An Introspective Comparison of Random Forest-Based Classifiers for the Analysis of Cluster-Correlated Data by Way of RF
Many mass spectrometry-based studies, as well as other biological experiments produce cluster-correlated data. Failure to account for correlation among observations may result in a classification algorithm overfitting the training data and producing overoptimistic estimated error rates and may make...
Saved in:
| Published in | PloS one Vol. 4; no. 9; p. e7087 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
18.09.2009
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0007087 |
Cover
| Abstract | Many mass spectrometry-based studies, as well as other biological experiments produce cluster-correlated data. Failure to account for correlation among observations may result in a classification algorithm overfitting the training data and producing overoptimistic estimated error rates and may make subsequent classifications unreliable. Current common practice for dealing with replicated data is to average each subject replicate sample set, reducing the dataset size and incurring loss of information. In this manuscript we compare three approaches to dealing with cluster-correlated data: unmodified Breiman's Random Forest (URF), forest grown using subject-level averages (SLA), and RF++ with subject-level bootstrapping (SLB). RF++, a novel Random Forest-based algorithm implemented in C++, handles cluster-correlated data through a modification of the original resampling algorithm and accommodates subject-level classification. Subject-level bootstrapping is an alternative sampling method that obviates the need to average or otherwise reduce each set of replicates to a single independent sample. Our experiments show nearly identical median classification and variable selection accuracy for SLB forests and URF forests when applied to both simulated and real datasets. However, the run-time estimated error rate was severely underestimated for URF forests. Predictably, SLA forests were found to be more severely affected by the reduction in sample size which led to poorer classification and variable selection accuracy. Perhaps most importantly our results suggest that it is reasonable to utilize URF for the analysis of cluster-correlated data. Two caveats should be noted: first, correct classification error rates must be obtained using a separate test dataset, and second, an additional post-processing step is required to obtain subject-level classifications. RF++ is shown to be an effective alternative for classifying both clustered and non-clustered data. Source code and stand-alone compiled versions of command-line and easy-to-use graphical user interface (GUI) versions of RF++ for Windows and Linux as well as a user manual (Supplementary File S2) are available for download at: http://sourceforge.org/projects/rfpp/ under the GNU public license. |
|---|---|
| AbstractList | Many mass spectrometry-based studies, as well as other biological experiments produce cluster-correlated data. Failure to account for correlation among observations may result in a classification algorithm overfitting the training data and producing overoptimistic estimated error rates and may make subsequent classifications unreliable. Current common practice for dealing with replicated data is to average each subject replicate sample set, reducing the dataset size and incurring loss of information. In this manuscript we compare three approaches to dealing with cluster-correlated data: unmodified Breiman's Random Forest (URF), forest grown using subject-level averages (SLA), and RF++ with subject-level bootstrapping (SLB). RF++, a novel Random Forest-based algorithm implemented in C++, handles cluster-correlated data through a modification of the original resampling algorithm and accommodates subject-level classification. Subject-level bootstrapping is an alternative sampling method that obviates the need to average or otherwise reduce each set of replicates to a single independent sample. Our experiments show nearly identical median classification and variable selection accuracy for SLB forests and URF forests when applied to both simulated and real datasets. However, the run-time estimated error rate was severely underestimated for URF forests. Predictably, SLA forests were found to be more severely affected by the reduction in sample size which led to poorer classification and variable selection accuracy. Perhaps most importantly our results suggest that it is reasonable to utilize URF for the analysis of cluster-correlated data. Two caveats should be noted: first, correct classification error rates must be obtained using a separate test dataset, and second, an additional post-processing step is required to obtain subject-level classifications. RF++ is shown to be an effective alternative for classifying both clustered and non-clustered data. Source code and stand-alone compiled versions of command-line and easy-to-use graphical user interface (GUI) versions of RF++ for Windows and Linux as well as a user manual (Supplementary File S2) are available for download at: http://sourceforge.org/projects/rfpp/ under the GNU public license. Many mass spectrometry-based studies, as well as other biological experiments produce cluster-correlated data. Failure to account for correlation among observations may result in a classification algorithm overfitting the training data and producing overoptimistic estimated error rates and may make subsequent classifications unreliable. Current common practice for dealing with replicated data is to average each subject replicate sample set, reducing the dataset size and incurring loss of information. In this manuscript we compare three approaches to dealing with cluster-correlated data: unmodified Breiman's Random Forest (URF), forest grown using subject-level averages (SLA), and RF++ with subject-level bootstrapping (SLB). RF++, a novel Random Forest-based algorithm implemented in C++, handles cluster-correlated data through a modification of the original resampling algorithm and accommodates subject-level classification. Subject-level bootstrapping is an alternative sampling method that obviates the need to average or otherwise reduce each set of replicates to a single independent sample. Our experiments show nearly identical median classification and variable selection accuracy for SLB forests and URF forests when applied to both simulated and real datasets. However, the run-time estimated error rate was severely underestimated for URF forests. Predictably, SLA forests were found to be more severely affected by the reduction in sample size which led to poorer classification and variable selection accuracy. Perhaps most importantly our results suggest that it is reasonable to utilize URF for the analysis of cluster-correlated data. Two caveats should be noted: first, correct classification error rates must be obtained using a separate test dataset, and second, an additional post-processing step is required to obtain subject-level classifications. RF++ is shown to be an effective alternative for classifying both clustered and non-clustered data. Source code and stand-alone compiled versions of command-line and easy-to-use graphical user interface (GUI) versions of RF++ for Windows and Linux as well as a user manual (Supplementary File S2) are available for download at: Many mass spectrometry-based studies, as well as other biological experiments produce cluster-correlated data. Failure to account for correlation among observations may result in a classification algorithm overfitting the training data and producing overoptimistic estimated error rates and may make subsequent classifications unreliable. Current common practice for dealing with replicated data is to average each subject replicate sample set, reducing the dataset size and incurring loss of information. In this manuscript we compare three approaches to dealing with cluster-correlated data: unmodified Breiman's Random Forest (URF), forest grown using subject-level averages (SLA), and RF++ with subject-level bootstrapping (SLB). RF++, a novel Random Forest-based algorithm implemented in C++, handles cluster-correlated data through a modification of the original resampling algorithm and accommodates subject-level classification. Subject-level bootstrapping is an alternative sampling method that obviates the need to average or otherwise reduce each set of replicates to a single independent sample. Our experiments show nearly identical median classification and variable selection accuracy for SLB forests and URF forests when applied to both simulated and real datasets. However, the run-time estimated error rate was severely underestimated for URF forests. Predictably, SLA forests were found to be more severely affected by the reduction in sample size which led to poorer classification and variable selection accuracy. Perhaps most importantly our results suggest that it is reasonable to utilize URF for the analysis of cluster-correlated data. Two caveats should be noted: first, correct classification error rates must be obtained using a separate test dataset, and second, an additional post-processing step is required to obtain subject-level classifications. RF++ is shown to be an effective alternative for classifying both clustered and non-clustered data. Source code and stand-alone compiled versions of command-line and easy-to-use graphical user interface (GUI) versions of RF++ for Windows and Linux as well as a user manual (Supplementary File S2) are available for download at: http://sourceforge.org/projects/rfpp/ under the GNU public license.Many mass spectrometry-based studies, as well as other biological experiments produce cluster-correlated data. Failure to account for correlation among observations may result in a classification algorithm overfitting the training data and producing overoptimistic estimated error rates and may make subsequent classifications unreliable. Current common practice for dealing with replicated data is to average each subject replicate sample set, reducing the dataset size and incurring loss of information. In this manuscript we compare three approaches to dealing with cluster-correlated data: unmodified Breiman's Random Forest (URF), forest grown using subject-level averages (SLA), and RF++ with subject-level bootstrapping (SLB). RF++, a novel Random Forest-based algorithm implemented in C++, handles cluster-correlated data through a modification of the original resampling algorithm and accommodates subject-level classification. Subject-level bootstrapping is an alternative sampling method that obviates the need to average or otherwise reduce each set of replicates to a single independent sample. Our experiments show nearly identical median classification and variable selection accuracy for SLB forests and URF forests when applied to both simulated and real datasets. However, the run-time estimated error rate was severely underestimated for URF forests. Predictably, SLA forests were found to be more severely affected by the reduction in sample size which led to poorer classification and variable selection accuracy. Perhaps most importantly our results suggest that it is reasonable to utilize URF for the analysis of cluster-correlated data. Two caveats should be noted: first, correct classification error rates must be obtained using a separate test dataset, and second, an additional post-processing step is required to obtain subject-level classifications. RF++ is shown to be an effective alternative for classifying both clustered and non-clustered data. Source code and stand-alone compiled versions of command-line and easy-to-use graphical user interface (GUI) versions of RF++ for Windows and Linux as well as a user manual (Supplementary File S2) are available for download at: http://sourceforge.org/projects/rfpp/ under the GNU public license. |
| Audience | Academic |
| Author | Dabney, Alan R. Karpievitch, Yuliya V. Hill, Elizabeth G. Almeida, Jonas S. Leclerc, Anthony P. |
| AuthorAffiliation | University of East Piedmont, Italy 4 Department of Bioinformatics and Computational Biology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America 2 Division of Biostatistics and Epidemiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America 3 Department of Computer Science, College of Charleston, Charleston, South Carolina, United States of America 1 Department of Statistics, Texas A&M University, College Station, Texas, United States of America |
| AuthorAffiliation_xml | – name: 1 Department of Statistics, Texas A&M University, College Station, Texas, United States of America – name: 3 Department of Computer Science, College of Charleston, Charleston, South Carolina, United States of America – name: 4 Department of Bioinformatics and Computational Biology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America – name: University of East Piedmont, Italy – name: 2 Division of Biostatistics and Epidemiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America |
| Author_xml | – sequence: 1 givenname: Yuliya V. surname: Karpievitch fullname: Karpievitch, Yuliya V. – sequence: 2 givenname: Elizabeth G. surname: Hill fullname: Hill, Elizabeth G. – sequence: 3 givenname: Anthony P. surname: Leclerc fullname: Leclerc, Anthony P. – sequence: 4 givenname: Alan R. surname: Dabney fullname: Dabney, Alan R. – sequence: 5 givenname: Jonas S. surname: Almeida fullname: Almeida, Jonas S. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19763254$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1v0zAUhiM0xD7gHyCIhATiosWx4zjZBVIpFCpNmjS-Lq1T57j15MbFdjb673HXAuuExJSLRCfP-_qc8_o4O-hch1n2tCDDgonizaXrfQd2uErlISFEkFo8yI6KhtFBRQk7uPV9mB2HcEkIZ3VVPcoOi0ZUjPLyKLsedfm0i96FFaporjAfu-UKvAmuy53OL6Br3TKfOI8hDt5BwDYfWwjBaIM-5Nr5PC4wH6VW1sGEjWZs-xDRD8bOe7QQk-Q9RMhn6_w7rG9cJ4-zhxpswCe790n2dfLhy_jT4Oz843Q8OhsoLmoxQD5rFeczrEiNs7apGgbINCpaKSUUENTARRqGUV0Rlgq64aSkDFvNBBHsJHu-9V1ZF-RuZ0EWtKGU8poWiZhuidbBpVx5swS_lg6MvCk4P5fgo1EWZd3WJbSl0KRty7rmAELroq5QlYIzAsmLb736bgXra7D2j2FB5Ca23y3ITWxyF1vSvd112c-W2CpMiYDda2b_T2cWcu6uJBWsoaJMBq92Bt796FNUcmmCQmuhQ9cHKVhJeMqfJvLFHfLfSxluqTmkuU2nXTpWpafFpVGpdW1SfVQKWqcBeJ0Er_cEiYn4M86hD0FOP1_cnz3_ts--vMUuEGxcBGf7aFwX9sFnt1f4d--7q56A0y2g0mUPHrVUJsLGJ41m7P8CKu-I75XrL_1-J_M |
| CitedBy_id | crossref_primary_10_3390_cancers15112880 crossref_primary_10_1002_gepi_21888 crossref_primary_10_1016_j_electstud_2023_102700 crossref_primary_10_1080_10503307_2020_1785037 crossref_primary_10_1007_s10553_023_01618_1 crossref_primary_10_1002_mpr_1463 crossref_primary_10_1109_TNSRE_2019_2945634 crossref_primary_10_1148_radiol_2018180946 crossref_primary_10_1109_JBHI_2014_2337752 crossref_primary_10_1371_journal_pone_0092940 crossref_primary_10_1111_1744_9987_14204 crossref_primary_10_1899_12_009_1 crossref_primary_10_1017_bap_2019_1 crossref_primary_10_1016_j_ecolind_2018_09_002 crossref_primary_10_1093_bib_bbr012 crossref_primary_10_1038_srep35216 crossref_primary_10_3390_metabo11050286 crossref_primary_10_3390_ijerph18137105 crossref_primary_10_3354_meps12377 crossref_primary_10_1088_1752_7155_8_1_016004 crossref_primary_10_1007_s10336_016_1410_y crossref_primary_10_3389_fped_2020_585868 crossref_primary_10_1139_cjfas_2015_0343 crossref_primary_10_1093_neuonc_noac100 crossref_primary_10_1016_j_gecco_2018_e00506 crossref_primary_10_1371_journal_pone_0095668 crossref_primary_10_1038_nature12529 crossref_primary_10_3390_f10010020 crossref_primary_10_3390_rs14132976 crossref_primary_10_1111_bij_12879 crossref_primary_10_3389_fcvm_2022_994068 crossref_primary_10_1038_s43247_021_00118_6 crossref_primary_10_1007_s00204_017_2067_x crossref_primary_10_1016_j_csda_2010_11_017 crossref_primary_10_1186_s12859_019_2845_y crossref_primary_10_1002_pne2_12007 crossref_primary_10_1016_j_erss_2020_101883 crossref_primary_10_1016_j_jth_2019_02_002 crossref_primary_10_1109_TBME_2016_2591827 crossref_primary_10_1007_s00180_011_0249_1 crossref_primary_10_1016_j_foodqual_2021_104371 crossref_primary_10_1016_j_eswa_2015_10_034 crossref_primary_10_1063_5_0171922 crossref_primary_10_1515_ling_2019_0049 crossref_primary_10_1080_00949655_2012_741599 crossref_primary_10_1093_bib_bbad002 crossref_primary_10_1063_5_0116650 crossref_primary_10_1038_s41467_019_13345_5 crossref_primary_10_1016_j_foreco_2018_10_021 crossref_primary_10_1016_j_ecolind_2019_106010 crossref_primary_10_1177_00131644221108180 crossref_primary_10_1016_j_biocon_2013_07_037 crossref_primary_10_1080_10888438_2015_1107073 crossref_primary_10_1016_j_rse_2015_11_021 |
| Cites_doi | 10.1196/annals.1310.015 10.1038/ng1031 10.1186/1471-2105-8-25 10.1080/01621459.1998.10474100 10.1093/bioinformatics/btg210 10.1007/s10618-005-0004-8 10.1093/bioinformatics/bti254 10.1186/1471-2105-9-307 10.1093/bioinformatics/btl583 10.1007/s10549-004-1710-4 10.1677/erc.0.0110163 10.1016/S0140-6736(06)69342-2 10.1023/A:1010933404324 10.1016/j.artmed.2004.03.006 10.1373/clinchem.2003.028035 10.1074/jbc.M210184200 10.1158/1078-0432.1110.11.3 10.1002/mas.20072 10.1093/biostatistics/4.3.449 10.1186/gb-2006-7-3-401 10.1158/1078-0432.CCR-1162-03 10.1201/9780429246593 10.1007/BF00117831 10.1016/S0140-6736(02)07746-2 10.1007/BF00058655 10.1021/ci060164k 10.1111/j.1523-1755.2004.00352.x 10.1002/ijc.20928 10.1021/ac9908997 10.1080/01621459.1992.10475220 10.1002/ana.21038 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2009 Public Library of Science 2009 Karpievitch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Karpievitch et al. 2009 |
| Copyright_xml | – notice: COPYRIGHT 2009 Public Library of Science – notice: 2009 Karpievitch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Karpievitch et al. 2009 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0007087 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | RF++ Clustered Data Classifier |
| EISSN | 1932-6203 |
| ExternalDocumentID | 1292225821 oai_doaj_org_article_8d84ad47f0dd4885aa7ff186ec47530a 10.1371/journal.pone.0007087 PMC2739274 2897684181 A472870858 19763254 10_1371_journal_pone_0007087 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States--US Texas South Carolina |
| GeographicLocations_xml | – name: Texas – name: South Carolina – name: United States--US |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R25-CA-90301 – fundername: NLM NIH HHS grantid: T15 LM007438 – fundername: NLM NIH HHS grantid: 1-T15-LM07438-01 – fundername: NIDCR NIH HHS grantid: K25 DE016863 – fundername: NCI NIH HHS grantid: R25 CA090301 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PYCSY RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV CGR CUY CVF ECM EIF NPM BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC IPNFZ PV9 RIG RZL UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c5787-e5bdc55be608ebd9693ae3fec26cc7ca0efa5776332f603ca0f950423edf37073 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:13:42 EST 2021 Tue Oct 14 19:05:56 EDT 2025 Sun Oct 26 04:16:55 EDT 2025 Tue Sep 30 16:45:30 EDT 2025 Fri Sep 05 10:32:18 EDT 2025 Tue Oct 07 06:30:07 EDT 2025 Mon Oct 20 17:25:13 EDT 2025 Thu Oct 16 14:08:48 EDT 2025 Thu Oct 16 14:26:57 EDT 2025 Thu May 22 21:23:11 EDT 2025 Mon Jul 21 06:02:08 EDT 2025 Wed Oct 01 02:31:22 EDT 2025 Thu Apr 24 23:09:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5787-e5bdc55be608ebd9693ae3fec26cc7ca0efa5776332f603ca0f950423edf37073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: YVK EGH ARD. Performed the experiments: YVK APL. Analyzed the data: YVK APL JSA. Wrote the paper: YVK EGH APL ARD JSA. |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0007087 |
| PMID | 19763254 |
| PQID | 1292225821 |
| PQPubID | 1436336 |
| PageCount | e7087 |
| ParticipantIDs | plos_journals_1292225821 doaj_primary_oai_doaj_org_article_8d84ad47f0dd4885aa7ff186ec47530a unpaywall_primary_10_1371_journal_pone_0007087 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2739274 proquest_miscellaneous_734050052 proquest_journals_1292225821 gale_infotracacademiconefile_A472870858 gale_incontextgauss_ISR_A472870858 gale_incontextgauss_IOV_A472870858 gale_healthsolutions_A472870858 pubmed_primary_19763254 crossref_citationtrail_10_1371_journal_pone_0007087 crossref_primary_10_1371_journal_pone_0007087 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2009-09-18 |
| PublicationDateYYYYMMDD | 2009-09-18 |
| PublicationDate_xml | – month: 09 year: 2009 text: 2009-09-18 day: 18 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2009 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | C Strobl (ref34) 2008; 9 G Izmirlian (ref19) 2004; 1020 ET Fung (ref6) 2005; 115 L Li (ref8) 2004; 32 YV Karpievitch (ref29) 2007; 23 EF Petricoin (ref12) 2002; 359 RW Garden (ref13) 2000; 72 B Efron (ref18) 1994 DS Palmer (ref23) 2007; 47 M Hilario (ref27) 2006; 25 A Vlahou (ref11) 2004; 50 L Breiman (ref21) 1996; 24 AR Dabney (ref15) 2006; 7 GA Churchill (ref14) 2002; 32 LE Breiman (ref16) 2001; 45 YV Karpievitch (ref30) 2009 D Agranoff (ref3) 2006; 368 TP Conrads (ref5) 2004; 11 YD Chen (ref4) 2004; 10 Y Yasui (ref37) 2003; 4 JS Morris (ref36) 2005; 21 V Svetnik (ref24) SK Lee (ref31) 2005; 11 MR Segal (ref32) 1992; 87 L Breiman (ref17) 1984 B Rosner (ref28) 2000 B Wu (ref25) 2003; 19 TM Pawlik (ref9) 2005; 89 C Strobl (ref20) 2007; 8 EJ Finehout (ref26) 2007; 61 PJ Adam (ref2) 2003; 278 S Schaub (ref10) 2004; 65 L Breiman (ref35) 1996; 24 BL Adam (ref1) 2002; 62 JM Koomen (ref7) 2005; 11 JR Quinlan (ref22) H Zhang (ref33) 1998; 93 15709178 - Clin Cancer Res. 2005 Feb 1;11(3):1110-8 12477722 - J Biol Chem. 2003 Feb 21;278(8):6482-9 15704152 - Int J Cancer. 2005 Jul 10;115(5):783-9 15163296 - Endocr Relat Cancer. 2004 Jun;11(2):163-78 15692757 - Breast Cancer Res Treat. 2005 Jan;89(2):149-57 15277356 - Clin Chem. 2004 Aug;50(8):1438-41 12967959 - Bioinformatics. 2003 Sep 1;19(13):1636-43 15673564 - Bioinformatics. 2005 May 1;21(9):1764-75 15623616 - Clin Cancer Res. 2004 Dec 15;10(24):8380-5 17254353 - BMC Bioinformatics. 2007;8:25 15364092 - Artif Intell Med. 2004 Oct;32(2):71-83 14675066 - Kidney Int. 2004 Jan;65(1):323-32 12925511 - Biostatistics. 2003 Jul;4(3):449-63 17121773 - Bioinformatics. 2007 Jan 15;23(2):264-5 16980117 - Lancet. 2006 Sep 16;368(9540):1012-21 17167789 - Ann Neurol. 2007 Feb;61(2):120-9 18620558 - BMC Bioinformatics. 2008;9:307 17238260 - J Chem Inf Model. 2007 Jan-Feb;47(1):150-8 11867112 - Lancet. 2002 Feb 16;359(9306):572-7 12454643 - Nat Genet. 2002 Dec;32 Suppl:490-5 12097261 - Cancer Res. 2002 Jul 1;62(13):3609-14 15208191 - Ann N Y Acad Sci. 2004 May;1020:154-74 10655631 - Anal Chem. 2000 Jan 1;72(1):30-6 16563185 - Genome Biol. 2006;7(3):401 19602524 - Bioinformatics. 2009 Oct 1;25(19):2573-80 16463283 - Mass Spectrom Rev. 2006 May-Jun;25(3):409-49 |
| References_xml | – volume: 1020 start-page: 154 year: 2004 ident: ref19 article-title: Application of the random forest classification algorithm to a SELDI-TOF proteomics study in the setting of a cancer prevention trial. publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1310.015 – volume: 32 start-page: 490 year: 2002 ident: ref14 article-title: Fundamentals of experimental design for cDNA microarrays. publication-title: Nat Genet doi: 10.1038/ng1031 – ident: ref22 article-title: Bagging, boosting, and C4.5; 1996. – volume: 8 start-page: 25 year: 2007 ident: ref20 article-title: Bias in random forest variable importance measures: illustrations, sources and a solution. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-25 – volume: 93 start-page: 180 year: 1998 ident: ref33 article-title: Classification Trees for Multiple Binary Responses. publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1998.10474100 – volume: 19 start-page: 1636 year: 2003 ident: ref25 article-title: Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg210 – year: 2009 ident: ref30 article-title: Normalization of Peak Intensities in Bottom-Up MS-Based Proteomics Using Singular Value Decomposition. publication-title: Bioinformatics – volume: 11 start-page: 273 year: 2005 ident: ref31 article-title: Using Generalized Estimating Equation to Learn Decision Tree with Multivariate Responses. publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-005-0004-8 – volume: 21 start-page: 1764 year: 2005 ident: ref36 article-title: Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti254 – volume: 9 start-page: 307 year: 2008 ident: ref34 article-title: Conditional variable importance for random forests. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-307 – volume: 23 start-page: 264 year: 2007 ident: ref29 article-title: PrepMS: TOF MS data graphical preprocessing tool. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl583 – volume: 89 start-page: 149 year: 2005 ident: ref9 article-title: Significant differences in nipple aspirate fluid protein expression between healthy women and those with breast cancer demonstrated by time-of-flight mass spectrometry. publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-004-1710-4 – start-page: 334 ident: ref24 article-title: Application of Breiman's Random Forest to modeling structure-activity relationships of pharmaceutical molecules. – year: 1984 ident: ref17 article-title: Classification and Regression Trees: – volume: 11 start-page: 163 year: 2004 ident: ref5 article-title: High-resolution serum proteomic features for ovarian cancer detection. publication-title: Endocr Relat Cancer doi: 10.1677/erc.0.0110163 – volume: 368 start-page: 1012 year: 2006 ident: ref3 article-title: Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum. publication-title: Lancet doi: 10.1016/S0140-6736(06)69342-2 – volume: 45 start-page: 5 year: 2001 ident: ref16 article-title: Random Forests. publication-title: Machine Learning doi: 10.1023/A:1010933404324 – year: 2000 ident: ref28 article-title: Fundamentals of Biostatistics: – volume: 32 start-page: 71 year: 2004 ident: ref8 article-title: Data mining techniques for cancer detection using serum proteomic profiling. publication-title: Artif Intell Med doi: 10.1016/j.artmed.2004.03.006 – volume: 50 start-page: 1438 year: 2004 ident: ref11 article-title: Protein profiling in urine for the diagnosis of bladder cancer. publication-title: Clin Chem doi: 10.1373/clinchem.2003.028035 – volume: 278 start-page: 6482 year: 2003 ident: ref2 article-title: Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer. publication-title: J Biol Chem doi: 10.1074/jbc.M210184200 – volume: 11 start-page: 1110 year: 2005 ident: ref7 article-title: Plasma protein profiling for diagnosis of pancreatic cancer reveals the presence of host response proteins. publication-title: Clin Cancer Res doi: 10.1158/1078-0432.1110.11.3 – volume: 25 start-page: 409 year: 2006 ident: ref27 article-title: Processing and classification of protein mass spectra. publication-title: Mass Spectrom Rev doi: 10.1002/mas.20072 – volume: 4 start-page: 449 year: 2003 ident: ref37 article-title: A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. publication-title: Biostatistics doi: 10.1093/biostatistics/4.3.449 – volume: 7 start-page: 401 year: 2006 ident: ref15 article-title: A reanalysis of a published Affymetrix GeneChip control dataset. publication-title: Genome Biol doi: 10.1186/gb-2006-7-3-401 – volume: 10 start-page: 8380 year: 2004 ident: ref4 article-title: Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population. publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-1162-03 – year: 1994 ident: ref18 article-title: An Introduction to the Bootstrap: doi: 10.1201/9780429246593 – volume: 24 start-page: 41 year: 1996 ident: ref35 article-title: Technical Note: Some Properties of Splitting Criteria. publication-title: Machine Learning doi: 10.1007/BF00117831 – volume: 359 start-page: 572 year: 2002 ident: ref12 article-title: Use of proteomic patterns in serum to identify ovarian cancer. publication-title: Lancet doi: 10.1016/S0140-6736(02)07746-2 – volume: 62 start-page: 3609 year: 2002 ident: ref1 article-title: Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. publication-title: Cancer Res – volume: 24 start-page: 123 year: 1996 ident: ref21 article-title: Bagging predictors. publication-title: Machine Learning doi: 10.1007/BF00058655 – volume: 47 start-page: 150 year: 2007 ident: ref23 article-title: Random forest models to predict aqueous solubility. publication-title: J Chem Inf Model doi: 10.1021/ci060164k – volume: 65 start-page: 323 year: 2004 ident: ref10 article-title: Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. publication-title: Kidney Int doi: 10.1111/j.1523-1755.2004.00352.x – volume: 115 start-page: 783 year: 2005 ident: ref6 article-title: Classification of cancer types by measuring variants of host response proteins using SELDI serum assays. publication-title: Int J Cancer doi: 10.1002/ijc.20928 – volume: 72 start-page: 30 year: 2000 ident: ref13 article-title: Heterogeneity within MALDI samples as revealed by mass spectrometric imaging. publication-title: Anal Chem doi: 10.1021/ac9908997 – volume: 87 start-page: 407 year: 1992 ident: ref32 article-title: Tree-Structured Methods for Longitudinal Data. publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1992.10475220 – volume: 61 start-page: 120 year: 2007 ident: ref26 article-title: Cerebrospinal fluid proteomic biomarkers for Alzheimer's disease. publication-title: Ann Neurol doi: 10.1002/ana.21038 – reference: 16463283 - Mass Spectrom Rev. 2006 May-Jun;25(3):409-49 – reference: 15277356 - Clin Chem. 2004 Aug;50(8):1438-41 – reference: 12967959 - Bioinformatics. 2003 Sep 1;19(13):1636-43 – reference: 16563185 - Genome Biol. 2006;7(3):401 – reference: 15709178 - Clin Cancer Res. 2005 Feb 1;11(3):1110-8 – reference: 18620558 - BMC Bioinformatics. 2008;9:307 – reference: 15208191 - Ann N Y Acad Sci. 2004 May;1020:154-74 – reference: 17121773 - Bioinformatics. 2007 Jan 15;23(2):264-5 – reference: 12454643 - Nat Genet. 2002 Dec;32 Suppl:490-5 – reference: 12477722 - J Biol Chem. 2003 Feb 21;278(8):6482-9 – reference: 15692757 - Breast Cancer Res Treat. 2005 Jan;89(2):149-57 – reference: 15673564 - Bioinformatics. 2005 May 1;21(9):1764-75 – reference: 15704152 - Int J Cancer. 2005 Jul 10;115(5):783-9 – reference: 17254353 - BMC Bioinformatics. 2007;8:25 – reference: 12925511 - Biostatistics. 2003 Jul;4(3):449-63 – reference: 14675066 - Kidney Int. 2004 Jan;65(1):323-32 – reference: 16980117 - Lancet. 2006 Sep 16;368(9540):1012-21 – reference: 17238260 - J Chem Inf Model. 2007 Jan-Feb;47(1):150-8 – reference: 11867112 - Lancet. 2002 Feb 16;359(9306):572-7 – reference: 12097261 - Cancer Res. 2002 Jul 1;62(13):3609-14 – reference: 15623616 - Clin Cancer Res. 2004 Dec 15;10(24):8380-5 – reference: 15364092 - Artif Intell Med. 2004 Oct;32(2):71-83 – reference: 19602524 - Bioinformatics. 2009 Oct 1;25(19):2573-80 – reference: 17167789 - Ann Neurol. 2007 Feb;61(2):120-9 – reference: 10655631 - Anal Chem. 2000 Jan 1;72(1):30-6 – reference: 15163296 - Endocr Relat Cancer. 2004 Jun;11(2):163-78 |
| SSID | ssj0053866 |
| Score | 2.2229202 |
| Snippet | Many mass spectrometry-based studies, as well as other biological experiments produce cluster-correlated data. Failure to account for correlation among... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e7087 |
| SubjectTerms | Algorithms Alzheimer's disease Alzheimers disease Bioinformatics Biomarkers Classification Cluster Analysis Clusters Comparative analysis Computer Simulation Correlation analysis Data mining Data processing Decision trees Downloading Error correction Forests Gene Expression Profiling - methods Genetics and Genomics/Bioinformatics Graphical user interface Indexing Machine learning Mass spectrometry Mass spectroscopy Mathematics/Statistics Models, Genetic Models, Statistical Molecular Biology/Bioinformatics Normal distribution Oligonucleotide Array Sequence Analysis - methods Ovarian cancer Pattern Recognition, Automated - methods Post-processing Post-production processing Proteins Proteomics Resampling Sampling methods Scientific imaging Software Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization - methods Statistical methods Variables Windows (computer programs) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GClgICTi4TWIndo4LYlWQAKlQ1Fvk-FFWCsmq6Wq1_74ziTfsikrtgWs8luJ5-bM8_oaQN0IBsC9swbgWKROVtUwnNmZpIiplEuF5T2D69Vt-fCq-nGVnW62-sCZsoAceFHekrBLaCulja8HZMq2l94nKnRGAtOMeGsWq2BymhhwMUZzn4aEcl8lRsMvhom0cMhbKGEvotjainq9_zMqTRd1210HOfysn7y6bhV6vdF1vbUuzB-R-wJN0Oqxjj9xxzUOyFyK2o-8CrfT7R2Q1begc69I3jyupGXsQ0tZT2LRs-4cCiIV_Ybi7WWoQW889tsvGAQpokepAY4JzTL1EogVmsMdHDbDVUiw5pdWarvQaJU5mj8np7NPPj8cstF1gBsOXuayyJssql8fKVbbIC64d986kuTHS6Nh5nUnISzz1eczhgy8yLK9x1nMJKeMJmTSg6H1Cc52pCk6IPAHjQVqt4DiaSCusTDWEp40I39igNIGTHFtj1GV_0SbhbDKosUTLlcFyEWHjrMXAyXGD_Ac07yiLjNr9B_CzMvhZeZOfReQVOkc5PE8d80I5FRLvilWmIvK6l0BWjQbLds71suvKz99_3ULox8mO0Nsg5FtQh9HhqQSsCdm6diT30Vc3y-5KgG94gldpEpGDjf9eP0zHYcgoeE2kG9cuu1JyAPF4XRCRp4O3_9UygFcONoyI3ImDHdXujjTz3z1pOcDkIpUw83CMmFsZ79n_MN5zcm-4BSxYog7I5PJi6V4AmLysXvZ54wota3VK priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wAALIQEP3pLYiZ0HhNqyaUOioMJgb5ETO2NSSMrSaup_z13qZKuYYK_xOYp9H77LnX9HyCuhwLFPTMK4FiETmTFMB8ZnYSAylQei4C2A6adJfHgsPp5EJxtk0t2FwbLKzia2htrUOf4j34NzCUMTFQbvZ78Zdo3C7GrXQkO71grmXQsxdotshoiMNSCbo_3Jl2lnm0G749hdoOMy2HP82p3VlUUkQ-ljad2VA6rF8e-t9WBW1s11rujfFZW3F9VMLy90WV45rg7ukbvOz6TDlWBskQ1b3SdbTpMb-sbBTb99QC6GFT3CevXu0iUd970JaV3Qqa5M_YtiD89mzkZw6hnattI8K7CNNgWvl4IXSTt4E5wzLhcIwMDG2PujBHfW0A96rmm2pD_0sn3rwUNyfLD_bXzIXDsGlqNaMxtlJo-izMa-splJ4oRrywubh3Gey1z7ttCRBHvFwyL2OTwokgjLbqwpuART8ogMKtjobUJjHakMIkceGCPA3GYQpgbSCCNDDWprPMI7HqS5wyrHlhll2ibgJMQsq21MkXOp45xHWD9rtsLq-A_9CNnb0yLSdvugPj9NneKmyiihjZCFD5-qVKS1LIpAxTYXEOn52iMvUDjS1bXV3l6kQyExh6wi5ZGXLQWibVRYznOqF02THn3-fgOir9M1oteOqKhhO3LtrlDAmhDFa41yG2W1W3aTXqqPR3Y6-b1-mPbDYGkwfaQrWy-aVHJw7jGN4JHHK2m_3GVwajnw0CNyTQ_WtnZ9pDr72YKZg_uchBJm7vYacyPmPfn3Mp6SO6u8X8ICtUMG8_OFfQbu4zx77mzCH2QbcUk priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9UwDI_G2wEuwPhaYUCEkIBD39qmbdLj24OnDYmBBoPtgKq0aWCitE-01fQ48Ldjt2mhMMQ4cKsaJ2qcxLFr-2dCHvoCFPtIRTaTvmf7iVK2dJVje66fiNT1NWsBTF_sh7uH_vOj4GiNvO9zYQwHwUbMy6r15ONDWWTbhpPbiFfUeU-nLuNu32O6BCJEI-QOSPAWcQj_jNWYgHSBrIcBqOoTsn64_2p23HmaPTv0HGbS6f400ui6alH9B9k9wS87SzH9Pb7yYlMs5epU5vlPl9fiCvnWT7uLWfk0bepkmn79BRHyv_HlKrls1F4660bZIGtZcY1sGMFS0ccG_frJdXI6K-gehs_3OaB0PpRKpKWmB7JQ5WeKJUWr2t6BS1jRtrLnicaq3hSUcApKLe3RVrDPPG8QD8KeYymSHLRrRZ_KWtJkRd_JVTvq4gY5XDx7M9-1TXUIO0UpY2dBotIgSLLQEVmiojBiMmM6S70wTXkqnUzLgIP4ZJ4OHQYvdBRgFFCmNOMg2W6SSQG82SQ0lIFIwJBlrlI-SP8ErGaXK19xT4IUURZh_SaIUwOdjhU88rj1B3IwoTo2xsjs2DDbIvbQa9lBh_yFfgf310CLwN_tC1jt2KxyLJTwpfK5duBThQik5Fq7IsxSHwxPR1rkPu7OuMuiHcRXPPM5urRFICzyoKVA8I8Co4s-yKaq4r2Xb89B9PpgRPTIEOkS2JFKk9EBc8LNOKLcxO3aT7uKQcvEHw3Ccy2y1R-gs5vp0AyCD71ZssjKpoo5A1sDvRoWudUdtx9cBh2bwRpahI8O4oi145bi5GOLrQ7afORx6Dkdjuy5Fu_2v3a4Qy51jsnIdsUWmdRfmuwu6Ld1cs9Iqe9Wx6qH priority: 102 providerName: Unpaywall |
| Title | An Introspective Comparison of Random Forest-Based Classifiers for the Analysis of Cluster-Correlated Data by Way of RF |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19763254 https://www.proquest.com/docview/1292225821 https://www.proquest.com/docview/734050052 https://pubmed.ncbi.nlm.nih.gov/PMC2739274 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0007087&type=printable https://doaj.org/article/8d84ad47f0dd4885aa7ff186ec47530a http://dx.doi.org/10.1371/journal.pone.0007087 |
| UnpaywallVersion | publishedVersion |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe27gFeEONrgVEshAQ8ZEpiJ3YeEGrLyoa0MhUK5Sly4mRMCklpWo3-99zlCyKKGC95sM9R4_Odf9ezf0fIMy4B2PvaN5nijslDrU1la8t0bB7KyOYJKwlMzybeyYy_m7vzHdLUbK0nsNga2mE9qdkyPfrxffMaDP5VWbVB2M2go0WexchHKCwpdske7FU-FnM4421eAay7zF4iajE9x2L1Zbq_vaWzWZWc_q3n7i3SvNgGS_88XXljnS3U5kql6W9b1_g2uVVjTjqoFsk-2YmzO2S_tuqCvqipp1_eJVeDjJ7i2fXmAiYdtXUKaZ7Qqcp0_o1iPc9iZQ5hB9S0LKt5mWBJbQoImAKipA3VCY4ZpWskYzBHWAckBWir6Ru1UjTc0M9qU751fI_MxscfRydmXZrBjNDEzdgNdeS6YexZMg617_lMxSyJI8eLIhEpK06UK8B3MSfxLAYNie_iEZxYJ0yAW7lPehlM9AGhnnJlCFEks7Xm4HpDCFltobkWjgIT1gZhjQ6CqOYtx_IZaVAm4wTEL9U0Bqi5oNacQcx21KLi7fiH_BDV28oi63bZkC8vgtqIA6klV5qLxIKfKqWrlEgSW3pxxCHqs5RBnuDiCKorrK3vCAZcYD5ZutIgT0sJZN7I8GjPhVoXRXD6_tM1hD5MO0LPa6Ekh-mIVH2dAr4JGb06kge4VpvPLgKAeBjlS8c2yGGzfrd307YbvA6mklQW5-siEAyAPqYUDPKgWu2_ZhkALgMdGkR07KAztd2e7PJrSWwOUNp3BIw8ai3mWsp7-J_KfkRuVklB37TlIemtluv4MWDLVdgnu2Iu4ClHNj7Hb_tkb3g8OZ_2y39r-qU7gbbZ5Hzw5Scf1X-N |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeRgviPG1wGAWAgEP2ZLYiZ0HhLqOqmUfSGMbfQtO7IxJJSlLq6r_FH8jd_naKibYy17jcxT77n6-y53vCHnNJRj2oQ5tprhn81hrW7nasT2XxzJxecrKAqYHh8HghH8e-aMV8ru5C4NplQ0mlkCt8wT_kW_DuYSuifTcj5NfNnaNwuhq00KjEos9s5iDy1Z8GO4Cf994Xv_TcW9g110F7ASl0zZ-rBPfj03gSBPrMAiZMiw1iRckiUiUY1LlC1A75qWBw-BBGvqYPWJ0ygRoBLz3DrnLGWAJ6I8YtQ4eYEcQ1NfzmHC3a2nYmuSZwTqJwsHEvSvHX9kloD0LOpNxXlxn6P6dr7k6yyZqMVfj8ZXDsP-A3K-tWNqtxG6NrJjsIVmrcaKg7-pi1u8fkXk3o0PMhm-udNJe2_mQ5ik9UpnOf1LsEFpM7R04UzUtG3Wep9ikm4JNTcFGpU3xFJzTG8-wvIPdw84iYzCWNd1VU0XjBf2mFuVb-4_Jya2w5QnpZLDR64QGypcx-KXM1ZoDmMfgBLtCcy08BaCgLcIaHkRJXQkdG3KMozK8J8AjqrYxQs5FNecsYrezJlUlkP_Q7yB7W1qs410-yC_OohoWIqklV5qL1IFPldJXSqSpKwOTcPAjHWWRTRSOqLoU26JR1OUCI9TSlxZ5VVJgLY8Mk4XO1KwoouGX0xsQfT1aInpbE6U5bEei6gsasCasEbZEuY6y2iy7iC6V0yIbjfxeP0zbYcAxDE6pzOSzIhIMXAcMUljkaSXtl7sMJjMDHlpELOnB0tYuj2TnP8pS6WCch56AmVutxtyIec_-vYxNsjo4PtiP9oeHe8_JvSrCGNqu3CCd6cXMvABDdRq_LNGBku-3DUd_AChVqHQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkYAXxPhaYDALgYCHrEmcxM4DQl1LtTIYaGzQt-DE9phUkrK0qvqv8ddxl6-tYoK97DU-R7Hv7ue73PmOkOe-AMM-UpHNpO_ZfqKULV3l2J7rJyJ1fcPKAqYf98PdI__9OBivkd_NXRhMq2wwsQRqlaf4j7wL5xK6JsJzu6ZOi_g8GL6d_rKxgxRGWpt2GpWI7OnlAty34s1oALx-4XnDd4f9XbvuMGCnKKm2DhKVBkGiQ0foREVhxKRmRqdemKY8lY42MuCggswzocPggYkCzCTRyjAO2gHvvUauc8YiTCfk49bZAxwJw_qqHuNut5aM7WmeaayZyB1M4jt3FJYdA9pzoTOd5MVFRu_fuZs359lULhdyMjl3MA7vkNu1RUt7lQiukzWd3SXrNWYU9FVd2Pr1PbLoZXSEmfHN9U7ab7sg0tzQA5mp_CfFbqHFzN6B81XRsmnnicGG3RTsawr2Km0KqeCc_mSOpR7sPnYZmYDhrOhAziRNlvSbXJZvHd4nR1fClgekk8FGbxAaykAk4KMyVykfgD0Bh9jlylfckwAQyiKs4UGc1lXRsTnHJC5DfRy8o2obY-RcXHPOInY7a1pVBfkP_Q6yt6XFmt7lg_z0OK4hIhZK-FL53DjwqUIEUnJjXBHq1Aef0pEW2ULhiKsLsi0yxT2fY7RaBMIiz0oKrOuRoYYcy3lRxKNPXy9B9OVghehlTWRy2I5U1pc1YE1YL2yFcgNltVl2EZ8pqkU2G_m9eJi2w4BpGKiSmc7nRcwZuBEYsLDIw0raz3YZzGcGPLQIX9GDla1dHclOfpRl08FQjzwOM7dbjbkU8x79exlb5AYAUfxhtL_3mNyqgo2R7YpN0pmdzvUTsFlnydMSHCj5ftVo9Ac67ay3 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9UwDI_G2wEuwPhaYUCEkIBD39qmbdLj24OnDYmBBoPtgKq0aWCitE-01fQ48Ldjt2mhMMQ4cKsaJ2qcxLFr-2dCHvoCFPtIRTaTvmf7iVK2dJVje66fiNT1NWsBTF_sh7uH_vOj4GiNvO9zYQwHwUbMy6r15ONDWWTbhpPbiFfUeU-nLuNu32O6BCJEI-QOSPAWcQj_jNWYgHSBrIcBqOoTsn64_2p23HmaPTv0HGbS6f400ui6alH9B9k9wS87SzH9Pb7yYlMs5epU5vlPl9fiCvnWT7uLWfk0bepkmn79BRHyv_HlKrls1F4660bZIGtZcY1sGMFS0ccG_frJdXI6K-gehs_3OaB0PpRKpKWmB7JQ5WeKJUWr2t6BS1jRtrLnicaq3hSUcApKLe3RVrDPPG8QD8KeYymSHLRrRZ_KWtJkRd_JVTvq4gY5XDx7M9-1TXUIO0UpY2dBotIgSLLQEVmiojBiMmM6S70wTXkqnUzLgIP4ZJ4OHQYvdBRgFFCmNOMg2W6SSQG82SQ0lIFIwJBlrlI-SP8ErGaXK19xT4IUURZh_SaIUwOdjhU88rj1B3IwoTo2xsjs2DDbIvbQa9lBh_yFfgf310CLwN_tC1jt2KxyLJTwpfK5duBThQik5Fq7IsxSHwxPR1rkPu7OuMuiHcRXPPM5urRFICzyoKVA8I8Co4s-yKaq4r2Xb89B9PpgRPTIEOkS2JFKk9EBc8LNOKLcxO3aT7uKQcvEHw3Ccy2y1R-gs5vp0AyCD71ZssjKpoo5A1sDvRoWudUdtx9cBh2bwRpahI8O4oi145bi5GOLrQ7afORx6Dkdjuy5Fu_2v3a4Qy51jsnIdsUWmdRfmuwu6Ld1cs9Iqe9Wx6qH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Introspective+Comparison+of+Random+Forest-Based+Classifiers+for+the+Analysis+of+Cluster-Correlated+Data+by+Way+of+RF&rft.jtitle=PloS+one&rft.au=Karpievitch%2C+Yuliya+V.&rft.au=Hill%2C+Elizabeth+G.&rft.au=Leclerc%2C+Anthony+P.&rft.au=Dabney%2C+Alan+R.&rft.date=2009-09-18&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=4&rft.issue=9&rft.spage=e7087&rft_id=info:doi/10.1371%2Fjournal.pone.0007087&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0007087 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |