Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous
All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniq...
Saved in:
Published in | Nature (London) Vol. 431; no. 7011; pp. 980 - 984 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.10.2004
Nature Publishing Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/nature02917 |
Cover
Abstract | All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniques represent a parametric approach to statistical phylogenetics, because their criterion for evaluating a topology—the probability of the data, given the tree—is calculated with reference to an explicit evolutionary model from which the data are assumed to be identically distributed. Maximum parsimony can be considered nonparametric, because trees are evaluated on the basis of a general metric—the minimum number of character state changes required to generate the data on a given tree—without assuming a specific distribution
1
. The shift to parametric methods was spurred, in large part, by studies showing that although both approaches perform well most of the time
2
, maximum parsimony is strongly biased towards recovering an incorrect tree under certain combinations of branch lengths, whereas maximum likelihood is not
3
,
4
,
5
,
6
. All these evaluations simulated sequences by a largely homogeneous evolutionary process in which data are identically distributed. There is ample evidence, however, that real-world gene sequences evolve heterogeneously and are not identically distributed
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
. Here we show that maximum likelihood and BMCMC can become strongly biased and statistically inconsistent when the rates at which sequence sites evolve change non-identically over time. Maximum parsimony performs substantially better than current parametric methods over a wide range of conditions tested, including moderate heterogeneity and phylogenetic problems not normally considered difficult. |
---|---|
AbstractList | All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniques represent a parametric approach to statistical phylogenetics, because their criterion for evaluating a topology--the probability of the data, given the tree--is calculated with reference to an explicit evolutionary model from which the data are assumed to be identically distributed. Maximum parsimony can be considered nonparametric, because trees are evaluated on the basis of a general metric--the minimum number of character state changes required to generate the data on a given tree--without assuming a specific distribution. The shift to parametric methods was spurred, in large part, by studies showing that although both approaches perform well most of the time, maximum parsimony is strongly biased towards recovering an incorrect tree under certain combinations of branch lengths, whereas maximum likelihood is not. All these evaluations simulated sequences by a largely homogeneous evolutionary process in which data are identically distributed. There is ample evidence, however, that real-world gene sequences evolve heterogeneously and are not identically distributed. Here we show that maximum likelihood and BMCMC can become strongly biased and statistically inconsistent when the rates at which sequence sites evolve change non-identically over time. Maximum parsimony performs substantially better than current parametric methods over a wide range of conditions tested, including moderate heterogeneity and phylogenetic problems not normally considered difficult. All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniques represent a parametric approach to statistical phylogenetics, because their criterion for evaluating a topology--the probability of the data, given the tree--is calculated with reference to an explicit evolutionary model from which the data are assumed to be identically distributed. Maximum parsimony can be considered nonparametric, because trees are evaluated on the basis of a general metric--the minimum number of character state changes required to generate the data on a given tree--without assuming a specific distribution. The shift to parametric methods was spurred, in large part, by studies showing that although both approaches perform well most of the time, maximum parsimony is strongly biased towards recovering an incorrect tree under certain combinations of branch lengths, whereas maximum likelihood is not. All these evaluations simulated sequences by a largely homogeneous evolutionary process in which data are identically distributed. There is ample evidence, however, that real-world gene sequences evolve heterogeneously and are not identically distributed. Here we show that maximum likelihood and BMCMC can become strongly biased and statistically inconsistent when the rates at which sequence sites evolve change non-identically over time. Maximum parsimony performs substantially better than current parametric methods over a wide range of conditions tested, including moderate heterogeneity and phylogenetic problems not normally considered difficult.All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniques represent a parametric approach to statistical phylogenetics, because their criterion for evaluating a topology--the probability of the data, given the tree--is calculated with reference to an explicit evolutionary model from which the data are assumed to be identically distributed. Maximum parsimony can be considered nonparametric, because trees are evaluated on the basis of a general metric--the minimum number of character state changes required to generate the data on a given tree--without assuming a specific distribution. The shift to parametric methods was spurred, in large part, by studies showing that although both approaches perform well most of the time, maximum parsimony is strongly biased towards recovering an incorrect tree under certain combinations of branch lengths, whereas maximum likelihood is not. All these evaluations simulated sequences by a largely homogeneous evolutionary process in which data are identically distributed. There is ample evidence, however, that real-world gene sequences evolve heterogeneously and are not identically distributed. Here we show that maximum likelihood and BMCMC can become strongly biased and statistically inconsistent when the rates at which sequence sites evolve change non-identically over time. Maximum parsimony performs substantially better than current parametric methods over a wide range of conditions tested, including moderate heterogeneity and phylogenetic problems not normally considered difficult. All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniques represent a parametric approach to statistical phylogenetics, because their criterion for evaluating a topology--the probability of the data, given the tree--is calculated with reference to an explicit evolutionary model from which the data are assumed to be identically distributed. Maximum parsimony can be considered nonparametric, because trees are evaluated on the basis of a general metric--the minimum number of character state changes required to generate the data on a given tree--without assuming a specific distribution. The shift to parametric methods was spurred, in large part, by studies showing that although both approaches perform well most of the time, maximum parsimony is strongly biased towards recovering an incorrect tree under certain combinations of branch lengths, whereas maximum likelihood is not. All these evaluations simulated sequences by a largely homogeneous evolutionary process in which data are identically distributed. There is ample evidence, however, that real-world gene sequences evolve heterogeneously and are not identically distributed. Here we show that maximum likelihood and BMCMC can become strongly biased and statistically inconsistent when the rates at which sequence sites evolve change non-identically over time. Maximum parsimony performs substantially better than current parametric methods over a wide range of conditions tested, including moderate heterogeneity and phylogenetic problems not normally considered difficult. [PUBLICATION ABSTRACT] All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum parsimony towards the probabilistic techniques of maximum likelihood and bayesian Markov chain Monte Carlo (BMCMC). These probabilistic techniques represent a parametric approach to statistical phylogenetics, because their criterion for evaluating a topology—the probability of the data, given the tree—is calculated with reference to an explicit evolutionary model from which the data are assumed to be identically distributed. Maximum parsimony can be considered nonparametric, because trees are evaluated on the basis of a general metric—the minimum number of character state changes required to generate the data on a given tree—without assuming a specific distribution 1 . The shift to parametric methods was spurred, in large part, by studies showing that although both approaches perform well most of the time 2 , maximum parsimony is strongly biased towards recovering an incorrect tree under certain combinations of branch lengths, whereas maximum likelihood is not 3 , 4 , 5 , 6 . All these evaluations simulated sequences by a largely homogeneous evolutionary process in which data are identically distributed. There is ample evidence, however, that real-world gene sequences evolve heterogeneously and are not identically distributed 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 . Here we show that maximum likelihood and BMCMC can become strongly biased and statistically inconsistent when the rates at which sequence sites evolve change non-identically over time. Maximum parsimony performs substantially better than current parametric methods over a wide range of conditions tested, including moderate heterogeneity and phylogenetic problems not normally considered difficult. |
Audience | Academic |
Author | Kolaczkowski, Bryan Thornton, Joseph W. |
Author_xml | – sequence: 1 givenname: Bryan surname: Kolaczkowski fullname: Kolaczkowski, Bryan organization: Department of Computer and Information Science – sequence: 2 givenname: Joseph W. surname: Thornton fullname: Thornton, Joseph W. email: joet@uoregon.edu organization: Center for Ecology and Evolutionary Biology, University of Oregon |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16206650$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15496922$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ttv0zAUB2ALDbGt8MQ7ipAAIcjwLbbzOE1cJk0CcXlEkeuctB6O3dkJrP897lrUdSqgPESKvnPsk_M7Rgc-eEDoMcEnBDP1xuthjIBpTeQ9dES4FCUXSh6gI4ypKrFi4hAdp3SJMa6I5A_QIal4LWpKj9D3TxC7EHvtDRShK3p9bfuxLxY6JtsHvyy0bwtnf4Cz8xDaYjFfujADD4M1qfg1B1_Az-DGwQZf2FTMYYB4A8KYHqL7nXYJHm3eE_Tt3duvZx_Ki4_vz89OL0pTSTWUjGhjAFoiKKmYwHUnhZRMtJRz3BrMtaqgAmMYGN7xKZZTTjWoWgndEiXZBL1Y913EcDVCGpreJgPO6ZtrNJIzpipaVVk-_6cUoq4ZI_S_kCgsaE1XZz-9Ay_DGH0et6GYV5LW-fAJKtdoph001ndhiNqs_lLULq-zs_nzKVGCKpn3sm26483CXjW30ckelJ8Wemv2dn25U5DNANfDTI8pNedfPu_aJ5uxxmkPbbOIttdx2fyJTgbPNkAno10Xc4Rs2jpBsRAVzu7V2pkYUorQbQluVgFubgU4a3JHGzvoVbjybNb9peb1uiblzn4GcbuBffw3oKEA1w |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_ympev_2018_04_033 crossref_primary_10_1099_ijsem_0_003939 crossref_primary_10_1093_molbev_msi111 crossref_primary_10_1016_j_ejr_2024_02_002 crossref_primary_10_1098_rsif_2020_0567 crossref_primary_10_1371_journal_pcbi_1003452 crossref_primary_10_1016_j_meegid_2005_01_001 crossref_primary_10_1111_j_1095_8312_2012_01978_x crossref_primary_10_1016_j_ympev_2017_09_025 crossref_primary_10_1086_431800 crossref_primary_10_1371_journal_pone_0007891 crossref_primary_10_1038_s41598_023_41556_w crossref_primary_10_1371_journal_pgen_1001162 crossref_primary_10_1206_0003_0090_2005_294_0001_SROTFF_2_0_CO_2 crossref_primary_10_1099_ijsem_0_003801 crossref_primary_10_1371_journal_pgen_1003580 crossref_primary_10_1093_molbev_msr050 crossref_primary_10_1093_gbe_evw179 crossref_primary_10_1093_molbev_msq081 crossref_primary_10_1016_j_ympev_2009_08_019 crossref_primary_10_1080_10635150601156313 crossref_primary_10_1017_S0022149X19000610 crossref_primary_10_1111_j_1096_0031_2012_00393_x crossref_primary_10_1371_journal_pone_0109210 crossref_primary_10_1093_sysbio_sys042 crossref_primary_10_1093_molbev_msi212 crossref_primary_10_4049_jimmunol_1201929 crossref_primary_10_1099_ijsem_0_004803 crossref_primary_10_1016_j_ympev_2014_12_003 crossref_primary_10_1371_journal_pgen_1000191 crossref_primary_10_1017_jpa_2016_56 crossref_primary_10_1097_FJC_0000000000001426 crossref_primary_10_1016_j_gene_2006_07_002 crossref_primary_10_1111_j_1558_5646_2008_00549_x crossref_primary_10_7717_peerj_5901 crossref_primary_10_1111_j_1096_0031_2006_00100_x crossref_primary_10_1002_ajp_23298 crossref_primary_10_1099_ijsem_0_003709 crossref_primary_10_51539_biotech_1262979 crossref_primary_10_1099_ijsem_0_001884 crossref_primary_10_1007_s10904_024_03030_6 crossref_primary_10_1016_j_ympev_2013_09_009 crossref_primary_10_1111_cla_12150 crossref_primary_10_1134_S0026893313010056 crossref_primary_10_1093_molbev_mss216 crossref_primary_10_1017_S147720000999017X crossref_primary_10_1099_ijsem_0_003979 crossref_primary_10_1007_s00239_020_09936_2 crossref_primary_10_1371_journal_pbio_0040151 crossref_primary_10_1016_j_meegid_2012_10_020 crossref_primary_10_1515_gps_2023_0080 crossref_primary_10_1093_molbev_msp184 crossref_primary_10_1111_cla_12205 crossref_primary_10_1111_cla_12447 crossref_primary_10_1093_bib_bbq003 crossref_primary_10_1099_ijsem_0_005909 crossref_primary_10_1093_gbe_evz121 crossref_primary_10_1089_omi_2015_0018 crossref_primary_10_1126_sciadv_1500527 crossref_primary_10_3897_asp_83_e142332 crossref_primary_10_1093_molbev_msp191 crossref_primary_10_1016_j_ympev_2013_03_017 crossref_primary_10_1016_j_xpro_2022_101191 crossref_primary_10_1111_cla_12477 crossref_primary_10_3732_ajb_0800178 crossref_primary_10_1016_j_shpsa_2021_10_006 crossref_primary_10_1111_cla_12595 crossref_primary_10_1073_pnas_0907801107 crossref_primary_10_1099_ijsem_0_005816 crossref_primary_10_1093_gbe_evw086 crossref_primary_10_1128_JVI_05369_11 crossref_primary_10_1146_annurev_ecolsys_35_112202_130205 crossref_primary_10_1642_AUK_16_53_1 crossref_primary_10_1016_j_tig_2007_02_001 crossref_primary_10_1098_rsos_190387 crossref_primary_10_1093_molbev_msr220 crossref_primary_10_1073_pnas_0704342104 crossref_primary_10_1089_cmb_2006_0126 crossref_primary_10_1111_pala_12236 crossref_primary_10_1371_journal_pone_0025246 crossref_primary_10_1016_j_tree_2007_01_012 crossref_primary_10_1099_ijsem_0_003987 crossref_primary_10_1099_ijsem_0_004840 crossref_primary_10_3390_computation2040221 crossref_primary_10_1016_j_ympev_2006_01_004 crossref_primary_10_1038_nrg1603 crossref_primary_10_3852_13_353 crossref_primary_10_1155_2006_431618 crossref_primary_10_1016_j_ympev_2006_01_007 crossref_primary_10_1111_j_1096_0031_2011_00375_x crossref_primary_10_1073_pnas_1407163112 crossref_primary_10_1016_j_ympev_2005_02_003 crossref_primary_10_1099_ijsem_0_005838 crossref_primary_10_1371_journal_pone_0292525 crossref_primary_10_1099_ijsem_0_004623 crossref_primary_10_1186_1471_2148_11_281 crossref_primary_10_1099_ijsem_0_004875 crossref_primary_10_1099_ijsem_0_005601 crossref_primary_10_1016_j_fm_2012_10_008 crossref_primary_10_1016_j_meegid_2016_07_039 crossref_primary_10_1093_molbev_msr202 crossref_primary_10_5248_122_25 crossref_primary_10_7759_cureus_26680 crossref_primary_10_1007_s12275_024_00177_2 crossref_primary_10_1016_j_gene_2008_08_003 crossref_primary_10_1155_2022_2713483 crossref_primary_10_1186_1748_7188_5_37 crossref_primary_10_1093_sysbio_syae056 crossref_primary_10_1099_ijsem_0_004858 crossref_primary_10_1093_sysbio_syae055 crossref_primary_10_1093_sysbio_syv028 crossref_primary_10_1080_10635150500433615 crossref_primary_10_1098_rstb_2009_0233 crossref_primary_10_5812_hepatmon_6133 crossref_primary_10_1016_j_ympev_2007_06_020 crossref_primary_10_1093_molbev_msn098 crossref_primary_10_1098_rstb_2006_1845 crossref_primary_10_1007_s11538_023_01167_y crossref_primary_10_1016_j_ympev_2012_10_021 crossref_primary_10_1016_j_ympev_2021_107086 crossref_primary_10_3389_fcimb_2023_1109634 crossref_primary_10_1093_molbev_msq215 crossref_primary_10_1093_molbev_msp248 crossref_primary_10_1080_10635150500234609 crossref_primary_10_1099_ijsem_0_004653 crossref_primary_10_1109_TCBB_2021_3101278 crossref_primary_10_1016_j_epidem_2009_10_003 crossref_primary_10_1099_ijsem_0_004772 crossref_primary_10_1111_j_1096_0031_2010_00327_x crossref_primary_10_3390_biology9010009 crossref_primary_10_1080_14772019_2013_764357 crossref_primary_10_1239_aap_1208358894 crossref_primary_10_1093_molbev_msq346 crossref_primary_10_1088_1478_3975_aa7366 crossref_primary_10_1016_j_critrevonc_2023_104249 crossref_primary_10_1099_ijsem_0_003303 crossref_primary_10_1073_pnas_0503660102 crossref_primary_10_1093_molbev_msy069 crossref_primary_10_1093_molbev_msp250 crossref_primary_10_1093_sysbio_sys064 crossref_primary_10_1038_nrg_2015_18 crossref_primary_10_1093_molbev_msp102 crossref_primary_10_1099_ijs_0_63936_0 crossref_primary_10_1007_s12275_021_0406_3 crossref_primary_10_3389_fimmu_2018_01307 crossref_primary_10_1093_sysbio_sys067 crossref_primary_10_1093_bioinformatics_btx033 crossref_primary_10_1099_ijsem_0_006603 crossref_primary_10_1099_ijsem_0_004427 crossref_primary_10_1099_ijsem_0_003586 crossref_primary_10_1371_journal_pone_0152656 crossref_primary_10_1016_j_ympev_2017_03_022 crossref_primary_10_1016_j_tplants_2005_03_006 crossref_primary_10_1016_j_tplants_2005_03_007 crossref_primary_10_1016_j_ympev_2006_03_003 crossref_primary_10_1093_molbev_msn042 crossref_primary_10_1016_j_ympev_2006_03_006 crossref_primary_10_1071_IS06015 crossref_primary_10_1007_s13562_020_00625_1 crossref_primary_10_1007_s11557_012_0876_0 crossref_primary_10_1111_nyas_12735 crossref_primary_10_1093_sysbio_sys072 crossref_primary_10_1099_ijsem_0_002119 crossref_primary_10_1099_ijsem_0_005507 crossref_primary_10_1111_cla_12606 crossref_primary_10_1007_s12275_020_0060_1 crossref_primary_10_1099_ijsem_0_004414 crossref_primary_10_1099_ijsem_0_003333 crossref_primary_10_1080_10635150802422274 crossref_primary_10_1186_1471_2148_12_156 crossref_primary_10_1080_10635150701245388 crossref_primary_10_3389_fpls_2016_01399 crossref_primary_10_3389_fcimb_2023_1093407 crossref_primary_10_1186_1471_2148_11_17 crossref_primary_10_1093_treephys_tpp015 crossref_primary_10_1186_s12862_018_1162_9 crossref_primary_10_1016_j_gene_2008_08_017 crossref_primary_10_1089_cmb_2021_0383 crossref_primary_10_1080_10635150601175578 crossref_primary_10_1099_ijsem_0_003479 crossref_primary_10_1099_ijsem_0_004449 crossref_primary_10_1099_ijsem_0_004696 crossref_primary_10_1016_j_ympev_2012_04_002 crossref_primary_10_1186_1471_2148_11_267 crossref_primary_10_1007_s00284_022_02995_2 crossref_primary_10_1126_science_1115493 crossref_primary_10_1186_1471_2148_10_343 crossref_primary_10_1016_j_ympev_2007_05_003 crossref_primary_10_1016_j_ympev_2005_02_017 crossref_primary_10_1371_journal_pone_0081760 crossref_primary_10_3389_fvets_2022_1032983 crossref_primary_10_1128_microbiolspec_AME_0006_2018 crossref_primary_10_1007_s00239_024_10167_y crossref_primary_10_1007_s00239_014_9637_9 crossref_primary_10_1016_j_isci_2021_102359 crossref_primary_10_1371_journal_pone_0109704 crossref_primary_10_3389_fmicb_2024_1342098 crossref_primary_10_1007_s00239_007_9062_4 crossref_primary_10_1186_gb_2007_8_7_r141 crossref_primary_10_2307_4134535 crossref_primary_10_1016_j_ympev_2006_10_024 crossref_primary_10_1186_1471_2148_5_50 crossref_primary_10_3390_phycology3020020 crossref_primary_10_1073_pnas_0904103106 crossref_primary_10_1093_sysbio_syad013 crossref_primary_10_1007_s10482_024_02052_x crossref_primary_10_1111_j_1463_6409_2006_00277_x crossref_primary_10_1590_S1415_47572007000200015 crossref_primary_10_1016_j_ympev_2011_09_011 crossref_primary_10_1016_j_meegid_2010_08_009 crossref_primary_10_1016_j_ympev_2011_10_017 crossref_primary_10_1016_j_ympev_2019_106671 crossref_primary_10_1099_ijsem_0_004232 crossref_primary_10_1089_omi_2010_0023 crossref_primary_10_1093_molbev_msv081 crossref_primary_10_17352_gjz_000028 crossref_primary_10_1002_ajp_20322 crossref_primary_10_1016_j_ympev_2022_107550 crossref_primary_10_1038_s41586_022_05133_x crossref_primary_10_1093_sysbio_syw079 crossref_primary_10_1093_jhered_esx089 crossref_primary_10_1016_j_bpj_2015_06_060 crossref_primary_10_1093_sysbio_syaa095 crossref_primary_10_1186_1471_2148_13_274 crossref_primary_10_1186_1471_2148_7_206 crossref_primary_10_1016_j_solener_2022_11_050 crossref_primary_10_1099_ijsem_0_004218 crossref_primary_10_1099_ijsem_0_003013 crossref_primary_10_1080_10635150701397635 crossref_primary_10_1111_j_1096_0031_2005_00059_x crossref_primary_10_1186_s13059_020_02000_8 crossref_primary_10_1371_journal_pone_0024769 crossref_primary_10_1186_1471_2148_11_315 crossref_primary_10_1146_annurev_ento_53_103106_093304 crossref_primary_10_1186_1471_2148_5_71 crossref_primary_10_1016_j_ympev_2013_05_011 crossref_primary_10_1016_j_ejbt_2018_05_001 crossref_primary_10_1093_sysbio_syae002 crossref_primary_10_1017_S0003598X0010122X crossref_primary_10_1093_sysbio_syad031 crossref_primary_10_1111_j_1469_7998_2008_00497_x crossref_primary_10_1007_s12275_022_1199_8 crossref_primary_10_1080_10635150802172168 crossref_primary_10_1080_10635150701397643 crossref_primary_10_1099_ijsem_0_006437 crossref_primary_10_1666_12_115 crossref_primary_10_1155_2012_292857 crossref_primary_10_1111_zsc_12555 crossref_primary_10_1093_molbev_msz307 crossref_primary_10_1186_1745_6150_3_52 crossref_primary_10_1080_10635150500234682 crossref_primary_10_1186_1471_2105_10_51 crossref_primary_10_1093_sysbio_syy039 crossref_primary_10_1665_034_019_0112 crossref_primary_10_1186_1471_2148_9_298 crossref_primary_10_1093_sysbio_syx063 crossref_primary_10_1093_molbev_msn119 crossref_primary_10_1093_molbev_msaa318 crossref_primary_10_1093_gbe_evq062 crossref_primary_10_1371_journal_pone_0152604 crossref_primary_10_1111_j_1365_2672_2008_03949_x crossref_primary_10_1111_j_1096_0031_2007_00181_x crossref_primary_10_1371_journal_pcbi_1011871 crossref_primary_10_1186_s12864_024_10740_1 crossref_primary_10_1099_ijs_0_049874_0 crossref_primary_10_1111_j_1365_3113_2009_00517_x crossref_primary_10_1016_j_ympev_2016_05_032 crossref_primary_10_3389_fmicb_2024_1435834 crossref_primary_10_1017_S0001867800002457 crossref_primary_10_1371_journal_pone_0000522 crossref_primary_10_1093_molbev_msl155 crossref_primary_10_1080_10635150701611258 crossref_primary_10_1093_molbev_msab300 crossref_primary_10_1128_JCM_02021_08 crossref_primary_10_1080_10635150802426473 crossref_primary_10_1080_00837792_2012_10670912 crossref_primary_10_1093_sysbio_syw037 crossref_primary_10_1111_1755_0998_12248 crossref_primary_10_1016_j_chom_2016_01_006 crossref_primary_10_1111_zsc_12420 crossref_primary_10_1002_int_21667 crossref_primary_10_1111_j_1096_0031_2006_00098_x crossref_primary_10_1080_15659801_2013_825431 crossref_primary_10_3389_fgene_2020_00651 crossref_primary_10_1080_10635150601146041 crossref_primary_10_1071_MU05035 crossref_primary_10_1093_pcp_pcs146 crossref_primary_10_15252_msb_20199208 crossref_primary_10_1371_journal_pone_0036593 crossref_primary_10_1007_s10822_007_9130_2 crossref_primary_10_1155_2016_1851865 crossref_primary_10_3389_fmicb_2018_01158 crossref_primary_10_1093_sysbio_syv086 crossref_primary_10_3732_ajb_1400106 crossref_primary_10_1080_10635150600697416 crossref_primary_10_1093_sysbio_syad067 crossref_primary_10_1111_j_1095_8312_2010_01574_x crossref_primary_10_1016_j_tree_2006_08_004 crossref_primary_10_1371_journal_pcbi_0010079 crossref_primary_10_1099_ijsem_0_003076 crossref_primary_10_1002_jez_b_21169 crossref_primary_10_1099_ijsem_0_004161 crossref_primary_10_1016_j_ympev_2005_04_012 crossref_primary_10_1111_j_1095_8649_2006_01132_x crossref_primary_10_1002_prca_200780047 crossref_primary_10_1111_are_13633 crossref_primary_10_1016_j_ympev_2017_07_006 crossref_primary_10_1007_s00253_018_8831_x crossref_primary_10_1093_bib_bbu015 crossref_primary_10_1093_bioinformatics_btp079 crossref_primary_10_1093_sysbio_syp034 crossref_primary_10_1016_j_jaa_2014_03_001 crossref_primary_10_1093_sysbio_syq003 crossref_primary_10_1093_molbev_msk018 crossref_primary_10_1093_sysbio_syp037 crossref_primary_10_1099_ijsem_0_006379 crossref_primary_10_1007_s00239_013_9540_9 crossref_primary_10_1016_j_ympev_2006_12_009 crossref_primary_10_1099_ijsem_0_005287 crossref_primary_10_1080_20548923_2016_1183920 crossref_primary_10_1093_sysbio_syz051 crossref_primary_10_1007_s00026_024_00725_y crossref_primary_10_1099_mic_0_2007_016139_0 crossref_primary_10_1111_syen_12357 crossref_primary_10_1093_molbev_msi191 crossref_primary_10_1111_j_1096_0031_2006_00105_x crossref_primary_10_1186_1471_2148_14_82 crossref_primary_10_1099_ijsem_0_006002 crossref_primary_10_1007_s10816_015_9258_7 crossref_primary_10_1080_10635150701627304 crossref_primary_10_1099_ijsem_0_006488 crossref_primary_10_1111_j_1096_0031_2006_00096_x crossref_primary_10_1089_cmb_2022_0141 crossref_primary_10_1093_zoolinnean_zlz088 crossref_primary_10_14302_issn_2689_4602_jes_24_4982 crossref_primary_10_1016_j_funbio_2014_08_001 crossref_primary_10_1016_j_ympev_2008_04_030 crossref_primary_10_1089_omi_2008_0010 crossref_primary_10_1016_j_syapm_2013_02_003 crossref_primary_10_1097_MD_0000000000034931 crossref_primary_10_1098_rstb_2008_0178 crossref_primary_10_7717_peerj_16706 crossref_primary_10_1007_s13752_025_00491_x crossref_primary_10_1016_j_tree_2009_01_009 crossref_primary_10_1186_gb_2007_8_9_r199 crossref_primary_10_1016_j_exger_2023_112154 crossref_primary_10_1111_j_1096_0031_2010_00342_x crossref_primary_10_3390_v16071061 crossref_primary_10_1002_cjs_11741 crossref_primary_10_1098_rstb_2008_0171 crossref_primary_10_1093_molbev_msj030 crossref_primary_10_1186_1745_6150_6_45 crossref_primary_10_1371_journal_pone_0048380 crossref_primary_10_1111_j_1096_0031_2009_00255_x crossref_primary_10_1093_gbe_evp011 crossref_primary_10_1093_sysbio_syab001 crossref_primary_10_3417_0026_6493_2007_94_690_NESFCR_2_0_CO_2 crossref_primary_10_1186_s12859_015_0647_4 crossref_primary_10_1093_sysbio_syq028 crossref_primary_10_3390_life6030039 crossref_primary_10_1111_1744_7917_13034 crossref_primary_10_1016_j_jinorgbio_2017_02_012 crossref_primary_10_1016_j_ympev_2015_12_013 crossref_primary_10_1016_j_ympev_2012_08_008 crossref_primary_10_3417_2014032 crossref_primary_10_1080_09670260802207530 crossref_primary_10_1093_molbev_msj005 crossref_primary_10_1098_rsbl_2011_0884 crossref_primary_10_1093_sysbio_syac003 crossref_primary_10_1101_gr_5232407 crossref_primary_10_1007_s00203_022_03148_6 crossref_primary_10_3390_genes10090691 crossref_primary_10_1093_molbev_mst024 crossref_primary_10_2307_25065411 crossref_primary_10_1016_j_ympev_2012_08_019 crossref_primary_10_3732_ajb_0800320 crossref_primary_10_1093_sysbio_syx088 crossref_primary_10_1155_2008_683509 crossref_primary_10_1016_j_ympev_2005_07_015 crossref_primary_10_1086_509588 crossref_primary_10_1007_s10750_022_04872_2 crossref_primary_10_1093_sysbio_syz021 crossref_primary_10_1186_1745_6150_6_26 crossref_primary_10_5735_086_061_0127 crossref_primary_10_1099_ijs_0_000935_0 crossref_primary_10_1111_j_1365_3113_2007_00377_x crossref_primary_10_3923_javaa_2012_1056_1062 crossref_primary_10_1016_j_ympev_2009_05_025 crossref_primary_10_3923_biotech_2023_18_27 crossref_primary_10_1111_j_1096_0031_2005_00076_x crossref_primary_10_1515_hf_2018_0076 crossref_primary_10_1371_journal_pone_0006579 crossref_primary_10_1007_s00239_005_0018_2 crossref_primary_10_1093_molbev_msi134 crossref_primary_10_1093_sysbio_syx097 crossref_primary_10_1099_ijsem_0_003912 crossref_primary_10_1099_ijsem_0_001611 crossref_primary_10_1186_1745_6150_5_49 crossref_primary_10_1099_ijsem_0_001851 crossref_primary_10_1080_10635150801910436 crossref_primary_10_1155_2014_706468 crossref_primary_10_1186_s12862_015_0364_7 crossref_primary_10_1071_SB07006 crossref_primary_10_1186_s12864_018_5123_x crossref_primary_10_1093_sysbio_syp008 crossref_primary_10_1111_syen_12575 crossref_primary_10_1146_annurev_micro_59_030804_121233 crossref_primary_10_1111_j_1096_0031_2012_00425_x crossref_primary_10_1186_1471_2148_6_97 crossref_primary_10_1093_sysbio_syy077 crossref_primary_10_1111_j_1096_3642_2009_00605_x crossref_primary_10_3732_ajb_2007308 crossref_primary_10_1007_s00239_010_9380_9 crossref_primary_10_1093_sysbio_syp017 |
Cites_doi | 10.1006/jmbi.1998.2601 10.1080/106351598261030 10.1093/oxfordjournals.molbev.a003973 10.1007/BF02459467 10.1016/0025-5564(95)00172-7 10.1007/BF01738880 10.1093/oxfordjournals.molbev.a026025 10.2307/2412923 10.1093/bioinformatics/14.9.817 10.1098/rspb.2002.2025 10.1093/oxfordjournals.molbev.a004128 10.1080/106351501753328848 10.1080/106351500750049860 10.1038/nature02053 10.1093/bioinformatics/17.8.754 10.1093/oxfordjournals.molbev.a040183 10.1093/oxfordjournals.molbev.a025613 10.1016/S0968-0004(01)01877-1 10.1080/106351598260987 10.1006/mpev.2001.1045 10.1080/01621459.1968.11009285 10.1126/science.8171318 10.1080/10635150117959 10.1007/s00239-002-2341-1 10.1093/molbev/msh130 |
ContentType | Journal Article |
Copyright | Macmillan Magazines Ltd. 2004 2004 INIST-CNRS COPYRIGHT 2004 Nature Publishing Group Copyright Macmillan Journals Ltd. Oct 21, 2004 |
Copyright_xml | – notice: Macmillan Magazines Ltd. 2004 – notice: 2004 INIST-CNRS – notice: COPYRIGHT 2004 Nature Publishing Group – notice: Copyright Macmillan Journals Ltd. Oct 21, 2004 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 7SC 7SP 7SR 7TB 7U5 8BQ F28 JG9 JQ2 KR7 L7M L~C L~D |
DOI | 10.1038/nature02917 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary Curriculum ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database ProQuest Psychology Database ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) ProQuest Nursing and Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic Materials Research Database Civil Engineering Abstracts Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts Agricultural Science Database Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Biology |
EISSN | 1476-4687 |
EndPage | 984 |
ExternalDocumentID | 730696891 A186287922 15496922 16206650 10_1038_nature02917 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 .55 .GJ .HR 00M 08P 0R~ 0WA 123 186 1VR 29M 2KS 2XV 39C 3EH 3O- 3V. 4.4 41X 42X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L 9M8 A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAJYS AAKAB AAMNW AASDW AAYEP AAYOK AAYZH ABAWZ ABDBF ABDPE ABDQB ABEFU ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABTAH ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACTDY ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU AENEX AEUYN AFFDN AFFNX AFHKK AFKRA AFLOW AFRAH AFSHS AGAYW AGCDD AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKOMP BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DB5 DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC J5H K6- KB. KOO L-9 L6V L7B LK5 LK8 M0K M0L M1P M2M M2O M2P M7P M7R M7S MVM N4W N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL USG VOH VQA VVN WH7 WOW X7L X7M XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQJ YQT YR2 YR5 YV5 YXB YYP YZZ Z5M ZCA ZCG ZGI ZHY ZKB ZKG ZY4 ~02 ~7V ~88 ~8M ~KM .CO .XZ 07C 1CY 1OL 1VW 354 41~ 4R4 663 79B AAKAS AARCD AAVBQ AAYXX ABFSG ACBNA ACBTR ACMFV ACSTC ADGHP ADRHT ADXHL ADZCM AETEA AEZWR AFANA AFBBN AFHIU AGQPQ AHWEU AIXLP AJUXI ALPWD ARMCB ATHPR BCR BES BLC CITATION FA8 FAC LGEZI LOTEE LSO NADUK NFIDA NXXTH ODYON PEA PHGZM PHGZT PV9 QS- R4F RHI SHXYY SIXXV SKT TBHMF TDRGL TUD UBY UHB XIH XOL YJ6 YQI YXA YYQ ZE2 ~G0 IQODW PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI ESTFP PUEGO 7X8 7SC 7SP 7SR 7TB 7U5 8BQ F28 JG9 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c578t-31acceed162153609f767736d2440dc04a85e5ecc3ec4f4b07b42ae8986ad1873 |
IEDL.DBID | BENPR |
ISSN | 0028-0836 1476-4687 |
IngestDate | Sun Sep 28 10:13:04 EDT 2025 Fri Sep 05 14:14:14 EDT 2025 Fri Sep 05 05:03:31 EDT 2025 Sat Aug 23 12:51:07 EDT 2025 Fri Jun 13 00:45:42 EDT 2025 Tue Jun 10 15:35:30 EDT 2025 Tue Jun 10 21:28:30 EDT 2025 Fri Jun 27 04:44:25 EDT 2025 Wed Feb 19 01:49:15 EST 2025 Mon Jul 21 09:12:41 EDT 2025 Tue Jul 01 02:11:44 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Fri Feb 21 02:37:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7011 |
Keywords | Statistical method MCMC algorithm Maximum likelihood Phylogeny Biological evolution |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c578t-31acceed162153609f767736d2440dc04a85e5ecc3ec4f4b07b42ae8986ad1873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 15496922 |
PQID | 204572943 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_743385255 proquest_miscellaneous_66993312 proquest_miscellaneous_18062927 proquest_journals_204572943 gale_infotracgeneralonefile_A186287922 gale_infotraccpiq_186287922 gale_infotracacademiconefile_A186287922 gale_incontextgauss_ISR_A186287922 pubmed_primary_15496922 pascalfrancis_primary_16206650 crossref_primary_10_1038_nature02917 crossref_citationtrail_10_1038_nature02917 springer_journals_10_1038_nature02917 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-10-21 |
PublicationDateYYYYMMDD | 2004-10-21 |
PublicationDate_xml | – month: 10 year: 2004 text: 2004-10-21 day: 21 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2004 |
Publisher | Nature Publishing Group UK Nature Publishing Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing – name: Nature Publishing Group |
References | P Lopez (BFnature02917_CR9) 2002; 19 WM Fitch (BFnature02917_CR10) 1976; 8 JP Huelsenbeck (BFnature02917_CR5) 1998; 47 DM Hillis (BFnature02917_CR19) 1998; 47 J Sullivan (BFnature02917_CR18) 2001; 50 MJ Sanderson (BFnature02917_CR1) 2000; 49 DL Swofford (BFnature02917_CR26) 1998 MK Kuhner (BFnature02917_CR4) 1994; 11 DM Hillis (BFnature02917_CR2) 1994; 264 J Felsenstein (BFnature02917_CR3) 1978; 27 PJ Lockhart (BFnature02917_CR14) 1998; 15 TS Donaldson (BFnature02917_CR17) 1968; 63 Z Yang (BFnature02917_CR27) 1997; 13 BS Gaut (BFnature02917_CR6) 1995; 12 B Misof (BFnature02917_CR15) 2002; 55 JP Huelsenbeck (BFnature02917_CR28) 2001; 17 H Philippe (BFnature02917_CR16) 2001; 26 MM Miyamoto (BFnature02917_CR8) 1995; 12 D Posada (BFnature02917_CR29) 1998; 14 DD Pollock (BFnature02917_CR11) 1999; 287 JT Chang (BFnature02917_CR20) 1996; 134 A Rokas (BFnature02917_CR21) 2003; 425 CA Russo (BFnature02917_CR22) 1996; 13 Y Inagaki (BFnature02917_CR13) 2004; 21 DL Swofford (BFnature02917_CR30) 2001; 50 GJ Naylor (BFnature02917_CR24) 1998; 47 C Tuffley (BFnature02917_CR25) 1997; 59 C Delarbre (BFnature02917_CR23) 2002; 22 T Pupko (BFnature02917_CR12) 2002; 269 JP Huelsenbeck (BFnature02917_CR7) 2002; 19 |
References_xml | – volume: 287 start-page: 187 year: 1999 ident: BFnature02917_CR11 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.2601 – volume: 47 start-page: 61 year: 1998 ident: BFnature02917_CR24 publication-title: Syst. Biol. doi: 10.1080/106351598261030 – volume: 47 start-page: 519 year: 1998 ident: BFnature02917_CR5 publication-title: Syst. Biol. – volume: 19 start-page: 1 year: 2002 ident: BFnature02917_CR9 publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a003973 – volume: 59 start-page: 581 year: 1997 ident: BFnature02917_CR25 publication-title: Bull. Math. Biol. doi: 10.1007/BF02459467 – volume: 13 start-page: 555 year: 1997 ident: BFnature02917_CR27 publication-title: Comput. Appl. Biosci. – volume: 134 start-page: 189 year: 1996 ident: BFnature02917_CR20 publication-title: Math. Biosci. doi: 10.1016/0025-5564(95)00172-7 – volume: 8 start-page: 13 year: 1976 ident: BFnature02917_CR10 publication-title: J. Mol. Evol. doi: 10.1007/BF01738880 – volume: 15 start-page: 1183 year: 1998 ident: BFnature02917_CR14 publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026025 – volume: 27 start-page: 401 year: 1978 ident: BFnature02917_CR3 publication-title: Syst. Zool. doi: 10.2307/2412923 – volume: 14 start-page: 817 year: 1998 ident: BFnature02917_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.9.817 – volume: 269 start-page: 1313 year: 2002 ident: BFnature02917_CR12 publication-title: Proc. R. Soc. Lond. B doi: 10.1098/rspb.2002.2025 – volume: 19 start-page: 698 year: 2002 ident: BFnature02917_CR7 publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a004128 – volume: 50 start-page: 723 year: 2001 ident: BFnature02917_CR18 publication-title: Syst. Biol. doi: 10.1080/106351501753328848 – volume: 49 start-page: 817 year: 2000 ident: BFnature02917_CR1 publication-title: Syst. Biol. doi: 10.1080/106351500750049860 – volume: 425 start-page: 798 year: 2003 ident: BFnature02917_CR21 publication-title: Nature doi: 10.1038/nature02053 – volume-title: PAUP*: Phylogenetic Analysis Using Parsimony and Other Methods, v.4.0b10 year: 1998 ident: BFnature02917_CR26 – volume: 17 start-page: 754 year: 2001 ident: BFnature02917_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.8.754 – volume: 12 start-page: 152 year: 1995 ident: BFnature02917_CR6 publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a040183 – volume: 13 start-page: 525 year: 1996 ident: BFnature02917_CR22 publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a025613 – volume: 12 start-page: 503 year: 1995 ident: BFnature02917_CR8 publication-title: Mol. Biol. Evol. – volume: 26 start-page: 414 year: 2001 ident: BFnature02917_CR16 publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(01)01877-1 – volume: 47 start-page: 3 year: 1998 ident: BFnature02917_CR19 publication-title: Syst. Biol. doi: 10.1080/106351598260987 – volume: 22 start-page: 184 year: 2002 ident: BFnature02917_CR23 publication-title: Mol. Phylogenet. Evol. doi: 10.1006/mpev.2001.1045 – volume: 63 start-page: 660 year: 1968 ident: BFnature02917_CR17 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1968.11009285 – volume: 264 start-page: 671 year: 1994 ident: BFnature02917_CR2 publication-title: Science doi: 10.1126/science.8171318 – volume: 50 start-page: 525 year: 2001 ident: BFnature02917_CR30 publication-title: Syst. Biol. doi: 10.1080/10635150117959 – volume: 55 start-page: 460 year: 2002 ident: BFnature02917_CR15 publication-title: J. Mol. Evol. doi: 10.1007/s00239-002-2341-1 – volume: 21 start-page: 1340 year: 2004 ident: BFnature02917_CR13 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msh130 – volume: 11 start-page: 459 year: 1994 ident: BFnature02917_CR4 publication-title: Mol. Biol. Evol. |
SSID | ssj0005174 |
Score | 2.368504 |
Snippet | All inferences in comparative biology depend on accurate estimates of evolutionary relationships. Recent phylogenetic analyses have turned away from maximum... |
SourceID | proquest gale pubmed pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 980 |
SubjectTerms | Bayes Theorem Bias Biological and medical sciences Biological evolution Biology Computer Simulation Evolution Fundamental and applied biological sciences. Psychology Genetics Genetics of eukaryotes. Biological and molecular evolution Heterogeneity Humanities and Social Sciences letter Likelihood Functions Markov Chains Monte Carlo Method multidisciplinary Phylogeny Research Design Science Science (multidisciplinary) Sensitivity and Specificity Taxonomy Topology |
Title | Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous |
URI | https://link.springer.com/article/10.1038/nature02917 https://www.ncbi.nlm.nih.gov/pubmed/15496922 https://www.proquest.com/docview/204572943 https://www.proquest.com/docview/18062927 https://www.proquest.com/docview/66993312 https://www.proquest.com/docview/743385255 |
Volume | 431 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9trZCQEGLjqwyKhcbHkKI5cWI7Dwi1Y2UgbZoGk_qCIidxtoo27UgL7L_nnDjLCh0vUSRfnMvd-XyOz78D2MYZVcogS5w0YNrxRew6YZpxR3KppZBpTMtkzMMjfnDqfx4GwzU4rM_CmLTK2ieWjjqdJuYf-a6BTcdA0GfvZxeOKRplNlfrChrKVlZI35UIY-vQRo8c0Ba0-_tHxydNzsdfsMz2wB5lcrfC0aReWJYua6Yo66jvzFSBQsuqaherwtF_tlLLGWpwD-7a0JL0KlvYgDWdb8KtqtjkJd6VyZ5JsQkbdkAX5I1Fnd65D9-OmyMEZJqRifo9miwmZIYrX9RnfklUnpLx6LsejwwUMkH9YMf4vAF6Jr_OdU70T2vIZFSQc5NoUxJMF8UDOB3sf907cGztBSfBMTxH14wyxfnT5RgTME7DTHAhGE8xHKBpQn0lAx2g_plO_MyPqYh9T2kZSq5SVwr2EFr5NNePgcRMcxYzFyMV4ScyVCGuGTEs9UPsjmnRgbe1uKPEApOb-hjjqNwgZzK6ppsObF8Rzyo8jtVkL4zeIoNwkZsUmjO1KIro05eTqOfiIk6K0PM68NoSZVN8YaLsiQRk24BiLVFuLVEms9FFdK311VLrWaW6Vd10l8yo-QJuUPUDiu-p7SqyvqSIriy_A8-vWtEJmJ0dVeoQWaHcCz1xMwVHiTPmIgvkBgoMJZkMcIXZgUeVRTfsBX7IS_5f1ibesLdC-k_--xlbcLtCy6SO5z6F1vzHQj_DyG4ed2FdDAVe5Z5rroOPXWj3-h_6g64dyX8AFBtReg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTggkhNj4KoPNQhtfUrQkdmznYUIDNrVsq6axSXtBIR_OVtGmHWkZ_eP43zgnTrNCx9veIvninH3nu3N8_h3AOnpUKb00thKPKouJyLH8JOWW5FJJIZPILpIxDzq8dcI-n3qnC_C7uguj0yorm1gY6mQQ63_kmxo2HQNBRt8PLyxdNEofrlYVNEJTWSHZKhDGzL2OPTW5xB1cvtX-hOLecN3dneOPLcsUGbBiVNYR2iB8GR2Fw9H5UW77qeBCUJ6g37OT2Gah9JSHA6UqZimLbBExN1TSlzxMHCko9nsLFpn-f9KAxQ87ncOjOsfkLxhoc0HQpnKzxO20Xb8olVa7ROMY7g3DHIWUltU15oW__xzdFh5x9wHcN6Es2S51bwkWVLYMt8vilhN8KpJL43wZlowByckbg3L99iF8PayvLJBBSvrhr25_3CdD3Gmj_mQTEmYJ6XW_q15XQy8T1AfsGN_XwNLk8lxlRP00C4d0c3KuE3sKgsE4fwQnNyKGx9DIBpl6CiSiitOIOhgZCRZLP_Rxj4phMPOxO6pEE95V0x3EBghd1-PoBcWBPJXBFdk0YX1KPCzxP-aTvdRyCzSiRqZTds7CcZ4H7S9HwbaDm0YpfNdtwmtDlA7wg3FobkAg2xqEa4ZyZYYyHnYvgiutr2Zaz0rRzetmdUaN6hFwjeLv2fidSq8CY7vyYLrSmrA2bUWjo0-SwkKGyIrNXd8V11NwnHFKHWSBXEOBoSuVHu5om_Ck1OiaPY_5vOB_o1Lxmr05s__sv8NYgzut44P9YL_d2VuBuyVSp225znNojH6M1QuMKkfRqlm7BL7dtLn4A6kXiis |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTSAkhNj4KoPNQhtfUtQkTmznYUKDrVoZVNVg0l5QcBJnq2jTjrSM_on8V5wTp1mh421vlXxxzr7LfdTn3wFsoUcVwk9jK_GpsjweOVaQpMwSTCjBRRLZRTHmpw47OPY-nPgnS_C7ugujyyorm1gY6mQY6__Imxo2HQNBjzZTUxXR3Wu9HZ1buoGUPmitumlI02Uh2SnQxswdj0M1vcBsLt9p76Hot123tf_l_YFlGg5YMSruGO0RPoxOw2HoCCmzg5QzzilL0AfaSWx7UvjKx0VTFXupF9k88lypRCCYTBzBKc57A1Y4On3MA1fe7Xe6R3W9yV-Q0OayoE1Fs8TwtN2gaJtWu0fjJO6MZI4CS8tOG4tC4X-OcQvv2LoHd01YS3ZLPVyFJZWtwc2y0eUUfxWFpnG-BqvGmOTklUG8fn0fvnbr6wtkmJKB_NUbTAZkhFk36lI2JTJLSL_3XfV7GoaZoG7gxPi8BpkmF2cqI-qn-YhILydnusinIBhO8gdwfC1ieAjL2TBTj4FEVDEaUQejJO7FIpAB5qsYEnsBTkcVb8CbarvD2ICi694c_bA4nKcivCSbBmzNiEclFshisudabqFG18i0op7KSZ6H7c9H4a6DCaTgges24KUhSof4wlia2xDItgbkmqNcn6OMR73z8NLoi7nR01J0i6bZmFOjegVMI_r7Nr6n0qvQ2LE8nH11DdicjaIB0qdKspAhsmIzN3D51RQMd5xSB1kgV1BgGEuFj9ltAx6VGl2z53sBK_jfrlS8Zm_B7j_57zI24RaajfBju3O4DrdL0E7bcp2nsDz-MVHPMMAcRxvm0yXw7bqtxR9rbo5v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+maximum+parsimony+and+likelihood+phylogenetics+when+evolution+is+heterogeneous&rft.jtitle=Nature+%28London%29&rft.au=Kolaczkowski%2C+Bryan&rft.au=Thornton%2C+Joseph+W&rft.date=2004-10-21&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=431&rft.issue=7011&rft.spage=980&rft_id=info:doi/10.1038%2Fnature02917&rft.externalDBID=ISR&rft.externalDocID=A186287922 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |