Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template

MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM‐152 template were compared to Talairach coordinates determined using a landmark‐based Talairach registration method (TAL). Analysis revealed a clear‐cut bias in reference frames (origin, orientation) and scaling (brain size). Accordin...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 28; no. 11; pp. 1194 - 1205
Main Authors Lancaster, Jack L., Tordesillas-Gutiérrez, Diana, Martinez, Michael, Salinas, Felipe, Evans, Alan, Zilles, Karl, Mazziotta, John C., Fox, Peter T.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.11.2007
Wiley-Liss
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.20345

Cover

Abstract MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM‐152 template were compared to Talairach coordinates determined using a landmark‐based Talairach registration method (TAL). Analysis revealed a clear‐cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM‐152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1‐cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI‐305, ICBM‐152) using the same fitting method (FSL/FLIRT) and for different fitting methods (SPM2, FSL/FLIRT) using the same template (ICBM‐152). An MNI‐to‐Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best‐fit analysis in one hundred high‐resolution 3‐D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5‐13 mm to 1‐2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/FLIRT with the ICBM‐152 template. Hum Brain Mapp 2007. © 2007 Wiley‐Liss, Inc.
AbstractList MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM‐152 template were compared to Talairach coordinates determined using a landmark‐based Talairach registration method (TAL). Analysis revealed a clear‐cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM‐152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1‐cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI‐305, ICBM‐152) using the same fitting method (FSL/FLIRT) and for different fitting methods (SPM2, FSL/FLIRT) using the same template (ICBM‐152). An MNI‐to‐Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best‐fit analysis in one hundred high‐resolution 3‐D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5‐13 mm to 1‐2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/FLIRT with the ICBM‐152 template. Hum Brain Mapp 2007. © 2007 Wiley‐Liss, Inc.
MNI coordinates determined using SPM2 and FSL/ FLIRT with the ICBM‐152 template were compared to Talairach coordinates determined using a landmark‐based Talairach registration method (TAL). Analysis revealed a clear‐cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM‐152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1‐cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI‐305, ICBM‐152) using the same fitting method (FSL/ FLIRT ) and for different fitting methods (SPM2, FSL/ FLIRT ) using the same template (ICBM‐152). An MNI‐to‐Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best‐fit analysis in one hundred high‐resolution 3‐D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5‐13 mm to 1‐2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/ FLIRT with the ICBM‐152 template. Hum Brain Mapp 2007. © 2007 Wiley‐Liss, Inc.
MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM-152 template were compared to Talairach coordinates determined using a landmark-based Talairach registration method (TAL). Analysis revealed a clear-cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM-152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1-cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI-305, ICBM-152) using the same fitting method (FSL/FLIRT) and for different fitting methods (SPM2, FSL/FLIRT) using the same template (ICBM-152). An MNI-to-Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best-fit analysis in one hundred high-resolution 3-D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5-13 mm to 1-2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/FLIRT with the ICBM-152 template.MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM-152 template were compared to Talairach coordinates determined using a landmark-based Talairach registration method (TAL). Analysis revealed a clear-cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM-152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1-cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI-305, ICBM-152) using the same fitting method (FSL/FLIRT) and for different fitting methods (SPM2, FSL/FLIRT) using the same template (ICBM-152). An MNI-to-Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best-fit analysis in one hundred high-resolution 3-D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5-13 mm to 1-2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/FLIRT with the ICBM-152 template.
MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM-152 template were compared to Talairach coordinates determined using a landmark-based Talairach registration method (TAL). Analysis revealed a clear-cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM-152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1-cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI-305, ICBM-152) using the same fitting method (FSL/FLIRT) and for different fitting methods (SPM2, FSL/FLIRT) using the same template (ICBM-152). An MNI-to-Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best-fit analysis in one hundred high-resolution 3-D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5-13 mm to 1-2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/FLIRT with the ICBM-152 template.
MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM-152 template were compared to Talairach coordinates determined using a landmark-based Talairach registration method (TAL). Analysis revealed a clear-cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM-152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1-cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI-305, ICBM-152) using the same fitting method (FSL/FLIRT) and for different fitting methods (SPM2, FSL/FLIRT) using the same template (ICBM-152). An MNI-to-Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best-fit analysis in one hundred high-resolution 3-D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5-13 mm to 1-2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/FLIRT with the ICBM-152 template. Hum Brain Mapp 2007.
Author Evans, Alan
Martinez, Michael
Fox, Peter T.
Zilles, Karl
Lancaster, Jack L.
Mazziotta, John C.
Salinas, Felipe
Tordesillas-Gutiérrez, Diana
AuthorAffiliation 3 McConnell Brain Imaging Center, Montreal Neurological Institute
4 Institute of Medicine and Brain Imaging Center West (BICW), Jülich, Germany
5 Department of Neurology, Brain Mapping Center, David Geffen School of Medicine, UCLA, Los Angeles, California
2 International Consortium for Brain Mapping, UCLA, Los Angeles, California
1 Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas
AuthorAffiliation_xml – name: 4 Institute of Medicine and Brain Imaging Center West (BICW), Jülich, Germany
– name: 1 Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas
– name: 2 International Consortium for Brain Mapping, UCLA, Los Angeles, California
– name: 3 McConnell Brain Imaging Center, Montreal Neurological Institute
– name: 5 Department of Neurology, Brain Mapping Center, David Geffen School of Medicine, UCLA, Los Angeles, California
Author_xml – sequence: 1
  givenname: Jack L.
  surname: Lancaster
  fullname: Lancaster, Jack L.
  email: jlancaster@uthscsa.edu
  organization: Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas
– sequence: 2
  givenname: Diana
  surname: Tordesillas-Gutiérrez
  fullname: Tordesillas-Gutiérrez, Diana
  organization: Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas
– sequence: 3
  givenname: Michael
  surname: Martinez
  fullname: Martinez, Michael
  organization: Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas
– sequence: 4
  givenname: Felipe
  surname: Salinas
  fullname: Salinas, Felipe
  organization: Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas
– sequence: 5
  givenname: Alan
  surname: Evans
  fullname: Evans, Alan
  organization: International Consortium for Brain Mapping, UCLA, Los Angeles, California
– sequence: 6
  givenname: Karl
  surname: Zilles
  fullname: Zilles, Karl
  organization: International Consortium for Brain Mapping, UCLA, Los Angeles, California
– sequence: 7
  givenname: John C.
  surname: Mazziotta
  fullname: Mazziotta, John C.
  organization: International Consortium for Brain Mapping, UCLA, Los Angeles, California
– sequence: 8
  givenname: Peter T.
  surname: Fox
  fullname: Fox, Peter T.
  organization: Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19194889$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17266101$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuP0zAURiM0iHnAgj-AsgEJpMzYSRwnm5FogU5RO2zmsbSu7dupwXGKnVDKryelgQLisbKle75P18fH0YFrHEbRY0pOKSHp2VLWpynJcnYvOqKk4gmhVXawvRcsqXJOD6PjEN4TQikj9EF0SHlaFJTQo-h6ZCDEEts1oovnl9MYnI6vwILxoJaxahqvjYMWQz8Bu_mCOu6CcXdxu8R4Oh7NE8rSWHowLm6xXtmefRjdX4AN-Gg4T6LrN6-vxhfJ7N1kOn45SxTjJUt4rhgCK0qGmaQ5yIwg01qmlZRaLxBpqcuSa6g09FylJGOyYJprmdNU6-wkerHr7dwKNmuwVqy8qcFvBCVi60b0bsQ3Nz18voNXnaxRK3Sth32gASN-nTizFHfNJ1GUnGZp1hc8Gwp887HD0IraBIXWgsOmCz2XE55n9L9gSnJepIz34JOfV9ovP_xPDzwdAAgK7MKDUybsuYpWeVlWPXe245RvQvC4EMq00Jpm-xJj_2jj-W-Jf5kb2tfG4ubvoLgYzb8nkl3ChBY__0iA_yAKnnEmbi8nYvbq7WTMbm_ETfYV11TbfQ
CitedBy_id crossref_primary_10_1016_j_pscychresns_2014_06_004
crossref_primary_10_1002_hbm_22160
crossref_primary_10_1007_s00213_023_06498_1
crossref_primary_10_1017_S0033291722003889
crossref_primary_10_1002_hbm_23492
crossref_primary_10_3390_brainsci11121619
crossref_primary_10_3389_fnins_2014_00401
crossref_primary_10_3758_s13415_019_00747_7
crossref_primary_10_1002_hipo_23632
crossref_primary_10_1007_s11065_023_09609_z
crossref_primary_10_1162_jocn_a_00077
crossref_primary_10_1016_j_psyneuen_2018_08_036
crossref_primary_10_1016_j_brainres_2012_03_040
crossref_primary_10_1016_j_jpain_2023_11_012
crossref_primary_10_1016_j_neubiorev_2014_11_003
crossref_primary_10_1080_01690965_2011_613209
crossref_primary_10_14316_pmp_2019_30_1_22
crossref_primary_10_1016_j_clineuro_2023_107710
crossref_primary_10_1016_j_neubiorev_2017_01_006
crossref_primary_10_3389_fnins_2024_1443578
crossref_primary_10_1016_j_neuroimage_2019_06_037
crossref_primary_10_1017_S0033291716002634
crossref_primary_10_1016_j_jphysparis_2016_01_001
crossref_primary_10_1002_hbm_22392
crossref_primary_10_1016_j_bandl_2020_104893
crossref_primary_10_1002_hbm_24334
crossref_primary_10_1002_hbm_22155
crossref_primary_10_1002_da_22866
crossref_primary_10_1016_j_nicl_2017_03_016
crossref_primary_10_1016_j_psychres_2022_114598
crossref_primary_10_1016_j_neulet_2017_06_058
crossref_primary_10_1016_j_smrv_2023_101821
crossref_primary_10_1016_j_neuroimage_2017_02_004
crossref_primary_10_3389_fnins_2023_1191617
crossref_primary_10_1002_hbm_24326
crossref_primary_10_1002_hbm_22388
crossref_primary_10_1016_j_cpr_2022_102189
crossref_primary_10_1016_j_neuropsychologia_2013_08_005
crossref_primary_10_1016_j_neuroimage_2022_119194
crossref_primary_10_1016_j_neuropsychologia_2016_06_034
crossref_primary_10_15248_proc_2_421
crossref_primary_10_1016_j_neuroimage_2011_06_050
crossref_primary_10_1016_j_biopsycho_2018_09_010
crossref_primary_10_1038_srep25983
crossref_primary_10_1002_hbm_22186
crossref_primary_10_1176_appi_ajp_2010_09101522
crossref_primary_10_1007_s12021_010_9083_9
crossref_primary_10_1162_jocn_a_01142
crossref_primary_10_1371_journal_pone_0101729
crossref_primary_10_1016_j_nicl_2017_12_029
crossref_primary_10_1016_j_neuroimage_2009_01_053
crossref_primary_10_1016_j_pscychresns_2012_10_009
crossref_primary_10_1016_j_neubiorev_2019_05_007
crossref_primary_10_1016_j_pscychresns_2008_09_011
crossref_primary_10_1016_j_brainres_2011_09_055
crossref_primary_10_1016_j_neubiorev_2020_01_004
crossref_primary_10_1162_jocn_a_00057
crossref_primary_10_1016_j_neuroimage_2021_117960
crossref_primary_10_1016_j_neuroimage_2020_117686
crossref_primary_10_1016_j_bandl_2023_105347
crossref_primary_10_1016_j_biopsych_2014_12_021
crossref_primary_10_1186_s13550_023_01028_8
crossref_primary_10_1016_j_orcp_2020_02_004
crossref_primary_10_1016_j_dcn_2017_05_003
crossref_primary_10_1007_s11065_021_09494_4
crossref_primary_10_1016_j_neuroimage_2024_120720
crossref_primary_10_1017_S0033291717001192
crossref_primary_10_1038_srep19250
crossref_primary_10_1007_s00701_021_04737_y
crossref_primary_10_1016_j_pnpbp_2022_110540
crossref_primary_10_1371_journal_pone_0250755
crossref_primary_10_1016_j_neuroimage_2009_10_064
crossref_primary_10_3233_JAD_210173
crossref_primary_10_1093_cercor_bhq268
crossref_primary_10_1177_1545968314527350
crossref_primary_10_1016_j_neuroscience_2017_03_064
crossref_primary_10_1016_j_nicl_2016_09_023
crossref_primary_10_1016_j_bandl_2016_10_004
crossref_primary_10_1016_j_neuropsychologia_2017_01_019
crossref_primary_10_1016_j_expneurol_2008_05_017
crossref_primary_10_1016_j_neubiorev_2022_104971
crossref_primary_10_1007_s11682_020_00408_1
crossref_primary_10_1002_hbm_22363
crossref_primary_10_1002_hbm_22364
crossref_primary_10_1162_jocn_a_00272
crossref_primary_10_2967_jnumed_114_153494
crossref_primary_10_1016_j_brainresbull_2024_110933
crossref_primary_10_1016_j_neubiorev_2019_04_017
crossref_primary_10_1371_journal_pone_0067988
crossref_primary_10_1080_17470919_2011_614001
crossref_primary_10_1162_jocn_2008_21165
crossref_primary_10_1016_j_bandc_2019_01_002
crossref_primary_10_1016_j_jneuroling_2018_08_005
crossref_primary_10_1097_WNF_0b013e31821c31d8
crossref_primary_10_1002_hbm_23202
crossref_primary_10_1002_hbm_24534
crossref_primary_10_3389_fnins_2020_534671
crossref_primary_10_1016_j_neuroimage_2017_02_050
crossref_primary_10_1002_hbm_21261
crossref_primary_10_1016_j_yfrne_2016_10_001
crossref_primary_10_1016_j_brainres_2020_147049
crossref_primary_10_1002_hbm_22354
crossref_primary_10_1007_s12021_010_9074_x
crossref_primary_10_1016_j_neuroimage_2012_01_024
crossref_primary_10_1111_nmo_14484
crossref_primary_10_1016_j_neuroimage_2020_117407
crossref_primary_10_1016_j_neubiorev_2019_04_006
crossref_primary_10_1097_WNR_0b013e32835f8826
crossref_primary_10_3389_fnhum_2018_00227
crossref_primary_10_1002_hbm_26702
crossref_primary_10_1002_hbm_23675
crossref_primary_10_1016_j_neuroimage_2012_02_065
crossref_primary_10_1002_hbm_24523
crossref_primary_10_1007_s00429_012_0385_6
crossref_primary_10_1016_j_jns_2012_02_010
crossref_primary_10_1186_s12938_024_01204_4
crossref_primary_10_1016_j_jad_2016_10_022
crossref_primary_10_1155_2012_634165
crossref_primary_10_1176_appi_ajp_2009_09050716
crossref_primary_10_1002_hbm_23233
crossref_primary_10_1017_S0033291720002676
crossref_primary_10_1111_cns_13775
crossref_primary_10_1016_j_heliyon_2022_e09702
crossref_primary_10_1016_j_neures_2015_06_011
crossref_primary_10_1016_j_exger_2025_112678
crossref_primary_10_1007_s11682_024_00921_7
crossref_primary_10_1016_j_cmpb_2024_108429
crossref_primary_10_1016_j_neuroimage_2014_05_018
crossref_primary_10_1093_schbul_sbn141
crossref_primary_10_1371_journal_pone_0039061
crossref_primary_10_3389_fneur_2023_1148781
crossref_primary_10_1038_s41598_022_14221_x
crossref_primary_10_1016_j_bbr_2011_07_054
crossref_primary_10_1016_j_neuroimage_2008_05_041
crossref_primary_10_1002_hbm_22375
crossref_primary_10_1080_23273798_2016_1245426
crossref_primary_10_1016_j_pnpbp_2024_111199
crossref_primary_10_1016_j_cmpb_2016_07_015
crossref_primary_10_1038_s41537_023_00338_z
crossref_primary_10_1073_pnas_0800374105
crossref_primary_10_1016_j_neuroimage_2012_02_045
crossref_primary_10_1002_hbm_22124
crossref_primary_10_1002_hbm_23216
crossref_primary_10_1002_hbm_25635
crossref_primary_10_1007_s12671_018_0884_5
crossref_primary_10_1016_j_neuroimage_2017_12_034
crossref_primary_10_1016_j_ynirp_2023_100173
crossref_primary_10_1016_j_nicl_2014_04_007
crossref_primary_10_1002_aur_1498
crossref_primary_10_3109_15622975_2011_573809
crossref_primary_10_3389_fpsyg_2014_00151
crossref_primary_10_1017_S0142716411000075
crossref_primary_10_1016_j_neuroscience_2017_01_042
crossref_primary_10_1002_hbm_21471
crossref_primary_10_1016_j_neuroimage_2011_12_024
crossref_primary_10_3389_fnhum_2014_00912
crossref_primary_10_1002_hipo_22387
crossref_primary_10_1038_s41598_021_88368_4
crossref_primary_10_1016_j_drugalcdep_2022_109625
crossref_primary_10_1016_j_neubiorev_2014_01_009
crossref_primary_10_1093_scan_nst106
crossref_primary_10_1016_j_neuroimage_2021_118436
crossref_primary_10_1016_j_cortex_2022_07_003
crossref_primary_10_1016_j_jpsychires_2019_01_005
crossref_primary_10_1002_hbm_22313
crossref_primary_10_3390_ijerph192316277
crossref_primary_10_1111_joor_13526
crossref_primary_10_1093_cercor_bhac211
crossref_primary_10_1093_braincomms_fcac046
crossref_primary_10_1016_j_neuroimage_2023_120088
crossref_primary_10_1016_j_neubiorev_2007_09_005
crossref_primary_10_1093_cercor_bhx283
crossref_primary_10_13104_jksmrm_2010_14_2_103
crossref_primary_10_1016_j_cortex_2020_04_015
crossref_primary_10_1016_j_neubiorev_2018_08_003
crossref_primary_10_1016_j_neuron_2007_10_015
crossref_primary_10_1016_j_neuroscience_2018_09_001
crossref_primary_10_1016_j_drugalcdep_2023_109912
crossref_primary_10_1162_jocn_a_00245
crossref_primary_10_1016_j_neubiorev_2016_05_012
crossref_primary_10_1176_appi_ajp_2019_18111271
crossref_primary_10_1016_j_neuroimage_2011_08_053
crossref_primary_10_1002_hbm_25816
crossref_primary_10_1186_s11689_019_9287_8
crossref_primary_10_1016_j_neubiorev_2022_104553
crossref_primary_10_1038_s41598_020_58839_1
crossref_primary_10_3389_fnins_2024_1399948
crossref_primary_10_1007_s12021_020_09454_y
crossref_primary_10_1002_hbm_21252
crossref_primary_10_1038_s41593_017_0051_7
crossref_primary_10_1016_j_neubiorev_2011_07_004
crossref_primary_10_1109_TAI_2023_3282199
crossref_primary_10_1016_j_mri_2009_01_008
crossref_primary_10_1080_13803395_2010_537253
crossref_primary_10_1186_s12993_022_00196_2
crossref_primary_10_1038_s41366_020_0608_5
crossref_primary_10_1073_pnas_1113427109
crossref_primary_10_1016_j_bbr_2017_10_025
crossref_primary_10_1002_hbm_21004
crossref_primary_10_1002_mrm_22824
crossref_primary_10_1002_hbm_22572
crossref_primary_10_1093_scan_nsae068
crossref_primary_10_1016_j_neubiorev_2016_04_001
crossref_primary_10_1016_j_neuroimage_2011_12_032
crossref_primary_10_1162_jocn_a_01793
crossref_primary_10_1088_1361_6560_ac4ef9
crossref_primary_10_3389_fneur_2024_1452491
crossref_primary_10_1016_j_jad_2022_11_071
crossref_primary_10_1007_s00429_019_01870_4
crossref_primary_10_1148_radiol_12112052
crossref_primary_10_1016_j_biopsych_2022_05_028
crossref_primary_10_1016_j_neubiorev_2016_05_037
crossref_primary_10_30773_pi_2017_12_17
crossref_primary_10_1016_j_neuroimage_2019_04_059
crossref_primary_10_1093_brain_awx087
crossref_primary_10_1093_cercor_bhad337
crossref_primary_10_1016_j_nicl_2014_03_010
crossref_primary_10_1002_hbm_21235
crossref_primary_10_1016_j_cortex_2017_12_014
crossref_primary_10_3389_fnins_2022_834026
crossref_primary_10_1016_j_neuropsychologia_2008_11_030
crossref_primary_10_1002_hbm_22326
crossref_primary_10_11922_11_6035_csd_2022_0047_zh
crossref_primary_10_1002_hbm_24746
crossref_primary_10_1371_journal_pone_0161392
crossref_primary_10_3389_fpsyt_2018_00777
crossref_primary_10_1111_ene_12902
crossref_primary_10_1016_j_neubiorev_2016_06_025
crossref_primary_10_1002_mp_14692
crossref_primary_10_1007_s11682_016_9606_6
crossref_primary_10_1016_j_neuroimage_2007_09_027
crossref_primary_10_3390_brainsci15010046
crossref_primary_10_1016_j_neubiorev_2020_02_023
crossref_primary_10_3389_fnhum_2022_1040553
crossref_primary_10_1038_s41467_024_53743_y
crossref_primary_10_1038_s41398_022_01809_0
crossref_primary_10_1162_jocn_a_00437
crossref_primary_10_1016_j_neubiorev_2022_104768
crossref_primary_10_1038_tp_2016_55
crossref_primary_10_1007_s00415_009_5307_z
crossref_primary_10_3389_fnins_2016_00515
crossref_primary_10_3389_fnins_2024_1392002
crossref_primary_10_1007_s10548_018_0647_6
crossref_primary_10_1016_j_neuroimage_2011_07_022
crossref_primary_10_1016_j_neuropsychologia_2014_05_001
crossref_primary_10_1080_17470919_2018_1459313
crossref_primary_10_1002_mp_14201
crossref_primary_10_1038_s41537_022_00291_3
crossref_primary_10_1002_hipo_23024
crossref_primary_10_1007_s11065_023_09588_1
crossref_primary_10_1016_j_bandl_2013_11_002
crossref_primary_10_1016_j_neubiorev_2019_02_017
crossref_primary_10_1016_j_neuropsychologia_2010_09_014
crossref_primary_10_1002_brb3_1617
crossref_primary_10_1016_j_neubiorev_2019_02_011
crossref_primary_10_1002_hbm_22749
crossref_primary_10_1016_j_nicl_2016_06_019
crossref_primary_10_1007_s00429_017_1476_1
crossref_primary_10_1002_hbm_21416
crossref_primary_10_1016_j_cccb_2024_100376
crossref_primary_10_1016_j_neuropsychologia_2011_02_031
crossref_primary_10_1016_j_neubiorev_2022_104994
crossref_primary_10_1016_j_neuroscience_2009_10_014
crossref_primary_10_1186_s12868_021_00640_5
crossref_primary_10_1002_hbm_24960
crossref_primary_10_1016_j_neubiorev_2020_03_008
crossref_primary_10_1016_j_neuropsychologia_2015_08_007
crossref_primary_10_1080_01616412_2023_2199377
crossref_primary_10_3389_fnbeh_2016_00220
crossref_primary_10_1371_journal_pone_0050939
crossref_primary_10_1007_s00429_017_1443_x
crossref_primary_10_1186_1471_2202_9_102
crossref_primary_10_1016_j_clineuro_2025_108743
crossref_primary_10_1093_schbul_sbv025
crossref_primary_10_1007_s10548_011_0171_4
crossref_primary_10_3171_2021_7_JNS21990
crossref_primary_10_3389_fnagi_2021_694676
crossref_primary_10_1002_oby_20659
crossref_primary_10_1016_j_neuropsychologia_2011_01_023
crossref_primary_10_1093_scan_nsz055
crossref_primary_10_1016_j_neubiorev_2013_09_005
crossref_primary_10_1016_j_neuroimage_2009_12_099
crossref_primary_10_1192_bjo_2023_588
crossref_primary_10_1016_j_schres_2010_03_039
crossref_primary_10_1038_s41398_019_0644_x
crossref_primary_10_3389_fnagi_2016_00260
crossref_primary_10_1016_j_pnpbp_2011_09_014
crossref_primary_10_1016_j_neuropsychologia_2014_12_005
crossref_primary_10_1093_cercor_bhac443
crossref_primary_10_1016_j_pnpbp_2017_01_012
crossref_primary_10_1186_s13195_021_00847_y
crossref_primary_10_1038_s41598_019_38990_0
crossref_primary_10_1016_j_nicl_2017_07_025
crossref_primary_10_1016_j_biopsych_2010_01_020
crossref_primary_10_1016_j_neuroimage_2022_119764
crossref_primary_10_1016_j_bbr_2022_114219
crossref_primary_10_1007_s11065_015_9294_9
crossref_primary_10_1097_JGP_0b013e3181cabd0e
crossref_primary_10_1016_j_neubiorev_2012_11_003
crossref_primary_10_1016_j_neuroimage_2016_05_076
crossref_primary_10_1017_S003329170800500X
crossref_primary_10_3758_s13415_022_01030_y
crossref_primary_10_1016_j_neubiorev_2012_11_002
crossref_primary_10_1186_1756_0500_4_349
crossref_primary_10_1016_j_neuropsychologia_2017_04_015
crossref_primary_10_1016_j_brainres_2015_04_012
crossref_primary_10_1016_j_neuroimage_2019_116111
crossref_primary_10_1007_s11682_024_00949_9
crossref_primary_10_1038_s41598_017_18471_y
crossref_primary_10_1093_brain_awab380
crossref_primary_10_1111_j_1528_1167_2009_02022_x
crossref_primary_10_1016_j_neubiorev_2024_105712
crossref_primary_10_1016_j_neuroimage_2019_03_074
crossref_primary_10_1016_j_neuroimage_2009_12_112
crossref_primary_10_1016_j_nicl_2023_103532
crossref_primary_10_3389_fneur_2018_01129
crossref_primary_10_1016_j_neubiorev_2016_03_026
crossref_primary_10_1016_j_bandc_2008_12_006
crossref_primary_10_1016_j_dr_2022_101052
crossref_primary_10_1016_j_cortex_2020_05_003
crossref_primary_10_3389_fnins_2018_00686
crossref_primary_10_1162_jocn_2009_21282
crossref_primary_10_1016_j_smrv_2018_07_004
crossref_primary_10_1162_jocn_2009_21281
crossref_primary_10_1016_j_neulet_2009_01_065
crossref_primary_10_3389_fnhum_2021_774656
crossref_primary_10_1016_j_neubiorev_2024_105960
crossref_primary_10_1162_jocn_a_01616
crossref_primary_10_3389_fnagi_2020_00014
crossref_primary_10_1093_cercor_bhae376
crossref_primary_10_1016_j_biopsych_2008_03_031
crossref_primary_10_1002_hbm_20680
crossref_primary_10_1371_journal_pone_0140731
crossref_primary_10_1016_j_neuroimage_2012_12_046
crossref_primary_10_1016_j_jneuroling_2014_04_003
crossref_primary_10_1016_j_neubiorev_2021_06_020
crossref_primary_10_1016_j_nicl_2019_102039
crossref_primary_10_1016_j_ijpsycho_2018_02_001
crossref_primary_10_1016_j_nicl_2022_103268
crossref_primary_10_1089_brain_2015_0345
crossref_primary_10_1002_hbm_23706
crossref_primary_10_1016_j_neuropsychologia_2024_108904
crossref_primary_10_3389_fpsyg_2015_00191
crossref_primary_10_1192_bjp_bp_108_052738
crossref_primary_10_3390_brainsci12081030
crossref_primary_10_1162_imag_a_00065
crossref_primary_10_1212_WNL_0b013e31821a44c1
crossref_primary_10_1016_j_jad_2018_09_049
crossref_primary_10_1016_j_nicl_2019_102041
crossref_primary_10_1111_jcpp_12651
crossref_primary_10_1016_j_pscychresns_2019_111020
crossref_primary_10_1080_15622975_2020_1775889
crossref_primary_10_1016_j_bbr_2013_09_042
crossref_primary_10_1016_j_biopsych_2011_09_007
crossref_primary_10_1038_s41598_023_29797_1
crossref_primary_10_7554_eLife_53385
crossref_primary_10_1038_s42003_019_0611_3
crossref_primary_10_1016_j_neubiorev_2021_06_030
crossref_primary_10_3389_fnhum_2014_00649
crossref_primary_10_1016_j_yebeh_2014_01_010
crossref_primary_10_1016_j_clinph_2020_07_024
crossref_primary_10_12779_dnd_2017_16_2_48
crossref_primary_10_7554_eLife_67303
crossref_primary_10_1016_j_neuroimage_2007_09_054
crossref_primary_10_1088_1741_2552_ad7f87
crossref_primary_10_1002_hbm_22602
crossref_primary_10_1016_j_jad_2011_03_016
crossref_primary_10_1016_j_neuroimage_2019_116387
crossref_primary_10_1176_appi_ajp_2017_16040400
crossref_primary_10_1093_cercor_bhad461
crossref_primary_10_1093_scan_nsw090
crossref_primary_10_1016_j_nicl_2019_102053
crossref_primary_10_1016_j_neubiorev_2024_105902
crossref_primary_10_1016_j_jns_2013_10_026
crossref_primary_10_1016_j_cortex_2014_09_022
crossref_primary_10_1177_1545968312461718
crossref_primary_10_1523_JNEUROSCI_0663_23_2023
crossref_primary_10_1038_srep16891
crossref_primary_10_1016_j_nicl_2017_01_034
crossref_primary_10_3389_fnhum_2017_00022
crossref_primary_10_1016_j_nicl_2015_12_002
crossref_primary_10_1016_j_pscychresns_2017_09_014
crossref_primary_10_1016_j_mri_2021_10_017
crossref_primary_10_1371_journal_pone_0116854
crossref_primary_10_1093_schizbullopen_sgab039
crossref_primary_10_3758_s13415_020_00784_7
crossref_primary_10_1146_annurev_psych_010417_085944
crossref_primary_10_1016_j_neuroimage_2013_07_025
crossref_primary_10_1093_cercor_bhv068
crossref_primary_10_1371_journal_pone_0030918
crossref_primary_10_1016_j_neubiorev_2024_105918
crossref_primary_10_1016_j_nicl_2022_103029
crossref_primary_10_1152_jn_00338_2011
crossref_primary_10_1371_journal_pone_0103302
crossref_primary_10_1016_j_celrep_2020_108137
crossref_primary_10_1259_bjr_30173406
crossref_primary_10_1007_s00429_012_0411_8
crossref_primary_10_1016_j_pnpbp_2020_109986
crossref_primary_10_1111_dmcn_12618
crossref_primary_10_1016_j_neuropsychologia_2010_07_030
crossref_primary_10_3389_fnhum_2019_00457
crossref_primary_10_1016_j_nicl_2017_01_020
crossref_primary_10_1038_s41598_020_76211_1
crossref_primary_10_1016_j_nicl_2022_103031
crossref_primary_10_3389_fneur_2015_00231
crossref_primary_10_1186_2045_5380_4_6
crossref_primary_10_1016_j_bandl_2010_01_008
crossref_primary_10_1016_j_neuroimage_2019_116321
crossref_primary_10_1080_00207454_2018_1508135
crossref_primary_10_1002_hbm_20844
crossref_primary_10_1007_s11065_015_9315_8
crossref_primary_10_1016_j_neuroimage_2009_06_047
crossref_primary_10_1093_cercor_bhac394
crossref_primary_10_1093_cercor_bhx273
crossref_primary_10_1038_s41598_017_02266_2
crossref_primary_10_1111_j_1460_9568_2010_07590_x
crossref_primary_10_1016_j_neubiorev_2021_07_021
crossref_primary_10_1177_1545968310394870
crossref_primary_10_1016_j_neuroimage_2016_03_004
crossref_primary_10_1017_S0033291717002513
crossref_primary_10_1016_j_cortex_2009_11_007
crossref_primary_10_1007_s11682_022_00744_4
crossref_primary_10_1371_journal_pone_0128608
crossref_primary_10_7243_2052_6946_2_3
crossref_primary_10_1002_hbm_25093
crossref_primary_10_1016_j_brainres_2018_01_022
crossref_primary_10_1002_hbm_22818
crossref_primary_10_1080_13803395_2011_633896
crossref_primary_10_1016_j_neubiorev_2018_07_019
crossref_primary_10_1016_j_eplepsyres_2011_10_002
crossref_primary_10_1371_journal_pone_0298651
crossref_primary_10_1016_j_euroneuro_2016_06_013
crossref_primary_10_1016_j_neubiorev_2019_10_023
crossref_primary_10_1038_s41592_022_01625_w
crossref_primary_10_1016_j_ynstr_2017_01_002
crossref_primary_10_1371_journal_pone_0083668
crossref_primary_10_1007_s00429_013_0549_z
crossref_primary_10_1016_j_cmpb_2010_06_011
crossref_primary_10_1080_13554794_2022_2160262
crossref_primary_10_3389_fnins_2023_1135437
crossref_primary_10_1080_17518423_2017_1338777
crossref_primary_10_1016_j_neuroimage_2021_118109
crossref_primary_10_1016_j_bbe_2016_07_002
crossref_primary_10_1016_j_brainres_2018_01_014
crossref_primary_10_1016_j_nicl_2022_103295
crossref_primary_10_1038_s41562_023_01725_3
crossref_primary_10_1371_journal_pone_0064925
crossref_primary_10_1371_journal_pone_0100291
crossref_primary_10_1162_imag_a_00277
crossref_primary_10_1016_j_neubiorev_2016_03_009
crossref_primary_10_1016_j_clinph_2020_06_022
crossref_primary_10_1017_S1368980020003122
crossref_primary_10_1002_hbm_24184
crossref_primary_10_1017_S136672892000070X
crossref_primary_10_1016_j_nicl_2020_102420
crossref_primary_10_1016_j_neubiorev_2017_11_010
crossref_primary_10_1016_j_neubiorev_2017_11_012
crossref_primary_10_1016_j_pnpbp_2013_09_001
crossref_primary_10_3389_fneur_2024_1345756
crossref_primary_10_1016_j_neubiorev_2021_08_010
crossref_primary_10_1016_j_neubiorev_2013_03_017
crossref_primary_10_3389_fnut_2022_1056692
crossref_primary_10_1016_j_neubiorev_2021_09_041
crossref_primary_10_1016_j_neuroimage_2011_04_034
crossref_primary_10_1038_s41380_024_02780_6
crossref_primary_10_1176_appi_ajp_2010_10020165
crossref_primary_10_1016_j_biopsych_2016_06_014
crossref_primary_10_1002_hbm_23088
crossref_primary_10_1016_j_eurpsy_2017_08_001
crossref_primary_10_3389_fnhum_2015_00693
crossref_primary_10_1093_cercor_bhr061
crossref_primary_10_1016_j_neuroimage_2011_01_040
crossref_primary_10_1038_s41598_019_54323_7
crossref_primary_10_1016_j_neuroimage_2011_05_073
crossref_primary_10_1038_s41593_021_00948_9
crossref_primary_10_1007_s11682_020_00291_w
crossref_primary_10_1111_cns_70188
crossref_primary_10_3389_fneur_2022_823882
crossref_primary_10_1177_1087054715580847
crossref_primary_10_1007_s10548_015_0427_5
crossref_primary_10_3389_fpsyt_2022_785547
crossref_primary_10_3758_s13428_023_02185_3
crossref_primary_10_1016_j_neuropsychologia_2020_107404
crossref_primary_10_1016_j_conb_2013_02_017
crossref_primary_10_1111_j_1369_1600_2012_00464_x
crossref_primary_10_1016_j_heares_2011_09_008
crossref_primary_10_1016_j_neuroimage_2025_121026
crossref_primary_10_1016_j_neuroimage_2016_03_047
crossref_primary_10_1016_j_msard_2018_06_007
crossref_primary_10_1016_j_media_2020_101700
crossref_primary_10_1016_j_pscychresns_2017_10_008
crossref_primary_10_1007_s10339_009_0342_3
crossref_primary_10_1016_j_nicl_2017_01_019
crossref_primary_10_1007_s11682_019_00071_1
crossref_primary_10_1080_1750984X_2025_2457062
crossref_primary_10_1016_j_pnpbp_2011_05_009
crossref_primary_10_1016_j_neuroimage_2011_02_070
crossref_primary_10_1016_j_jad_2024_01_118
crossref_primary_10_34133_cbsystems_0118
crossref_primary_10_1007_s00406_023_01594_x
crossref_primary_10_4236_jbbs_2012_22028
crossref_primary_10_1016_j_bandl_2010_03_008
crossref_primary_10_3389_fpsyg_2014_01430
crossref_primary_10_1002_brb3_655
crossref_primary_10_1016_j_neuroimage_2013_04_014
crossref_primary_10_1016_j_cortex_2017_01_006
crossref_primary_10_1016_j_bandc_2018_07_005
crossref_primary_10_1016_j_neuroimage_2016_03_036
crossref_primary_10_1523_JNEUROSCI_4004_09_2009
crossref_primary_10_3389_fnins_2022_899772
crossref_primary_10_1016_j_neubiorev_2021_08_024
crossref_primary_10_1093_schbul_sbr151
crossref_primary_10_1016_j_neuroimage_2012_11_020
crossref_primary_10_3758_s13423_024_02532_1
crossref_primary_10_1093_brain_awu132
crossref_primary_10_1016_j_neuroimage_2023_120413
crossref_primary_10_1016_j_neubiorev_2024_105584
crossref_primary_10_3389_fnhum_2022_815749
crossref_primary_10_1016_j_neuroimage_2010_09_045
crossref_primary_10_1016_j_neuroimage_2024_120950
crossref_primary_10_1093_cercor_bht292
crossref_primary_10_1016_j_neuroimage_2012_10_056
crossref_primary_10_1177_15500594241264892
crossref_primary_10_1111_jcpp_12444
crossref_primary_10_1016_j_cortex_2019_05_016
crossref_primary_10_1093_cercor_bhae393
crossref_primary_10_1016_j_neuroimage_2012_12_060
crossref_primary_10_1111_cdev_13080
crossref_primary_10_1016_j_drugalcdep_2020_107884
crossref_primary_10_1016_j_neuroimage_2017_10_054
crossref_primary_10_3389_fnhum_2017_00662
crossref_primary_10_3389_fnins_2018_00495
crossref_primary_10_1002_hbm_70031
crossref_primary_10_1016_j_neuroimage_2015_08_003
crossref_primary_10_1093_scan_nsx103
crossref_primary_10_1016_j_jad_2023_01_051
crossref_primary_10_1007_s11065_024_09647_1
crossref_primary_10_1016_j_neuroimage_2010_09_030
crossref_primary_10_1016_j_cortex_2017_03_016
crossref_primary_10_1002_brb3_2033
crossref_primary_10_1002_hbm_22199
crossref_primary_10_1038_nmeth_1635
crossref_primary_10_5665_sleep_5000
crossref_primary_10_1016_j_neuropsychologia_2012_07_026
crossref_primary_10_1371_journal_pone_0060385
crossref_primary_10_1016_j_cortex_2020_06_006
crossref_primary_10_1002_hbm_70023
crossref_primary_10_1007_s11682_018_9945_6
crossref_primary_10_1016_j_jpsychires_2014_04_022
crossref_primary_10_1002_mds_28468
crossref_primary_10_1038_s41531_017_0012_6
crossref_primary_10_1016_j_neuroimage_2017_10_069
crossref_primary_10_1016_j_neubiorev_2023_105468
crossref_primary_10_1016_j_neuropsychologia_2019_107284
crossref_primary_10_1002_hbm_26340
crossref_primary_10_1016_j_jaac_2012_12_012
crossref_primary_10_1162_imag_a_00425
crossref_primary_10_1016_j_jns_2014_05_066
crossref_primary_10_1002_nau_23058
crossref_primary_10_1038_srep37126
crossref_primary_10_1016_j_neuropsychologia_2019_107286
crossref_primary_10_1016_j_bandc_2018_06_004
crossref_primary_10_1016_j_schres_2012_02_022
crossref_primary_10_1016_j_neubiorev_2015_08_013
crossref_primary_10_1016_j_jpain_2012_11_011
crossref_primary_10_1016_j_neuroimage_2011_02_032
crossref_primary_10_1371_journal_pone_0072159
crossref_primary_10_1016_j_janxdis_2023_102773
crossref_primary_10_1080_23279095_2017_1362406
crossref_primary_10_3389_fpsyg_2025_1557796
crossref_primary_10_1016_j_neuroimage_2009_08_008
crossref_primary_10_1002_brb3_213
crossref_primary_10_1016_j_neubiorev_2021_09_024
crossref_primary_10_3389_fnhum_2014_00445
crossref_primary_10_1016_j_jns_2012_01_032
crossref_primary_10_1093_neuonc_not319
crossref_primary_10_1016_j_neubiorev_2015_08_006
crossref_primary_10_1111_acer_14327
crossref_primary_10_1371_journal_pone_0032960
crossref_primary_10_1002_hbm_70000
crossref_primary_10_1109_ACCESS_2021_3097606
crossref_primary_10_1016_j_neubiorev_2024_105544
crossref_primary_10_1177_2167702614542463
crossref_primary_10_3389_fnhum_2014_00692
crossref_primary_10_3389_fpsyg_2024_1335548
crossref_primary_10_1002_hbm_22040
crossref_primary_10_1007_s40519_022_01390_x
crossref_primary_10_3389_fnhum_2014_01045
crossref_primary_10_1002_hbm_21199
crossref_primary_10_1142_S0129065721500386
crossref_primary_10_1016_j_neuroimage_2015_07_083
crossref_primary_10_1016_j_neubiorev_2021_11_020
crossref_primary_10_1176_appi_ajp_2012_11101521
crossref_primary_10_1016_j_nicl_2019_101722
crossref_primary_10_1016_j_brainresbull_2023_110733
crossref_primary_10_1038_s41598_021_95603_5
crossref_primary_10_3389_fnins_2017_00001
crossref_primary_10_1111_ggi_12550
crossref_primary_10_1162_jocn_a_01049
crossref_primary_10_1016_j_neuroimage_2009_09_064
crossref_primary_10_1016_j_neuroimage_2020_117582
crossref_primary_10_1111_j_1749_6632_2011_05958_x
crossref_primary_10_1111_bdi_12488
crossref_primary_10_1002_hbm_23368
crossref_primary_10_1007_s11682_012_9198_8
crossref_primary_10_1016_j_neuroimage_2009_08_029
crossref_primary_10_1017_S0033291717001076
crossref_primary_10_1016_j_biotno_2024_08_001
crossref_primary_10_1016_j_neuroimage_2023_120363
crossref_primary_10_1002_hbm_23120
crossref_primary_10_1002_hbm_24213
crossref_primary_10_1155_2023_7948140
crossref_primary_10_1016_j_biopsycho_2017_07_019
crossref_primary_10_1016_j_nicl_2025_103770
crossref_primary_10_1016_j_neuroimage_2017_09_013
crossref_primary_10_7717_peerj_367
crossref_primary_10_1016_j_nicl_2019_101735
crossref_primary_10_1016_j_neubiorev_2018_11_005
crossref_primary_10_1146_annurev_neuro_062012_170320
crossref_primary_10_1016_j_schres_2011_08_004
crossref_primary_10_1093_scan_nst052
crossref_primary_10_1192_bjp_bp_112_108464
crossref_primary_10_1016_j_neurobiolaging_2016_04_018
crossref_primary_10_1016_j_neuropsychologia_2015_12_006
crossref_primary_10_1093_cercor_bhs308
crossref_primary_10_1097_MD_0000000000019151
crossref_primary_10_1016_j_neubiorev_2021_03_025
crossref_primary_10_1007_s11682_020_00442_z
crossref_primary_10_3233_JPD_223527
crossref_primary_10_1016_j_neuroimage_2016_01_031
crossref_primary_10_1093_brain_awy222
crossref_primary_10_1111_j_1468_0394_2012_00619_x
crossref_primary_10_3758_s13415_011_0051_0
crossref_primary_10_1016_j_neuropsychologia_2015_05_029
crossref_primary_10_1016_j_neuroimage_2009_08_049
crossref_primary_10_1017_S0033291722003750
crossref_primary_10_1016_j_nic_2008_06_006
crossref_primary_10_1038_s41598_019_48510_9
crossref_primary_10_1016_j_concog_2011_09_019
crossref_primary_10_1002_hbm_24232
crossref_primary_10_3758_s13415_015_0392_1
crossref_primary_10_1016_j_neuroimage_2015_07_070
crossref_primary_10_1007_s00429_023_02641_y
crossref_primary_10_1176_appi_ajp_2009_08091307
crossref_primary_10_1016_j_neuroimage_2009_07_016
crossref_primary_10_1089_brain_2013_0218
crossref_primary_10_1016_j_neuroimage_2015_05_008
crossref_primary_10_1016_j_neuroimage_2015_07_079
crossref_primary_10_1016_j_schres_2017_04_005
crossref_primary_10_1093_scan_nsu128
crossref_primary_10_1016_j_neuroimage_2021_118702
crossref_primary_10_1093_cercor_bhp055
crossref_primary_10_1093_texcom_tgaa007
crossref_primary_10_1016_j_jad_2016_09_005
crossref_primary_10_1016_j_neuroimage_2015_06_044
crossref_primary_10_1016_j_media_2022_102540
crossref_primary_10_1016_j_neubiorev_2022_104851
crossref_primary_10_1186_s40658_023_00544_9
crossref_primary_10_3389_fpsyg_2014_00274
crossref_primary_10_1016_j_neubiorev_2023_105187
crossref_primary_10_1016_j_neuropsychologia_2015_11_006
crossref_primary_10_1016_j_biopsych_2022_02_960
crossref_primary_10_1186_1471_244X_13_342
crossref_primary_10_1111_cns_12783
crossref_primary_10_1080_17470919_2015_1030036
crossref_primary_10_3389_fnhum_2016_00298
crossref_primary_10_1016_j_bandl_2012_11_013
crossref_primary_10_1162_jocn_a_00392
crossref_primary_10_1016_j_clinph_2009_01_023
crossref_primary_10_1002_hbm_22239
crossref_primary_10_1007_s11682_021_00494_9
crossref_primary_10_1038_s41598_017_18683_2
crossref_primary_10_1162_jocn_2010_21414
crossref_primary_10_1002_hbm_23320
crossref_primary_10_1016_j_neucom_2020_03_055
crossref_primary_10_1038_srep34122
crossref_primary_10_3389_fnhum_2022_854692
crossref_primary_10_1007_s11065_020_09432_w
crossref_primary_10_1111_ner_13119
crossref_primary_10_1016_j_neuroimage_2021_117833
crossref_primary_10_1093_cercor_bhs346
crossref_primary_10_1016_j_bandc_2012_03_007
crossref_primary_10_1016_j_biopsych_2012_07_014
crossref_primary_10_1016_j_neubiorev_2020_09_016
crossref_primary_10_3389_fnhum_2018_00340
crossref_primary_10_1016_j_neubiorev_2010_12_005
crossref_primary_10_1002_hbm_24681
crossref_primary_10_1002_hbm_21173
crossref_primary_10_1002_hbm_22262
crossref_primary_10_1002_hipo_22482
crossref_primary_10_1016_j_cortex_2020_09_023
crossref_primary_10_1016_j_neuroimage_2015_08_061
crossref_primary_10_1371_journal_pone_0194878
crossref_primary_10_3389_fnhum_2022_1057290
crossref_primary_10_1073_pnas_1220826110
crossref_primary_10_1093_cercor_bhr291
crossref_primary_10_1016_j_heares_2016_09_007
crossref_primary_10_3758_s13415_023_01140_1
crossref_primary_10_1007_s13365_022_01071_6
crossref_primary_10_1016_j_heares_2017_02_016
crossref_primary_10_1016_j_neubiorev_2022_104826
crossref_primary_10_1155_2016_7296125
crossref_primary_10_1371_journal_pone_0120572
crossref_primary_10_1002_hbm_23103
crossref_primary_10_1002_hbm_23109
crossref_primary_10_1016_j_neuroimage_2024_120641
crossref_primary_10_1007_s11682_021_00626_1
crossref_primary_10_1016_j_nicl_2016_03_016
crossref_primary_10_1016_j_pnpbp_2021_110322
crossref_primary_10_1021_acschemneuro_9b00045
crossref_primary_10_1016_j_neuroimage_2008_01_065
crossref_primary_10_2196_14302
crossref_primary_10_1016_j_nicl_2021_102583
crossref_primary_10_1016_j_neuropsychologia_2015_06_034
crossref_primary_10_1371_journal_pone_0255292
crossref_primary_10_3389_fnins_2023_1120741
crossref_primary_10_1002_hbm_22008
crossref_primary_10_1038_s41598_018_29670_6
crossref_primary_10_3389_fnana_2015_00069
crossref_primary_10_3758_s13415_011_0062_x
crossref_primary_10_1016_j_bandc_2014_12_006
crossref_primary_10_1016_j_neubiorev_2015_12_003
crossref_primary_10_1016_j_neuroimage_2016_10_028
crossref_primary_10_1111_desc_13111
crossref_primary_10_1016_j_ijpsycho_2007_12_006
crossref_primary_10_1016_j_neubiorev_2018_01_002
crossref_primary_10_1002_hbm_23772
crossref_primary_10_1111_desc_13505
crossref_primary_10_1007_s00429_021_02318_4
crossref_primary_10_1523_JNEUROSCI_5466_09_2010
crossref_primary_10_1016_j_neuropsychologia_2013_02_002
crossref_primary_10_3389_fnins_2017_00640
crossref_primary_10_1080_13554794_2019_1634739
crossref_primary_10_1371_journal_pone_0014224
crossref_primary_10_1007_s11682_023_00797_z
crossref_primary_10_1002_hbm_21348
crossref_primary_10_1002_hbm_23525
crossref_primary_10_1007_s11682_024_00946_y
crossref_primary_10_1111_jnc_16104
crossref_primary_10_1002_hbm_23761
crossref_primary_10_1016_j_neuroimage_2013_01_046
crossref_primary_10_1016_j_jpsychires_2023_11_013
crossref_primary_10_3758_s13415_020_00827_z
crossref_primary_10_1016_j_compbiomed_2023_106802
crossref_primary_10_1093_bja_aet326
crossref_primary_10_1016_j_neubiorev_2015_03_002
crossref_primary_10_1016_j_neuroimage_2015_05_069
crossref_primary_10_1002_nau_24953
crossref_primary_10_1162_jocn_a_01455
crossref_primary_10_1002_hbm_23513
crossref_primary_10_1016_j_neuroimage_2010_10_009
crossref_primary_10_1016_j_neuropsychologia_2010_01_017
crossref_primary_10_1002_hbm_22666
crossref_primary_10_1111_desc_12400
crossref_primary_10_1016_j_neuroimage_2015_04_031
crossref_primary_10_1016_j_neuropsychologia_2014_08_027
crossref_primary_10_1186_s12888_016_0890_x
crossref_primary_10_1016_j_neubiorev_2015_03_009
crossref_primary_10_1016_j_neuroimage_2010_10_005
crossref_primary_10_1007_s11065_019_09418_3
crossref_primary_10_1016_j_pnpbp_2009_08_020
crossref_primary_10_1016_j_neuroimage_2013_01_074
crossref_primary_10_1038_s41598_021_98023_7
crossref_primary_10_3109_17482960802353504
crossref_primary_10_1016_j_parkreldis_2019_02_015
crossref_primary_10_3389_fnhum_2014_00814
crossref_primary_10_1016_j_neuroimage_2013_01_071
crossref_primary_10_1017_S0033291719000473
crossref_primary_10_1371_journal_pone_0175433
crossref_primary_10_1016_j_neuropsychologia_2009_09_032
crossref_primary_10_3389_fnbeh_2015_00297
crossref_primary_10_3389_fpsyg_2017_01253
crossref_primary_10_1002_hbm_25722
crossref_primary_10_1016_j_bja_2023_03_008
crossref_primary_10_1523_JNEUROSCI_3135_12_2013
crossref_primary_10_1016_j_jaac_2018_09_433
crossref_primary_10_1002_hbm_22691
crossref_primary_10_1515_revneuro_2022_0065
crossref_primary_10_1089_brain_2014_0260
crossref_primary_10_1186_1471_2202_15_19
crossref_primary_10_1038_s41386_024_01944_w
crossref_primary_10_1016_j_pscychresns_2016_04_009
crossref_primary_10_1007_s11682_022_00754_2
crossref_primary_10_1016_j_neuroimage_2018_03_071
crossref_primary_10_1016_j_schres_2010_01_008
crossref_primary_10_1016_j_nicl_2013_01_005
crossref_primary_10_1007_s00429_018_1765_3
crossref_primary_10_3389_fnhum_2014_00809
crossref_primary_10_4103_0366_6999_176983
crossref_primary_10_3233_JAD_200659
crossref_primary_10_1002_hbm_23532
crossref_primary_10_1002_hbm_22689
crossref_primary_10_1016_j_neuroimage_2019_02_061
crossref_primary_10_1002_erv_2197
crossref_primary_10_1016_j_pnpbp_2009_07_025
crossref_primary_10_1177_0022034512462398
crossref_primary_10_1186_s12888_021_03187_1
crossref_primary_10_1016_j_neuroimage_2010_12_065
crossref_primary_10_1016_j_neuroimage_2023_120399
crossref_primary_10_1016_j_bandc_2014_03_013
crossref_primary_10_1002_hbm_21307
crossref_primary_10_1093_cercor_bhp244
crossref_primary_10_2337_dc15_2706
crossref_primary_10_1098_rstb_2017_0122
crossref_primary_10_1016_j_bandl_2023_105287
crossref_primary_10_1007_s12078_022_09299_6
crossref_primary_10_1016_j_bandc_2014_03_004
crossref_primary_10_1016_j_addicn_2023_100089
crossref_primary_10_3389_fnhum_2018_00190
crossref_primary_10_1016_j_neulet_2010_04_019
crossref_primary_10_1002_eat_23160
crossref_primary_10_1016_j_neuropsychologia_2012_03_011
crossref_primary_10_1016_j_nicl_2016_12_015
crossref_primary_10_1016_j_bandc_2020_105660
crossref_primary_10_1093_cercor_bhp232
crossref_primary_10_1002_hbm_22629
crossref_primary_10_1016_j_cortex_2023_08_018
crossref_primary_10_1371_journal_pone_0012233
crossref_primary_10_1016_j_fertnstert_2013_05_041
crossref_primary_10_1002_hbm_23710
crossref_primary_10_1002_hbm_23952
crossref_primary_10_1016_j_neuroimage_2019_01_006
crossref_primary_10_1016_j_pscychresns_2018_09_009
crossref_primary_10_1017_S1366728917000670
crossref_primary_10_3389_fninf_2017_00001
crossref_primary_10_1176_appi_ajp_2020_20091340
crossref_primary_10_1016_j_biopsych_2012_06_029
crossref_primary_10_1038_nn_4035
crossref_primary_10_1038_pr_2014_31
crossref_primary_10_1016_j_pscychresns_2023_111595
crossref_primary_10_1093_cercor_bhq117
crossref_primary_10_1007_s00429_024_02795_3
crossref_primary_10_1016_j_neuroimage_2021_118731
crossref_primary_10_3389_fnut_2021_760914
crossref_primary_10_1016_j_pscychresns_2019_01_012
crossref_primary_10_1186_s12888_025_06495_y
crossref_primary_10_1016_j_neuropsychologia_2014_06_001
crossref_primary_10_1016_j_neuropsychologia_2024_108947
crossref_primary_10_1016_j_bandl_2014_06_003
crossref_primary_10_1093_cercor_bhn081
crossref_primary_10_1118_1_4906130
crossref_primary_10_1016_j_neuroimage_2012_09_054
crossref_primary_10_1007_s00521_020_05624_w
crossref_primary_10_1016_j_neubiorev_2021_04_007
crossref_primary_10_1016_j_neuroimage_2013_02_060
crossref_primary_10_1117_1_NPh_11_1_015002
crossref_primary_10_1016_j_ajp_2020_102056
crossref_primary_10_1002_sam_11587
crossref_primary_10_1016_j_bandc_2016_07_007
crossref_primary_10_1016_j_neuroimage_2020_117350
crossref_primary_10_3233_JAD_191292
crossref_primary_10_1016_j_neuroimage_2013_02_063
crossref_primary_10_1007_s00193_024_01158_5
crossref_primary_10_1016_j_intell_2015_04_009
crossref_primary_10_1080_17470919_2010_490665
crossref_primary_10_1002_hbm_26082
crossref_primary_10_1016_j_neuroimage_2010_01_051
crossref_primary_10_1002_hbm_26085
crossref_primary_10_1016_j_neubiorev_2016_11_014
crossref_primary_10_1002_hbm_22958
crossref_primary_10_1016_j_neuroimage_2011_11_051
crossref_primary_10_1016_j_cortex_2022_02_010
crossref_primary_10_1016_j_neuroimage_2011_11_050
crossref_primary_10_1162_jocn_a_00636
crossref_primary_10_1016_j_biopsych_2015_03_027
crossref_primary_10_3389_fnbeh_2018_00270
crossref_primary_10_1523_JNEUROSCI_0003_10_2010
crossref_primary_10_1016_j_neuroimage_2018_01_067
crossref_primary_10_1016_j_neuropsychologia_2012_02_007
crossref_primary_10_1176_appi_neuropsych_12060143
crossref_primary_10_1111_ejn_12254
crossref_primary_10_1016_j_bbr_2015_05_044
crossref_primary_10_1016_j_neuropsychologia_2025_109127
crossref_primary_10_1111_j_1468_1331_2012_03854_x
crossref_primary_10_1016_j_neuropsychologia_2011_08_006
crossref_primary_10_1016_j_neuroimage_2016_12_037
crossref_primary_10_1007_s11065_019_09414_7
crossref_primary_10_1016_j_neuroimage_2019_116259
crossref_primary_10_1192_bjp_bp_114_154393
crossref_primary_10_1038_mp_2011_86
crossref_primary_10_1111_pcn_12055
crossref_primary_10_1016_j_neuroimage_2012_04_005
crossref_primary_10_1016_j_neuroimage_2022_119665
crossref_primary_10_1093_scan_nsx085
crossref_primary_10_3389_fpsyg_2023_1187092
crossref_primary_10_1111_ejn_15534
crossref_primary_10_1007_s00429_014_0803_z
crossref_primary_10_1002_nau_24221
crossref_primary_10_1016_j_brainres_2022_148200
crossref_primary_10_1093_schbul_sbv221
crossref_primary_10_1007_s10072_022_06272_9
crossref_primary_10_3758_s13415_019_00763_7
crossref_primary_10_3945_ajcn_113_064113
crossref_primary_10_1093_braincomms_fcab210
crossref_primary_10_1093_cercor_bhw251
crossref_primary_10_1016_j_cortex_2010_07_009
crossref_primary_10_1016_j_neubiorev_2019_09_004
crossref_primary_10_1016_j_neubiorev_2020_04_028
crossref_primary_10_1002_hbm_22727
crossref_primary_10_1016_j_neuroimage_2011_11_089
crossref_primary_10_1118_1_4773035
crossref_primary_10_1016_j_neuroimage_2016_12_052
crossref_primary_10_1016_j_nicl_2016_04_001
crossref_primary_10_1016_j_nicl_2018_01_020
crossref_primary_10_1016_j_neurobiolaging_2011_06_005
crossref_primary_10_1016_j_neubiorev_2015_02_007
crossref_primary_10_1016_j_neuroimage_2011_12_065
crossref_primary_10_1111_j_1530_0277_2010_01186_x
crossref_primary_10_1016_j_heliyon_2023_e23749
crossref_primary_10_1002_hbm_25191
crossref_primary_10_1002_hbm_26280
crossref_primary_10_1038_tp_2016_218
crossref_primary_10_5665_sleep_3330
crossref_primary_10_1111_obr_12697
crossref_primary_10_1016_j_acra_2013_12_003
crossref_primary_10_1098_rstb_2013_0297
crossref_primary_10_1038_s44220_023_00128_7
crossref_primary_10_1089_cap_2015_0144
crossref_primary_10_1016_j_bpsc_2019_11_013
crossref_primary_10_1016_j_psyneuen_2018_05_031
crossref_primary_10_1016_j_dadm_2017_03_007
crossref_primary_10_1016_j_neubiorev_2020_05_004
crossref_primary_10_1016_j_pscychresns_2019_03_007
crossref_primary_10_1016_j_schres_2013_01_004
crossref_primary_10_1093_cercor_bhw273
crossref_primary_10_1093_cercor_bhab174
crossref_primary_10_1016_j_jsxm_2020_03_007
crossref_primary_10_1093_brain_awr327
crossref_primary_10_1111_bjop_12595
crossref_primary_10_1093_scan_nsx051
crossref_primary_10_1093_cercor_bhw036
crossref_primary_10_1007_s11760_022_02229_9
crossref_primary_10_1186_1471_2202_13_119
crossref_primary_10_3389_fnhum_2017_00154
crossref_primary_10_1016_j_schres_2008_12_011
crossref_primary_10_1002_acn3_438
crossref_primary_10_1016_j_neuropsychologia_2009_09_020
crossref_primary_10_1002_hbm_26029
crossref_primary_10_1177_0269881117744995
crossref_primary_10_1002_jnr_25191
crossref_primary_10_1016_j_neubiorev_2016_10_025
crossref_primary_10_1093_brain_awr117
crossref_primary_10_1016_j_brainres_2010_12_024
crossref_primary_10_1016_j_neubiorev_2019_08_012
crossref_primary_10_1080_87565641_2010_549884
crossref_primary_10_1371_journal_pone_0231669
crossref_primary_10_1007_s00221_021_06159_9
crossref_primary_10_1017_S0033291725000303
crossref_primary_10_1016_j_jalz_2011_12_006
crossref_primary_10_5665_sleep_4404
crossref_primary_10_1016_j_pscychresns_2010_12_005
crossref_primary_10_1002_hbm_20752
crossref_primary_10_1093_scan_nsx044
crossref_primary_10_3389_fnhum_2021_666179
crossref_primary_10_1038_s41537_025_00558_5
crossref_primary_10_1016_j_neuroimage_2008_04_025
crossref_primary_10_1177_1049731513515056
crossref_primary_10_1016_j_neuropsychologia_2017_11_033
crossref_primary_10_1016_j_neuroscience_2008_09_044
crossref_primary_10_1007_s10803_020_04461_z
crossref_primary_10_1016_j_neuroimage_2021_118468
crossref_primary_10_1016_j_neuropsychologia_2012_11_011
crossref_primary_10_1162_netn_a_00050
crossref_primary_10_3389_fnhum_2017_00375
crossref_primary_10_1111_acer_14288
crossref_primary_10_1016_j_patcog_2011_04_015
crossref_primary_10_1159_000450711
crossref_primary_10_1007_s00429_013_0590_y
crossref_primary_10_1016_j_neuroimage_2013_12_024
crossref_primary_10_3389_fnhum_2015_00567
crossref_primary_10_1097_MD_0000000000031206
crossref_primary_10_1089_brain_2011_0050
crossref_primary_10_1093_cercor_bhae075
crossref_primary_10_1007_s11517_023_02770_w
crossref_primary_10_1177_153303460900800604
crossref_primary_10_1038_srep18112
crossref_primary_10_1111_nmo_15009
crossref_primary_10_1016_j_neubiorev_2012_01_003
crossref_primary_10_1016_j_neulet_2012_10_039
crossref_primary_10_1016_j_neuroimage_2008_04_240
crossref_primary_10_3389_fnhum_2020_00276
crossref_primary_10_1093_cercor_bhu217
crossref_primary_10_1016_j_jpsychires_2011_01_002
crossref_primary_10_1016_j_nicl_2012_11_004
crossref_primary_10_1016_j_neubiorev_2010_01_009
crossref_primary_10_1016_j_neuroimage_2018_10_015
crossref_primary_10_1097_j_pain_0000000000002681
crossref_primary_10_1016_j_nicl_2014_11_004
crossref_primary_10_1186_s12864_017_4124_5
crossref_primary_10_1016_j_neuroimage_2022_119473
crossref_primary_10_1016_j_neunet_2020_01_027
crossref_primary_10_1016_j_nicl_2014_11_011
crossref_primary_10_3389_fnhum_2014_00344
crossref_primary_10_1002_brb3_3046
crossref_primary_10_1016_j_neuroimage_2010_02_023
crossref_primary_10_1073_pnas_1904975116
crossref_primary_10_1016_j_neubiorev_2023_105393
crossref_primary_10_1038_s41598_019_40188_3
crossref_primary_10_1017_S0033291710001972
crossref_primary_10_1093_cercor_bhs276
crossref_primary_10_1007_s00429_010_0298_1
crossref_primary_10_1523_JNEUROSCI_5923_10_2011
crossref_primary_10_1093_schbul_sbad044
crossref_primary_10_1093_scan_nsw165
crossref_primary_10_3758_s13415_011_0083_5
crossref_primary_10_1371_journal_pone_0167276
crossref_primary_10_1016_j_jecp_2024_106072
crossref_primary_10_1002_ca_23244
crossref_primary_10_1016_j_neubiorev_2023_105165
crossref_primary_10_3389_fnhum_2015_00585
crossref_primary_10_3389_fpsyg_2022_868001
crossref_primary_10_1371_journal_pone_0136553
crossref_primary_10_1007_s12013_014_0138_7
crossref_primary_10_1093_cercor_bht155
crossref_primary_10_1371_journal_pone_0246042
crossref_primary_10_1016_j_neuroimage_2014_07_058
crossref_primary_10_1002_hbm_25170
crossref_primary_10_1016_j_cortex_2014_11_012
crossref_primary_10_1038_s41562_022_01371_1
crossref_primary_10_1111_j_2044_8295_2011_02073_x
crossref_primary_10_1007_s00429_015_1060_5
crossref_primary_10_1016_j_neubiorev_2017_04_027
crossref_primary_10_1016_j_cortex_2018_03_011
crossref_primary_10_1016_j_neuroscience_2014_07_076
crossref_primary_10_1016_j_neuroimage_2010_02_048
crossref_primary_10_3389_fnagi_2022_966525
crossref_primary_10_1016_j_neubiorev_2023_105171
crossref_primary_10_1111_jsr_12857
crossref_primary_10_3758_s13415_014_0329_0
crossref_primary_10_1007_s00429_012_0467_5
crossref_primary_10_1192_bjp_bp_108_055046
crossref_primary_10_1002_hbm_24070
crossref_primary_10_1016_j_neuroimage_2020_116858
crossref_primary_10_1016_j_neubiorev_2021_01_014
crossref_primary_10_1016_j_neurobiolaging_2022_06_009
crossref_primary_10_1016_j_biopsycho_2019_04_006
crossref_primary_10_1007_s10548_015_0426_6
crossref_primary_10_1093_scan_nsw142
crossref_primary_10_1162_imag_a_00355
crossref_primary_10_1016_j_nicl_2015_09_002
crossref_primary_10_9758_cpn_2021_19_3_449
crossref_primary_10_1016_j_neubiorev_2021_01_010
crossref_primary_10_1038_npp_2009_175
crossref_primary_10_1016_j_neubiorev_2020_07_001
crossref_primary_10_1007_s11682_018_9922_0
crossref_primary_10_1016_j_neubiorev_2019_06_027
crossref_primary_10_1002_brb3_540
crossref_primary_10_1098_rstb_2008_0155
crossref_primary_10_1002_hbm_26444
crossref_primary_10_1186_s12993_016_0100_5
crossref_primary_10_1016_j_neuroimage_2022_119204
crossref_primary_10_1016_j_nicl_2014_12_006
crossref_primary_10_1080_87565641_2012_702826
crossref_primary_10_3389_fnhum_2016_00333
crossref_primary_10_3389_fpsyg_2024_1451431
crossref_primary_10_1371_journal_pone_0007200
crossref_primary_10_3389_fneur_2025_1501419
crossref_primary_10_1038_s41598_018_21449_z
crossref_primary_10_1016_j_cortex_2013_05_011
crossref_primary_10_1016_j_neulet_2014_12_007
crossref_primary_10_1017_S0033291717001957
crossref_primary_10_1111_ejn_15393
crossref_primary_10_1016_j_neubiorev_2013_10_008
crossref_primary_10_1002_hbm_24018
crossref_primary_10_1016_j_neuroimage_2021_118079
crossref_primary_10_1002_hbm_25105
crossref_primary_10_1016_j_neuroimage_2012_04_060
crossref_primary_10_1016_j_neubiorev_2013_10_002
crossref_primary_10_1093_ijnp_pyv094
crossref_primary_10_1038_s41398_021_01670_7
crossref_primary_10_1016_j_neubiorev_2023_105355
crossref_primary_10_1111_1460_6984_12987
crossref_primary_10_1002_hbm_24493
crossref_primary_10_1016_j_neubiorev_2018_10_016
crossref_primary_10_1002_hbm_24496
crossref_primary_10_14581_jer_18006
crossref_primary_10_1038_s41598_021_84804_7
crossref_primary_10_1177_0269881113494106
crossref_primary_10_1007_s11682_015_9456_7
crossref_primary_10_1007_s12530_017_9178_8
crossref_primary_10_3233_JIN_170015
crossref_primary_10_1093_schbul_sbp073
crossref_primary_10_1002_aur_235
crossref_primary_10_2174_1573405615666190404163233
crossref_primary_10_1007_s00787_017_0964_4
crossref_primary_10_1016_j_neuroscience_2012_03_028
crossref_primary_10_1038_srep27444
crossref_primary_10_3758_s13415_014_0275_x
crossref_primary_10_1016_j_neurobiolaging_2013_10_079
crossref_primary_10_1007_s11682_017_9756_1
crossref_primary_10_1016_j_pscychresns_2017_03_018
crossref_primary_10_1093_scan_nst081
crossref_primary_10_1016_j_neuropsychologia_2024_109003
crossref_primary_10_1111_odi_12819
crossref_primary_10_1016_j_neuroimage_2013_12_040
crossref_primary_10_1093_cercor_bhu046
crossref_primary_10_1038_s41398_020_01115_7
crossref_primary_10_1016_j_neuroimage_2012_05_053
crossref_primary_10_1002_da_22478
crossref_primary_10_1002_hbm_20911
crossref_primary_10_1111_jnc_15990
crossref_primary_10_1016_j_neubiorev_2014_06_006
crossref_primary_10_1038_s41598_020_57682_8
crossref_primary_10_1007_s00429_016_1239_4
crossref_primary_10_1016_j_jad_2024_01_038
crossref_primary_10_1016_j_heares_2014_10_013
crossref_primary_10_1002_mds_28376
crossref_primary_10_1016_j_dcn_2017_08_002
crossref_primary_10_1093_scan_nst089
crossref_primary_10_1002_ana_25566
crossref_primary_10_3389_fnhum_2023_1085831
crossref_primary_10_1002_hbm_24031
crossref_primary_10_1016_j_neubiorev_2019_06_012
crossref_primary_10_1111_psyp_14312
crossref_primary_10_1016_j_neuropsychologia_2016_05_025
crossref_primary_10_3389_fpsyg_2023_1136983
crossref_primary_10_1016_j_neuropsychologia_2020_107340
crossref_primary_10_1016_j_jaacop_2024_04_001
crossref_primary_10_1016_j_neuroimage_2013_11_001
crossref_primary_10_1016_j_neuropsychologia_2024_109006
crossref_primary_10_1371_journal_pone_0206889
crossref_primary_10_1002_brb3_329
Cites_doi 10.1007/978-94-011-4996-9_26
10.1016/B978-012692535-7/50078-1
10.1016/B978-012077790-7/50041-2
10.1002/hbm.460030303
10.1136/jamia.2001.0080401
10.1126/science.289.5478.457
10.1007/BFb0056301
10.1098/rstb.2001.0915
10.1097/00004728-199403000-00005
10.1126/science.7973682
10.1038/nrn756
10.1038/35072584
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2004.12.007
10.1109/NSSMIC.1993.373602
10.1006/nimg.1995.1012
10.1001/archpsyc.61.7.720
10.1002/hbm.460030302
10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
10.1002/hbm.460030305
10.1016/S1053-8119(01)91428-4
10.1017/S0305004100030401
10.1016/j.neuroimage.2004.01.022
ContentType Journal Article
Copyright Copyright © 2007 Wiley‐Liss, Inc.
2007 INIST-CNRS
Copyright 2007 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2007 Wiley‐Liss, Inc.
– notice: 2007 INIST-CNRS
– notice: Copyright 2007 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.20345
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Bias between MNI and Talairach Coordinates
EISSN 1097-0193
EndPage 1205
ExternalDocumentID 10.1002/hbm.20345
PMC6871323
17266101
19194889
10_1002_hbm_20345
HBM20345
ark_67375_WNG_LDJGC5WV_V
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute on Drug Abuse
  funderid: P20 MH/DA52176
– fundername: National Institute of Mental Health
– fundername: National Institute of Mental Health
  funderid: 5 T32 MH65728‐03
– fundername: NIDA NIH HHS
  grantid: P20 MH/DA52176
– fundername: NIMH NIH HHS
  grantid: 5 32 MH65728-03
– fundername: National Institute on Drug Abuse
  grantid: P20 MH/DA52176
– fundername: National Institute of Mental Health
  grantid: 5 T32 MH65728‐03
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
PUEGO
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
ALIPV
AAYXX
CITATION
IQODW
33P
AEUQT
AFPWT
C45
CGR
CUY
CVF
ECM
EIF
NPM
RWD
RWI
WRC
WUP
7TK
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5785-74c5ea5685e3b14ab30e5ddb29bbddfee18d887da9daea59cb55b65d7db412dd3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Sun Oct 26 04:08:47 EDT 2025
Tue Sep 30 16:50:26 EDT 2025
Tue Oct 21 13:06:03 EDT 2025
Sun Sep 28 00:13:41 EDT 2025
Wed Feb 19 01:45:53 EST 2025
Mon Jul 21 09:16:18 EDT 2025
Wed Oct 01 05:04:30 EDT 2025
Thu Apr 24 23:11:58 EDT 2025
Wed Mar 05 09:12:30 EST 2025
Sun Sep 21 06:19:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Talairach coordinates
spatial normalization
Nervous system diseases
ICBM-152 template
Radiodiagnosis
MNI coordinates
MNI-305 template
Bias
Central nervous system
reference frame bias
Encephalon
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright 2007 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5785-74c5ea5685e3b14ab30e5ddb29bbddfee18d887da9daea59cb55b65d7db412dd3
Notes istex:88A81C58DD252DEB49C6F49F7090BDACD7CF1040
National Institute on Drug Abuse - No. P20 MH/DA52176
ArticleID:HBM20345
National Institute of Mental Health
National Institute of Mental Health - No. 5 T32 MH65728-03
ark:/67375/WNG-LDJGC5WV-V
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.20345?download=true
PMID 17266101
PQID 20476257
PQPubID 23462
PageCount 12
ParticipantIDs unpaywall_primary_10_1002_hbm_20345
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871323
proquest_miscellaneous_68407431
proquest_miscellaneous_20476257
pubmed_primary_17266101
pascalfrancis_primary_19194889
crossref_citationtrail_10_1002_hbm_20345
crossref_primary_10_1002_hbm_20345
wiley_primary_10_1002_hbm_20345_HBM20345
istex_primary_ark_67375_WNG_LDJGC5WV_V
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2007
PublicationDateYYYYMMDD 2007-11-01
PublicationDate_xml – month: 11
  year: 2007
  text: November 2007
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
References Talairach J,Tournoux P ( 1988): Co-planar stereotaxic atlas of the human brain: 3-Dimensional proportional system-An approach to cerebral imaging. New York: Thieme.
Carmack PS,Spense J,Gunst RF,Schucany WR,Woodward WA,Haley RW ( 2004): Improved agreement between Talairach and MNI coordinate spaces in deep brain regions. NeuroImage 22: 367-371.
Calder AJ,LAwerence AD,Young AW ( 2001): Neuropsychology of fear and loathing. Nat Rev Neurosci 2: 353-363.
Pujol J,Soriano-Mas C,Alonso P,Cardoner N,Menchon JM,Deus J,Vallejo J ( 2004): Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry 61: 720-730.
Collins DL,Neelin P,Peters TM,Evans AE ( 1994): Automatic 3D intersubject registration of MR columetric data in standardized Talairach space. J Comput Assist Tomogr 18: 192-205.
Fox PT,Lancaster JL ( 1995): Neuroscience on the net. Science 266: 994-995.
Jenkinson M,Bannister PR,Brady JM,Smith SM ( 2002): Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17: 825-841.
Brett M,Johnsrude IS,Owen AM ( 2002): The problem of functional localization in the human brain. Nat Rev Neorosci 3: 243-249.
Fox PT ( 1995): Spatial normalization: Origins, objectives, applications and alternatives. Hum Brain Mapp 3: 161-164.
Lancaster JL,Glass TG,Lankipalli BR,Downs H,Mayberg H,Fox PT ( 1995): A modality-independent approach to spatial normalization. Hum Brain Mapp 3: 209-223.
Lancaster JL,Woldorff MG,Parsons LM,Liotti M,Freitas CS,Rainey L,Kochunov PV,Nickerson D,Mikiten SA,Fox PT ( 2000): Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10: 120-131.
Duncan J,Seitz RJ,Kolodny J,Bor D,Herzog H,Ahmed A,Newell FN,Emslie H ( 2000): A neural basis for general intelligence. Science 289: 457-460.
Mazziotta J,Toga A,Evans A,Fox P,Lancaster J,Zilles K,Simpson G,Woods R,Paus T,Pike B,Holmes C,Collins L,Thompson P,MacDonald D,Schormann T,Amunts K,Palomero-Gallagher N,Parsons L,Narr K,Kabani N,LeGoualher G,Boomsma D,Cannon T,Kawashima R,Mazoyer B ( 2001b): A probabilistic atlas and reference system for the human brain. Philos Trans R Soc Lond B Biol Sci 356: 1293-1322.
Penrose R ( 1955): A generalized inverse for matrices. Proc Camb Phil Soc 51: 406-413.
Brett M,Christoff K,Cusack R,Lancaster J ( 2001): Using the Talairach atlas with the MNI template. NeuroImage 13: S85.
Mazziotta JC,Toga AW,Evans A,Lancaster JL,Fox PT ( 1995): A probabilistic atlas of the human brain: Theory and rational for its development. NeuroImage 2: 89-101.
Friston KJ,Ashburner J,Frith CD,Poline J-B,Heather JD,Frackowiak RSJ ( 1995): Spatial registration and normalization of images. Hum Brain Mapp 2: 165-189.
Chau W,McIntosh AR ( 2005): The Talariach coordinate of a point in the MNI space: How to interpret it. NeuroImage 25: 408-416.
Lancaster JL,Fox PT,Downs H,Nickerson D,Hander T,El Mallah M,Zamarripa F ( 1999): Global spatial normalization of the human brain using convex hulls. J Nucl Med 40: 942-955.
Mazziotta J,Toga A,Evans A,Fox P,Lancaster J,Zilles K,Simpson G,Woods R,Paus T,Pike B,Holmes C,Collins L,Thompson P,MacDonald D,Schormann T,Amunts K,Palomero-Gallagher N,Parsons L,Narr K,Kabani N,LeGoualher G,Boomsma D,Cannon T,Kawashima R,Mazoyer B. ( 2001a): A four-dimensional atlas of the human brain. J Am Med Inform Assoc 8: 401-430.
2004; 22
2002; 17
2004; 61
2000; 289
2000
2000; 10
2001b; 356
1998
2002; 3
1994
2001; 2
1993
1994; 18
1995; 266
1999; 40
1995; 2
2001; 13
1955; 51
1995; 3
2001a; 8
1999
2005; 25
1988
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
Fox PT (e_1_2_7_12_1) 1994
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
Lancaster JL (e_1_2_7_18_1) 1999; 40
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Talairach J (e_1_2_7_27_1) 1988
References_xml – reference: Lancaster JL,Woldorff MG,Parsons LM,Liotti M,Freitas CS,Rainey L,Kochunov PV,Nickerson D,Mikiten SA,Fox PT ( 2000): Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10: 120-131.
– reference: Calder AJ,LAwerence AD,Young AW ( 2001): Neuropsychology of fear and loathing. Nat Rev Neurosci 2: 353-363.
– reference: Talairach J,Tournoux P ( 1988): Co-planar stereotaxic atlas of the human brain: 3-Dimensional proportional system-An approach to cerebral imaging. New York: Thieme.
– reference: Friston KJ,Ashburner J,Frith CD,Poline J-B,Heather JD,Frackowiak RSJ ( 1995): Spatial registration and normalization of images. Hum Brain Mapp 2: 165-189.
– reference: Fox PT,Lancaster JL ( 1995): Neuroscience on the net. Science 266: 994-995.
– reference: Jenkinson M,Bannister PR,Brady JM,Smith SM ( 2002): Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17: 825-841.
– reference: Brett M,Christoff K,Cusack R,Lancaster J ( 2001): Using the Talairach atlas with the MNI template. NeuroImage 13: S85.
– reference: Brett M,Johnsrude IS,Owen AM ( 2002): The problem of functional localization in the human brain. Nat Rev Neorosci 3: 243-249.
– reference: Collins DL,Neelin P,Peters TM,Evans AE ( 1994): Automatic 3D intersubject registration of MR columetric data in standardized Talairach space. J Comput Assist Tomogr 18: 192-205.
– reference: Mazziotta JC,Toga AW,Evans A,Lancaster JL,Fox PT ( 1995): A probabilistic atlas of the human brain: Theory and rational for its development. NeuroImage 2: 89-101.
– reference: Penrose R ( 1955): A generalized inverse for matrices. Proc Camb Phil Soc 51: 406-413.
– reference: Duncan J,Seitz RJ,Kolodny J,Bor D,Herzog H,Ahmed A,Newell FN,Emslie H ( 2000): A neural basis for general intelligence. Science 289: 457-460.
– reference: Carmack PS,Spense J,Gunst RF,Schucany WR,Woodward WA,Haley RW ( 2004): Improved agreement between Talairach and MNI coordinate spaces in deep brain regions. NeuroImage 22: 367-371.
– reference: Pujol J,Soriano-Mas C,Alonso P,Cardoner N,Menchon JM,Deus J,Vallejo J ( 2004): Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry 61: 720-730.
– reference: Chau W,McIntosh AR ( 2005): The Talariach coordinate of a point in the MNI space: How to interpret it. NeuroImage 25: 408-416.
– reference: Mazziotta J,Toga A,Evans A,Fox P,Lancaster J,Zilles K,Simpson G,Woods R,Paus T,Pike B,Holmes C,Collins L,Thompson P,MacDonald D,Schormann T,Amunts K,Palomero-Gallagher N,Parsons L,Narr K,Kabani N,LeGoualher G,Boomsma D,Cannon T,Kawashima R,Mazoyer B. ( 2001a): A four-dimensional atlas of the human brain. J Am Med Inform Assoc 8: 401-430.
– reference: Lancaster JL,Glass TG,Lankipalli BR,Downs H,Mayberg H,Fox PT ( 1995): A modality-independent approach to spatial normalization. Hum Brain Mapp 3: 209-223.
– reference: Fox PT ( 1995): Spatial normalization: Origins, objectives, applications and alternatives. Hum Brain Mapp 3: 161-164.
– reference: Lancaster JL,Fox PT,Downs H,Nickerson D,Hander T,El Mallah M,Zamarripa F ( 1999): Global spatial normalization of the human brain using convex hulls. J Nucl Med 40: 942-955.
– reference: Mazziotta J,Toga A,Evans A,Fox P,Lancaster J,Zilles K,Simpson G,Woods R,Paus T,Pike B,Holmes C,Collins L,Thompson P,MacDonald D,Schormann T,Amunts K,Palomero-Gallagher N,Parsons L,Narr K,Kabani N,LeGoualher G,Boomsma D,Cannon T,Kawashima R,Mazoyer B ( 2001b): A probabilistic atlas and reference system for the human brain. Philos Trans R Soc Lond B Biol Sci 356: 1293-1322.
– start-page: 1115
  year: 1998
  end-page: 1124
– volume: 13
  start-page: S85
  year: 2001
  article-title: Using the Talairach atlas with the MNI template
  publication-title: NeuroImage
– volume: 3
  start-page: 243
  year: 2002
  end-page: 249
  article-title: The problem of functional localization in the human brain
  publication-title: Nat Rev Neorosci
– volume: 266
  start-page: 994
  year: 1995
  end-page: 995
  article-title: Neuroscience on the net
  publication-title: Science
– start-page: 27
  year: 1999
  end-page: 44
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 51
  start-page: 406
  year: 1955
  end-page: 413
  article-title: A generalized inverse for matrices
  publication-title: Proc Camb Phil Soc
– volume: 18
  start-page: 192
  year: 1994
  end-page: 205
  article-title: Automatic 3D intersubject registration of MR columetric data in standardized Talairach space
  publication-title: J Comput Assist Tomogr
– volume: 2
  start-page: 89
  year: 1995
  end-page: 101
  article-title: A probabilistic atlas of the human brain: Theory and rational for its development
  publication-title: NeuroImage
– volume: 2
  start-page: 165
  year: 1995
  end-page: 189
  article-title: Spatial registration and normalization of images
  publication-title: Hum Brain Mapp
– volume: 3
  start-page: 209
  year: 1995
  end-page: 223
  article-title: A modality‐independent approach to spatial normalization
  publication-title: Hum Brain Mapp
– volume: 61
  start-page: 720
  year: 2004
  end-page: 730
  article-title: Mapping structural brain alterations in obsessive‐compulsive disorder
  publication-title: Arch Gen Psychiatry
– year: 1998
– start-page: 555
  year: 2000
  end-page: 567
– volume: 10
  start-page: 120
  year: 2000
  end-page: 131
  article-title: Automated Talairach atlas labels for functional brain mapping
  publication-title: Hum Brain Mapp
– volume: 22
  start-page: 367
  year: 2004
  end-page: 371
  article-title: Improved agreement between Talairach and MNI coordinate spaces in deep brain regions
  publication-title: NeuroImage
– volume: 2
  start-page: 353
  year: 2001
  end-page: 363
  article-title: Neuropsychology of fear and loathing
  publication-title: Nat Rev Neurosci
– year: 1988
– start-page: 98
  year: 1994
  end-page: 106
– volume: 40
  start-page: 942
  year: 1999
  end-page: 955
  article-title: Global spatial normalization of the human brain using convex hulls
  publication-title: J Nucl Med
– volume: 289
  start-page: 457
  year: 2000
  end-page: 460
  article-title: A neural basis for general intelligence
  publication-title: Science
– start-page: 1813
  year: 1993
  end-page: 1817
– volume: 8
  start-page: 401
  year: 2001a
  end-page: 430
  article-title: A four‐dimensional atlas of the human brain
  publication-title: J Am Med Inform Assoc
– volume: 25
  start-page: 408
  year: 2005
  end-page: 416
  article-title: The Talariach coordinate of a point in the MNI space: How to interpret it
  publication-title: NeuroImage
– volume: 3
  start-page: 161
  year: 1995
  end-page: 164
  article-title: Spatial normalization: Origins, objectives, applications and alternatives
  publication-title: Hum Brain Mapp
– volume: 356
  start-page: 1293
  year: 2001b
  end-page: 1322
  article-title: A probabilistic atlas and reference system for the human brain
  publication-title: Philos Trans R Soc Lond B Biol Sci
– ident: e_1_2_7_14_1
  doi: 10.1007/978-94-011-4996-9_26
– ident: e_1_2_7_2_1
  doi: 10.1016/B978-012692535-7/50078-1
– ident: e_1_2_7_20_1
  doi: 10.1016/B978-012077790-7/50041-2
– ident: e_1_2_7_15_1
  doi: 10.1002/hbm.460030303
– ident: e_1_2_7_23_1
  doi: 10.1136/jamia.2001.0080401
– ident: e_1_2_7_9_1
  doi: 10.1126/science.289.5478.457
– ident: e_1_2_7_26_1
  doi: 10.1007/BFb0056301
– ident: e_1_2_7_22_1
  doi: 10.1098/rstb.2001.0915
– ident: e_1_2_7_8_1
  doi: 10.1097/00004728-199403000-00005
– ident: e_1_2_7_13_1
  doi: 10.1126/science.7973682
– ident: e_1_2_7_4_1
  doi: 10.1038/nrn756
– ident: e_1_2_7_5_1
  doi: 10.1038/35072584
– ident: e_1_2_7_16_1
  doi: 10.1006/nimg.2002.1132
– ident: e_1_2_7_7_1
  doi: 10.1016/j.neuroimage.2004.12.007
– ident: e_1_2_7_10_1
  doi: 10.1109/NSSMIC.1993.373602
– volume-title: Co‐planar stereotaxic atlas of the human brain: 3‐Dimensional proportional system—An approach to cerebral imaging
  year: 1988
  ident: e_1_2_7_27_1
– ident: e_1_2_7_21_1
  doi: 10.1006/nimg.1995.1012
– ident: e_1_2_7_25_1
  doi: 10.1001/archpsyc.61.7.720
– ident: e_1_2_7_11_1
  doi: 10.1002/hbm.460030302
– ident: e_1_2_7_19_1
  doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
– volume: 40
  start-page: 942
  year: 1999
  ident: e_1_2_7_18_1
  article-title: Global spatial normalization of the human brain using convex hulls
  publication-title: J Nucl Med
– ident: e_1_2_7_17_1
  doi: 10.1002/hbm.460030305
– ident: e_1_2_7_3_1
  doi: 10.1016/S1053-8119(01)91428-4
– start-page: 98
  volume-title: Advances in Functional Neuroimaging: Technical Foundations
  year: 1994
  ident: e_1_2_7_12_1
– ident: e_1_2_7_24_1
  doi: 10.1017/S0305004100030401
– ident: e_1_2_7_6_1
  doi: 10.1016/j.neuroimage.2004.01.022
SSID ssj0011501
Score 2.5036957
Snippet MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM‐152 template were compared to Talairach coordinates determined using a landmark‐based...
MNI coordinates determined using SPM2 and FSL/ FLIRT with the ICBM‐152 template were compared to Talairach coordinates determined using a landmark‐based...
MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM-152 template were compared to Talairach coordinates determined using a landmark-based...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1194
SubjectTerms Algorithms
Bias
Biological and medical sciences
Brain - anatomy & histology
Brain - pathology
Brain Mapping - methods
Electrodiagnosis. Electric activity recording
Fourier Analysis
Humans
ICBM-152 template
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging - methods
Medical sciences
MNI coordinates
MNI-305 template
Models, Anatomic
Nervous system
Nervous system (semeiology, syndromes)
Nervous system as a whole
Neurology
Pattern Recognition, Automated
Radiodiagnosis. Nmr imagery. Nmr spectrometry
reference frame bias
Reference Values
Software
spatial normalization
Stereotaxic Techniques
Talairach coordinates
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4arQS8cNm4hMuwAE17ycjFTpoHhNrC1k2k4mFdx1Nkxw6tFtKqF0H3xE_gN_JL8HHSjsKGeOAtko9OlJPv2J_t488ALx1BZUSFa3uUOzZNKbO5prW28DMpMJ9ChgeF427Q6dGjU3a6AfHyLEypD7FacMPMMP01JvhYZmU_X-3ue68GAg-T-5S9kSgtP-Ly9WwyV9egHjBNzWtQ73U_ND-aHc-A2VE1AXNQgVQzl6XS0K-e1sanOob6K9ZL8qkOWVbedXEZGf2zpvLGvBjzxRee5-u81wxc-7ehWH5yWa9ytjefib30_Dc1yP8Wkztwq6K4pFli8i5sqGITtpqFnt5_XpAdYopOzWr-JlyPq739Lei3hnxKqroxEncPCS8kOeY5H054OiDpSM-ThwVyY93C88W5kgTL9j8RTWLJYbsV__j2XRMFIvDaC4KiW7m2vge9_XfH7Y5dXftgp6i8Y4c0ZYqzoMGUL1zKhe8oJqXwIiGkzJRyG1J3jZJHkmu7KBWMiYDJUArqelL696FWjAr1EAjlfpoqGmSucqgIVMSV7_IsbTSE44qAW7C7_NlJWmmi49UceVKqOXuJjmZiomnB85XpuBQCucxoxyBmZcEnZ1g5F7Kk3z1I3r89Omiz_klyYsH2GqQuXEZupPvUyIJnS4wlOuFxF4cXajSf6hdRPYCx8GoL1O9BYmjBgxKTF95D5GOObgnX0LoyQLHx9ZZiODCi44GeWfueb8GLFa7_FoddA9OrLZJOKzYPj_7J4WO4aRbVzSHQJ1BDRD_VbHAmtqsc_wksY2Jg
  priority: 102
  providerName: Unpaywall
Title Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template
URI https://api.istex.fr/ark:/67375/WNG-LDJGC5WV-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20345
https://www.ncbi.nlm.nih.gov/pubmed/17266101
https://www.proquest.com/docview/20476257
https://www.proquest.com/docview/68407431
https://pubmed.ncbi.nlm.nih.gov/PMC6871323
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.20345?download=true
UnpaywallVersion publishedVersion
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB1VrQS8cGm5uEBYAar64taXXTsWT0mgTSsSIdQ0RUKyZi8hUV2nykWQPvEJfCNfwu46cRRoEeLN0p7Y8mRm98x65izAa49TmVDuuwFFz6WCMhc1rXV52JPcxFPMTKNwqx01O_T4jJ2twZtFL0yhD1FuuJnIsPO1CXDk4_2laGifm0bykJoGcz-MbDr1sZSOMkTHJlt6iXUTPQMvVIW8YL_85cpatGHM-s3URuJYm6dXnGtxHfH8s37y9jS_xNlXzLJVjmsXqYN78HnxekVtyvnedML3xNVvyo__-f734e6cvJJa4W0PYE3lm7BVy3XifjEjO8SWk9p9-k241Zp_td-Cbn2AYzKvCCOt9hHBXJITzHAwQtEnYqgz4EFuWK8ewWx2pSQxBflfiKan5KhRb_38_kNTAMLNgRbEyGllGv0QOgfvThpNd36ggyuMpo4bU8EUsqjKVMh9ijz0FJOSBwnnUvaU8qtST3oSE4kalwjOGI-YjCWnfiBl-AjW82GungChGAqhaNTzlUd5pBJUoY89Ua1yz-cROrC7-GtTMVc7N4duZGmh0xyk2n6ptZ8DL0voZSHxcR1ox_pHicDRuamJi1nabR-m798eHzZY9zQ9daCy4kDLWyZ-omfLxIEXC49KdSib7zOYq-F0rB9E9dLE4psRRpnHUD4HHhceuLx7bJiWp0fiFd8sAUZGfHUkH_StnHikc-YwCB14VXrx3-ywa53yZkTarLfsxfa_Q5_CHbtnbns8n8H6ZDRVzzXZm_CKjeoKbHTaH2qffgGU81Q5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am8R44bIBC5fNAjTtJVsudtJIvKyFrR1NH1C37mWK7Nil1bJ06kXQPfET-I38EnycNlVhQ4i3SP6SKCfn2N-xjz8DvHMElREVru1R7tg0pczmmtbawu9KgfEUMtwoHLeC-ik9OWfnK_B-vhem0IcoJ9wwMkx_jQGOE9IHC9XQnsCd5D5l92CNBjpPQUr0uRSPQqpj0i09yNqR7oPnukKOd1DeujQaraFhv2F1JB9pA3WLky1uo55_VlCuT_JrPv3Ks2yZ5Zph6ugRXMw_sKhOudyfjMV-evOb9uP_WuAxPJzxV3JYONwTWFH5Bmwe5jp3v5qSXWIqSs1U_Qbcj2cL95vQqfb5iMyKwkjcahCeS9LmGe8Pedoj6UAnwf0cia9u4dn0RkmCNflfiGaopFGrxj-__9AsgAg804Kgolam0U_h9Ohju1a3Z2c62CnK6tghTZniLKgw5QuXcuE7ikkpvEgIKbtKuRWp-z3JI8k1LkoFYyJgMpSCup6U_jNYzQe52gJCuZ-migZdVzlUBCriynd5N61UhOOKgFuwN_-3SToTPMdzN7KkkGr2Em2_xNjPgjcl9LpQ-bgNtGscpETw4SWWxYUs6bSOk-aHk-Ma65wlZxZsL3nQ4pGRG-kOM7JgZ-5SiY5mXKLhuRpMRvpFVI9OLLwbgeI8yPoseF644OLpIZItR7eES85ZAlBJfLkl7_eMonig02bf8y14W7rx3-ywZ7zybkRSr8bm4sW_Q3dgvd6Om0mz0fr0Eh6YKXSz5fMVrI6HE_Vac7-x2DYh_gv77Vaq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amzR4GbABC5fNAjTtJVsudtJIvKwtXTvWCqFt3csU-RZaLaRVL4LuiZ_Ab-SXYDtpqsKGEG-R_CVRTs6xP9vnfAZ46zAsIsxc28PUsTHHxKaK1trMTwTT8RQSXSjc7gTNc3xySS5X4N28FibXhygX3HRkmP5aB7gciuRwoRraY7qS3MfkHqxhElV0Ql_9UykepamOmW6pQdaOVB881xVyvMPy1qXRaE0b9pvOjqRjZaAkP9niNur5Zwbl_Wk2pLOvNE2XWa4ZphoP4Wr-gXl2yvXBdMIO-M1v2o__a4FHsFHwV3SUO9xjWJHZJmwdZWru_mWG9pDJKDVL9Zuw3i427regW-3TMSqSwlC700I0E-iMprQ_oryH-EBNgvuZJr6qhaazGymQzsn_jBRDRa1atf3z-w_FAhDTZ1ograiVKvQTOG-8P6s17eJMB5trWR07xJxISoIKkT5zMWW-I4kQzIsYEyKR0q0I1e8JGgmqcBFnhLCAiFAw7HpC-E9hNRtkchsQpj7nEgeJKx3MAhlR6bs04ZUKc1wWUAv25_825oXguT53I41zqWYvVvaLjf0seF1Ch7nKx22gPeMgJYKOrnVaXEjibuc4Pq2fHNdI9yK-sGBnyYMWj4zcSHWYkQW7c5eKVTTrLRqaycF0rF6E1ehEwrsRWpxHsz4LnuUuuHh6qMmWo1rCJecsAVpJfLkl6_eMonigps2-51vwpnTjv9lh33jl3Yi4WW2bi-f_Dt2F9Y_1Rnza6nx4AQ_MCrqp-HwJq5PRVL5S1G_CdkyE_wIyPVYu
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4arQS8cNm4hMuwAE17ycjFTpoHhNrC1k2k4mFdx1Nkxw6tFtKqF0H3xE_gN_JL8HHSjsKGeOAtko9OlJPv2J_t488ALx1BZUSFa3uUOzZNKbO5prW28DMpMJ9ChgeF427Q6dGjU3a6AfHyLEypD7FacMPMMP01JvhYZmU_X-3ue68GAg-T-5S9kSgtP-Ly9WwyV9egHjBNzWtQ73U_ND-aHc-A2VE1AXNQgVQzl6XS0K-e1sanOob6K9ZL8qkOWVbedXEZGf2zpvLGvBjzxRee5-u81wxc-7ehWH5yWa9ytjefib30_Dc1yP8Wkztwq6K4pFli8i5sqGITtpqFnt5_XpAdYopOzWr-JlyPq739Lei3hnxKqroxEncPCS8kOeY5H054OiDpSM-ThwVyY93C88W5kgTL9j8RTWLJYbsV__j2XRMFIvDaC4KiW7m2vge9_XfH7Y5dXftgp6i8Y4c0ZYqzoMGUL1zKhe8oJqXwIiGkzJRyG1J3jZJHkmu7KBWMiYDJUArqelL696FWjAr1EAjlfpoqGmSucqgIVMSV7_IsbTSE44qAW7C7_NlJWmmi49UceVKqOXuJjmZiomnB85XpuBQCucxoxyBmZcEnZ1g5F7Kk3z1I3r89Omiz_klyYsH2GqQuXEZupPvUyIJnS4wlOuFxF4cXajSf6hdRPYCx8GoL1O9BYmjBgxKTF95D5GOObgnX0LoyQLHx9ZZiODCi44GeWfueb8GLFa7_FoddA9OrLZJOKzYPj_7J4WO4aRbVzSHQJ1BDRD_VbHAmtqsc_wksY2Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bias+between+MNI+and+Talairach+coordinates+analyzed+using+the+ICBM%E2%80%90152+brain+template&rft.jtitle=Human+brain+mapping&rft.au=Lancaster%2C+Jack+L.&rft.au=Tordesillas%E2%80%90Guti%C3%A9rrez%2C+Diana&rft.au=Martinez%2C+Michael&rft.au=Salinas%2C+Felipe&rft.date=2007-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=28&rft.issue=11&rft.spage=1194&rft.epage=1205&rft_id=info:doi/10.1002%2Fhbm.20345&rft.externalDBID=10.1002%252Fhbm.20345&rft.externalDocID=HBM20345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon