Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous

All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniq...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 431; no. 7011; pp. 980 - 984
Main Authors Kolaczkowski, Bryan, Thornton, Joseph W.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.10.2004
Nature Publishing
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/nature02917

Cover

Abstract All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniques represent a parametric approach to statistical phylogenetics, because their criterion for evaluating a topology—the probability of the data, given the tree—is calculated with reference to an explicit evolutionary model from which the data are assumed to be identically distributed. Maximum parsimony can be considered nonparametric, because trees are evaluated on the basis of a general metric—the minimum number of character state changes required to generate the data on a given tree—without assuming a specific distribution 1 . The shift to parametric methods was spurred, in large part, by studies showing that although both approaches perform well most of the time 2 , maximum parsimony is strongly biased towards recovering an incorrect tree under certain combinations of branch lengths, whereas maximum likelihood is not 3 , 4 , 5 , 6 . All these evaluations simulated sequences by a largely homogeneous evolutionary process in which data are identically distributed. There is ample evidence, however, that real-world gene sequences evolve heterogeneously and are not identically distributed 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 . Here we show that maximum likelihood and BMCMC can become strongly biased and statistically inconsistent when the rates at which sequence sites evolve change non-identically over time. Maximum parsimony performs substantially better than current parametric methods over a wide range of conditions tested, including moderate heterogeneity and phylogenetic problems not normally considered difficult.
AbstractList All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniques represent a parametric approach to statistical phylogenetics, because their criterion for evaluating a topology--the probability of the data, given the tree--is calculated with reference to an explicit evolutionary model from which the data are assumed to be identically distributed. Maximum parsimony can be considered nonparametric, because trees are evaluated on the basis of a general metric--the minimum number of character state changes required to generate the data on a given tree--without assuming a specific distribution. The shift to parametric methods was spurred, in large part, by studies showing that although both approaches perform well most of the time, maximum parsimony is strongly biased towards recovering an incorrect tree under certain combinations of branch lengths, whereas maximum likelihood is not. All these evaluations simulated sequences by a largely homogeneous evolutionary process in which data are identically distributed. There is ample evidence, however, that real-world gene sequences evolve heterogeneously and are not identically distributed. Here we show that maximum likelihood and BMCMC can become strongly biased and statistically inconsistent when the rates at which sequence sites evolve change non-identically over time. Maximum parsimony performs substantially better than current parametric methods over a wide range of conditions tested, including moderate heterogeneity and phylogenetic problems not normally considered difficult.
All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniques represent a parametric approach to statistical phylogenetics, because their criterion for evaluating a topology--the probability of the data, given the tree--is calculated with reference to an explicit evolutionary model from which the data are assumed to be identically distributed. Maximum parsimony can be considered nonparametric, because trees are evaluated on the basis of a general metric--the minimum number of character state changes required to generate the data on a given tree--without assuming a specific distribution. The shift to parametric methods was spurred, in large part, by studies showing that although both approaches perform well most of the time, maximum parsimony is strongly biased towards recovering an incorrect tree under certain combinations of branch lengths, whereas maximum likelihood is not. All these evaluations simulated sequences by a largely homogeneous evolutionary process in which data are identically distributed. There is ample evidence, however, that real-world gene sequences evolve heterogeneously and are not identically distributed. Here we show that maximum likelihood and BMCMC can become strongly biased and statistically inconsistent when the rates at which sequence sites evolve change non-identically over time. Maximum parsimony performs substantially better than current parametric methods over a wide range of conditions tested, including moderate heterogeneity and phylogenetic problems not normally considered difficult.All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniques represent a parametric approach to statistical phylogenetics, because their criterion for evaluating a topology--the probability of the data, given the tree--is calculated with reference to an explicit evolutionary model from which the data are assumed to be identically distributed. Maximum parsimony can be considered nonparametric, because trees are evaluated on the basis of a general metric--the minimum number of character state changes required to generate the data on a given tree--without assuming a specific distribution. The shift to parametric methods was spurred, in large part, by studies showing that although both approaches perform well most of the time, maximum parsimony is strongly biased towards recovering an incorrect tree under certain combinations of branch lengths, whereas maximum likelihood is not. All these evaluations simulated sequences by a largely homogeneous evolutionary process in which data are identically distributed. There is ample evidence, however, that real-world gene sequences evolve heterogeneously and are not identically distributed. Here we show that maximum likelihood and BMCMC can become strongly biased and statistically inconsistent when the rates at which sequence sites evolve change non-identically over time. Maximum parsimony performs substantially better than current parametric methods over a wide range of conditions tested, including moderate heterogeneity and phylogenetic problems not normally considered difficult.
All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniques represent a parametric approach to statistical phylogenetics, because their criterion for evaluating a topology--the probability of the data, given the tree--is calculated with reference to an explicit evolutionary model from which the data are assumed to be identically distributed. Maximum parsimony can be considered nonparametric, because trees are evaluated on the basis of a general metric--the minimum number of character state changes required to generate the data on a given tree--without assuming a specific distribution. The shift to parametric methods was spurred, in large part, by studies showing that although both approaches perform well most of the time, maximum parsimony is strongly biased towards recovering an incorrect tree under certain combinations of branch lengths, whereas maximum likelihood is not. All these evaluations simulated sequences by a largely homogeneous evolutionary process in which data are identically distributed. There is ample evidence, however, that real-world gene sequences evolve heterogeneously and are not identically distributed. Here we show that maximum likelihood and BMCMC can become strongly biased and statistically inconsistent when the rates at which sequence sites evolve change non-identically over time. Maximum parsimony performs substantially better than current parametric methods over a wide range of conditions tested, including moderate heterogeneity and phylogenetic problems not normally considered difficult. [PUBLICATION ABSTRACT]
All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniques represent a parametric approach to statistical phylogenetics, because their criterion for evaluating a topology—the probability of the data, given the tree—is calculated with reference to an explicit evolutionary model from which the data are assumed to be identically distributed. Maximum parsimony can be considered nonparametric, because trees are evaluated on the basis of a general metric—the minimum number of character state changes required to generate the data on a given tree—without assuming a specific distribution 1 . The shift to parametric methods was spurred, in large part, by studies showing that although both approaches perform well most of the time 2 , maximum parsimony is strongly biased towards recovering an incorrect tree under certain combinations of branch lengths, whereas maximum likelihood is not 3 , 4 , 5 , 6 . All these evaluations simulated sequences by a largely homogeneous evolutionary process in which data are identically distributed. There is ample evidence, however, that real-world gene sequences evolve heterogeneously and are not identically distributed 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 . Here we show that maximum likelihood and BMCMC can become strongly biased and statistically inconsistent when the rates at which sequence sites evolve change non-identically over time. Maximum parsimony performs substantially better than current parametric methods over a wide range of conditions tested, including moderate heterogeneity and phylogenetic problems not normally considered difficult.
Audience Academic
Author Kolaczkowski, Bryan
Thornton, Joseph W.
Author_xml – sequence: 1
  givenname: Bryan
  surname: Kolaczkowski
  fullname: Kolaczkowski, Bryan
  organization: Department of Computer and Information Science
– sequence: 2
  givenname: Joseph W.
  surname: Thornton
  fullname: Thornton, Joseph W.
  email: joet@uoregon.edu
  organization: Center for Ecology and Evolutionary Biology, University of Oregon
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16206650$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15496922$$D View this record in MEDLINE/PubMed
BookMark eNqF0ttv0zAUB2ALDbGt8MQ7ipAAIcjwLbbzOE1cJk0CcXlEkeuctB6O3dkJrP897lrUdSqgPESKvnPsk_M7Rgc-eEDoMcEnBDP1xuthjIBpTeQ9dES4FCUXSh6gI4ypKrFi4hAdp3SJMa6I5A_QIal4LWpKj9D3TxC7EHvtDRShK3p9bfuxLxY6JtsHvyy0bwtnf4Cz8xDaYjFfujADD4M1qfg1B1_Az-DGwQZf2FTMYYB4A8KYHqL7nXYJHm3eE_Tt3duvZx_Ki4_vz89OL0pTSTWUjGhjAFoiKKmYwHUnhZRMtJRz3BrMtaqgAmMYGN7xKZZTTjWoWgndEiXZBL1Y913EcDVCGpreJgPO6ZtrNJIzpipaVVk-_6cUoq4ZI_S_kCgsaE1XZz-9Ay_DGH0et6GYV5LW-fAJKtdoph001ndhiNqs_lLULq-zs_nzKVGCKpn3sm26483CXjW30ckelJ8Wemv2dn25U5DNANfDTI8pNedfPu_aJ5uxxmkPbbOIttdx2fyJTgbPNkAno10Xc4Rs2jpBsRAVzu7V2pkYUorQbQluVgFubgU4a3JHGzvoVbjybNb9peb1uiblzn4GcbuBffw3oKEA1w
CODEN NATUAS
CitedBy_id crossref_primary_10_1016_j_ympev_2018_04_033
crossref_primary_10_1099_ijsem_0_003939
crossref_primary_10_1093_molbev_msi111
crossref_primary_10_1016_j_ejr_2024_02_002
crossref_primary_10_1098_rsif_2020_0567
crossref_primary_10_1371_journal_pcbi_1003452
crossref_primary_10_1016_j_meegid_2005_01_001
crossref_primary_10_1111_j_1095_8312_2012_01978_x
crossref_primary_10_1016_j_ympev_2017_09_025
crossref_primary_10_1086_431800
crossref_primary_10_1371_journal_pone_0007891
crossref_primary_10_1038_s41598_023_41556_w
crossref_primary_10_1371_journal_pgen_1001162
crossref_primary_10_1206_0003_0090_2005_294_0001_SROTFF_2_0_CO_2
crossref_primary_10_1099_ijsem_0_003801
crossref_primary_10_1371_journal_pgen_1003580
crossref_primary_10_1093_molbev_msr050
crossref_primary_10_1093_gbe_evw179
crossref_primary_10_1093_molbev_msq081
crossref_primary_10_1016_j_ympev_2009_08_019
crossref_primary_10_1080_10635150601156313
crossref_primary_10_1017_S0022149X19000610
crossref_primary_10_1111_j_1096_0031_2012_00393_x
crossref_primary_10_1371_journal_pone_0109210
crossref_primary_10_1093_sysbio_sys042
crossref_primary_10_1093_molbev_msi212
crossref_primary_10_4049_jimmunol_1201929
crossref_primary_10_1099_ijsem_0_004803
crossref_primary_10_1016_j_ympev_2014_12_003
crossref_primary_10_1371_journal_pgen_1000191
crossref_primary_10_1017_jpa_2016_56
crossref_primary_10_1097_FJC_0000000000001426
crossref_primary_10_1016_j_gene_2006_07_002
crossref_primary_10_1111_j_1558_5646_2008_00549_x
crossref_primary_10_7717_peerj_5901
crossref_primary_10_1111_j_1096_0031_2006_00100_x
crossref_primary_10_1002_ajp_23298
crossref_primary_10_1099_ijsem_0_003709
crossref_primary_10_51539_biotech_1262979
crossref_primary_10_1099_ijsem_0_001884
crossref_primary_10_1007_s10904_024_03030_6
crossref_primary_10_1016_j_ympev_2013_09_009
crossref_primary_10_1111_cla_12150
crossref_primary_10_1134_S0026893313010056
crossref_primary_10_1093_molbev_mss216
crossref_primary_10_1017_S147720000999017X
crossref_primary_10_1099_ijsem_0_003979
crossref_primary_10_1007_s00239_020_09936_2
crossref_primary_10_1371_journal_pbio_0040151
crossref_primary_10_1016_j_meegid_2012_10_020
crossref_primary_10_1515_gps_2023_0080
crossref_primary_10_1093_molbev_msp184
crossref_primary_10_1111_cla_12205
crossref_primary_10_1111_cla_12447
crossref_primary_10_1093_bib_bbq003
crossref_primary_10_1099_ijsem_0_005909
crossref_primary_10_1093_gbe_evz121
crossref_primary_10_1089_omi_2015_0018
crossref_primary_10_1126_sciadv_1500527
crossref_primary_10_3897_asp_83_e142332
crossref_primary_10_1093_molbev_msp191
crossref_primary_10_1016_j_ympev_2013_03_017
crossref_primary_10_1016_j_xpro_2022_101191
crossref_primary_10_1111_cla_12477
crossref_primary_10_3732_ajb_0800178
crossref_primary_10_1016_j_shpsa_2021_10_006
crossref_primary_10_1111_cla_12595
crossref_primary_10_1073_pnas_0907801107
crossref_primary_10_1099_ijsem_0_005816
crossref_primary_10_1093_gbe_evw086
crossref_primary_10_1128_JVI_05369_11
crossref_primary_10_1146_annurev_ecolsys_35_112202_130205
crossref_primary_10_1642_AUK_16_53_1
crossref_primary_10_1016_j_tig_2007_02_001
crossref_primary_10_1098_rsos_190387
crossref_primary_10_1093_molbev_msr220
crossref_primary_10_1073_pnas_0704342104
crossref_primary_10_1089_cmb_2006_0126
crossref_primary_10_1111_pala_12236
crossref_primary_10_1371_journal_pone_0025246
crossref_primary_10_1016_j_tree_2007_01_012
crossref_primary_10_1099_ijsem_0_003987
crossref_primary_10_1099_ijsem_0_004840
crossref_primary_10_3390_computation2040221
crossref_primary_10_1016_j_ympev_2006_01_004
crossref_primary_10_1038_nrg1603
crossref_primary_10_3852_13_353
crossref_primary_10_1155_2006_431618
crossref_primary_10_1016_j_ympev_2006_01_007
crossref_primary_10_1111_j_1096_0031_2011_00375_x
crossref_primary_10_1073_pnas_1407163112
crossref_primary_10_1016_j_ympev_2005_02_003
crossref_primary_10_1099_ijsem_0_005838
crossref_primary_10_1371_journal_pone_0292525
crossref_primary_10_1099_ijsem_0_004623
crossref_primary_10_1186_1471_2148_11_281
crossref_primary_10_1099_ijsem_0_004875
crossref_primary_10_1099_ijsem_0_005601
crossref_primary_10_1016_j_fm_2012_10_008
crossref_primary_10_1016_j_meegid_2016_07_039
crossref_primary_10_1093_molbev_msr202
crossref_primary_10_5248_122_25
crossref_primary_10_7759_cureus_26680
crossref_primary_10_1007_s12275_024_00177_2
crossref_primary_10_1016_j_gene_2008_08_003
crossref_primary_10_1155_2022_2713483
crossref_primary_10_1186_1748_7188_5_37
crossref_primary_10_1093_sysbio_syae056
crossref_primary_10_1099_ijsem_0_004858
crossref_primary_10_1093_sysbio_syae055
crossref_primary_10_1093_sysbio_syv028
crossref_primary_10_1080_10635150500433615
crossref_primary_10_1098_rstb_2009_0233
crossref_primary_10_5812_hepatmon_6133
crossref_primary_10_1016_j_ympev_2007_06_020
crossref_primary_10_1093_molbev_msn098
crossref_primary_10_1098_rstb_2006_1845
crossref_primary_10_1007_s11538_023_01167_y
crossref_primary_10_1016_j_ympev_2012_10_021
crossref_primary_10_1016_j_ympev_2021_107086
crossref_primary_10_3389_fcimb_2023_1109634
crossref_primary_10_1093_molbev_msq215
crossref_primary_10_1093_molbev_msp248
crossref_primary_10_1080_10635150500234609
crossref_primary_10_1099_ijsem_0_004653
crossref_primary_10_1109_TCBB_2021_3101278
crossref_primary_10_1016_j_epidem_2009_10_003
crossref_primary_10_1099_ijsem_0_004772
crossref_primary_10_1111_j_1096_0031_2010_00327_x
crossref_primary_10_3390_biology9010009
crossref_primary_10_1080_14772019_2013_764357
crossref_primary_10_1239_aap_1208358894
crossref_primary_10_1093_molbev_msq346
crossref_primary_10_1088_1478_3975_aa7366
crossref_primary_10_1016_j_critrevonc_2023_104249
crossref_primary_10_1099_ijsem_0_003303
crossref_primary_10_1073_pnas_0503660102
crossref_primary_10_1093_molbev_msy069
crossref_primary_10_1093_molbev_msp250
crossref_primary_10_1093_sysbio_sys064
crossref_primary_10_1038_nrg_2015_18
crossref_primary_10_1093_molbev_msp102
crossref_primary_10_1099_ijs_0_63936_0
crossref_primary_10_1007_s12275_021_0406_3
crossref_primary_10_3389_fimmu_2018_01307
crossref_primary_10_1093_sysbio_sys067
crossref_primary_10_1093_bioinformatics_btx033
crossref_primary_10_1099_ijsem_0_006603
crossref_primary_10_1099_ijsem_0_004427
crossref_primary_10_1099_ijsem_0_003586
crossref_primary_10_1371_journal_pone_0152656
crossref_primary_10_1016_j_ympev_2017_03_022
crossref_primary_10_1016_j_tplants_2005_03_006
crossref_primary_10_1016_j_tplants_2005_03_007
crossref_primary_10_1016_j_ympev_2006_03_003
crossref_primary_10_1093_molbev_msn042
crossref_primary_10_1016_j_ympev_2006_03_006
crossref_primary_10_1071_IS06015
crossref_primary_10_1007_s13562_020_00625_1
crossref_primary_10_1007_s11557_012_0876_0
crossref_primary_10_1111_nyas_12735
crossref_primary_10_1093_sysbio_sys072
crossref_primary_10_1099_ijsem_0_002119
crossref_primary_10_1099_ijsem_0_005507
crossref_primary_10_1111_cla_12606
crossref_primary_10_1007_s12275_020_0060_1
crossref_primary_10_1099_ijsem_0_004414
crossref_primary_10_1099_ijsem_0_003333
crossref_primary_10_1080_10635150802422274
crossref_primary_10_1186_1471_2148_12_156
crossref_primary_10_1080_10635150701245388
crossref_primary_10_3389_fpls_2016_01399
crossref_primary_10_3389_fcimb_2023_1093407
crossref_primary_10_1186_1471_2148_11_17
crossref_primary_10_1093_treephys_tpp015
crossref_primary_10_1186_s12862_018_1162_9
crossref_primary_10_1016_j_gene_2008_08_017
crossref_primary_10_1089_cmb_2021_0383
crossref_primary_10_1080_10635150601175578
crossref_primary_10_1099_ijsem_0_003479
crossref_primary_10_1099_ijsem_0_004449
crossref_primary_10_1099_ijsem_0_004696
crossref_primary_10_1016_j_ympev_2012_04_002
crossref_primary_10_1186_1471_2148_11_267
crossref_primary_10_1007_s00284_022_02995_2
crossref_primary_10_1126_science_1115493
crossref_primary_10_1186_1471_2148_10_343
crossref_primary_10_1016_j_ympev_2007_05_003
crossref_primary_10_1016_j_ympev_2005_02_017
crossref_primary_10_1371_journal_pone_0081760
crossref_primary_10_3389_fvets_2022_1032983
crossref_primary_10_1128_microbiolspec_AME_0006_2018
crossref_primary_10_1007_s00239_024_10167_y
crossref_primary_10_1007_s00239_014_9637_9
crossref_primary_10_1016_j_isci_2021_102359
crossref_primary_10_1371_journal_pone_0109704
crossref_primary_10_3389_fmicb_2024_1342098
crossref_primary_10_1007_s00239_007_9062_4
crossref_primary_10_1186_gb_2007_8_7_r141
crossref_primary_10_2307_4134535
crossref_primary_10_1016_j_ympev_2006_10_024
crossref_primary_10_1186_1471_2148_5_50
crossref_primary_10_3390_phycology3020020
crossref_primary_10_1073_pnas_0904103106
crossref_primary_10_1093_sysbio_syad013
crossref_primary_10_1007_s10482_024_02052_x
crossref_primary_10_1111_j_1463_6409_2006_00277_x
crossref_primary_10_1590_S1415_47572007000200015
crossref_primary_10_1016_j_ympev_2011_09_011
crossref_primary_10_1016_j_meegid_2010_08_009
crossref_primary_10_1016_j_ympev_2011_10_017
crossref_primary_10_1016_j_ympev_2019_106671
crossref_primary_10_1099_ijsem_0_004232
crossref_primary_10_1089_omi_2010_0023
crossref_primary_10_1093_molbev_msv081
crossref_primary_10_17352_gjz_000028
crossref_primary_10_1002_ajp_20322
crossref_primary_10_1016_j_ympev_2022_107550
crossref_primary_10_1038_s41586_022_05133_x
crossref_primary_10_1093_sysbio_syw079
crossref_primary_10_1093_jhered_esx089
crossref_primary_10_1016_j_bpj_2015_06_060
crossref_primary_10_1093_sysbio_syaa095
crossref_primary_10_1186_1471_2148_13_274
crossref_primary_10_1186_1471_2148_7_206
crossref_primary_10_1016_j_solener_2022_11_050
crossref_primary_10_1099_ijsem_0_004218
crossref_primary_10_1099_ijsem_0_003013
crossref_primary_10_1080_10635150701397635
crossref_primary_10_1111_j_1096_0031_2005_00059_x
crossref_primary_10_1186_s13059_020_02000_8
crossref_primary_10_1371_journal_pone_0024769
crossref_primary_10_1186_1471_2148_11_315
crossref_primary_10_1146_annurev_ento_53_103106_093304
crossref_primary_10_1186_1471_2148_5_71
crossref_primary_10_1016_j_ympev_2013_05_011
crossref_primary_10_1016_j_ejbt_2018_05_001
crossref_primary_10_1093_sysbio_syae002
crossref_primary_10_1017_S0003598X0010122X
crossref_primary_10_1093_sysbio_syad031
crossref_primary_10_1111_j_1469_7998_2008_00497_x
crossref_primary_10_1007_s12275_022_1199_8
crossref_primary_10_1080_10635150802172168
crossref_primary_10_1080_10635150701397643
crossref_primary_10_1099_ijsem_0_006437
crossref_primary_10_1666_12_115
crossref_primary_10_1155_2012_292857
crossref_primary_10_1111_zsc_12555
crossref_primary_10_1093_molbev_msz307
crossref_primary_10_1186_1745_6150_3_52
crossref_primary_10_1080_10635150500234682
crossref_primary_10_1186_1471_2105_10_51
crossref_primary_10_1093_sysbio_syy039
crossref_primary_10_1665_034_019_0112
crossref_primary_10_1186_1471_2148_9_298
crossref_primary_10_1093_sysbio_syx063
crossref_primary_10_1093_molbev_msn119
crossref_primary_10_1093_molbev_msaa318
crossref_primary_10_1093_gbe_evq062
crossref_primary_10_1371_journal_pone_0152604
crossref_primary_10_1111_j_1365_2672_2008_03949_x
crossref_primary_10_1111_j_1096_0031_2007_00181_x
crossref_primary_10_1371_journal_pcbi_1011871
crossref_primary_10_1186_s12864_024_10740_1
crossref_primary_10_1099_ijs_0_049874_0
crossref_primary_10_1111_j_1365_3113_2009_00517_x
crossref_primary_10_1016_j_ympev_2016_05_032
crossref_primary_10_3389_fmicb_2024_1435834
crossref_primary_10_1017_S0001867800002457
crossref_primary_10_1371_journal_pone_0000522
crossref_primary_10_1093_molbev_msl155
crossref_primary_10_1080_10635150701611258
crossref_primary_10_1093_molbev_msab300
crossref_primary_10_1128_JCM_02021_08
crossref_primary_10_1080_10635150802426473
crossref_primary_10_1080_00837792_2012_10670912
crossref_primary_10_1093_sysbio_syw037
crossref_primary_10_1111_1755_0998_12248
crossref_primary_10_1016_j_chom_2016_01_006
crossref_primary_10_1111_zsc_12420
crossref_primary_10_1002_int_21667
crossref_primary_10_1111_j_1096_0031_2006_00098_x
crossref_primary_10_1080_15659801_2013_825431
crossref_primary_10_3389_fgene_2020_00651
crossref_primary_10_1080_10635150601146041
crossref_primary_10_1071_MU05035
crossref_primary_10_1093_pcp_pcs146
crossref_primary_10_15252_msb_20199208
crossref_primary_10_1371_journal_pone_0036593
crossref_primary_10_1007_s10822_007_9130_2
crossref_primary_10_1155_2016_1851865
crossref_primary_10_3389_fmicb_2018_01158
crossref_primary_10_1093_sysbio_syv086
crossref_primary_10_3732_ajb_1400106
crossref_primary_10_1080_10635150600697416
crossref_primary_10_1093_sysbio_syad067
crossref_primary_10_1111_j_1095_8312_2010_01574_x
crossref_primary_10_1016_j_tree_2006_08_004
crossref_primary_10_1371_journal_pcbi_0010079
crossref_primary_10_1099_ijsem_0_003076
crossref_primary_10_1002_jez_b_21169
crossref_primary_10_1099_ijsem_0_004161
crossref_primary_10_1016_j_ympev_2005_04_012
crossref_primary_10_1111_j_1095_8649_2006_01132_x
crossref_primary_10_1002_prca_200780047
crossref_primary_10_1111_are_13633
crossref_primary_10_1016_j_ympev_2017_07_006
crossref_primary_10_1007_s00253_018_8831_x
crossref_primary_10_1093_bib_bbu015
crossref_primary_10_1093_bioinformatics_btp079
crossref_primary_10_1093_sysbio_syp034
crossref_primary_10_1016_j_jaa_2014_03_001
crossref_primary_10_1093_sysbio_syq003
crossref_primary_10_1093_molbev_msk018
crossref_primary_10_1093_sysbio_syp037
crossref_primary_10_1099_ijsem_0_006379
crossref_primary_10_1007_s00239_013_9540_9
crossref_primary_10_1016_j_ympev_2006_12_009
crossref_primary_10_1099_ijsem_0_005287
crossref_primary_10_1080_20548923_2016_1183920
crossref_primary_10_1093_sysbio_syz051
crossref_primary_10_1007_s00026_024_00725_y
crossref_primary_10_1099_mic_0_2007_016139_0
crossref_primary_10_1111_syen_12357
crossref_primary_10_1093_molbev_msi191
crossref_primary_10_1111_j_1096_0031_2006_00105_x
crossref_primary_10_1186_1471_2148_14_82
crossref_primary_10_1099_ijsem_0_006002
crossref_primary_10_1007_s10816_015_9258_7
crossref_primary_10_1080_10635150701627304
crossref_primary_10_1099_ijsem_0_006488
crossref_primary_10_1111_j_1096_0031_2006_00096_x
crossref_primary_10_1089_cmb_2022_0141
crossref_primary_10_1093_zoolinnean_zlz088
crossref_primary_10_14302_issn_2689_4602_jes_24_4982
crossref_primary_10_1016_j_funbio_2014_08_001
crossref_primary_10_1016_j_ympev_2008_04_030
crossref_primary_10_1089_omi_2008_0010
crossref_primary_10_1016_j_syapm_2013_02_003
crossref_primary_10_1097_MD_0000000000034931
crossref_primary_10_1098_rstb_2008_0178
crossref_primary_10_7717_peerj_16706
crossref_primary_10_1007_s13752_025_00491_x
crossref_primary_10_1016_j_tree_2009_01_009
crossref_primary_10_1186_gb_2007_8_9_r199
crossref_primary_10_1016_j_exger_2023_112154
crossref_primary_10_1111_j_1096_0031_2010_00342_x
crossref_primary_10_3390_v16071061
crossref_primary_10_1002_cjs_11741
crossref_primary_10_1098_rstb_2008_0171
crossref_primary_10_1093_molbev_msj030
crossref_primary_10_1186_1745_6150_6_45
crossref_primary_10_1371_journal_pone_0048380
crossref_primary_10_1111_j_1096_0031_2009_00255_x
crossref_primary_10_1093_gbe_evp011
crossref_primary_10_1093_sysbio_syab001
crossref_primary_10_3417_0026_6493_2007_94_690_NESFCR_2_0_CO_2
crossref_primary_10_1186_s12859_015_0647_4
crossref_primary_10_1093_sysbio_syq028
crossref_primary_10_3390_life6030039
crossref_primary_10_1111_1744_7917_13034
crossref_primary_10_1016_j_jinorgbio_2017_02_012
crossref_primary_10_1016_j_ympev_2015_12_013
crossref_primary_10_1016_j_ympev_2012_08_008
crossref_primary_10_3417_2014032
crossref_primary_10_1080_09670260802207530
crossref_primary_10_1093_molbev_msj005
crossref_primary_10_1098_rsbl_2011_0884
crossref_primary_10_1093_sysbio_syac003
crossref_primary_10_1101_gr_5232407
crossref_primary_10_1007_s00203_022_03148_6
crossref_primary_10_3390_genes10090691
crossref_primary_10_1093_molbev_mst024
crossref_primary_10_2307_25065411
crossref_primary_10_1016_j_ympev_2012_08_019
crossref_primary_10_3732_ajb_0800320
crossref_primary_10_1093_sysbio_syx088
crossref_primary_10_1155_2008_683509
crossref_primary_10_1016_j_ympev_2005_07_015
crossref_primary_10_1086_509588
crossref_primary_10_1007_s10750_022_04872_2
crossref_primary_10_1093_sysbio_syz021
crossref_primary_10_1186_1745_6150_6_26
crossref_primary_10_5735_086_061_0127
crossref_primary_10_1099_ijs_0_000935_0
crossref_primary_10_1111_j_1365_3113_2007_00377_x
crossref_primary_10_3923_javaa_2012_1056_1062
crossref_primary_10_1016_j_ympev_2009_05_025
crossref_primary_10_3923_biotech_2023_18_27
crossref_primary_10_1111_j_1096_0031_2005_00076_x
crossref_primary_10_1515_hf_2018_0076
crossref_primary_10_1371_journal_pone_0006579
crossref_primary_10_1007_s00239_005_0018_2
crossref_primary_10_1093_molbev_msi134
crossref_primary_10_1093_sysbio_syx097
crossref_primary_10_1099_ijsem_0_003912
crossref_primary_10_1099_ijsem_0_001611
crossref_primary_10_1186_1745_6150_5_49
crossref_primary_10_1099_ijsem_0_001851
crossref_primary_10_1080_10635150801910436
crossref_primary_10_1155_2014_706468
crossref_primary_10_1186_s12862_015_0364_7
crossref_primary_10_1071_SB07006
crossref_primary_10_1186_s12864_018_5123_x
crossref_primary_10_1093_sysbio_syp008
crossref_primary_10_1111_syen_12575
crossref_primary_10_1146_annurev_micro_59_030804_121233
crossref_primary_10_1111_j_1096_0031_2012_00425_x
crossref_primary_10_1186_1471_2148_6_97
crossref_primary_10_1093_sysbio_syy077
crossref_primary_10_1111_j_1096_3642_2009_00605_x
crossref_primary_10_3732_ajb_2007308
crossref_primary_10_1007_s00239_010_9380_9
crossref_primary_10_1093_sysbio_syp017
Cites_doi 10.1006/jmbi.1998.2601
10.1080/106351598261030
10.1093/oxfordjournals.molbev.a003973
10.1007/BF02459467
10.1016/0025-5564(95)00172-7
10.1007/BF01738880
10.1093/oxfordjournals.molbev.a026025
10.2307/2412923
10.1093/bioinformatics/14.9.817
10.1098/rspb.2002.2025
10.1093/oxfordjournals.molbev.a004128
10.1080/106351501753328848
10.1080/106351500750049860
10.1038/nature02053
10.1093/bioinformatics/17.8.754
10.1093/oxfordjournals.molbev.a040183
10.1093/oxfordjournals.molbev.a025613
10.1016/S0968-0004(01)01877-1
10.1080/106351598260987
10.1006/mpev.2001.1045
10.1080/01621459.1968.11009285
10.1126/science.8171318
10.1080/10635150117959
10.1007/s00239-002-2341-1
10.1093/molbev/msh130
ContentType Journal Article
Copyright Macmillan Magazines Ltd. 2004
2004 INIST-CNRS
COPYRIGHT 2004 Nature Publishing Group
Copyright Macmillan Journals Ltd. Oct 21, 2004
Copyright_xml – notice: Macmillan Magazines Ltd. 2004
– notice: 2004 INIST-CNRS
– notice: COPYRIGHT 2004 Nature Publishing Group
– notice: Copyright Macmillan Journals Ltd. Oct 21, 2004
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
7SC
7SP
7SR
7TB
7U5
8BQ
F28
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1038/nature02917
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary Curriculum
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
ProQuest Psychology Database
ProQuest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
ProQuest Nursing and Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
Materials Research Database
Civil Engineering Abstracts
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE
MEDLINE - Academic
Genetics Abstracts
Agricultural Science Database
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Biology
EISSN 1476-4687
EndPage 984
ExternalDocumentID 730696891
A186287922
15496922
16206650
10_1038_nature02917
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.GJ
.HR
00M
08P
0R~
0WA
123
186
1VR
29M
2KS
2XV
39C
3EH
3O-
3V.
4.4
41X
42X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
9M8
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAJYS
AAKAB
AAMNW
AASDW
AAYEP
AAYOK
AAYZH
ABAWZ
ABDBF
ABDPE
ABDQB
ABEFU
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABTAH
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACTDY
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
AENEX
AEUYN
AFFDN
AFFNX
AFHKK
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKOMP
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DB5
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
J5H
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
MVM
N4W
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
USG
VOH
VQA
VVN
WH7
WOW
X7L
X7M
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQJ
YQT
YR2
YR5
YV5
YXB
YYP
YZZ
Z5M
ZCA
ZCG
ZGI
ZHY
ZKB
ZKG
ZY4
~02
~7V
~88
~8M
~KM
.CO
.XZ
07C
1CY
1OL
1VW
354
41~
4R4
663
79B
AAKAS
AARCD
AAVBQ
AAYXX
ABFSG
ACBNA
ACBTR
ACMFV
ACSTC
ADGHP
ADRHT
ADXHL
ADZCM
AETEA
AEZWR
AFANA
AFBBN
AFHIU
AGQPQ
AHWEU
AIXLP
AJUXI
ALPWD
ARMCB
ATHPR
BCR
BES
BLC
CITATION
FA8
FAC
LGEZI
LOTEE
LSO
NADUK
NFIDA
NXXTH
ODYON
PEA
PHGZM
PHGZT
PV9
QS-
R4F
RHI
SHXYY
SIXXV
SKT
TBHMF
TDRGL
TUD
UBY
UHB
XIH
XOL
YJ6
YQI
YXA
YYQ
ZE2
~G0
IQODW
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
ESTFP
PUEGO
7X8
7SC
7SP
7SR
7TB
7U5
8BQ
F28
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c578t-31acceed162153609f767736d2440dc04a85e5ecc3ec4f4b07b42ae8986ad1873
IEDL.DBID BENPR
ISSN 0028-0836
1476-4687
IngestDate Sun Sep 28 10:13:04 EDT 2025
Fri Sep 05 14:14:14 EDT 2025
Fri Sep 05 05:03:31 EDT 2025
Sat Aug 23 12:51:07 EDT 2025
Fri Jun 13 00:45:42 EDT 2025
Tue Jun 10 15:35:30 EDT 2025
Tue Jun 10 21:28:30 EDT 2025
Fri Jun 27 04:44:25 EDT 2025
Wed Feb 19 01:49:15 EST 2025
Mon Jul 21 09:12:41 EDT 2025
Tue Jul 01 02:11:44 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Fri Feb 21 02:37:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7011
Keywords Statistical method
MCMC algorithm
Maximum likelihood
Phylogeny
Biological evolution
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c578t-31acceed162153609f767736d2440dc04a85e5ecc3ec4f4b07b42ae8986ad1873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 15496922
PQID 204572943
PQPubID 40569
PageCount 5
ParticipantIDs proquest_miscellaneous_743385255
proquest_miscellaneous_66993312
proquest_miscellaneous_18062927
proquest_journals_204572943
gale_infotracgeneralonefile_A186287922
gale_infotraccpiq_186287922
gale_infotracacademiconefile_A186287922
gale_incontextgauss_ISR_A186287922
pubmed_primary_15496922
pascalfrancis_primary_16206650
crossref_primary_10_1038_nature02917
crossref_citationtrail_10_1038_nature02917
springer_journals_10_1038_nature02917
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-10-21
PublicationDateYYYYMMDD 2004-10-21
PublicationDate_xml – month: 10
  year: 2004
  text: 2004-10-21
  day: 21
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2004
Publisher Nature Publishing Group UK
Nature Publishing
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing
– name: Nature Publishing Group
References P Lopez (BFnature02917_CR9) 2002; 19
WM Fitch (BFnature02917_CR10) 1976; 8
JP Huelsenbeck (BFnature02917_CR5) 1998; 47
DM Hillis (BFnature02917_CR19) 1998; 47
J Sullivan (BFnature02917_CR18) 2001; 50
MJ Sanderson (BFnature02917_CR1) 2000; 49
DL Swofford (BFnature02917_CR26) 1998
MK Kuhner (BFnature02917_CR4) 1994; 11
DM Hillis (BFnature02917_CR2) 1994; 264
J Felsenstein (BFnature02917_CR3) 1978; 27
PJ Lockhart (BFnature02917_CR14) 1998; 15
TS Donaldson (BFnature02917_CR17) 1968; 63
Z Yang (BFnature02917_CR27) 1997; 13
BS Gaut (BFnature02917_CR6) 1995; 12
B Misof (BFnature02917_CR15) 2002; 55
JP Huelsenbeck (BFnature02917_CR28) 2001; 17
H Philippe (BFnature02917_CR16) 2001; 26
MM Miyamoto (BFnature02917_CR8) 1995; 12
D Posada (BFnature02917_CR29) 1998; 14
DD Pollock (BFnature02917_CR11) 1999; 287
JT Chang (BFnature02917_CR20) 1996; 134
A Rokas (BFnature02917_CR21) 2003; 425
CA Russo (BFnature02917_CR22) 1996; 13
Y Inagaki (BFnature02917_CR13) 2004; 21
DL Swofford (BFnature02917_CR30) 2001; 50
GJ Naylor (BFnature02917_CR24) 1998; 47
C Tuffley (BFnature02917_CR25) 1997; 59
C Delarbre (BFnature02917_CR23) 2002; 22
T Pupko (BFnature02917_CR12) 2002; 269
JP Huelsenbeck (BFnature02917_CR7) 2002; 19
References_xml – volume: 287
  start-page: 187
  year: 1999
  ident: BFnature02917_CR11
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.2601
– volume: 47
  start-page: 61
  year: 1998
  ident: BFnature02917_CR24
  publication-title: Syst. Biol.
  doi: 10.1080/106351598261030
– volume: 47
  start-page: 519
  year: 1998
  ident: BFnature02917_CR5
  publication-title: Syst. Biol.
– volume: 19
  start-page: 1
  year: 2002
  ident: BFnature02917_CR9
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a003973
– volume: 59
  start-page: 581
  year: 1997
  ident: BFnature02917_CR25
  publication-title: Bull. Math. Biol.
  doi: 10.1007/BF02459467
– volume: 13
  start-page: 555
  year: 1997
  ident: BFnature02917_CR27
  publication-title: Comput. Appl. Biosci.
– volume: 134
  start-page: 189
  year: 1996
  ident: BFnature02917_CR20
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(95)00172-7
– volume: 8
  start-page: 13
  year: 1976
  ident: BFnature02917_CR10
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF01738880
– volume: 15
  start-page: 1183
  year: 1998
  ident: BFnature02917_CR14
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a026025
– volume: 27
  start-page: 401
  year: 1978
  ident: BFnature02917_CR3
  publication-title: Syst. Zool.
  doi: 10.2307/2412923
– volume: 14
  start-page: 817
  year: 1998
  ident: BFnature02917_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/14.9.817
– volume: 269
  start-page: 1313
  year: 2002
  ident: BFnature02917_CR12
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.2002.2025
– volume: 19
  start-page: 698
  year: 2002
  ident: BFnature02917_CR7
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a004128
– volume: 50
  start-page: 723
  year: 2001
  ident: BFnature02917_CR18
  publication-title: Syst. Biol.
  doi: 10.1080/106351501753328848
– volume: 49
  start-page: 817
  year: 2000
  ident: BFnature02917_CR1
  publication-title: Syst. Biol.
  doi: 10.1080/106351500750049860
– volume: 425
  start-page: 798
  year: 2003
  ident: BFnature02917_CR21
  publication-title: Nature
  doi: 10.1038/nature02053
– volume-title: PAUP*: Phylogenetic Analysis Using Parsimony and Other Methods, v.4.0b10
  year: 1998
  ident: BFnature02917_CR26
– volume: 17
  start-page: 754
  year: 2001
  ident: BFnature02917_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.8.754
– volume: 12
  start-page: 152
  year: 1995
  ident: BFnature02917_CR6
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a040183
– volume: 13
  start-page: 525
  year: 1996
  ident: BFnature02917_CR22
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a025613
– volume: 12
  start-page: 503
  year: 1995
  ident: BFnature02917_CR8
  publication-title: Mol. Biol. Evol.
– volume: 26
  start-page: 414
  year: 2001
  ident: BFnature02917_CR16
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(01)01877-1
– volume: 47
  start-page: 3
  year: 1998
  ident: BFnature02917_CR19
  publication-title: Syst. Biol.
  doi: 10.1080/106351598260987
– volume: 22
  start-page: 184
  year: 2002
  ident: BFnature02917_CR23
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1006/mpev.2001.1045
– volume: 63
  start-page: 660
  year: 1968
  ident: BFnature02917_CR17
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1968.11009285
– volume: 264
  start-page: 671
  year: 1994
  ident: BFnature02917_CR2
  publication-title: Science
  doi: 10.1126/science.8171318
– volume: 50
  start-page: 525
  year: 2001
  ident: BFnature02917_CR30
  publication-title: Syst. Biol.
  doi: 10.1080/10635150117959
– volume: 55
  start-page: 460
  year: 2002
  ident: BFnature02917_CR15
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-002-2341-1
– volume: 21
  start-page: 1340
  year: 2004
  ident: BFnature02917_CR13
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msh130
– volume: 11
  start-page: 459
  year: 1994
  ident: BFnature02917_CR4
  publication-title: Mol. Biol. Evol.
SSID ssj0005174
Score 2.368504
Snippet All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 980
SubjectTerms Bayes Theorem
Bias
Biological and medical sciences
Biological evolution
Biology
Computer Simulation
Evolution
Fundamental and applied biological sciences. Psychology
Genetics
Genetics of eukaryotes. Biological and molecular evolution
Heterogeneity
Humanities and Social Sciences
letter
Likelihood Functions
Markov Chains
Monte Carlo Method
multidisciplinary
Phylogeny
Research Design
Science
Science (multidisciplinary)
Sensitivity and Specificity
Taxonomy
Topology
Title Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous
URI https://link.springer.com/article/10.1038/nature02917
https://www.ncbi.nlm.nih.gov/pubmed/15496922
https://www.proquest.com/docview/204572943
https://www.proquest.com/docview/18062927
https://www.proquest.com/docview/66993312
https://www.proquest.com/docview/743385255
Volume 431
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9trZCQEGLjqwyKhcbHkKI5cWI7Dwi1Y2UgbZoGk_qCIidxtoo27UgL7L_nnDjLCh0vUSRfnMvd-XyOz78D2MYZVcogS5w0YNrxRew6YZpxR3KppZBpTMtkzMMjfnDqfx4GwzU4rM_CmLTK2ieWjjqdJuYf-a6BTcdA0GfvZxeOKRplNlfrChrKVlZI35UIY-vQRo8c0Ba0-_tHxydNzsdfsMz2wB5lcrfC0aReWJYua6Yo66jvzFSBQsuqaherwtF_tlLLGWpwD-7a0JL0KlvYgDWdb8KtqtjkJd6VyZ5JsQkbdkAX5I1Fnd65D9-OmyMEZJqRifo9miwmZIYrX9RnfklUnpLx6LsejwwUMkH9YMf4vAF6Jr_OdU70T2vIZFSQc5NoUxJMF8UDOB3sf907cGztBSfBMTxH14wyxfnT5RgTME7DTHAhGE8xHKBpQn0lAx2g_plO_MyPqYh9T2kZSq5SVwr2EFr5NNePgcRMcxYzFyMV4ScyVCGuGTEs9UPsjmnRgbe1uKPEApOb-hjjqNwgZzK6ppsObF8Rzyo8jtVkL4zeIoNwkZsUmjO1KIro05eTqOfiIk6K0PM68NoSZVN8YaLsiQRk24BiLVFuLVEms9FFdK311VLrWaW6Vd10l8yo-QJuUPUDiu-p7SqyvqSIriy_A8-vWtEJmJ0dVeoQWaHcCz1xMwVHiTPmIgvkBgoMJZkMcIXZgUeVRTfsBX7IS_5f1ibesLdC-k_--xlbcLtCy6SO5z6F1vzHQj_DyG4ed2FdDAVe5Z5rroOPXWj3-h_6g64dyX8AFBtReg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTggkhNj4KoPNQhtfUrQkdmznYUIDNrVsq6axSXtBIR_OVtGmHWkZ_eP43zgnTrNCx9veIvninH3nu3N8_h3AOnpUKb00thKPKouJyLH8JOWW5FJJIZPILpIxDzq8dcI-n3qnC_C7uguj0yorm1gY6mQQ63_kmxo2HQNBRt8PLyxdNEofrlYVNEJTWSHZKhDGzL2OPTW5xB1cvtX-hOLecN3dneOPLcsUGbBiVNYR2iB8GR2Fw9H5UW77qeBCUJ6g37OT2Gah9JSHA6UqZimLbBExN1TSlzxMHCko9nsLFpn-f9KAxQ87ncOjOsfkLxhoc0HQpnKzxO20Xb8olVa7ROMY7g3DHIWUltU15oW__xzdFh5x9wHcN6Es2S51bwkWVLYMt8vilhN8KpJL43wZlowByckbg3L99iF8PayvLJBBSvrhr25_3CdD3Gmj_mQTEmYJ6XW_q15XQy8T1AfsGN_XwNLk8lxlRP00C4d0c3KuE3sKgsE4fwQnNyKGx9DIBpl6CiSiitOIOhgZCRZLP_Rxj4phMPOxO6pEE95V0x3EBghd1-PoBcWBPJXBFdk0YX1KPCzxP-aTvdRyCzSiRqZTds7CcZ4H7S9HwbaDm0YpfNdtwmtDlA7wg3FobkAg2xqEa4ZyZYYyHnYvgiutr2Zaz0rRzetmdUaN6hFwjeLv2fidSq8CY7vyYLrSmrA2bUWjo0-SwkKGyIrNXd8V11NwnHFKHWSBXEOBoSuVHu5om_Ck1OiaPY_5vOB_o1Lxmr05s__sv8NYgzut44P9YL_d2VuBuyVSp225znNojH6M1QuMKkfRqlm7BL7dtLn4A6kXiis
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTSAkhNj4KoPNQhtfUtQkTmznYUKDrVoZVNVg0l5QcBJnq2jTjrSM_on8V5wTp1mh421vlXxxzr7LfdTn3wFsoUcVwk9jK_GpsjweOVaQpMwSTCjBRRLZRTHmpw47OPY-nPgnS_C7ugujyyorm1gY6mQY6__Imxo2HQNBjzZTUxXR3Wu9HZ1buoGUPmitumlI02Uh2SnQxswdj0M1vcBsLt9p76Hot123tf_l_YFlGg5YMSruGO0RPoxOw2HoCCmzg5QzzilL0AfaSWx7UvjKx0VTFXupF9k88lypRCCYTBzBKc57A1Y4On3MA1fe7Xe6R3W9yV-Q0OayoE1Fs8TwtN2gaJtWu0fjJO6MZI4CS8tOG4tC4X-OcQvv2LoHd01YS3ZLPVyFJZWtwc2y0eUUfxWFpnG-BqvGmOTklUG8fn0fvnbr6wtkmJKB_NUbTAZkhFk36lI2JTJLSL_3XfV7GoaZoG7gxPi8BpkmF2cqI-qn-YhILydnusinIBhO8gdwfC1ieAjL2TBTj4FEVDEaUQejJO7FIpAB5qsYEnsBTkcVb8CbarvD2ICi694c_bA4nKcivCSbBmzNiEclFshisudabqFG18i0op7KSZ6H7c9H4a6DCaTgges24KUhSof4wlia2xDItgbkmqNcn6OMR73z8NLoi7nR01J0i6bZmFOjegVMI_r7Nr6n0qvQ2LE8nH11DdicjaIB0qdKspAhsmIzN3D51RQMd5xSB1kgV1BgGEuFj9ltAx6VGl2z53sBK_jfrlS8Zm_B7j_57zI24RaajfBju3O4DrdL0E7bcp2nsDz-MVHPMMAcRxvm0yXw7bqtxR9rbo5v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+maximum+parsimony+and+likelihood+phylogenetics+when+evolution+is+heterogeneous&rft.jtitle=Nature+%28London%29&rft.au=Kolaczkowski%2C+Bryan&rft.au=Thornton%2C+Joseph+W&rft.date=2004-10-21&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=431&rft.issue=7011&rft.spage=980&rft_id=info:doi/10.1038%2Fnature02917&rft.externalDBID=ISR&rft.externalDocID=A186287922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon