13695 crossref_primary_10_1016_j_str_2016_07_005 crossref_primary_10_1146_annurev_biochem_013118_111429 crossref_primary_10_1051_jbio_2021005 crossref_primary_10_1016_j_tibs_2022_06_006 crossref_primary_10_1038_s41467_018_03509_0 crossref_primary_10_1073_pnas_1902931116 crossref_primary_10_1016_j_bbapap_2020_140583 crossref_primary_10_1111_febs_15638 crossref_primary_10_1016_j_jmb_2017_09_015 crossref_primary_10_1146_annurev_biochem_062917_011931 crossref_primary_10_1038_nsmb_3273 crossref_primary_10_1093_jnen_nlab029 crossref_primary_10_1016_j_str_2020_07_011 crossref_primary_10_1016_j_bbamcr_2019_118617 crossref_primary_10_1007_s11515_017_1439_1 crossref_primary_10_1021_jasms_4c00381 crossref_primary_10_1038_s41467_018_04731_6 crossref_primary_10_1016_j_str_2020_07_010 crossref_primary_10_1016_j_molcel_2017_07_023 crossref_primary_10_1038_cr_2017_12 crossref_primary_10_1038_s41467_018_03785_w crossref_primary_10_1073_pnas_1621129114 crossref_primary_10_1128_msystems_00418_21 crossref_primary_10_1063_5_0015191 crossref_primary_10_1016_j_ejmech_2018_01_013 crossref_primary_10_1016_j_molcel_2019_01_018 crossref_primary_10_1107_S2059798319015924 crossref_primary_10_9729_AM_2018_48_1_1 crossref_primary_10_1080_10409238_2016_1230087 crossref_primary_10_1038_s41467_019_13906_8 crossref_primary_10_1016_j_str_2017_04_002 crossref_primary_10_1016_j_jbc_2023_102870 crossref_primary_10_1038_s41416_022_01829_z crossref_primary_10_1038_cr_2016_86 crossref_primary_10_1038_nrd_2018_77 crossref_primary_10_1093_jb_mvw091 crossref_primary_10_1017_S0033583516000160 crossref_primary_10_1016_j_jmb_2017_05_027 crossref_primary_10_1073_pnas_1612922114 crossref_primary_10_1016_j_biocel_2016_08_008 crossref_primary_10_1073_pnas_1608050113 crossref_primary_10_1073_pnas_1614614113 crossref_primary_10_1038_s41586_018_0736_4 crossref_primary_10_1016_j_celrep_2022_110918 crossref_primary_10_1038_s41467_022_34691_x crossref_primary_10_1146_annurev_biophys_070816_033719 crossref_primary_10_3389_fonc_2019_00761 crossref_primary_10_3390_ijms24032221 crossref_primary_10_1016_j_molcel_2017_06_007 crossref_primary_10_1016_j_chembiol_2017_02_013 crossref_primary_10_1074_mcp_M116_065326 crossref_primary_10_1371_journal_pone_0225145 crossref_primary_10_1016_j_molcel_2021_06_028 crossref_primary_10_3389_fcell_2022_875124 crossref_primary_10_3390_biom11111600  | 
    
| Cites_doi | 10.1038/nature10774 10.1038/nsmb.2616 10.1073/pnas.1119394109 10.1016/j.molcel.2009.04.021 10.1016/j.str.2011.06.010 10.1073/pnas.1305782110 10.1073/pnas.1120559109 10.1073/pnas.1213333109 10.1016/S0969-2126(02)00748-7 10.1038/nature09780 10.1371/journal.pbio.0040267 10.1107/S0907444902016657 10.1016/S1047-8477(03)00069-8 10.1016/j.bbrc.2013.04.069 10.1093/emboj/19.1.94 10.1038/386463a0 10.1016/j.bbrc.2010.05.061 10.1126/science.1075898 10.1016/j.molcel.2012.03.026 10.1091/mbc.e06-07-0635 10.7554/eLife.13027 10.1016/j.jsb.2012.09.006 10.1016/j.str.2013.06.023 10.1016/j.cell.2015.09.022 10.1126/science.7725097 10.1107/S0907444904019158 10.1038/nsmb1335 10.1073/pnas.1400546111 10.1038/nature01071 10.1016/j.molcel.2013.12.009 10.1038/nsmb.2771 10.1002/jcc.20084 10.1038/nmeth.2472 10.1038/nmeth.2727 10.1016/j.tibs.2015.10.009 10.1073/pnas.1510449112 10.1073/pnas.1403409111 10.1016/j.ultramic.2013.06.004  | 
    
| ContentType | Journal Article | 
    
| Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Mar 8, 2016  | 
    
| Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Mar 8, 2016  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1073/pnas.1601561113 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| DocumentTitleAlternate | Structure of an endogenous yeast proteasome | 
    
| EISSN | 1091-6490 | 
    
| EndPage | 2647 | 
    
| ExternalDocumentID | 10.1073/pnas.1601561113 PMC4790998 3990372601 26929360 10_1073_pnas_1601561113 26468602  | 
    
| Genre | Research Article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature  | 
    
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM043601 – fundername: NIGMS NIH HHS grantid: R37-GM043601 – fundername: NIGMS NIH HHS grantid: R37 GM043601 – fundername: National Natural Science Foundation of China (NSFC) grantid: 31270764 – fundername: National Natural Science Foundation of China (NSFC) grantid: 31100524 – fundername: National Natural Science Foundation of China (NSFC) grantid: 31321062; and 31430020 – fundername: HHS | National Institutes of Health (NIH) grantid: R37-GM043601  | 
    
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION AFOSN CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM .GJ 3O- 692 6TJ 79B AAYJJ ACKIV ADTOC ADXHL AFHIN AFQQW AS~ HGD HQ3 HTVGU MVM NEJ NHB P-O UNPAY VOH WHG ZCG  | 
    
| ID | FETCH-LOGICAL-c578t-6af519df2517510b417551e154c6d269d2345ab920d56ad2815c11080c7cf7463 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0027-8424 1091-6490  | 
    
| IngestDate | Wed Oct 29 11:52:25 EDT 2025 Tue Sep 30 16:58:07 EDT 2025 Thu Oct 02 05:56:39 EDT 2025 Fri Sep 05 11:45:14 EDT 2025 Mon Jun 30 07:40:39 EDT 2025 Thu Apr 03 06:57:55 EDT 2025 Wed Oct 01 02:37:00 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Thu Oct 09 22:06:34 EDT 2025 Thu Oct 30 12:05:46 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Keywords | proteasome cryo-EM protein degradation structure  | 
    
| Language | English | 
    
| License | http://www.pnas.org/preview_site/misc/userlicense.xhtml Freely available online through the PNAS open access option.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c578t-6af519df2517510b417551e154c6d269d2345ab920d56ad2815c11080c7cf7463 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 1B.L. and X.H. contributed equally to this work. Contributed by Yigong Shi, February 4, 2016 (sent for review January 5, 2016; reviewed by Aaron Ciechanover and Huilin Li) Author contributions: B.L., X.H., Y.S., and F.W. designed research; B.L., X.H., J. Wu, Z.M., Y.W., X.X., and F.W. performed research; B.L., X.H., J. Wu, C.Y., J. Wang, D.J.F., Y.S., and F.W. analyzed data; and B.L., X.H., J. Wu, D.J.F., Y.S., and F.W. wrote the paper. Reviewers: A.C., Technion–Israel Institute of Technology; and H.L., Stony Brook University.  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.pnas.org/content/pnas/113/10/2642.full.pdf | 
    
| PMID | 26929360 | 
    
| PQID | 1774332936 | 
    
| PQPubID | 42026 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | unpaywall_primary_10_1073_pnas_1601561113 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4790998 proquest_miscellaneous_1785232751 proquest_miscellaneous_1772146674 proquest_journals_1774332936 pubmed_primary_26929360 crossref_citationtrail_10_1073_pnas_1601561113 crossref_primary_10_1073_pnas_1601561113 pnas_primary_10_1073_pnas_1601561113 jstor_primary_26468602  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-03-08 | 
    
| PublicationDateYYYYMMDD | 2016-03-08 | 
    
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-08 day: 08  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Washington  | 
    
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS | 
    
| PublicationTitleAbbrev | Proc Natl Acad Sci USA | 
    
| PublicationTitleAlternate | Proc Natl Acad Sci U S A | 
    
| PublicationYear | 2016 | 
    
| Publisher | National Academy of Sciences | 
    
| Publisher_xml | – name: National Academy of Sciences | 
    
| References | Adams 2002; 58 Sakata 2012; 109 Dong 2011; 19 Śledź 2013; 110 Fukunaga, Kudo, Toh-e, Tanaka, Saeki 2010; 396 DeLano 2002 Pathare 2014; 111 Worden, Padovani, Martin 2014; 21 Kleijnen 2007; 14 Verma 2002; 298 Sharon, Taverner, Ambroggio, Deshaies, Robinson 2006; 4 Kucukelbir, Sigworth, Tagare 2014; 11 Emsley, Cowtan 2004; 60 Chen 2013; 135 Wang 2011; 471 Estrin, Lopez-Blanco, Chacón, Martin 2013; 21 Leggett, Glickman, Finley 2005; 301 Isono 2007; 18 Löwe 1995; 268 Groll 1997; 386 Li 2013; 10 Beck 2012; 109 Unno 2002; 10 Aufderheide 2015; 112 Lasker 2012; 109 Tomko 2015; 163 Unverdorben 2014; 111 Mindell, Grigorieff 2003; 142 Zhang 2009; 34 Tomko, Hochstrasser 2014; 53 Lander 2012; 482 Dambacher, Worden, Herzik, Martin, Lander 2016; 5 Pettersen 2004; 25 da Fonseca, He, Morris 2012; 46 Scheres 2012; 180 Thrower, Hoffman, Rechsteiner, Pickart 2000; 19 Matyskiela, Lander, Martin 2013; 20 Bohn 2013; 435 Finley, Chen, Walters 2016; 41 Yao, Cohen 2002; 419 Lander GC (e_1_3_4_8_2) 2012; 482 Beck F (e_1_3_4_13_2) 2012; 109 Dong KC (e_1_3_4_36_2) 2011; 19 Leggett DS (e_1_3_4_20_2) 2005; 301 Matyskiela ME (e_1_3_4_15_2) 2013; 20 Finley D (e_1_3_4_1_2) 2016; 41 Thrower JS (e_1_3_4_27_2) 2000; 19 Mindell JA (e_1_3_4_38_2) 2003; 142 Löwe J (e_1_3_4_9_2) 1995; 268 Groll M (e_1_3_4_10_2) 1997; 386 Worden EJ (e_1_3_4_23_2) 2014; 21 Yao T (e_1_3_4_2_2) 2002; 419 Tomko RJ (e_1_3_4_21_2) 2014; 53 Scheres SH (e_1_3_4_31_2) 2012; 180 Śledź P (e_1_3_4_16_2) 2013; 110 Emsley P (e_1_3_4_32_2) 2004; 60 Unno M (e_1_3_4_11_2) 2002; 10 Pathare GR (e_1_3_4_22_2) 2014; 111 Lasker K (e_1_3_4_12_2) 2012; 109 Isono E (e_1_3_4_25_2) 2007; 18 Chen S (e_1_3_4_39_2) 2013; 135 Fukunaga K (e_1_3_4_26_2) 2010; 396 da Fonseca PC (e_1_3_4_14_2) 2012; 46 Aufderheide A (e_1_3_4_18_2) 2015; 112 Sharon M (e_1_3_4_24_2) 2006; 4 Adams PD (e_1_3_4_34_2) 2002; 58 Sakata E (e_1_3_4_28_2) 2012; 109 Wang F (e_1_3_4_7_2) 2011; 471 Bohn S (e_1_3_4_19_2) 2013; 435 e_1_3_4_35_2 Kucukelbir A (e_1_3_4_40_2) 2014; 11 Tomko RJ (e_1_3_4_5_2) 2015; 163 Kleijnen MF (e_1_3_4_30_2) 2007; 14 Pettersen EF (e_1_3_4_33_2) 2004; 25 Verma R (e_1_3_4_3_2) 2002; 298 Unverdorben P (e_1_3_4_17_2) 2014; 111 Estrin E (e_1_3_4_4_2) 2013; 21 Zhang F (e_1_3_4_6_2) 2009; 34 Dambacher CM (e_1_3_4_29_2) 2016; 5 Li X (e_1_3_4_37_2) 2013; 10 26744777 - Elife. 2016;5:e13027 23644547 - Nat Methods. 2013 Jun;10(6):584-90 24412063 - Mol Cell. 2014 Feb 6;53(3):433-43 12781660 - J Struct Biol. 2003 Jun;142(3):334-47 7725097 - Science. 1995 Apr 28;268(5210):533-9 22927375 - Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14870-5 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 23643786 - Biochem Biophys Res Commun. 2013 May 31;435(2):250-4 12183636 - Science. 2002 Oct 18;298(5593):611-5 22307589 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1380-7 16869714 - PLoS Biol. 2006 Aug;4(8):e267 12393927 - Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54 26451487 - Cell. 2015 Oct 8;163(2):432-44 21368759 - Nature. 2011 Mar 17;471(7338):331-5 23911091 - Structure. 2013 Sep 3;21(9):1624-35 21827942 - Structure. 2011 Aug 10;19(8):1053-63 26643069 - Trends Biochem Sci. 2016 Jan;41(1):77-93 24463465 - Nat Struct Mol Biol. 2014 Mar;21(3):220-7 26130806 - Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8626-31 23589842 - Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7264-9 24213166 - Nat Methods. 2014 Jan;11(1):63-5 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 22500737 - Mol Cell. 2012 Apr 13;46(1):54-66 23872039 - Ultramicroscopy. 2013 Dec;135:24-35 9087403 - Nature. 1997 Apr 3;386(6624):463-71 22237024 - Nature. 2012 Feb 9;482(7384):186-91 23000701 - J Struct Biol. 2012 Dec;180(3):519-30 12353037 - Nature. 2002 Sep 26;419(6905):403-7 15917626 - Methods Mol Biol. 2005;301:57-70 24706844 - Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5544-9 24516147 - Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2984-9 17135287 - Mol Biol Cell. 2007 Feb;18(2):569-80 18026118 - Nat Struct Mol Biol. 2007 Dec;14(12):1180-8 23770819 - Nat Struct Mol Biol. 2013 Jul;20(7):781-8 19481527 - Mol Cell. 2009 May 14;34(4):473-84 12015144 - Structure. 2002 May;10(5):609-18 10619848 - EMBO J. 2000 Jan 4;19(1):94-102 20471955 - Biochem Biophys Res Commun. 2010 Jun 11;396(4):1048-53 22215586 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1479-84  | 
    
| References_xml | – volume: 21 start-page: 220 year: 2014 end-page: 227 article-title: Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation publication-title: Nat Struct Mol Biol – volume: 19 start-page: 1053 year: 2011 end-page: 1063 article-title: Preparation of distinct ubiquitin chain reagents of high purity and yield publication-title: Structure – volume: 163 start-page: 432 year: 2015 end-page: 444 article-title: A single α helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly publication-title: Cell – volume: 142 start-page: 334 year: 2003 end-page: 347 article-title: Accurate determination of local defocus and specimen tilt in electron microscopy publication-title: J Struct Biol – volume: 109 start-page: 1380 year: 2012 end-page: 1387 article-title: Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach publication-title: Proc Natl Acad Sci USA – volume: 180 start-page: 519 year: 2012 end-page: 530 article-title: RELION: Implementation of a Bayesian approach to cryo-EM structure determination publication-title: J Struct Biol – volume: 60 start-page: 2126 year: 2004 end-page: 2132 article-title: Coot: Model-building tools for molecular graphics publication-title: Acta Crystallogr D Biol Crystallogr – volume: 14 start-page: 1180 year: 2007 end-page: 1188 article-title: Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites publication-title: Nat Struct Mol Biol – volume: 5 start-page: e13027 year: 2016 article-title: Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition publication-title: eLife – volume: 482 start-page: 186 year: 2012 end-page: 191 article-title: Complete subunit architecture of the proteasome regulatory particle publication-title: Nature – volume: 111 start-page: 5544 year: 2014 end-page: 5549 article-title: Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome publication-title: Proc Natl Acad Sci USA – volume: 396 start-page: 1048 year: 2010 end-page: 1053 article-title: Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae publication-title: Biochem Biophys Res Commun – year: 2002 – volume: 25 start-page: 1605 year: 2004 end-page: 1612 article-title: UCSF Chimera—A visualization system for exploratory research and analysis publication-title: J Comput Chem – volume: 419 start-page: 403 year: 2002 end-page: 407 article-title: A cryptic protease couples deubiquitination and degradation by the proteasome publication-title: Nature – volume: 58 start-page: 1948 year: 2002 end-page: 1954 article-title: PHENIX: Building new software for automated crystallographic structure determination publication-title: Acta Crystallogr D Biol Crystallogr – volume: 111 start-page: 2984 year: 2014 end-page: 2989 article-title: Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11 publication-title: Proc Natl Acad Sci USA – volume: 471 start-page: 331 year: 2011 end-page: 335 article-title: Structure and mechanism of the hexameric MecA-ClpC molecular machine publication-title: Nature – volume: 20 start-page: 781 year: 2013 end-page: 788 article-title: Conformational switching of the 26S proteasome enables substrate degradation publication-title: Nat Struct Mol Biol – volume: 10 start-page: 609 year: 2002 end-page: 618 article-title: The structure of the mammalian 20S proteasome at 2.75 Å resolution publication-title: Structure – volume: 10 start-page: 584 year: 2013 end-page: 590 article-title: Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM publication-title: Nat Methods – volume: 109 start-page: 1479 year: 2012 end-page: 1484 article-title: Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy publication-title: Proc Natl Acad Sci USA – volume: 298 start-page: 611 year: 2002 end-page: 615 article-title: Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome publication-title: Science – volume: 53 start-page: 433 year: 2014 end-page: 443 article-title: The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis publication-title: Mol Cell – volume: 19 start-page: 94 year: 2000 end-page: 102 article-title: Recognition of the polyubiquitin proteolytic signal publication-title: EMBO J – volume: 11 start-page: 63 year: 2014 end-page: 65 article-title: Quantifying the local resolution of cryo-EM density maps publication-title: Nat Methods – volume: 41 start-page: 77 year: 2016 end-page: 93 article-title: Gates, channels, and switches: Elements of the proteasome machine publication-title: Trends Biochem Sci – volume: 21 start-page: 1624 year: 2013 end-page: 1635 article-title: Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid publication-title: Structure – volume: 386 start-page: 463 year: 1997 end-page: 471 article-title: Structure of 20S proteasome from yeast at 2.4 Å resolution publication-title: Nature – volume: 268 start-page: 533 year: 1995 end-page: 539 article-title: Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution publication-title: Science – volume: 110 start-page: 7264 year: 2013 end-page: 7269 article-title: Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation publication-title: Proc Natl Acad Sci USA – volume: 112 start-page: 8626 year: 2015 end-page: 8631 article-title: Structural characterization of the interaction of Ubp6 with the 26S proteasome publication-title: Proc Natl Acad Sci USA – volume: 135 start-page: 24 year: 2013 end-page: 35 article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy publication-title: Ultramicroscopy – volume: 18 start-page: 569 year: 2007 end-page: 580 article-title: The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome publication-title: Mol Biol Cell – volume: 301 start-page: 57 year: 2005 end-page: 70 article-title: Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast publication-title: Methods Mol Biol – volume: 109 start-page: 14870 year: 2012 end-page: 14875 article-title: Near-atomic resolution structural model of the yeast 26S proteasome publication-title: Proc Natl Acad Sci USA – volume: 46 start-page: 54 year: 2012 end-page: 66 article-title: Molecular model of the human 26S proteasome publication-title: Mol Cell – volume: 4 start-page: e267 year: 2006 article-title: Structural organization of the 19S proteasome lid: Insights from MS of intact complexes publication-title: PLoS Biol – volume: 34 start-page: 473 year: 2009 end-page: 484 article-title: Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii publication-title: Mol Cell – volume: 435 start-page: 250 year: 2013 end-page: 254 article-title: Localization of the regulatory particle subunit Sem1 in the 26S proteasome publication-title: Biochem Biophys Res Commun – volume: 482 start-page: 186 year: 2012 ident: e_1_3_4_8_2 article-title: Complete subunit architecture of the proteasome regulatory particle publication-title: Nature doi: 10.1038/nature10774 – volume: 20 start-page: 781 year: 2013 ident: e_1_3_4_15_2 article-title: Conformational switching of the 26S proteasome enables substrate degradation publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2616 – volume: 109 start-page: 1479 year: 2012 ident: e_1_3_4_28_2 article-title: Localization of the proteasomal ubiquitin receptors Rpn10 and Rpn13 by electron cryomicroscopy publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1119394109 – volume: 34 start-page: 473 year: 2009 ident: e_1_3_4_6_2 article-title: Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii publication-title: Mol Cell doi: 10.1016/j.molcel.2009.04.021 – volume: 19 start-page: 1053 year: 2011 ident: e_1_3_4_36_2 article-title: Preparation of distinct ubiquitin chain reagents of high purity and yield publication-title: Structure doi: 10.1016/j.str.2011.06.010 – volume: 110 start-page: 7264 year: 2013 ident: e_1_3_4_16_2 article-title: Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1305782110 – volume: 109 start-page: 1380 year: 2012 ident: e_1_3_4_12_2 article-title: Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1120559109 – volume: 109 start-page: 14870 year: 2012 ident: e_1_3_4_13_2 article-title: Near-atomic resolution structural model of the yeast 26S proteasome publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1213333109 – volume: 10 start-page: 609 year: 2002 ident: e_1_3_4_11_2 article-title: The structure of the mammalian 20S proteasome at 2.75 Å resolution publication-title: Structure doi: 10.1016/S0969-2126(02)00748-7 – volume: 471 start-page: 331 year: 2011 ident: e_1_3_4_7_2 article-title: Structure and mechanism of the hexameric MecA-ClpC molecular machine publication-title: Nature doi: 10.1038/nature09780 – volume: 4 start-page: e267 year: 2006 ident: e_1_3_4_24_2 article-title: Structural organization of the 19S proteasome lid: Insights from MS of intact complexes publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040267 – volume: 58 start-page: 1948 year: 2002 ident: e_1_3_4_34_2 article-title: PHENIX: Building new software for automated crystallographic structure determination publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444902016657 – volume: 142 start-page: 334 year: 2003 ident: e_1_3_4_38_2 article-title: Accurate determination of local defocus and specimen tilt in electron microscopy publication-title: J Struct Biol doi: 10.1016/S1047-8477(03)00069-8 – volume: 435 start-page: 250 year: 2013 ident: e_1_3_4_19_2 article-title: Localization of the regulatory particle subunit Sem1 in the 26S proteasome publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2013.04.069 – volume: 19 start-page: 94 year: 2000 ident: e_1_3_4_27_2 article-title: Recognition of the polyubiquitin proteolytic signal publication-title: EMBO J doi: 10.1093/emboj/19.1.94 – volume: 386 start-page: 463 year: 1997 ident: e_1_3_4_10_2 article-title: Structure of 20S proteasome from yeast at 2.4 Å resolution publication-title: Nature doi: 10.1038/386463a0 – volume: 396 start-page: 1048 year: 2010 ident: e_1_3_4_26_2 article-title: Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2010.05.061 – volume: 298 start-page: 611 year: 2002 ident: e_1_3_4_3_2 article-title: Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome publication-title: Science doi: 10.1126/science.1075898 – volume: 46 start-page: 54 year: 2012 ident: e_1_3_4_14_2 article-title: Molecular model of the human 26S proteasome publication-title: Mol Cell doi: 10.1016/j.molcel.2012.03.026 – volume: 18 start-page: 569 year: 2007 ident: e_1_3_4_25_2 article-title: The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome publication-title: Mol Biol Cell doi: 10.1091/mbc.e06-07-0635 – volume: 5 start-page: e13027 year: 2016 ident: e_1_3_4_29_2 article-title: Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition publication-title: eLife doi: 10.7554/eLife.13027 – volume: 180 start-page: 519 year: 2012 ident: e_1_3_4_31_2 article-title: RELION: Implementation of a Bayesian approach to cryo-EM structure determination publication-title: J Struct Biol doi: 10.1016/j.jsb.2012.09.006 – volume: 21 start-page: 1624 year: 2013 ident: e_1_3_4_4_2 article-title: Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid publication-title: Structure doi: 10.1016/j.str.2013.06.023 – volume: 163 start-page: 432 year: 2015 ident: e_1_3_4_5_2 article-title: A single α helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly publication-title: Cell doi: 10.1016/j.cell.2015.09.022 – volume: 301 start-page: 57 year: 2005 ident: e_1_3_4_20_2 article-title: Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast publication-title: Methods Mol Biol – volume: 268 start-page: 533 year: 1995 ident: e_1_3_4_9_2 article-title: Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution publication-title: Science doi: 10.1126/science.7725097 – volume: 60 start-page: 2126 year: 2004 ident: e_1_3_4_32_2 article-title: Coot: Model-building tools for molecular graphics publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444904019158 – volume: 14 start-page: 1180 year: 2007 ident: e_1_3_4_30_2 article-title: Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1335 – volume: 111 start-page: 2984 year: 2014 ident: e_1_3_4_22_2 article-title: Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1400546111 – ident: e_1_3_4_35_2 – volume: 419 start-page: 403 year: 2002 ident: e_1_3_4_2_2 article-title: A cryptic protease couples deubiquitination and degradation by the proteasome publication-title: Nature doi: 10.1038/nature01071 – volume: 53 start-page: 433 year: 2014 ident: e_1_3_4_21_2 article-title: The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis publication-title: Mol Cell doi: 10.1016/j.molcel.2013.12.009 – volume: 21 start-page: 220 year: 2014 ident: e_1_3_4_23_2 article-title: Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2771 – volume: 25 start-page: 1605 year: 2004 ident: e_1_3_4_33_2 article-title: UCSF Chimera—A visualization system for exploratory research and analysis publication-title: J Comput Chem doi: 10.1002/jcc.20084 – volume: 10 start-page: 584 year: 2013 ident: e_1_3_4_37_2 article-title: Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM publication-title: Nat Methods doi: 10.1038/nmeth.2472 – volume: 11 start-page: 63 year: 2014 ident: e_1_3_4_40_2 article-title: Quantifying the local resolution of cryo-EM density maps publication-title: Nat Methods doi: 10.1038/nmeth.2727 – volume: 41 start-page: 77 year: 2016 ident: e_1_3_4_1_2 article-title: Gates, channels, and switches: Elements of the proteasome machine publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2015.10.009 – volume: 112 start-page: 8626 year: 2015 ident: e_1_3_4_18_2 article-title: Structural characterization of the interaction of Ubp6 with the 26S proteasome publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1510449112 – volume: 111 start-page: 5544 year: 2014 ident: e_1_3_4_17_2 article-title: Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1403409111 – volume: 135 start-page: 24 year: 2013 ident: e_1_3_4_39_2 article-title: High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2013.06.004 – reference: 23643786 - Biochem Biophys Res Commun. 2013 May 31;435(2):250-4 – reference: 21368759 - Nature. 2011 Mar 17;471(7338):331-5 – reference: 26130806 - Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8626-31 – reference: 18026118 - Nat Struct Mol Biol. 2007 Dec;14(12):1180-8 – reference: 9087403 - Nature. 1997 Apr 3;386(6624):463-71 – reference: 22927375 - Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14870-5 – reference: 20471955 - Biochem Biophys Res Commun. 2010 Jun 11;396(4):1048-53 – reference: 24412063 - Mol Cell. 2014 Feb 6;53(3):433-43 – reference: 24463465 - Nat Struct Mol Biol. 2014 Mar;21(3):220-7 – reference: 26451487 - Cell. 2015 Oct 8;163(2):432-44 – reference: 22307589 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1380-7 – reference: 26643069 - Trends Biochem Sci. 2016 Jan;41(1):77-93 – reference: 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 – reference: 12183636 - Science. 2002 Oct 18;298(5593):611-5 – reference: 23770819 - Nat Struct Mol Biol. 2013 Jul;20(7):781-8 – reference: 19481527 - Mol Cell. 2009 May 14;34(4):473-84 – reference: 23589842 - Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7264-9 – reference: 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 – reference: 17135287 - Mol Biol Cell. 2007 Feb;18(2):569-80 – reference: 24516147 - Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2984-9 – reference: 23644547 - Nat Methods. 2013 Jun;10(6):584-90 – reference: 16869714 - PLoS Biol. 2006 Aug;4(8):e267 – reference: 22237024 - Nature. 2012 Feb 9;482(7384):186-91 – reference: 7725097 - Science. 1995 Apr 28;268(5210):533-9 – reference: 12015144 - Structure. 2002 May;10(5):609-18 – reference: 12781660 - J Struct Biol. 2003 Jun;142(3):334-47 – reference: 21827942 - Structure. 2011 Aug 10;19(8):1053-63 – reference: 26744777 - Elife. 2016;5:e13027 – reference: 23911091 - Structure. 2013 Sep 3;21(9):1624-35 – reference: 23872039 - Ultramicroscopy. 2013 Dec;135:24-35 – reference: 22215586 - Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1479-84 – reference: 24706844 - Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5544-9 – reference: 24213166 - Nat Methods. 2014 Jan;11(1):63-5 – reference: 22500737 - Mol Cell. 2012 Apr 13;46(1):54-66 – reference: 12353037 - Nature. 2002 Sep 26;419(6905):403-7 – reference: 23000701 - J Struct Biol. 2012 Dec;180(3):519-30 – reference: 10619848 - EMBO J. 2000 Jan 4;19(1):94-102 – reference: 12393927 - Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1948-54 – reference: 15917626 - Methods Mol Biol. 2005;301:57-70  | 
    
| SSID | ssj0009580 | 
    
| Score | 2.456755 | 
    
| Snippet | The eukaryotic proteasome mediates degradation of polyubiquitinated proteins. Here we report the single-particle cryoelectron microscopy (cryo-EM) structures... SignificanceMechanistic understanding of proteasome function requires elucidation of its three-dimensional structure. Previous investigations have revealed... Mechanistic understanding of proteasome function requires elucidation of its three-dimensional structure. Previous investigations have revealed increasingly...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref pnas jstor  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2642 | 
    
| SubjectTerms | Adenosine triphosphatase ATP Biochemical analysis Biochemistry Biological Sciences Cryoelectron Microscopy - methods Crystallography, X-Ray Enzymatic activity Eukaryotes Models, Molecular Proteasome Endopeptidase Complex - chemistry Proteasome Endopeptidase Complex - metabolism Proteasome Endopeptidase Complex - ultrastructure Protein Conformation Proteins Proteolysis Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Saccharomyces cerevisiae Proteins - ultrastructure Substrate Specificity Yeast Yeasts  | 
    
| Title | Structure of an endogenous yeast 26S proteasome reveals two major conformational states | 
    
| URI | https://www.jstor.org/stable/26468602 https://www.pnas.org/doi/10.1073/pnas.1601561113 https://www.ncbi.nlm.nih.gov/pubmed/26929360 https://www.proquest.com/docview/1774332936 https://www.proquest.com/docview/1772146674 https://www.proquest.com/docview/1785232751 https://pubmed.ncbi.nlm.nih.gov/PMC4790998 https://www.pnas.org/content/pnas/113/10/2642.full.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 113 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB616QEuQIGCoVSL1EN7cBLv0z5WiFIhUSGVqOFkre21eKR21CSqyq9nZv2g4VX1ZMk7a3u9MzufvTPfAOwXEc9EnpmwNFyFUpQ8zGzsQlmi-sjY2jKnbOQPp_pkIt9P1XQDdJcLQ2GV88ou_CY-RWvj0juiE6MoEmjiI3TgfEi_pofzotyELa0Qgw9ga3L68ehzE8-By65sqtmiMwy1TMYdp48R_lr0SwW_W6jK-po7aiISieYUhf4GOf-MnLy3qub2-srOZjfc0vFDOO8G1ESjfB-ultkw__Eb1-PdR_wIHrRIlR01qrUNG656DNvtWrBgBy1h9eETOD_zJLSrS8fqktmKuaqoG_JXdk21gRjXZ8wzQthFfeEY0Uah2rPlVc0u7Lf6kuET9WmUeFOf5rR4CpPjt5_enIRtwYYwR8NfhtqWCAiLkmjQ0NYziQcVOURpuS64TgoupLJZwseF0rbgcaRySkMY50SOJLXYgUFVV-45MJGZuMBzyuRcCssT7BKX2iUZegoTqwCG3bylectmTkU1ZqnfVTcipVeY_proAA76DvOGyOPfojteEXo5nAFNtboC2Peit_bf7TQnbVcEbEacLQSCKx3A674ZbZk2aGzlcEpIhuqsayP_JxMrRMH4fgN41ijjjedM6AbjAMyamvYCxCW-3lJ9_eI5xaVJ8FshDuCwV-jbhvniDrIv4T4iTe2D9-JdGKBauleI5pbZHmy-m0Z7rQH_BJYqRcY | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QEuQIFCoCAj9dAekt34mRwrRFUhUSGVVcspchJHBbbJqrurqvx6ZpwHXV5VT5HicRLHM54v8cw3ALtlzHNR5CasDFehFBUPc5u4UFaoPjKxtiooG_njsT6ayg9n6mwDdJ8LQ2GV89ou_CY-RWvj0jumE-M4FmjiY3TgPKJf09G8rO7BplaIwUewOT3-dPCljefAZVe21WzRGYZappOe08cIfy36pYLfLVRlfc0dtRGJRHOKQn-DnH9GTt5f1XN7fWVnsxtu6fARnPYDaqNRvkerZR4VP37jerz7iB_Dww6psoNWtbZgw9VPYKtbCxZsryOs3n8KpyeehHZ16VhTMVszV5dNS_7Krqk2EOP6hHlGCLtoLhwj2ihUe7a8atiF_dZcMnyiIY0Sb-rTnBbPYHr4_vO7o7Ar2BAWaPjLUNsKAWFZEQ0a2nou8aBihyit0CXXacmFVDZP-aRU2pY8iVVBaQiTgsiRpBbbMKqb2r0AJnKTlHhOmYJLYXmKXZJKuzRHT2ESFUDUz1tWdGzmVFRjlvlddSMyeoXZr4kOYG_oMG-JPP4tuu0VYZDDGdBUqyuAXS96a_-dXnOybkXAZsTZQiC40gG8HZrRlmmDxtYOp4RkqM66NvJ_MolCFIzvN4DnrTLeeM6UbjAJwKyp6SBAXOLrLfXXc88pLk2K3wpJAPuDQt82zJd3kH0FDxBpah-8l-zACNXSvUY0t8zfdKb7E_kwRNU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+of+an+endogenous+yeast+26S+proteasome+reveals+two+major+conformational+states&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Luan%2C+Bai&rft.au=Huang%2C+Xiuliang&rft.au=Wu%2C+Jianping&rft.au=Mei%2C+Ziqing&rft.date=2016-03-08&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=10&rft.spage=2642&rft.epage=2647&rft_id=info:doi/10.1073%2Fpnas.1601561113&rft.externalDocID=10.1073%2Fpnas.1601561113 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |