Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template
MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM‐152 template were compared to Talairach coordinates determined using a landmark‐based Talairach registration method (TAL). Analysis revealed a clear‐cut bias in reference frames (origin, orientation) and scaling (brain size). Accordin...
Saved in:
| Published in | Human brain mapping Vol. 28; no. 11; pp. 1194 - 1205 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.11.2007
Wiley-Liss |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1065-9471 1097-0193 1097-0193 |
| DOI | 10.1002/hbm.20345 |
Cover
| Abstract | MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM‐152 template were compared to Talairach coordinates determined using a landmark‐based Talairach registration method (TAL). Analysis revealed a clear‐cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM‐152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1‐cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI‐305, ICBM‐152) using the same fitting method (FSL/FLIRT) and for different fitting methods (SPM2, FSL/FLIRT) using the same template (ICBM‐152). An MNI‐to‐Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best‐fit analysis in one hundred high‐resolution 3‐D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5‐13 mm to 1‐2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/FLIRT with the ICBM‐152 template. Hum Brain Mapp 2007. © 2007 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM‐152 template were compared to Talairach coordinates determined using a landmark‐based Talairach registration method (TAL). Analysis revealed a clear‐cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM‐152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1‐cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI‐305, ICBM‐152) using the same fitting method (FSL/FLIRT) and for different fitting methods (SPM2, FSL/FLIRT) using the same template (ICBM‐152). An MNI‐to‐Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best‐fit analysis in one hundred high‐resolution 3‐D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5‐13 mm to 1‐2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/FLIRT with the ICBM‐152 template. Hum Brain Mapp 2007. © 2007 Wiley‐Liss, Inc. MNI coordinates determined using SPM2 and FSL/ FLIRT with the ICBM‐152 template were compared to Talairach coordinates determined using a landmark‐based Talairach registration method (TAL). Analysis revealed a clear‐cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM‐152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1‐cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI‐305, ICBM‐152) using the same fitting method (FSL/ FLIRT ) and for different fitting methods (SPM2, FSL/ FLIRT ) using the same template (ICBM‐152). An MNI‐to‐Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best‐fit analysis in one hundred high‐resolution 3‐D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5‐13 mm to 1‐2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/ FLIRT with the ICBM‐152 template. Hum Brain Mapp 2007. © 2007 Wiley‐Liss, Inc. MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM-152 template were compared to Talairach coordinates determined using a landmark-based Talairach registration method (TAL). Analysis revealed a clear-cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM-152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1-cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI-305, ICBM-152) using the same fitting method (FSL/FLIRT) and for different fitting methods (SPM2, FSL/FLIRT) using the same template (ICBM-152). An MNI-to-Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best-fit analysis in one hundred high-resolution 3-D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5-13 mm to 1-2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/FLIRT with the ICBM-152 template.MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM-152 template were compared to Talairach coordinates determined using a landmark-based Talairach registration method (TAL). Analysis revealed a clear-cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM-152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1-cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI-305, ICBM-152) using the same fitting method (FSL/FLIRT) and for different fitting methods (SPM2, FSL/FLIRT) using the same template (ICBM-152). An MNI-to-Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best-fit analysis in one hundred high-resolution 3-D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5-13 mm to 1-2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/FLIRT with the ICBM-152 template. MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM-152 template were compared to Talairach coordinates determined using a landmark-based Talairach registration method (TAL). Analysis revealed a clear-cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM-152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1-cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI-305, ICBM-152) using the same fitting method (FSL/FLIRT) and for different fitting methods (SPM2, FSL/FLIRT) using the same template (ICBM-152). An MNI-to-Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best-fit analysis in one hundred high-resolution 3-D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5-13 mm to 1-2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/FLIRT with the ICBM-152 template. MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM-152 template were compared to Talairach coordinates determined using a landmark-based Talairach registration method (TAL). Analysis revealed a clear-cut bias in reference frames (origin, orientation) and scaling (brain size). Accordingly, ICBM-152 fitted brains were consistently larger, oriented more nose down, and translated slightly down relative to TAL fitted brains. Whole brain analysis of MNI/Talairach coordinate disparity revealed an ellipsoidal pattern with disparity ranging from zero at a point deep within the left hemisphere to greater than 1-cm for some anterior brain areas. MNI/Talairach coordinate disparity was generally less for brains fitted using FSL. The mni2tal transform generally reduced MNI/Talairach coordinate disparity for inferior brain areas but increased disparity for anterior, posterior, and superior areas. Coordinate disparity patterns differed for brain templates (MNI-305, ICBM-152) using the same fitting method (FSL/FLIRT) and for different fitting methods (SPM2, FSL/FLIRT) using the same template (ICBM-152). An MNI-to-Talairach (MTT) transform to correct for bias between MNI and Talairach coordinates was formulated using a best-fit analysis in one hundred high-resolution 3-D MR brain images. MTT transforms optimized for SPM2 and FSL were shown to reduced group mean MNI/Talairach coordinate disparity from a 5-13 mm to 1-2 mm for both deep and superficial brain sites. MTT transforms provide a validated means to convert MNI coordinates to Talairach compatible coordinates for studies using either SPM2 or FSL/FLIRT with the ICBM-152 template. Hum Brain Mapp 2007. |
| Author | Evans, Alan Martinez, Michael Fox, Peter T. Zilles, Karl Lancaster, Jack L. Mazziotta, John C. Salinas, Felipe Tordesillas-Gutiérrez, Diana |
| AuthorAffiliation | 3 McConnell Brain Imaging Center, Montreal Neurological Institute 4 Institute of Medicine and Brain Imaging Center West (BICW), Jülich, Germany 5 Department of Neurology, Brain Mapping Center, David Geffen School of Medicine, UCLA, Los Angeles, California 2 International Consortium for Brain Mapping, UCLA, Los Angeles, California 1 Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas |
| AuthorAffiliation_xml | – name: 4 Institute of Medicine and Brain Imaging Center West (BICW), Jülich, Germany – name: 1 Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas – name: 2 International Consortium for Brain Mapping, UCLA, Los Angeles, California – name: 3 McConnell Brain Imaging Center, Montreal Neurological Institute – name: 5 Department of Neurology, Brain Mapping Center, David Geffen School of Medicine, UCLA, Los Angeles, California |
| Author_xml | – sequence: 1 givenname: Jack L. surname: Lancaster fullname: Lancaster, Jack L. email: jlancaster@uthscsa.edu organization: Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas – sequence: 2 givenname: Diana surname: Tordesillas-Gutiérrez fullname: Tordesillas-Gutiérrez, Diana organization: Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas – sequence: 3 givenname: Michael surname: Martinez fullname: Martinez, Michael organization: Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas – sequence: 4 givenname: Felipe surname: Salinas fullname: Salinas, Felipe organization: Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas – sequence: 5 givenname: Alan surname: Evans fullname: Evans, Alan organization: International Consortium for Brain Mapping, UCLA, Los Angeles, California – sequence: 6 givenname: Karl surname: Zilles fullname: Zilles, Karl organization: International Consortium for Brain Mapping, UCLA, Los Angeles, California – sequence: 7 givenname: John C. surname: Mazziotta fullname: Mazziotta, John C. organization: International Consortium for Brain Mapping, UCLA, Los Angeles, California – sequence: 8 givenname: Peter T. surname: Fox fullname: Fox, Peter T. organization: Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19194889$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17266101$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUuP0zAURiM0iHnAgj-AsgEJpMzYSRwnm5FogU5RO2zmsbSu7dupwXGKnVDKryelgQLisbKle75P18fH0YFrHEbRY0pOKSHp2VLWpynJcnYvOqKk4gmhVXawvRcsqXJOD6PjEN4TQikj9EF0SHlaFJTQo-h6ZCDEEts1oovnl9MYnI6vwILxoJaxahqvjYMWQz8Bu_mCOu6CcXdxu8R4Oh7NE8rSWHowLm6xXtmefRjdX4AN-Gg4T6LrN6-vxhfJ7N1kOn45SxTjJUt4rhgCK0qGmaQ5yIwg01qmlZRaLxBpqcuSa6g09FylJGOyYJprmdNU6-wkerHr7dwKNmuwVqy8qcFvBCVi60b0bsQ3Nz18voNXnaxRK3Sth32gASN-nTizFHfNJ1GUnGZp1hc8Gwp887HD0IraBIXWgsOmCz2XE55n9L9gSnJepIz34JOfV9ovP_xPDzwdAAgK7MKDUybsuYpWeVlWPXe245RvQvC4EMq00Jpm-xJj_2jj-W-Jf5kb2tfG4ubvoLgYzb8nkl3ChBY__0iA_yAKnnEmbi8nYvbq7WTMbm_ETfYV11TbfQ |
| CitedBy_id | crossref_primary_10_1016_j_pscychresns_2014_06_004 crossref_primary_10_1002_hbm_22160 crossref_primary_10_1007_s00213_023_06498_1 crossref_primary_10_1017_S0033291722003889 crossref_primary_10_1002_hbm_23492 crossref_primary_10_3390_brainsci11121619 crossref_primary_10_3389_fnins_2014_00401 crossref_primary_10_3758_s13415_019_00747_7 crossref_primary_10_1002_hipo_23632 crossref_primary_10_1007_s11065_023_09609_z crossref_primary_10_1162_jocn_a_00077 crossref_primary_10_1016_j_psyneuen_2018_08_036 crossref_primary_10_1016_j_brainres_2012_03_040 crossref_primary_10_1016_j_jpain_2023_11_012 crossref_primary_10_1016_j_neubiorev_2014_11_003 crossref_primary_10_1080_01690965_2011_613209 crossref_primary_10_14316_pmp_2019_30_1_22 crossref_primary_10_1016_j_clineuro_2023_107710 crossref_primary_10_1016_j_neubiorev_2017_01_006 crossref_primary_10_3389_fnins_2024_1443578 crossref_primary_10_1016_j_neuroimage_2019_06_037 crossref_primary_10_1017_S0033291716002634 crossref_primary_10_1016_j_jphysparis_2016_01_001 crossref_primary_10_1002_hbm_22392 crossref_primary_10_1016_j_bandl_2020_104893 crossref_primary_10_1002_hbm_24334 crossref_primary_10_1002_hbm_22155 crossref_primary_10_1002_da_22866 crossref_primary_10_1016_j_nicl_2017_03_016 crossref_primary_10_1016_j_psychres_2022_114598 crossref_primary_10_1016_j_neulet_2017_06_058 crossref_primary_10_1016_j_smrv_2023_101821 crossref_primary_10_1016_j_neuroimage_2017_02_004 crossref_primary_10_3389_fnins_2023_1191617 crossref_primary_10_1002_hbm_24326 crossref_primary_10_1002_hbm_22388 crossref_primary_10_1016_j_cpr_2022_102189 crossref_primary_10_1016_j_neuropsychologia_2013_08_005 crossref_primary_10_1016_j_neuroimage_2022_119194 crossref_primary_10_1016_j_neuropsychologia_2016_06_034 crossref_primary_10_15248_proc_2_421 crossref_primary_10_1016_j_neuroimage_2011_06_050 crossref_primary_10_1016_j_biopsycho_2018_09_010 crossref_primary_10_1038_srep25983 crossref_primary_10_1002_hbm_22186 crossref_primary_10_1176_appi_ajp_2010_09101522 crossref_primary_10_1007_s12021_010_9083_9 crossref_primary_10_1162_jocn_a_01142 crossref_primary_10_1371_journal_pone_0101729 crossref_primary_10_1016_j_nicl_2017_12_029 crossref_primary_10_1016_j_neuroimage_2009_01_053 crossref_primary_10_1016_j_pscychresns_2012_10_009 crossref_primary_10_1016_j_neubiorev_2019_05_007 crossref_primary_10_1016_j_pscychresns_2008_09_011 crossref_primary_10_1016_j_brainres_2011_09_055 crossref_primary_10_1016_j_neubiorev_2020_01_004 crossref_primary_10_1162_jocn_a_00057 crossref_primary_10_1016_j_neuroimage_2021_117960 crossref_primary_10_1016_j_neuroimage_2020_117686 crossref_primary_10_1016_j_bandl_2023_105347 crossref_primary_10_1016_j_biopsych_2014_12_021 crossref_primary_10_1186_s13550_023_01028_8 crossref_primary_10_1016_j_orcp_2020_02_004 crossref_primary_10_1016_j_dcn_2017_05_003 crossref_primary_10_1007_s11065_021_09494_4 crossref_primary_10_1016_j_neuroimage_2024_120720 crossref_primary_10_1017_S0033291717001192 crossref_primary_10_1038_srep19250 crossref_primary_10_1007_s00701_021_04737_y crossref_primary_10_1016_j_pnpbp_2022_110540 crossref_primary_10_1371_journal_pone_0250755 crossref_primary_10_1016_j_neuroimage_2009_10_064 crossref_primary_10_3233_JAD_210173 crossref_primary_10_1093_cercor_bhq268 crossref_primary_10_1177_1545968314527350 crossref_primary_10_1016_j_neuroscience_2017_03_064 crossref_primary_10_1016_j_nicl_2016_09_023 crossref_primary_10_1016_j_bandl_2016_10_004 crossref_primary_10_1016_j_neuropsychologia_2017_01_019 crossref_primary_10_1016_j_expneurol_2008_05_017 crossref_primary_10_1016_j_neubiorev_2022_104971 crossref_primary_10_1007_s11682_020_00408_1 crossref_primary_10_1002_hbm_22363 crossref_primary_10_1002_hbm_22364 crossref_primary_10_1162_jocn_a_00272 crossref_primary_10_2967_jnumed_114_153494 crossref_primary_10_1016_j_brainresbull_2024_110933 crossref_primary_10_1016_j_neubiorev_2019_04_017 crossref_primary_10_1371_journal_pone_0067988 crossref_primary_10_1080_17470919_2011_614001 crossref_primary_10_1162_jocn_2008_21165 crossref_primary_10_1016_j_bandc_2019_01_002 crossref_primary_10_1016_j_jneuroling_2018_08_005 crossref_primary_10_1097_WNF_0b013e31821c31d8 crossref_primary_10_1002_hbm_23202 crossref_primary_10_1002_hbm_24534 crossref_primary_10_3389_fnins_2020_534671 crossref_primary_10_1016_j_neuroimage_2017_02_050 crossref_primary_10_1002_hbm_21261 crossref_primary_10_1016_j_yfrne_2016_10_001 crossref_primary_10_1016_j_brainres_2020_147049 crossref_primary_10_1002_hbm_22354 crossref_primary_10_1007_s12021_010_9074_x crossref_primary_10_1016_j_neuroimage_2012_01_024 crossref_primary_10_1111_nmo_14484 crossref_primary_10_1016_j_neuroimage_2020_117407 crossref_primary_10_1016_j_neubiorev_2019_04_006 crossref_primary_10_1097_WNR_0b013e32835f8826 crossref_primary_10_3389_fnhum_2018_00227 crossref_primary_10_1002_hbm_26702 crossref_primary_10_1002_hbm_23675 crossref_primary_10_1016_j_neuroimage_2012_02_065 crossref_primary_10_1002_hbm_24523 crossref_primary_10_1007_s00429_012_0385_6 crossref_primary_10_1016_j_jns_2012_02_010 crossref_primary_10_1186_s12938_024_01204_4 crossref_primary_10_1016_j_jad_2016_10_022 crossref_primary_10_1155_2012_634165 crossref_primary_10_1176_appi_ajp_2009_09050716 crossref_primary_10_1002_hbm_23233 crossref_primary_10_1017_S0033291720002676 crossref_primary_10_1111_cns_13775 crossref_primary_10_1016_j_heliyon_2022_e09702 crossref_primary_10_1016_j_neures_2015_06_011 crossref_primary_10_1016_j_exger_2025_112678 crossref_primary_10_1007_s11682_024_00921_7 crossref_primary_10_1016_j_cmpb_2024_108429 crossref_primary_10_1016_j_neuroimage_2014_05_018 crossref_primary_10_1093_schbul_sbn141 crossref_primary_10_1371_journal_pone_0039061 crossref_primary_10_3389_fneur_2023_1148781 crossref_primary_10_1038_s41598_022_14221_x crossref_primary_10_1016_j_bbr_2011_07_054 crossref_primary_10_1016_j_neuroimage_2008_05_041 crossref_primary_10_1002_hbm_22375 crossref_primary_10_1080_23273798_2016_1245426 crossref_primary_10_1016_j_pnpbp_2024_111199 crossref_primary_10_1016_j_cmpb_2016_07_015 crossref_primary_10_1038_s41537_023_00338_z crossref_primary_10_1073_pnas_0800374105 crossref_primary_10_1016_j_neuroimage_2012_02_045 crossref_primary_10_1002_hbm_22124 crossref_primary_10_1002_hbm_23216 crossref_primary_10_1002_hbm_25635 crossref_primary_10_1007_s12671_018_0884_5 crossref_primary_10_1016_j_neuroimage_2017_12_034 crossref_primary_10_1016_j_ynirp_2023_100173 crossref_primary_10_1016_j_nicl_2014_04_007 crossref_primary_10_1002_aur_1498 crossref_primary_10_3109_15622975_2011_573809 crossref_primary_10_3389_fpsyg_2014_00151 crossref_primary_10_1017_S0142716411000075 crossref_primary_10_1016_j_neuroscience_2017_01_042 crossref_primary_10_1002_hbm_21471 crossref_primary_10_1016_j_neuroimage_2011_12_024 crossref_primary_10_3389_fnhum_2014_00912 crossref_primary_10_1002_hipo_22387 crossref_primary_10_1038_s41598_021_88368_4 crossref_primary_10_1016_j_drugalcdep_2022_109625 crossref_primary_10_1016_j_neubiorev_2014_01_009 crossref_primary_10_1093_scan_nst106 crossref_primary_10_1016_j_neuroimage_2021_118436 crossref_primary_10_1016_j_cortex_2022_07_003 crossref_primary_10_1016_j_jpsychires_2019_01_005 crossref_primary_10_1002_hbm_22313 crossref_primary_10_3390_ijerph192316277 crossref_primary_10_1111_joor_13526 crossref_primary_10_1093_cercor_bhac211 crossref_primary_10_1093_braincomms_fcac046 crossref_primary_10_1016_j_neuroimage_2023_120088 crossref_primary_10_1016_j_neubiorev_2007_09_005 crossref_primary_10_1093_cercor_bhx283 crossref_primary_10_13104_jksmrm_2010_14_2_103 crossref_primary_10_1016_j_cortex_2020_04_015 crossref_primary_10_1016_j_neubiorev_2018_08_003 crossref_primary_10_1016_j_neuron_2007_10_015 crossref_primary_10_1016_j_neuroscience_2018_09_001 crossref_primary_10_1016_j_drugalcdep_2023_109912 crossref_primary_10_1162_jocn_a_00245 crossref_primary_10_1016_j_neubiorev_2016_05_012 crossref_primary_10_1176_appi_ajp_2019_18111271 crossref_primary_10_1016_j_neuroimage_2011_08_053 crossref_primary_10_1002_hbm_25816 crossref_primary_10_1186_s11689_019_9287_8 crossref_primary_10_1016_j_neubiorev_2022_104553 crossref_primary_10_1038_s41598_020_58839_1 crossref_primary_10_3389_fnins_2024_1399948 crossref_primary_10_1007_s12021_020_09454_y crossref_primary_10_1002_hbm_21252 crossref_primary_10_1038_s41593_017_0051_7 crossref_primary_10_1016_j_neubiorev_2011_07_004 crossref_primary_10_1109_TAI_2023_3282199 crossref_primary_10_1016_j_mri_2009_01_008 crossref_primary_10_1080_13803395_2010_537253 crossref_primary_10_1186_s12993_022_00196_2 crossref_primary_10_1038_s41366_020_0608_5 crossref_primary_10_1073_pnas_1113427109 crossref_primary_10_1016_j_bbr_2017_10_025 crossref_primary_10_1002_hbm_21004 crossref_primary_10_1002_mrm_22824 crossref_primary_10_1002_hbm_22572 crossref_primary_10_1093_scan_nsae068 crossref_primary_10_1016_j_neubiorev_2016_04_001 crossref_primary_10_1016_j_neuroimage_2011_12_032 crossref_primary_10_1162_jocn_a_01793 crossref_primary_10_1088_1361_6560_ac4ef9 crossref_primary_10_3389_fneur_2024_1452491 crossref_primary_10_1016_j_jad_2022_11_071 crossref_primary_10_1007_s00429_019_01870_4 crossref_primary_10_1148_radiol_12112052 crossref_primary_10_1016_j_biopsych_2022_05_028 crossref_primary_10_1016_j_neubiorev_2016_05_037 crossref_primary_10_30773_pi_2017_12_17 crossref_primary_10_1016_j_neuroimage_2019_04_059 crossref_primary_10_1093_brain_awx087 crossref_primary_10_1093_cercor_bhad337 crossref_primary_10_1016_j_nicl_2014_03_010 crossref_primary_10_1002_hbm_21235 crossref_primary_10_1016_j_cortex_2017_12_014 crossref_primary_10_3389_fnins_2022_834026 crossref_primary_10_1016_j_neuropsychologia_2008_11_030 crossref_primary_10_1002_hbm_22326 crossref_primary_10_11922_11_6035_csd_2022_0047_zh crossref_primary_10_1002_hbm_24746 crossref_primary_10_1371_journal_pone_0161392 crossref_primary_10_3389_fpsyt_2018_00777 crossref_primary_10_1111_ene_12902 crossref_primary_10_1016_j_neubiorev_2016_06_025 crossref_primary_10_1002_mp_14692 crossref_primary_10_1007_s11682_016_9606_6 crossref_primary_10_1016_j_neuroimage_2007_09_027 crossref_primary_10_3390_brainsci15010046 crossref_primary_10_1016_j_neubiorev_2020_02_023 crossref_primary_10_3389_fnhum_2022_1040553 crossref_primary_10_1038_s41467_024_53743_y crossref_primary_10_1038_s41398_022_01809_0 crossref_primary_10_1162_jocn_a_00437 crossref_primary_10_1016_j_neubiorev_2022_104768 crossref_primary_10_1038_tp_2016_55 crossref_primary_10_1007_s00415_009_5307_z crossref_primary_10_3389_fnins_2016_00515 crossref_primary_10_3389_fnins_2024_1392002 crossref_primary_10_1007_s10548_018_0647_6 crossref_primary_10_1016_j_neuroimage_2011_07_022 crossref_primary_10_1016_j_neuropsychologia_2014_05_001 crossref_primary_10_1080_17470919_2018_1459313 crossref_primary_10_1002_mp_14201 crossref_primary_10_1038_s41537_022_00291_3 crossref_primary_10_1002_hipo_23024 crossref_primary_10_1007_s11065_023_09588_1 crossref_primary_10_1016_j_bandl_2013_11_002 crossref_primary_10_1016_j_neubiorev_2019_02_017 crossref_primary_10_1016_j_neuropsychologia_2010_09_014 crossref_primary_10_1002_brb3_1617 crossref_primary_10_1016_j_neubiorev_2019_02_011 crossref_primary_10_1002_hbm_22749 crossref_primary_10_1016_j_nicl_2016_06_019 crossref_primary_10_1007_s00429_017_1476_1 crossref_primary_10_1002_hbm_21416 crossref_primary_10_1016_j_cccb_2024_100376 crossref_primary_10_1016_j_neuropsychologia_2011_02_031 crossref_primary_10_1016_j_neubiorev_2022_104994 crossref_primary_10_1016_j_neuroscience_2009_10_014 crossref_primary_10_1186_s12868_021_00640_5 crossref_primary_10_1002_hbm_24960 crossref_primary_10_1016_j_neubiorev_2020_03_008 crossref_primary_10_1016_j_neuropsychologia_2015_08_007 crossref_primary_10_1080_01616412_2023_2199377 crossref_primary_10_3389_fnbeh_2016_00220 crossref_primary_10_1371_journal_pone_0050939 crossref_primary_10_1007_s00429_017_1443_x crossref_primary_10_1186_1471_2202_9_102 crossref_primary_10_1016_j_clineuro_2025_108743 crossref_primary_10_1093_schbul_sbv025 crossref_primary_10_1007_s10548_011_0171_4 crossref_primary_10_3171_2021_7_JNS21990 crossref_primary_10_3389_fnagi_2021_694676 crossref_primary_10_1002_oby_20659 crossref_primary_10_1016_j_neuropsychologia_2011_01_023 crossref_primary_10_1093_scan_nsz055 crossref_primary_10_1016_j_neubiorev_2013_09_005 crossref_primary_10_1016_j_neuroimage_2009_12_099 crossref_primary_10_1192_bjo_2023_588 crossref_primary_10_1016_j_schres_2010_03_039 crossref_primary_10_1038_s41398_019_0644_x crossref_primary_10_3389_fnagi_2016_00260 crossref_primary_10_1016_j_pnpbp_2011_09_014 crossref_primary_10_1016_j_neuropsychologia_2014_12_005 crossref_primary_10_1093_cercor_bhac443 crossref_primary_10_1016_j_pnpbp_2017_01_012 crossref_primary_10_1186_s13195_021_00847_y crossref_primary_10_1038_s41598_019_38990_0 crossref_primary_10_1016_j_nicl_2017_07_025 crossref_primary_10_1016_j_biopsych_2010_01_020 crossref_primary_10_1016_j_neuroimage_2022_119764 crossref_primary_10_1016_j_bbr_2022_114219 crossref_primary_10_1007_s11065_015_9294_9 crossref_primary_10_1097_JGP_0b013e3181cabd0e crossref_primary_10_1016_j_neubiorev_2012_11_003 crossref_primary_10_1016_j_neuroimage_2016_05_076 crossref_primary_10_1017_S003329170800500X crossref_primary_10_3758_s13415_022_01030_y crossref_primary_10_1016_j_neubiorev_2012_11_002 crossref_primary_10_1186_1756_0500_4_349 crossref_primary_10_1016_j_neuropsychologia_2017_04_015 crossref_primary_10_1016_j_brainres_2015_04_012 crossref_primary_10_1016_j_neuroimage_2019_116111 crossref_primary_10_1007_s11682_024_00949_9 crossref_primary_10_1038_s41598_017_18471_y crossref_primary_10_1093_brain_awab380 crossref_primary_10_1111_j_1528_1167_2009_02022_x crossref_primary_10_1016_j_neubiorev_2024_105712 crossref_primary_10_1016_j_neuroimage_2019_03_074 crossref_primary_10_1016_j_neuroimage_2009_12_112 crossref_primary_10_1016_j_nicl_2023_103532 crossref_primary_10_3389_fneur_2018_01129 crossref_primary_10_1016_j_neubiorev_2016_03_026 crossref_primary_10_1016_j_bandc_2008_12_006 crossref_primary_10_1016_j_dr_2022_101052 crossref_primary_10_1016_j_cortex_2020_05_003 crossref_primary_10_3389_fnins_2018_00686 crossref_primary_10_1162_jocn_2009_21282 crossref_primary_10_1016_j_smrv_2018_07_004 crossref_primary_10_1162_jocn_2009_21281 crossref_primary_10_1016_j_neulet_2009_01_065 crossref_primary_10_3389_fnhum_2021_774656 crossref_primary_10_1016_j_neubiorev_2024_105960 crossref_primary_10_1162_jocn_a_01616 crossref_primary_10_3389_fnagi_2020_00014 crossref_primary_10_1093_cercor_bhae376 crossref_primary_10_1016_j_biopsych_2008_03_031 crossref_primary_10_1002_hbm_20680 crossref_primary_10_1371_journal_pone_0140731 crossref_primary_10_1016_j_neuroimage_2012_12_046 crossref_primary_10_1016_j_jneuroling_2014_04_003 crossref_primary_10_1016_j_neubiorev_2021_06_020 crossref_primary_10_1016_j_nicl_2019_102039 crossref_primary_10_1016_j_ijpsycho_2018_02_001 crossref_primary_10_1016_j_nicl_2022_103268 crossref_primary_10_1089_brain_2015_0345 crossref_primary_10_1002_hbm_23706 crossref_primary_10_1016_j_neuropsychologia_2024_108904 crossref_primary_10_3389_fpsyg_2015_00191 crossref_primary_10_1192_bjp_bp_108_052738 crossref_primary_10_3390_brainsci12081030 crossref_primary_10_1162_imag_a_00065 crossref_primary_10_1212_WNL_0b013e31821a44c1 crossref_primary_10_1016_j_jad_2018_09_049 crossref_primary_10_1016_j_nicl_2019_102041 crossref_primary_10_1111_jcpp_12651 crossref_primary_10_1016_j_pscychresns_2019_111020 crossref_primary_10_1080_15622975_2020_1775889 crossref_primary_10_1016_j_bbr_2013_09_042 crossref_primary_10_1016_j_biopsych_2011_09_007 crossref_primary_10_1038_s41598_023_29797_1 crossref_primary_10_7554_eLife_53385 crossref_primary_10_1038_s42003_019_0611_3 crossref_primary_10_1016_j_neubiorev_2021_06_030 crossref_primary_10_3389_fnhum_2014_00649 crossref_primary_10_1016_j_yebeh_2014_01_010 crossref_primary_10_1016_j_clinph_2020_07_024 crossref_primary_10_12779_dnd_2017_16_2_48 crossref_primary_10_7554_eLife_67303 crossref_primary_10_1016_j_neuroimage_2007_09_054 crossref_primary_10_1088_1741_2552_ad7f87 crossref_primary_10_1002_hbm_22602 crossref_primary_10_1016_j_jad_2011_03_016 crossref_primary_10_1016_j_neuroimage_2019_116387 crossref_primary_10_1176_appi_ajp_2017_16040400 crossref_primary_10_1093_cercor_bhad461 crossref_primary_10_1093_scan_nsw090 crossref_primary_10_1016_j_nicl_2019_102053 crossref_primary_10_1016_j_neubiorev_2024_105902 crossref_primary_10_1016_j_jns_2013_10_026 crossref_primary_10_1016_j_cortex_2014_09_022 crossref_primary_10_1177_1545968312461718 crossref_primary_10_1523_JNEUROSCI_0663_23_2023 crossref_primary_10_1038_srep16891 crossref_primary_10_1016_j_nicl_2017_01_034 crossref_primary_10_3389_fnhum_2017_00022 crossref_primary_10_1016_j_nicl_2015_12_002 crossref_primary_10_1016_j_pscychresns_2017_09_014 crossref_primary_10_1016_j_mri_2021_10_017 crossref_primary_10_1371_journal_pone_0116854 crossref_primary_10_1093_schizbullopen_sgab039 crossref_primary_10_3758_s13415_020_00784_7 crossref_primary_10_1146_annurev_psych_010417_085944 crossref_primary_10_1016_j_neuroimage_2013_07_025 crossref_primary_10_1093_cercor_bhv068 crossref_primary_10_1371_journal_pone_0030918 crossref_primary_10_1016_j_neubiorev_2024_105918 crossref_primary_10_1016_j_nicl_2022_103029 crossref_primary_10_1152_jn_00338_2011 crossref_primary_10_1371_journal_pone_0103302 crossref_primary_10_1016_j_celrep_2020_108137 crossref_primary_10_1259_bjr_30173406 crossref_primary_10_1007_s00429_012_0411_8 crossref_primary_10_1016_j_pnpbp_2020_109986 crossref_primary_10_1111_dmcn_12618 crossref_primary_10_1016_j_neuropsychologia_2010_07_030 crossref_primary_10_3389_fnhum_2019_00457 crossref_primary_10_1016_j_nicl_2017_01_020 crossref_primary_10_1038_s41598_020_76211_1 crossref_primary_10_1016_j_nicl_2022_103031 crossref_primary_10_3389_fneur_2015_00231 crossref_primary_10_1186_2045_5380_4_6 crossref_primary_10_1016_j_bandl_2010_01_008 crossref_primary_10_1016_j_neuroimage_2019_116321 crossref_primary_10_1080_00207454_2018_1508135 crossref_primary_10_1002_hbm_20844 crossref_primary_10_1007_s11065_015_9315_8 crossref_primary_10_1016_j_neuroimage_2009_06_047 crossref_primary_10_1093_cercor_bhac394 crossref_primary_10_1093_cercor_bhx273 crossref_primary_10_1038_s41598_017_02266_2 crossref_primary_10_1111_j_1460_9568_2010_07590_x crossref_primary_10_1016_j_neubiorev_2021_07_021 crossref_primary_10_1177_1545968310394870 crossref_primary_10_1016_j_neuroimage_2016_03_004 crossref_primary_10_1017_S0033291717002513 crossref_primary_10_1016_j_cortex_2009_11_007 crossref_primary_10_1007_s11682_022_00744_4 crossref_primary_10_1371_journal_pone_0128608 crossref_primary_10_7243_2052_6946_2_3 crossref_primary_10_1002_hbm_25093 crossref_primary_10_1016_j_brainres_2018_01_022 crossref_primary_10_1002_hbm_22818 crossref_primary_10_1080_13803395_2011_633896 crossref_primary_10_1016_j_neubiorev_2018_07_019 crossref_primary_10_1016_j_eplepsyres_2011_10_002 crossref_primary_10_1371_journal_pone_0298651 crossref_primary_10_1016_j_euroneuro_2016_06_013 crossref_primary_10_1016_j_neubiorev_2019_10_023 crossref_primary_10_1038_s41592_022_01625_w crossref_primary_10_1016_j_ynstr_2017_01_002 crossref_primary_10_1371_journal_pone_0083668 crossref_primary_10_1007_s00429_013_0549_z crossref_primary_10_1016_j_cmpb_2010_06_011 crossref_primary_10_1080_13554794_2022_2160262 crossref_primary_10_3389_fnins_2023_1135437 crossref_primary_10_1080_17518423_2017_1338777 crossref_primary_10_1016_j_neuroimage_2021_118109 crossref_primary_10_1016_j_bbe_2016_07_002 crossref_primary_10_1016_j_brainres_2018_01_014 crossref_primary_10_1016_j_nicl_2022_103295 crossref_primary_10_1038_s41562_023_01725_3 crossref_primary_10_1371_journal_pone_0064925 crossref_primary_10_1371_journal_pone_0100291 crossref_primary_10_1162_imag_a_00277 crossref_primary_10_1016_j_neubiorev_2016_03_009 crossref_primary_10_1016_j_clinph_2020_06_022 crossref_primary_10_1017_S1368980020003122 crossref_primary_10_1002_hbm_24184 crossref_primary_10_1017_S136672892000070X crossref_primary_10_1016_j_nicl_2020_102420 crossref_primary_10_1016_j_neubiorev_2017_11_010 crossref_primary_10_1016_j_neubiorev_2017_11_012 crossref_primary_10_1016_j_pnpbp_2013_09_001 crossref_primary_10_3389_fneur_2024_1345756 crossref_primary_10_1016_j_neubiorev_2021_08_010 crossref_primary_10_1016_j_neubiorev_2013_03_017 crossref_primary_10_3389_fnut_2022_1056692 crossref_primary_10_1016_j_neubiorev_2021_09_041 crossref_primary_10_1016_j_neuroimage_2011_04_034 crossref_primary_10_1038_s41380_024_02780_6 crossref_primary_10_1176_appi_ajp_2010_10020165 crossref_primary_10_1016_j_biopsych_2016_06_014 crossref_primary_10_1002_hbm_23088 crossref_primary_10_1016_j_eurpsy_2017_08_001 crossref_primary_10_3389_fnhum_2015_00693 crossref_primary_10_1093_cercor_bhr061 crossref_primary_10_1016_j_neuroimage_2011_01_040 crossref_primary_10_1038_s41598_019_54323_7 crossref_primary_10_1016_j_neuroimage_2011_05_073 crossref_primary_10_1038_s41593_021_00948_9 crossref_primary_10_1007_s11682_020_00291_w crossref_primary_10_1111_cns_70188 crossref_primary_10_3389_fneur_2022_823882 crossref_primary_10_1177_1087054715580847 crossref_primary_10_1007_s10548_015_0427_5 crossref_primary_10_3389_fpsyt_2022_785547 crossref_primary_10_3758_s13428_023_02185_3 crossref_primary_10_1016_j_neuropsychologia_2020_107404 crossref_primary_10_1016_j_conb_2013_02_017 crossref_primary_10_1111_j_1369_1600_2012_00464_x crossref_primary_10_1016_j_heares_2011_09_008 crossref_primary_10_1016_j_neuroimage_2025_121026 crossref_primary_10_1016_j_neuroimage_2016_03_047 crossref_primary_10_1016_j_msard_2018_06_007 crossref_primary_10_1016_j_media_2020_101700 crossref_primary_10_1016_j_pscychresns_2017_10_008 crossref_primary_10_1007_s10339_009_0342_3 crossref_primary_10_1016_j_nicl_2017_01_019 crossref_primary_10_1007_s11682_019_00071_1 crossref_primary_10_1080_1750984X_2025_2457062 crossref_primary_10_1016_j_pnpbp_2011_05_009 crossref_primary_10_1016_j_neuroimage_2011_02_070 crossref_primary_10_1016_j_jad_2024_01_118 crossref_primary_10_34133_cbsystems_0118 crossref_primary_10_1007_s00406_023_01594_x crossref_primary_10_4236_jbbs_2012_22028 crossref_primary_10_1016_j_bandl_2010_03_008 crossref_primary_10_3389_fpsyg_2014_01430 crossref_primary_10_1002_brb3_655 crossref_primary_10_1016_j_neuroimage_2013_04_014 crossref_primary_10_1016_j_cortex_2017_01_006 crossref_primary_10_1016_j_bandc_2018_07_005 crossref_primary_10_1016_j_neuroimage_2016_03_036 crossref_primary_10_1523_JNEUROSCI_4004_09_2009 crossref_primary_10_3389_fnins_2022_899772 crossref_primary_10_1016_j_neubiorev_2021_08_024 crossref_primary_10_1093_schbul_sbr151 crossref_primary_10_1016_j_neuroimage_2012_11_020 crossref_primary_10_3758_s13423_024_02532_1 crossref_primary_10_1093_brain_awu132 crossref_primary_10_1016_j_neuroimage_2023_120413 crossref_primary_10_1016_j_neubiorev_2024_105584 crossref_primary_10_3389_fnhum_2022_815749 crossref_primary_10_1016_j_neuroimage_2010_09_045 crossref_primary_10_1016_j_neuroimage_2024_120950 crossref_primary_10_1093_cercor_bht292 crossref_primary_10_1016_j_neuroimage_2012_10_056 crossref_primary_10_1177_15500594241264892 crossref_primary_10_1111_jcpp_12444 crossref_primary_10_1016_j_cortex_2019_05_016 crossref_primary_10_1093_cercor_bhae393 crossref_primary_10_1016_j_neuroimage_2012_12_060 crossref_primary_10_1111_cdev_13080 crossref_primary_10_1016_j_drugalcdep_2020_107884 crossref_primary_10_1016_j_neuroimage_2017_10_054 crossref_primary_10_3389_fnhum_2017_00662 crossref_primary_10_3389_fnins_2018_00495 crossref_primary_10_1002_hbm_70031 crossref_primary_10_1016_j_neuroimage_2015_08_003 crossref_primary_10_1093_scan_nsx103 crossref_primary_10_1016_j_jad_2023_01_051 crossref_primary_10_1007_s11065_024_09647_1 crossref_primary_10_1016_j_neuroimage_2010_09_030 crossref_primary_10_1016_j_cortex_2017_03_016 crossref_primary_10_1002_brb3_2033 crossref_primary_10_1002_hbm_22199 crossref_primary_10_1038_nmeth_1635 crossref_primary_10_5665_sleep_5000 crossref_primary_10_1016_j_neuropsychologia_2012_07_026 crossref_primary_10_1371_journal_pone_0060385 crossref_primary_10_1016_j_cortex_2020_06_006 crossref_primary_10_1002_hbm_70023 crossref_primary_10_1007_s11682_018_9945_6 crossref_primary_10_1016_j_jpsychires_2014_04_022 crossref_primary_10_1002_mds_28468 crossref_primary_10_1038_s41531_017_0012_6 crossref_primary_10_1016_j_neuroimage_2017_10_069 crossref_primary_10_1016_j_neubiorev_2023_105468 crossref_primary_10_1016_j_neuropsychologia_2019_107284 crossref_primary_10_1002_hbm_26340 crossref_primary_10_1016_j_jaac_2012_12_012 crossref_primary_10_1162_imag_a_00425 crossref_primary_10_1016_j_jns_2014_05_066 crossref_primary_10_1002_nau_23058 crossref_primary_10_1038_srep37126 crossref_primary_10_1016_j_neuropsychologia_2019_107286 crossref_primary_10_1016_j_bandc_2018_06_004 crossref_primary_10_1016_j_schres_2012_02_022 crossref_primary_10_1016_j_neubiorev_2015_08_013 crossref_primary_10_1016_j_jpain_2012_11_011 crossref_primary_10_1016_j_neuroimage_2011_02_032 crossref_primary_10_1371_journal_pone_0072159 crossref_primary_10_1016_j_janxdis_2023_102773 crossref_primary_10_1080_23279095_2017_1362406 crossref_primary_10_3389_fpsyg_2025_1557796 crossref_primary_10_1016_j_neuroimage_2009_08_008 crossref_primary_10_1002_brb3_213 crossref_primary_10_1016_j_neubiorev_2021_09_024 crossref_primary_10_3389_fnhum_2014_00445 crossref_primary_10_1016_j_jns_2012_01_032 crossref_primary_10_1093_neuonc_not319 crossref_primary_10_1016_j_neubiorev_2015_08_006 crossref_primary_10_1111_acer_14327 crossref_primary_10_1371_journal_pone_0032960 crossref_primary_10_1002_hbm_70000 crossref_primary_10_1109_ACCESS_2021_3097606 crossref_primary_10_1016_j_neubiorev_2024_105544 crossref_primary_10_1177_2167702614542463 crossref_primary_10_3389_fnhum_2014_00692 crossref_primary_10_3389_fpsyg_2024_1335548 crossref_primary_10_1002_hbm_22040 crossref_primary_10_1007_s40519_022_01390_x crossref_primary_10_3389_fnhum_2014_01045 crossref_primary_10_1002_hbm_21199 crossref_primary_10_1142_S0129065721500386 crossref_primary_10_1016_j_neuroimage_2015_07_083 crossref_primary_10_1016_j_neubiorev_2021_11_020 crossref_primary_10_1176_appi_ajp_2012_11101521 crossref_primary_10_1016_j_nicl_2019_101722 crossref_primary_10_1016_j_brainresbull_2023_110733 crossref_primary_10_1038_s41598_021_95603_5 crossref_primary_10_3389_fnins_2017_00001 crossref_primary_10_1111_ggi_12550 crossref_primary_10_1162_jocn_a_01049 crossref_primary_10_1016_j_neuroimage_2009_09_064 crossref_primary_10_1016_j_neuroimage_2020_117582 crossref_primary_10_1111_j_1749_6632_2011_05958_x crossref_primary_10_1111_bdi_12488 crossref_primary_10_1002_hbm_23368 crossref_primary_10_1007_s11682_012_9198_8 crossref_primary_10_1016_j_neuroimage_2009_08_029 crossref_primary_10_1017_S0033291717001076 crossref_primary_10_1016_j_biotno_2024_08_001 crossref_primary_10_1016_j_neuroimage_2023_120363 crossref_primary_10_1002_hbm_23120 crossref_primary_10_1002_hbm_24213 crossref_primary_10_1155_2023_7948140 crossref_primary_10_1016_j_biopsycho_2017_07_019 crossref_primary_10_1016_j_nicl_2025_103770 crossref_primary_10_1016_j_neuroimage_2017_09_013 crossref_primary_10_7717_peerj_367 crossref_primary_10_1016_j_nicl_2019_101735 crossref_primary_10_1016_j_neubiorev_2018_11_005 crossref_primary_10_1146_annurev_neuro_062012_170320 crossref_primary_10_1016_j_schres_2011_08_004 crossref_primary_10_1093_scan_nst052 crossref_primary_10_1192_bjp_bp_112_108464 crossref_primary_10_1016_j_neurobiolaging_2016_04_018 crossref_primary_10_1016_j_neuropsychologia_2015_12_006 crossref_primary_10_1093_cercor_bhs308 crossref_primary_10_1097_MD_0000000000019151 crossref_primary_10_1016_j_neubiorev_2021_03_025 crossref_primary_10_1007_s11682_020_00442_z crossref_primary_10_3233_JPD_223527 crossref_primary_10_1016_j_neuroimage_2016_01_031 crossref_primary_10_1093_brain_awy222 crossref_primary_10_1111_j_1468_0394_2012_00619_x crossref_primary_10_3758_s13415_011_0051_0 crossref_primary_10_1016_j_neuropsychologia_2015_05_029 crossref_primary_10_1016_j_neuroimage_2009_08_049 crossref_primary_10_1017_S0033291722003750 crossref_primary_10_1016_j_nic_2008_06_006 crossref_primary_10_1038_s41598_019_48510_9 crossref_primary_10_1016_j_concog_2011_09_019 crossref_primary_10_1002_hbm_24232 crossref_primary_10_3758_s13415_015_0392_1 crossref_primary_10_1016_j_neuroimage_2015_07_070 crossref_primary_10_1007_s00429_023_02641_y crossref_primary_10_1176_appi_ajp_2009_08091307 crossref_primary_10_1016_j_neuroimage_2009_07_016 crossref_primary_10_1089_brain_2013_0218 crossref_primary_10_1016_j_neuroimage_2015_05_008 crossref_primary_10_1016_j_neuroimage_2015_07_079 crossref_primary_10_1016_j_schres_2017_04_005 crossref_primary_10_1093_scan_nsu128 crossref_primary_10_1016_j_neuroimage_2021_118702 crossref_primary_10_1093_cercor_bhp055 crossref_primary_10_1093_texcom_tgaa007 crossref_primary_10_1016_j_jad_2016_09_005 crossref_primary_10_1016_j_neuroimage_2015_06_044 crossref_primary_10_1016_j_media_2022_102540 crossref_primary_10_1016_j_neubiorev_2022_104851 crossref_primary_10_1186_s40658_023_00544_9 crossref_primary_10_3389_fpsyg_2014_00274 crossref_primary_10_1016_j_neubiorev_2023_105187 crossref_primary_10_1016_j_neuropsychologia_2015_11_006 crossref_primary_10_1016_j_biopsych_2022_02_960 crossref_primary_10_1186_1471_244X_13_342 crossref_primary_10_1111_cns_12783 crossref_primary_10_1080_17470919_2015_1030036 crossref_primary_10_3389_fnhum_2016_00298 crossref_primary_10_1016_j_bandl_2012_11_013 crossref_primary_10_1162_jocn_a_00392 crossref_primary_10_1016_j_clinph_2009_01_023 crossref_primary_10_1002_hbm_22239 crossref_primary_10_1007_s11682_021_00494_9 crossref_primary_10_1038_s41598_017_18683_2 crossref_primary_10_1162_jocn_2010_21414 crossref_primary_10_1002_hbm_23320 crossref_primary_10_1016_j_neucom_2020_03_055 crossref_primary_10_1038_srep34122 crossref_primary_10_3389_fnhum_2022_854692 crossref_primary_10_1007_s11065_020_09432_w crossref_primary_10_1111_ner_13119 crossref_primary_10_1016_j_neuroimage_2021_117833 crossref_primary_10_1093_cercor_bhs346 crossref_primary_10_1016_j_bandc_2012_03_007 crossref_primary_10_1016_j_biopsych_2012_07_014 crossref_primary_10_1016_j_neubiorev_2020_09_016 crossref_primary_10_3389_fnhum_2018_00340 crossref_primary_10_1016_j_neubiorev_2010_12_005 crossref_primary_10_1002_hbm_24681 crossref_primary_10_1002_hbm_21173 crossref_primary_10_1002_hbm_22262 crossref_primary_10_1002_hipo_22482 crossref_primary_10_1016_j_cortex_2020_09_023 crossref_primary_10_1016_j_neuroimage_2015_08_061 crossref_primary_10_1371_journal_pone_0194878 crossref_primary_10_3389_fnhum_2022_1057290 crossref_primary_10_1073_pnas_1220826110 crossref_primary_10_1093_cercor_bhr291 crossref_primary_10_1016_j_heares_2016_09_007 crossref_primary_10_3758_s13415_023_01140_1 crossref_primary_10_1007_s13365_022_01071_6 crossref_primary_10_1016_j_heares_2017_02_016 crossref_primary_10_1016_j_neubiorev_2022_104826 crossref_primary_10_1155_2016_7296125 crossref_primary_10_1371_journal_pone_0120572 crossref_primary_10_1002_hbm_23103 crossref_primary_10_1002_hbm_23109 crossref_primary_10_1016_j_neuroimage_2024_120641 crossref_primary_10_1007_s11682_021_00626_1 crossref_primary_10_1016_j_nicl_2016_03_016 crossref_primary_10_1016_j_pnpbp_2021_110322 crossref_primary_10_1021_acschemneuro_9b00045 crossref_primary_10_1016_j_neuroimage_2008_01_065 crossref_primary_10_2196_14302 crossref_primary_10_1016_j_nicl_2021_102583 crossref_primary_10_1016_j_neuropsychologia_2015_06_034 crossref_primary_10_1371_journal_pone_0255292 crossref_primary_10_3389_fnins_2023_1120741 crossref_primary_10_1002_hbm_22008 crossref_primary_10_1038_s41598_018_29670_6 crossref_primary_10_3389_fnana_2015_00069 crossref_primary_10_3758_s13415_011_0062_x crossref_primary_10_1016_j_bandc_2014_12_006 crossref_primary_10_1016_j_neubiorev_2015_12_003 crossref_primary_10_1016_j_neuroimage_2016_10_028 crossref_primary_10_1111_desc_13111 crossref_primary_10_1016_j_ijpsycho_2007_12_006 crossref_primary_10_1016_j_neubiorev_2018_01_002 crossref_primary_10_1002_hbm_23772 crossref_primary_10_1111_desc_13505 crossref_primary_10_1007_s00429_021_02318_4 crossref_primary_10_1523_JNEUROSCI_5466_09_2010 crossref_primary_10_1016_j_neuropsychologia_2013_02_002 crossref_primary_10_3389_fnins_2017_00640 crossref_primary_10_1080_13554794_2019_1634739 crossref_primary_10_1371_journal_pone_0014224 crossref_primary_10_1007_s11682_023_00797_z crossref_primary_10_1002_hbm_21348 crossref_primary_10_1002_hbm_23525 crossref_primary_10_1007_s11682_024_00946_y crossref_primary_10_1111_jnc_16104 crossref_primary_10_1002_hbm_23761 crossref_primary_10_1016_j_neuroimage_2013_01_046 crossref_primary_10_1016_j_jpsychires_2023_11_013 crossref_primary_10_3758_s13415_020_00827_z crossref_primary_10_1016_j_compbiomed_2023_106802 crossref_primary_10_1093_bja_aet326 crossref_primary_10_1016_j_neubiorev_2015_03_002 crossref_primary_10_1016_j_neuroimage_2015_05_069 crossref_primary_10_1002_nau_24953 crossref_primary_10_1162_jocn_a_01455 crossref_primary_10_1002_hbm_23513 crossref_primary_10_1016_j_neuroimage_2010_10_009 crossref_primary_10_1016_j_neuropsychologia_2010_01_017 crossref_primary_10_1002_hbm_22666 crossref_primary_10_1111_desc_12400 crossref_primary_10_1016_j_neuroimage_2015_04_031 crossref_primary_10_1016_j_neuropsychologia_2014_08_027 crossref_primary_10_1186_s12888_016_0890_x crossref_primary_10_1016_j_neubiorev_2015_03_009 crossref_primary_10_1016_j_neuroimage_2010_10_005 crossref_primary_10_1007_s11065_019_09418_3 crossref_primary_10_1016_j_pnpbp_2009_08_020 crossref_primary_10_1016_j_neuroimage_2013_01_074 crossref_primary_10_1038_s41598_021_98023_7 crossref_primary_10_3109_17482960802353504 crossref_primary_10_1016_j_parkreldis_2019_02_015 crossref_primary_10_3389_fnhum_2014_00814 crossref_primary_10_1016_j_neuroimage_2013_01_071 crossref_primary_10_1017_S0033291719000473 crossref_primary_10_1371_journal_pone_0175433 crossref_primary_10_1016_j_neuropsychologia_2009_09_032 crossref_primary_10_3389_fnbeh_2015_00297 crossref_primary_10_3389_fpsyg_2017_01253 crossref_primary_10_1002_hbm_25722 crossref_primary_10_1016_j_bja_2023_03_008 crossref_primary_10_1523_JNEUROSCI_3135_12_2013 crossref_primary_10_1016_j_jaac_2018_09_433 crossref_primary_10_1002_hbm_22691 crossref_primary_10_1515_revneuro_2022_0065 crossref_primary_10_1089_brain_2014_0260 crossref_primary_10_1186_1471_2202_15_19 crossref_primary_10_1038_s41386_024_01944_w crossref_primary_10_1016_j_pscychresns_2016_04_009 crossref_primary_10_1007_s11682_022_00754_2 crossref_primary_10_1016_j_neuroimage_2018_03_071 crossref_primary_10_1016_j_schres_2010_01_008 crossref_primary_10_1016_j_nicl_2013_01_005 crossref_primary_10_1007_s00429_018_1765_3 crossref_primary_10_3389_fnhum_2014_00809 crossref_primary_10_4103_0366_6999_176983 crossref_primary_10_3233_JAD_200659 crossref_primary_10_1002_hbm_23532 crossref_primary_10_1002_hbm_22689 crossref_primary_10_1016_j_neuroimage_2019_02_061 crossref_primary_10_1002_erv_2197 crossref_primary_10_1016_j_pnpbp_2009_07_025 crossref_primary_10_1177_0022034512462398 crossref_primary_10_1186_s12888_021_03187_1 crossref_primary_10_1016_j_neuroimage_2010_12_065 crossref_primary_10_1016_j_neuroimage_2023_120399 crossref_primary_10_1016_j_bandc_2014_03_013 crossref_primary_10_1002_hbm_21307 crossref_primary_10_1093_cercor_bhp244 crossref_primary_10_2337_dc15_2706 crossref_primary_10_1098_rstb_2017_0122 crossref_primary_10_1016_j_bandl_2023_105287 crossref_primary_10_1007_s12078_022_09299_6 crossref_primary_10_1016_j_bandc_2014_03_004 crossref_primary_10_1016_j_addicn_2023_100089 crossref_primary_10_3389_fnhum_2018_00190 crossref_primary_10_1016_j_neulet_2010_04_019 crossref_primary_10_1002_eat_23160 crossref_primary_10_1016_j_neuropsychologia_2012_03_011 crossref_primary_10_1016_j_nicl_2016_12_015 crossref_primary_10_1016_j_bandc_2020_105660 crossref_primary_10_1093_cercor_bhp232 crossref_primary_10_1002_hbm_22629 crossref_primary_10_1016_j_cortex_2023_08_018 crossref_primary_10_1371_journal_pone_0012233 crossref_primary_10_1016_j_fertnstert_2013_05_041 crossref_primary_10_1002_hbm_23710 crossref_primary_10_1002_hbm_23952 crossref_primary_10_1016_j_neuroimage_2019_01_006 crossref_primary_10_1016_j_pscychresns_2018_09_009 crossref_primary_10_1017_S1366728917000670 crossref_primary_10_3389_fninf_2017_00001 crossref_primary_10_1176_appi_ajp_2020_20091340 crossref_primary_10_1016_j_biopsych_2012_06_029 crossref_primary_10_1038_nn_4035 crossref_primary_10_1038_pr_2014_31 crossref_primary_10_1016_j_pscychresns_2023_111595 crossref_primary_10_1093_cercor_bhq117 crossref_primary_10_1007_s00429_024_02795_3 crossref_primary_10_1016_j_neuroimage_2021_118731 crossref_primary_10_3389_fnut_2021_760914 crossref_primary_10_1016_j_pscychresns_2019_01_012 crossref_primary_10_1186_s12888_025_06495_y crossref_primary_10_1016_j_neuropsychologia_2014_06_001 crossref_primary_10_1016_j_neuropsychologia_2024_108947 crossref_primary_10_1016_j_bandl_2014_06_003 crossref_primary_10_1093_cercor_bhn081 crossref_primary_10_1118_1_4906130 crossref_primary_10_1016_j_neuroimage_2012_09_054 crossref_primary_10_1007_s00521_020_05624_w crossref_primary_10_1016_j_neubiorev_2021_04_007 crossref_primary_10_1016_j_neuroimage_2013_02_060 crossref_primary_10_1117_1_NPh_11_1_015002 crossref_primary_10_1016_j_ajp_2020_102056 crossref_primary_10_1002_sam_11587 crossref_primary_10_1016_j_bandc_2016_07_007 crossref_primary_10_1016_j_neuroimage_2020_117350 crossref_primary_10_3233_JAD_191292 crossref_primary_10_1016_j_neuroimage_2013_02_063 crossref_primary_10_1007_s00193_024_01158_5 crossref_primary_10_1016_j_intell_2015_04_009 crossref_primary_10_1080_17470919_2010_490665 crossref_primary_10_1002_hbm_26082 crossref_primary_10_1016_j_neuroimage_2010_01_051 crossref_primary_10_1002_hbm_26085 crossref_primary_10_1016_j_neubiorev_2016_11_014 crossref_primary_10_1002_hbm_22958 crossref_primary_10_1016_j_neuroimage_2011_11_051 crossref_primary_10_1016_j_cortex_2022_02_010 crossref_primary_10_1016_j_neuroimage_2011_11_050 crossref_primary_10_1162_jocn_a_00636 crossref_primary_10_1016_j_biopsych_2015_03_027 crossref_primary_10_3389_fnbeh_2018_00270 crossref_primary_10_1523_JNEUROSCI_0003_10_2010 crossref_primary_10_1016_j_neuroimage_2018_01_067 crossref_primary_10_1016_j_neuropsychologia_2012_02_007 crossref_primary_10_1176_appi_neuropsych_12060143 crossref_primary_10_1111_ejn_12254 crossref_primary_10_1016_j_bbr_2015_05_044 crossref_primary_10_1016_j_neuropsychologia_2025_109127 crossref_primary_10_1111_j_1468_1331_2012_03854_x crossref_primary_10_1016_j_neuropsychologia_2011_08_006 crossref_primary_10_1016_j_neuroimage_2016_12_037 crossref_primary_10_1007_s11065_019_09414_7 crossref_primary_10_1016_j_neuroimage_2019_116259 crossref_primary_10_1192_bjp_bp_114_154393 crossref_primary_10_1038_mp_2011_86 crossref_primary_10_1111_pcn_12055 crossref_primary_10_1016_j_neuroimage_2012_04_005 crossref_primary_10_1016_j_neuroimage_2022_119665 crossref_primary_10_1093_scan_nsx085 crossref_primary_10_3389_fpsyg_2023_1187092 crossref_primary_10_1111_ejn_15534 crossref_primary_10_1007_s00429_014_0803_z crossref_primary_10_1002_nau_24221 crossref_primary_10_1016_j_brainres_2022_148200 crossref_primary_10_1093_schbul_sbv221 crossref_primary_10_1007_s10072_022_06272_9 crossref_primary_10_3758_s13415_019_00763_7 crossref_primary_10_3945_ajcn_113_064113 crossref_primary_10_1093_braincomms_fcab210 crossref_primary_10_1093_cercor_bhw251 crossref_primary_10_1016_j_cortex_2010_07_009 crossref_primary_10_1016_j_neubiorev_2019_09_004 crossref_primary_10_1016_j_neubiorev_2020_04_028 crossref_primary_10_1002_hbm_22727 crossref_primary_10_1016_j_neuroimage_2011_11_089 crossref_primary_10_1118_1_4773035 crossref_primary_10_1016_j_neuroimage_2016_12_052 crossref_primary_10_1016_j_nicl_2016_04_001 crossref_primary_10_1016_j_nicl_2018_01_020 crossref_primary_10_1016_j_neurobiolaging_2011_06_005 crossref_primary_10_1016_j_neubiorev_2015_02_007 crossref_primary_10_1016_j_neuroimage_2011_12_065 crossref_primary_10_1111_j_1530_0277_2010_01186_x crossref_primary_10_1016_j_heliyon_2023_e23749 crossref_primary_10_1002_hbm_25191 crossref_primary_10_1002_hbm_26280 crossref_primary_10_1038_tp_2016_218 crossref_primary_10_5665_sleep_3330 crossref_primary_10_1111_obr_12697 crossref_primary_10_1016_j_acra_2013_12_003 crossref_primary_10_1098_rstb_2013_0297 crossref_primary_10_1038_s44220_023_00128_7 crossref_primary_10_1089_cap_2015_0144 crossref_primary_10_1016_j_bpsc_2019_11_013 crossref_primary_10_1016_j_psyneuen_2018_05_031 crossref_primary_10_1016_j_dadm_2017_03_007 crossref_primary_10_1016_j_neubiorev_2020_05_004 crossref_primary_10_1016_j_pscychresns_2019_03_007 crossref_primary_10_1016_j_schres_2013_01_004 crossref_primary_10_1093_cercor_bhw273 crossref_primary_10_1093_cercor_bhab174 crossref_primary_10_1016_j_jsxm_2020_03_007 crossref_primary_10_1093_brain_awr327 crossref_primary_10_1111_bjop_12595 crossref_primary_10_1093_scan_nsx051 crossref_primary_10_1093_cercor_bhw036 crossref_primary_10_1007_s11760_022_02229_9 crossref_primary_10_1186_1471_2202_13_119 crossref_primary_10_3389_fnhum_2017_00154 crossref_primary_10_1016_j_schres_2008_12_011 crossref_primary_10_1002_acn3_438 crossref_primary_10_1016_j_neuropsychologia_2009_09_020 crossref_primary_10_1002_hbm_26029 crossref_primary_10_1177_0269881117744995 crossref_primary_10_1002_jnr_25191 crossref_primary_10_1016_j_neubiorev_2016_10_025 crossref_primary_10_1093_brain_awr117 crossref_primary_10_1016_j_brainres_2010_12_024 crossref_primary_10_1016_j_neubiorev_2019_08_012 crossref_primary_10_1080_87565641_2010_549884 crossref_primary_10_1371_journal_pone_0231669 crossref_primary_10_1007_s00221_021_06159_9 crossref_primary_10_1017_S0033291725000303 crossref_primary_10_1016_j_jalz_2011_12_006 crossref_primary_10_5665_sleep_4404 crossref_primary_10_1016_j_pscychresns_2010_12_005 crossref_primary_10_1002_hbm_20752 crossref_primary_10_1093_scan_nsx044 crossref_primary_10_3389_fnhum_2021_666179 crossref_primary_10_1038_s41537_025_00558_5 crossref_primary_10_1016_j_neuroimage_2008_04_025 crossref_primary_10_1177_1049731513515056 crossref_primary_10_1016_j_neuropsychologia_2017_11_033 crossref_primary_10_1016_j_neuroscience_2008_09_044 crossref_primary_10_1007_s10803_020_04461_z crossref_primary_10_1016_j_neuroimage_2021_118468 crossref_primary_10_1016_j_neuropsychologia_2012_11_011 crossref_primary_10_1162_netn_a_00050 crossref_primary_10_3389_fnhum_2017_00375 crossref_primary_10_1111_acer_14288 crossref_primary_10_1016_j_patcog_2011_04_015 crossref_primary_10_1159_000450711 crossref_primary_10_1007_s00429_013_0590_y crossref_primary_10_1016_j_neuroimage_2013_12_024 crossref_primary_10_3389_fnhum_2015_00567 crossref_primary_10_1097_MD_0000000000031206 crossref_primary_10_1089_brain_2011_0050 crossref_primary_10_1093_cercor_bhae075 crossref_primary_10_1007_s11517_023_02770_w crossref_primary_10_1177_153303460900800604 crossref_primary_10_1038_srep18112 crossref_primary_10_1111_nmo_15009 crossref_primary_10_1016_j_neubiorev_2012_01_003 crossref_primary_10_1016_j_neulet_2012_10_039 crossref_primary_10_1016_j_neuroimage_2008_04_240 crossref_primary_10_3389_fnhum_2020_00276 crossref_primary_10_1093_cercor_bhu217 crossref_primary_10_1016_j_jpsychires_2011_01_002 crossref_primary_10_1016_j_nicl_2012_11_004 crossref_primary_10_1016_j_neubiorev_2010_01_009 crossref_primary_10_1016_j_neuroimage_2018_10_015 crossref_primary_10_1097_j_pain_0000000000002681 crossref_primary_10_1016_j_nicl_2014_11_004 crossref_primary_10_1186_s12864_017_4124_5 crossref_primary_10_1016_j_neuroimage_2022_119473 crossref_primary_10_1016_j_neunet_2020_01_027 crossref_primary_10_1016_j_nicl_2014_11_011 crossref_primary_10_3389_fnhum_2014_00344 crossref_primary_10_1002_brb3_3046 crossref_primary_10_1016_j_neuroimage_2010_02_023 crossref_primary_10_1073_pnas_1904975116 crossref_primary_10_1016_j_neubiorev_2023_105393 crossref_primary_10_1038_s41598_019_40188_3 crossref_primary_10_1017_S0033291710001972 crossref_primary_10_1093_cercor_bhs276 crossref_primary_10_1007_s00429_010_0298_1 crossref_primary_10_1523_JNEUROSCI_5923_10_2011 crossref_primary_10_1093_schbul_sbad044 crossref_primary_10_1093_scan_nsw165 crossref_primary_10_3758_s13415_011_0083_5 crossref_primary_10_1371_journal_pone_0167276 crossref_primary_10_1016_j_jecp_2024_106072 crossref_primary_10_1002_ca_23244 crossref_primary_10_1016_j_neubiorev_2023_105165 crossref_primary_10_3389_fnhum_2015_00585 crossref_primary_10_3389_fpsyg_2022_868001 crossref_primary_10_1371_journal_pone_0136553 crossref_primary_10_1007_s12013_014_0138_7 crossref_primary_10_1093_cercor_bht155 crossref_primary_10_1371_journal_pone_0246042 crossref_primary_10_1016_j_neuroimage_2014_07_058 crossref_primary_10_1002_hbm_25170 crossref_primary_10_1016_j_cortex_2014_11_012 crossref_primary_10_1038_s41562_022_01371_1 crossref_primary_10_1111_j_2044_8295_2011_02073_x crossref_primary_10_1007_s00429_015_1060_5 crossref_primary_10_1016_j_neubiorev_2017_04_027 crossref_primary_10_1016_j_cortex_2018_03_011 crossref_primary_10_1016_j_neuroscience_2014_07_076 crossref_primary_10_1016_j_neuroimage_2010_02_048 crossref_primary_10_3389_fnagi_2022_966525 crossref_primary_10_1016_j_neubiorev_2023_105171 crossref_primary_10_1111_jsr_12857 crossref_primary_10_3758_s13415_014_0329_0 crossref_primary_10_1007_s00429_012_0467_5 crossref_primary_10_1192_bjp_bp_108_055046 crossref_primary_10_1002_hbm_24070 crossref_primary_10_1016_j_neuroimage_2020_116858 crossref_primary_10_1016_j_neubiorev_2021_01_014 crossref_primary_10_1016_j_neurobiolaging_2022_06_009 crossref_primary_10_1016_j_biopsycho_2019_04_006 crossref_primary_10_1007_s10548_015_0426_6 crossref_primary_10_1093_scan_nsw142 crossref_primary_10_1162_imag_a_00355 crossref_primary_10_1016_j_nicl_2015_09_002 crossref_primary_10_9758_cpn_2021_19_3_449 crossref_primary_10_1016_j_neubiorev_2021_01_010 crossref_primary_10_1038_npp_2009_175 crossref_primary_10_1016_j_neubiorev_2020_07_001 crossref_primary_10_1007_s11682_018_9922_0 crossref_primary_10_1016_j_neubiorev_2019_06_027 crossref_primary_10_1002_brb3_540 crossref_primary_10_1098_rstb_2008_0155 crossref_primary_10_1002_hbm_26444 crossref_primary_10_1186_s12993_016_0100_5 crossref_primary_10_1016_j_neuroimage_2022_119204 crossref_primary_10_1016_j_nicl_2014_12_006 crossref_primary_10_1080_87565641_2012_702826 crossref_primary_10_3389_fnhum_2016_00333 crossref_primary_10_3389_fpsyg_2024_1451431 crossref_primary_10_1371_journal_pone_0007200 crossref_primary_10_3389_fneur_2025_1501419 crossref_primary_10_1038_s41598_018_21449_z crossref_primary_10_1016_j_cortex_2013_05_011 crossref_primary_10_1016_j_neulet_2014_12_007 crossref_primary_10_1017_S0033291717001957 crossref_primary_10_1111_ejn_15393 crossref_primary_10_1016_j_neubiorev_2013_10_008 crossref_primary_10_1002_hbm_24018 crossref_primary_10_1016_j_neuroimage_2021_118079 crossref_primary_10_1002_hbm_25105 crossref_primary_10_1016_j_neuroimage_2012_04_060 crossref_primary_10_1016_j_neubiorev_2013_10_002 crossref_primary_10_1093_ijnp_pyv094 crossref_primary_10_1038_s41398_021_01670_7 crossref_primary_10_1016_j_neubiorev_2023_105355 crossref_primary_10_1111_1460_6984_12987 crossref_primary_10_1002_hbm_24493 crossref_primary_10_1016_j_neubiorev_2018_10_016 crossref_primary_10_1002_hbm_24496 crossref_primary_10_14581_jer_18006 crossref_primary_10_1038_s41598_021_84804_7 crossref_primary_10_1177_0269881113494106 crossref_primary_10_1007_s11682_015_9456_7 crossref_primary_10_1007_s12530_017_9178_8 crossref_primary_10_3233_JIN_170015 crossref_primary_10_1093_schbul_sbp073 crossref_primary_10_1002_aur_235 crossref_primary_10_2174_1573405615666190404163233 crossref_primary_10_1007_s00787_017_0964_4 crossref_primary_10_1016_j_neuroscience_2012_03_028 crossref_primary_10_1038_srep27444 crossref_primary_10_3758_s13415_014_0275_x crossref_primary_10_1016_j_neurobiolaging_2013_10_079 crossref_primary_10_1007_s11682_017_9756_1 crossref_primary_10_1016_j_pscychresns_2017_03_018 crossref_primary_10_1093_scan_nst081 crossref_primary_10_1016_j_neuropsychologia_2024_109003 crossref_primary_10_1111_odi_12819 crossref_primary_10_1016_j_neuroimage_2013_12_040 crossref_primary_10_1093_cercor_bhu046 crossref_primary_10_1038_s41398_020_01115_7 crossref_primary_10_1016_j_neuroimage_2012_05_053 crossref_primary_10_1002_da_22478 crossref_primary_10_1002_hbm_20911 crossref_primary_10_1111_jnc_15990 crossref_primary_10_1016_j_neubiorev_2014_06_006 crossref_primary_10_1038_s41598_020_57682_8 crossref_primary_10_1007_s00429_016_1239_4 crossref_primary_10_1016_j_jad_2024_01_038 crossref_primary_10_1016_j_heares_2014_10_013 crossref_primary_10_1002_mds_28376 crossref_primary_10_1016_j_dcn_2017_08_002 crossref_primary_10_1093_scan_nst089 crossref_primary_10_1002_ana_25566 crossref_primary_10_3389_fnhum_2023_1085831 crossref_primary_10_1002_hbm_24031 crossref_primary_10_1016_j_neubiorev_2019_06_012 crossref_primary_10_1111_psyp_14312 crossref_primary_10_1016_j_neuropsychologia_2016_05_025 crossref_primary_10_3389_fpsyg_2023_1136983 crossref_primary_10_1016_j_neuropsychologia_2020_107340 crossref_primary_10_1016_j_jaacop_2024_04_001 crossref_primary_10_1016_j_neuroimage_2013_11_001 crossref_primary_10_1016_j_neuropsychologia_2024_109006 crossref_primary_10_1371_journal_pone_0206889 crossref_primary_10_1002_brb3_329 |
| Cites_doi | 10.1007/978-94-011-4996-9_26 10.1016/B978-012692535-7/50078-1 10.1016/B978-012077790-7/50041-2 10.1002/hbm.460030303 10.1136/jamia.2001.0080401 10.1126/science.289.5478.457 10.1007/BFb0056301 10.1098/rstb.2001.0915 10.1097/00004728-199403000-00005 10.1126/science.7973682 10.1038/nrn756 10.1038/35072584 10.1006/nimg.2002.1132 10.1016/j.neuroimage.2004.12.007 10.1109/NSSMIC.1993.373602 10.1006/nimg.1995.1012 10.1001/archpsyc.61.7.720 10.1002/hbm.460030302 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 10.1002/hbm.460030305 10.1016/S1053-8119(01)91428-4 10.1017/S0305004100030401 10.1016/j.neuroimage.2004.01.022 |
| ContentType | Journal Article |
| Copyright | Copyright © 2007 Wiley‐Liss, Inc. 2007 INIST-CNRS Copyright 2007 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2007 Wiley‐Liss, Inc. – notice: 2007 INIST-CNRS – notice: Copyright 2007 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/hbm.20345 |
| DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Neurosciences Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | Bias between MNI and Talairach Coordinates |
| EISSN | 1097-0193 |
| EndPage | 1205 |
| ExternalDocumentID | 10.1002/hbm.20345 PMC6871323 17266101 19194889 10_1002_hbm_20345 HBM20345 ark_67375_WNG_LDJGC5WV_V |
| Genre | article Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institute on Drug Abuse funderid: P20 MH/DA52176 – fundername: National Institute of Mental Health – fundername: National Institute of Mental Health funderid: 5 T32 MH65728‐03 – fundername: NIDA NIH HHS grantid: P20 MH/DA52176 – fundername: NIMH NIH HHS grantid: 5 32 MH65728-03 – fundername: National Institute on Drug Abuse grantid: P20 MH/DA52176 – fundername: National Institute of Mental Health grantid: 5 T32 MH65728‐03 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAFWJ AAMMB AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS AEFGJ AEIMD AENEX AFBPY AFGKR AFKRA AFPKN AFRAH AFZJQ AGQPQ AGXDD AHMBA AIDQK AIDYY AIQQE AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQQKQ PUEGO Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE ALIPV AAYXX CITATION IQODW 33P AEUQT AFPWT C45 CGR CUY CVF ECM EIF NPM RWD RWI WRC WUP 7TK 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5785-74c5ea5685e3b14ab30e5ddb29bbddfee18d887da9daea59cb55b65d7db412dd3 |
| IEDL.DBID | DR2 |
| ISSN | 1065-9471 1097-0193 |
| IngestDate | Sun Oct 26 04:08:47 EDT 2025 Tue Sep 30 16:50:26 EDT 2025 Tue Oct 21 13:06:03 EDT 2025 Sun Sep 28 00:13:41 EDT 2025 Wed Feb 19 01:45:53 EST 2025 Mon Jul 21 09:16:18 EDT 2025 Wed Oct 01 05:04:30 EDT 2025 Thu Apr 24 23:11:58 EDT 2025 Wed Mar 05 09:12:30 EST 2025 Sun Sep 21 06:19:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Talairach coordinates spatial normalization Nervous system diseases ICBM-152 template Radiodiagnosis MNI coordinates MNI-305 template Bias Central nervous system reference frame bias Encephalon |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2007 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5785-74c5ea5685e3b14ab30e5ddb29bbddfee18d887da9daea59cb55b65d7db412dd3 |
| Notes | istex:88A81C58DD252DEB49C6F49F7090BDACD7CF1040 National Institute on Drug Abuse - No. P20 MH/DA52176 ArticleID:HBM20345 National Institute of Mental Health National Institute of Mental Health - No. 5 T32 MH65728-03 ark:/67375/WNG-LDJGC5WV-V ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.20345?download=true |
| PMID | 17266101 |
| PQID | 20476257 |
| PQPubID | 23462 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1002_hbm_20345 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6871323 proquest_miscellaneous_68407431 proquest_miscellaneous_20476257 pubmed_primary_17266101 pascalfrancis_primary_19194889 crossref_citationtrail_10_1002_hbm_20345 crossref_primary_10_1002_hbm_20345 wiley_primary_10_1002_hbm_20345_HBM20345 istex_primary_ark_67375_WNG_LDJGC5WV_V |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2007 |
| PublicationDateYYYYMMDD | 2007-11-01 |
| PublicationDate_xml | – month: 11 year: 2007 text: November 2007 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum. Brain Mapp |
| PublicationYear | 2007 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss |
| References | Talairach J,Tournoux P ( 1988): Co-planar stereotaxic atlas of the human brain: 3-Dimensional proportional system-An approach to cerebral imaging. New York: Thieme. Carmack PS,Spense J,Gunst RF,Schucany WR,Woodward WA,Haley RW ( 2004): Improved agreement between Talairach and MNI coordinate spaces in deep brain regions. NeuroImage 22: 367-371. Calder AJ,LAwerence AD,Young AW ( 2001): Neuropsychology of fear and loathing. Nat Rev Neurosci 2: 353-363. Pujol J,Soriano-Mas C,Alonso P,Cardoner N,Menchon JM,Deus J,Vallejo J ( 2004): Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry 61: 720-730. Collins DL,Neelin P,Peters TM,Evans AE ( 1994): Automatic 3D intersubject registration of MR columetric data in standardized Talairach space. J Comput Assist Tomogr 18: 192-205. Fox PT,Lancaster JL ( 1995): Neuroscience on the net. Science 266: 994-995. Jenkinson M,Bannister PR,Brady JM,Smith SM ( 2002): Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17: 825-841. Brett M,Johnsrude IS,Owen AM ( 2002): The problem of functional localization in the human brain. Nat Rev Neorosci 3: 243-249. Fox PT ( 1995): Spatial normalization: Origins, objectives, applications and alternatives. Hum Brain Mapp 3: 161-164. Lancaster JL,Glass TG,Lankipalli BR,Downs H,Mayberg H,Fox PT ( 1995): A modality-independent approach to spatial normalization. Hum Brain Mapp 3: 209-223. Lancaster JL,Woldorff MG,Parsons LM,Liotti M,Freitas CS,Rainey L,Kochunov PV,Nickerson D,Mikiten SA,Fox PT ( 2000): Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10: 120-131. Duncan J,Seitz RJ,Kolodny J,Bor D,Herzog H,Ahmed A,Newell FN,Emslie H ( 2000): A neural basis for general intelligence. Science 289: 457-460. Mazziotta J,Toga A,Evans A,Fox P,Lancaster J,Zilles K,Simpson G,Woods R,Paus T,Pike B,Holmes C,Collins L,Thompson P,MacDonald D,Schormann T,Amunts K,Palomero-Gallagher N,Parsons L,Narr K,Kabani N,LeGoualher G,Boomsma D,Cannon T,Kawashima R,Mazoyer B ( 2001b): A probabilistic atlas and reference system for the human brain. Philos Trans R Soc Lond B Biol Sci 356: 1293-1322. Penrose R ( 1955): A generalized inverse for matrices. Proc Camb Phil Soc 51: 406-413. Brett M,Christoff K,Cusack R,Lancaster J ( 2001): Using the Talairach atlas with the MNI template. NeuroImage 13: S85. Mazziotta JC,Toga AW,Evans A,Lancaster JL,Fox PT ( 1995): A probabilistic atlas of the human brain: Theory and rational for its development. NeuroImage 2: 89-101. Friston KJ,Ashburner J,Frith CD,Poline J-B,Heather JD,Frackowiak RSJ ( 1995): Spatial registration and normalization of images. Hum Brain Mapp 2: 165-189. Chau W,McIntosh AR ( 2005): The Talariach coordinate of a point in the MNI space: How to interpret it. NeuroImage 25: 408-416. Lancaster JL,Fox PT,Downs H,Nickerson D,Hander T,El Mallah M,Zamarripa F ( 1999): Global spatial normalization of the human brain using convex hulls. J Nucl Med 40: 942-955. Mazziotta J,Toga A,Evans A,Fox P,Lancaster J,Zilles K,Simpson G,Woods R,Paus T,Pike B,Holmes C,Collins L,Thompson P,MacDonald D,Schormann T,Amunts K,Palomero-Gallagher N,Parsons L,Narr K,Kabani N,LeGoualher G,Boomsma D,Cannon T,Kawashima R,Mazoyer B. ( 2001a): A four-dimensional atlas of the human brain. J Am Med Inform Assoc 8: 401-430. 2004; 22 2002; 17 2004; 61 2000; 289 2000 2000; 10 2001b; 356 1998 2002; 3 1994 2001; 2 1993 1994; 18 1995; 266 1999; 40 1995; 2 2001; 13 1955; 51 1995; 3 2001a; 8 1999 2005; 25 1988 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 Fox PT (e_1_2_7_12_1) 1994 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 Lancaster JL (e_1_2_7_18_1) 1999; 40 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 Talairach J (e_1_2_7_27_1) 1988 |
| References_xml | – reference: Lancaster JL,Woldorff MG,Parsons LM,Liotti M,Freitas CS,Rainey L,Kochunov PV,Nickerson D,Mikiten SA,Fox PT ( 2000): Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10: 120-131. – reference: Calder AJ,LAwerence AD,Young AW ( 2001): Neuropsychology of fear and loathing. Nat Rev Neurosci 2: 353-363. – reference: Talairach J,Tournoux P ( 1988): Co-planar stereotaxic atlas of the human brain: 3-Dimensional proportional system-An approach to cerebral imaging. New York: Thieme. – reference: Friston KJ,Ashburner J,Frith CD,Poline J-B,Heather JD,Frackowiak RSJ ( 1995): Spatial registration and normalization of images. Hum Brain Mapp 2: 165-189. – reference: Fox PT,Lancaster JL ( 1995): Neuroscience on the net. Science 266: 994-995. – reference: Jenkinson M,Bannister PR,Brady JM,Smith SM ( 2002): Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17: 825-841. – reference: Brett M,Christoff K,Cusack R,Lancaster J ( 2001): Using the Talairach atlas with the MNI template. NeuroImage 13: S85. – reference: Brett M,Johnsrude IS,Owen AM ( 2002): The problem of functional localization in the human brain. Nat Rev Neorosci 3: 243-249. – reference: Collins DL,Neelin P,Peters TM,Evans AE ( 1994): Automatic 3D intersubject registration of MR columetric data in standardized Talairach space. J Comput Assist Tomogr 18: 192-205. – reference: Mazziotta JC,Toga AW,Evans A,Lancaster JL,Fox PT ( 1995): A probabilistic atlas of the human brain: Theory and rational for its development. NeuroImage 2: 89-101. – reference: Penrose R ( 1955): A generalized inverse for matrices. Proc Camb Phil Soc 51: 406-413. – reference: Duncan J,Seitz RJ,Kolodny J,Bor D,Herzog H,Ahmed A,Newell FN,Emslie H ( 2000): A neural basis for general intelligence. Science 289: 457-460. – reference: Carmack PS,Spense J,Gunst RF,Schucany WR,Woodward WA,Haley RW ( 2004): Improved agreement between Talairach and MNI coordinate spaces in deep brain regions. NeuroImage 22: 367-371. – reference: Pujol J,Soriano-Mas C,Alonso P,Cardoner N,Menchon JM,Deus J,Vallejo J ( 2004): Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry 61: 720-730. – reference: Chau W,McIntosh AR ( 2005): The Talariach coordinate of a point in the MNI space: How to interpret it. NeuroImage 25: 408-416. – reference: Mazziotta J,Toga A,Evans A,Fox P,Lancaster J,Zilles K,Simpson G,Woods R,Paus T,Pike B,Holmes C,Collins L,Thompson P,MacDonald D,Schormann T,Amunts K,Palomero-Gallagher N,Parsons L,Narr K,Kabani N,LeGoualher G,Boomsma D,Cannon T,Kawashima R,Mazoyer B. ( 2001a): A four-dimensional atlas of the human brain. J Am Med Inform Assoc 8: 401-430. – reference: Lancaster JL,Glass TG,Lankipalli BR,Downs H,Mayberg H,Fox PT ( 1995): A modality-independent approach to spatial normalization. Hum Brain Mapp 3: 209-223. – reference: Fox PT ( 1995): Spatial normalization: Origins, objectives, applications and alternatives. Hum Brain Mapp 3: 161-164. – reference: Lancaster JL,Fox PT,Downs H,Nickerson D,Hander T,El Mallah M,Zamarripa F ( 1999): Global spatial normalization of the human brain using convex hulls. J Nucl Med 40: 942-955. – reference: Mazziotta J,Toga A,Evans A,Fox P,Lancaster J,Zilles K,Simpson G,Woods R,Paus T,Pike B,Holmes C,Collins L,Thompson P,MacDonald D,Schormann T,Amunts K,Palomero-Gallagher N,Parsons L,Narr K,Kabani N,LeGoualher G,Boomsma D,Cannon T,Kawashima R,Mazoyer B ( 2001b): A probabilistic atlas and reference system for the human brain. Philos Trans R Soc Lond B Biol Sci 356: 1293-1322. – start-page: 1115 year: 1998 end-page: 1124 – volume: 13 start-page: S85 year: 2001 article-title: Using the Talairach atlas with the MNI template publication-title: NeuroImage – volume: 3 start-page: 243 year: 2002 end-page: 249 article-title: The problem of functional localization in the human brain publication-title: Nat Rev Neorosci – volume: 266 start-page: 994 year: 1995 end-page: 995 article-title: Neuroscience on the net publication-title: Science – start-page: 27 year: 1999 end-page: 44 – volume: 17 start-page: 825 year: 2002 end-page: 841 article-title: Improved optimisation for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – volume: 51 start-page: 406 year: 1955 end-page: 413 article-title: A generalized inverse for matrices publication-title: Proc Camb Phil Soc – volume: 18 start-page: 192 year: 1994 end-page: 205 article-title: Automatic 3D intersubject registration of MR columetric data in standardized Talairach space publication-title: J Comput Assist Tomogr – volume: 2 start-page: 89 year: 1995 end-page: 101 article-title: A probabilistic atlas of the human brain: Theory and rational for its development publication-title: NeuroImage – volume: 2 start-page: 165 year: 1995 end-page: 189 article-title: Spatial registration and normalization of images publication-title: Hum Brain Mapp – volume: 3 start-page: 209 year: 1995 end-page: 223 article-title: A modality‐independent approach to spatial normalization publication-title: Hum Brain Mapp – volume: 61 start-page: 720 year: 2004 end-page: 730 article-title: Mapping structural brain alterations in obsessive‐compulsive disorder publication-title: Arch Gen Psychiatry – year: 1998 – start-page: 555 year: 2000 end-page: 567 – volume: 10 start-page: 120 year: 2000 end-page: 131 article-title: Automated Talairach atlas labels for functional brain mapping publication-title: Hum Brain Mapp – volume: 22 start-page: 367 year: 2004 end-page: 371 article-title: Improved agreement between Talairach and MNI coordinate spaces in deep brain regions publication-title: NeuroImage – volume: 2 start-page: 353 year: 2001 end-page: 363 article-title: Neuropsychology of fear and loathing publication-title: Nat Rev Neurosci – year: 1988 – start-page: 98 year: 1994 end-page: 106 – volume: 40 start-page: 942 year: 1999 end-page: 955 article-title: Global spatial normalization of the human brain using convex hulls publication-title: J Nucl Med – volume: 289 start-page: 457 year: 2000 end-page: 460 article-title: A neural basis for general intelligence publication-title: Science – start-page: 1813 year: 1993 end-page: 1817 – volume: 8 start-page: 401 year: 2001a end-page: 430 article-title: A four‐dimensional atlas of the human brain publication-title: J Am Med Inform Assoc – volume: 25 start-page: 408 year: 2005 end-page: 416 article-title: The Talariach coordinate of a point in the MNI space: How to interpret it publication-title: NeuroImage – volume: 3 start-page: 161 year: 1995 end-page: 164 article-title: Spatial normalization: Origins, objectives, applications and alternatives publication-title: Hum Brain Mapp – volume: 356 start-page: 1293 year: 2001b end-page: 1322 article-title: A probabilistic atlas and reference system for the human brain publication-title: Philos Trans R Soc Lond B Biol Sci – ident: e_1_2_7_14_1 doi: 10.1007/978-94-011-4996-9_26 – ident: e_1_2_7_2_1 doi: 10.1016/B978-012692535-7/50078-1 – ident: e_1_2_7_20_1 doi: 10.1016/B978-012077790-7/50041-2 – ident: e_1_2_7_15_1 doi: 10.1002/hbm.460030303 – ident: e_1_2_7_23_1 doi: 10.1136/jamia.2001.0080401 – ident: e_1_2_7_9_1 doi: 10.1126/science.289.5478.457 – ident: e_1_2_7_26_1 doi: 10.1007/BFb0056301 – ident: e_1_2_7_22_1 doi: 10.1098/rstb.2001.0915 – ident: e_1_2_7_8_1 doi: 10.1097/00004728-199403000-00005 – ident: e_1_2_7_13_1 doi: 10.1126/science.7973682 – ident: e_1_2_7_4_1 doi: 10.1038/nrn756 – ident: e_1_2_7_5_1 doi: 10.1038/35072584 – ident: e_1_2_7_16_1 doi: 10.1006/nimg.2002.1132 – ident: e_1_2_7_7_1 doi: 10.1016/j.neuroimage.2004.12.007 – ident: e_1_2_7_10_1 doi: 10.1109/NSSMIC.1993.373602 – volume-title: Co‐planar stereotaxic atlas of the human brain: 3‐Dimensional proportional system—An approach to cerebral imaging year: 1988 ident: e_1_2_7_27_1 – ident: e_1_2_7_21_1 doi: 10.1006/nimg.1995.1012 – ident: e_1_2_7_25_1 doi: 10.1001/archpsyc.61.7.720 – ident: e_1_2_7_11_1 doi: 10.1002/hbm.460030302 – ident: e_1_2_7_19_1 doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 – volume: 40 start-page: 942 year: 1999 ident: e_1_2_7_18_1 article-title: Global spatial normalization of the human brain using convex hulls publication-title: J Nucl Med – ident: e_1_2_7_17_1 doi: 10.1002/hbm.460030305 – ident: e_1_2_7_3_1 doi: 10.1016/S1053-8119(01)91428-4 – start-page: 98 volume-title: Advances in Functional Neuroimaging: Technical Foundations year: 1994 ident: e_1_2_7_12_1 – ident: e_1_2_7_24_1 doi: 10.1017/S0305004100030401 – ident: e_1_2_7_6_1 doi: 10.1016/j.neuroimage.2004.01.022 |
| SSID | ssj0011501 |
| Score | 2.5036957 |
| Snippet | MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM‐152 template were compared to Talairach coordinates determined using a landmark‐based... MNI coordinates determined using SPM2 and FSL/ FLIRT with the ICBM‐152 template were compared to Talairach coordinates determined using a landmark‐based... MNI coordinates determined using SPM2 and FSL/FLIRT with the ICBM-152 template were compared to Talairach coordinates determined using a landmark-based... |
| SourceID | unpaywall pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1194 |
| SubjectTerms | Algorithms Bias Biological and medical sciences Brain - anatomy & histology Brain - pathology Brain Mapping - methods Electrodiagnosis. Electric activity recording Fourier Analysis Humans ICBM-152 template Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging - methods Medical sciences MNI coordinates MNI-305 template Models, Anatomic Nervous system Nervous system (semeiology, syndromes) Nervous system as a whole Neurology Pattern Recognition, Automated Radiodiagnosis. Nmr imagery. Nmr spectrometry reference frame bias Reference Values Software spatial normalization Stereotaxic Techniques Talairach coordinates |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4arQS8cNm4hMuwAE17ycjFTpoHhNrC1k2k4mFdx1Nkxw6tFtKqF0H3xE_gN_JL8HHSjsKGeOAtko9OlJPv2J_t488ALx1BZUSFa3uUOzZNKbO5prW28DMpMJ9ChgeF427Q6dGjU3a6AfHyLEypD7FacMPMMP01JvhYZmU_X-3ue68GAg-T-5S9kSgtP-Ly9WwyV9egHjBNzWtQ73U_ND-aHc-A2VE1AXNQgVQzl6XS0K-e1sanOob6K9ZL8qkOWVbedXEZGf2zpvLGvBjzxRee5-u81wxc-7ehWH5yWa9ytjefib30_Dc1yP8Wkztwq6K4pFli8i5sqGITtpqFnt5_XpAdYopOzWr-JlyPq739Lei3hnxKqroxEncPCS8kOeY5H054OiDpSM-ThwVyY93C88W5kgTL9j8RTWLJYbsV__j2XRMFIvDaC4KiW7m2vge9_XfH7Y5dXftgp6i8Y4c0ZYqzoMGUL1zKhe8oJqXwIiGkzJRyG1J3jZJHkmu7KBWMiYDJUArqelL696FWjAr1EAjlfpoqGmSucqgIVMSV7_IsbTSE44qAW7C7_NlJWmmi49UceVKqOXuJjmZiomnB85XpuBQCucxoxyBmZcEnZ1g5F7Kk3z1I3r89Omiz_klyYsH2GqQuXEZupPvUyIJnS4wlOuFxF4cXajSf6hdRPYCx8GoL1O9BYmjBgxKTF95D5GOObgnX0LoyQLHx9ZZiODCi44GeWfueb8GLFa7_FoddA9OrLZJOKzYPj_7J4WO4aRbVzSHQJ1BDRD_VbHAmtqsc_wksY2Jg priority: 102 providerName: Unpaywall |
| Title | Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template |
| URI | https://api.istex.fr/ark:/67375/WNG-LDJGC5WV-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.20345 https://www.ncbi.nlm.nih.gov/pubmed/17266101 https://www.proquest.com/docview/20476257 https://www.proquest.com/docview/68407431 https://pubmed.ncbi.nlm.nih.gov/PMC6871323 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.20345?download=true |
| UnpaywallVersion | publishedVersion |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0193 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB1VrQS8cGm5uEBYAar64taXXTsWT0mgTSsSIdQ0RUKyZi8hUV2nykWQPvEJfCNfwu46cRRoEeLN0p7Y8mRm98x65izAa49TmVDuuwFFz6WCMhc1rXV52JPcxFPMTKNwqx01O_T4jJ2twZtFL0yhD1FuuJnIsPO1CXDk4_2laGifm0bykJoGcz-MbDr1sZSOMkTHJlt6iXUTPQMvVIW8YL_85cpatGHM-s3URuJYm6dXnGtxHfH8s37y9jS_xNlXzLJVjmsXqYN78HnxekVtyvnedML3xNVvyo__-f734e6cvJJa4W0PYE3lm7BVy3XifjEjO8SWk9p9-k241Zp_td-Cbn2AYzKvCCOt9hHBXJITzHAwQtEnYqgz4EFuWK8ewWx2pSQxBflfiKan5KhRb_38_kNTAMLNgRbEyGllGv0QOgfvThpNd36ggyuMpo4bU8EUsqjKVMh9ijz0FJOSBwnnUvaU8qtST3oSE4kalwjOGI-YjCWnfiBl-AjW82GungChGAqhaNTzlUd5pBJUoY89Ua1yz-cROrC7-GtTMVc7N4duZGmh0xyk2n6ptZ8DL0voZSHxcR1ox_pHicDRuamJi1nabR-m798eHzZY9zQ9daCy4kDLWyZ-omfLxIEXC49KdSib7zOYq-F0rB9E9dLE4psRRpnHUD4HHhceuLx7bJiWp0fiFd8sAUZGfHUkH_StnHikc-YwCB14VXrx3-ywa53yZkTarLfsxfa_Q5_CHbtnbns8n8H6ZDRVzzXZm_CKjeoKbHTaH2qffgGU81Q5 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am8R44bIBC5fNAjTtJVsudtJIvKyFrR1NH1C37mWK7Nil1bJ06kXQPfET-I38EnycNlVhQ4i3SP6SKCfn2N-xjz8DvHMElREVru1R7tg0pczmmtbawu9KgfEUMtwoHLeC-ik9OWfnK_B-vhem0IcoJ9wwMkx_jQGOE9IHC9XQnsCd5D5l92CNBjpPQUr0uRSPQqpj0i09yNqR7oPnukKOd1DeujQaraFhv2F1JB9pA3WLky1uo55_VlCuT_JrPv3Ks2yZ5Zph6ugRXMw_sKhOudyfjMV-evOb9uP_WuAxPJzxV3JYONwTWFH5Bmwe5jp3v5qSXWIqSs1U_Qbcj2cL95vQqfb5iMyKwkjcahCeS9LmGe8Pedoj6UAnwf0cia9u4dn0RkmCNflfiGaopFGrxj-__9AsgAg804Kgolam0U_h9Ohju1a3Z2c62CnK6tghTZniLKgw5QuXcuE7ikkpvEgIKbtKuRWp-z3JI8k1LkoFYyJgMpSCup6U_jNYzQe52gJCuZ-migZdVzlUBCriynd5N61UhOOKgFuwN_-3SToTPMdzN7KkkGr2Em2_xNjPgjcl9LpQ-bgNtGscpETw4SWWxYUs6bSOk-aHk-Ma65wlZxZsL3nQ4pGRG-kOM7JgZ-5SiY5mXKLhuRpMRvpFVI9OLLwbgeI8yPoseF644OLpIZItR7eES85ZAlBJfLkl7_eMonig02bf8y14W7rx3-ywZ7zybkRSr8bm4sW_Q3dgvd6Om0mz0fr0Eh6YKXSz5fMVrI6HE_Vac7-x2DYh_gv77Vaq |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amzR4GbABC5fNAjTtJVsudtJIvKwtXTvWCqFt3csU-RZaLaRVL4LuiZ_Ab-SXYDtpqsKGEG-R_CVRTs6xP9vnfAZ46zAsIsxc28PUsTHHxKaK1trMTwTT8RQSXSjc7gTNc3xySS5X4N28FibXhygX3HRkmP5aB7gciuRwoRraY7qS3MfkHqxhElV0Ql_9UykepamOmW6pQdaOVB881xVyvMPy1qXRaE0b9pvOjqRjZaAkP9niNur5Zwbl_Wk2pLOvNE2XWa4ZphoP4Wr-gXl2yvXBdMIO-M1v2o__a4FHsFHwV3SUO9xjWJHZJmwdZWru_mWG9pDJKDVL9Zuw3i427regW-3TMSqSwlC700I0E-iMprQ_oryH-EBNgvuZJr6qhaazGymQzsn_jBRDRa1atf3z-w_FAhDTZ1ograiVKvQTOG-8P6s17eJMB5trWR07xJxISoIKkT5zMWW-I4kQzIsYEyKR0q0I1e8JGgmqcBFnhLCAiFAw7HpC-E9hNRtkchsQpj7nEgeJKx3MAhlR6bs04ZUKc1wWUAv25_825oXguT53I41zqWYvVvaLjf0seF1Ch7nKx22gPeMgJYKOrnVaXEjibuc4Pq2fHNdI9yK-sGBnyYMWj4zcSHWYkQW7c5eKVTTrLRqaycF0rF6E1ehEwrsRWpxHsz4LnuUuuHh6qMmWo1rCJecsAVpJfLkl6_eMonigps2-51vwpnTjv9lh33jl3Yi4WW2bi-f_Dt2F9Y_1Rnza6nx4AQ_MCrqp-HwJq5PRVL5S1G_CdkyE_wIyPVYu |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4arQS8cNm4hMuwAE17ycjFTpoHhNrC1k2k4mFdx1Nkxw6tFtKqF0H3xE_gN_JL8HHSjsKGeOAtko9OlJPv2J_t488ALx1BZUSFa3uUOzZNKbO5prW28DMpMJ9ChgeF427Q6dGjU3a6AfHyLEypD7FacMPMMP01JvhYZmU_X-3ue68GAg-T-5S9kSgtP-Ly9WwyV9egHjBNzWtQ73U_ND-aHc-A2VE1AXNQgVQzl6XS0K-e1sanOob6K9ZL8qkOWVbedXEZGf2zpvLGvBjzxRee5-u81wxc-7ehWH5yWa9ytjefib30_Dc1yP8Wkztwq6K4pFli8i5sqGITtpqFnt5_XpAdYopOzWr-JlyPq739Lei3hnxKqroxEncPCS8kOeY5H054OiDpSM-ThwVyY93C88W5kgTL9j8RTWLJYbsV__j2XRMFIvDaC4KiW7m2vge9_XfH7Y5dXftgp6i8Y4c0ZYqzoMGUL1zKhe8oJqXwIiGkzJRyG1J3jZJHkmu7KBWMiYDJUArqelL696FWjAr1EAjlfpoqGmSucqgIVMSV7_IsbTSE44qAW7C7_NlJWmmi49UceVKqOXuJjmZiomnB85XpuBQCucxoxyBmZcEnZ1g5F7Kk3z1I3r89Omiz_klyYsH2GqQuXEZupPvUyIJnS4wlOuFxF4cXajSf6hdRPYCx8GoL1O9BYmjBgxKTF95D5GOObgnX0LoyQLHx9ZZiODCi44GeWfueb8GLFa7_FoddA9OrLZJOKzYPj_7J4WO4aRbVzSHQJ1BDRD_VbHAmtqsc_wksY2Jg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bias+between+MNI+and+Talairach+coordinates+analyzed+using+the+ICBM%E2%80%90152+brain+template&rft.jtitle=Human+brain+mapping&rft.au=Lancaster%2C+Jack+L.&rft.au=Tordesillas%E2%80%90Guti%C3%A9rrez%2C+Diana&rft.au=Martinez%2C+Michael&rft.au=Salinas%2C+Felipe&rft.date=2007-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=28&rft.issue=11&rft.spage=1194&rft.epage=1205&rft_id=info:doi/10.1002%2Fhbm.20345&rft.externalDBID=10.1002%252Fhbm.20345&rft.externalDocID=HBM20345 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |