一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法

从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键。本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出了一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法。通过主成分分析计算点云特征,构建特征直方图,选取可靠种子点;利用提出的局部点云法向量分布密度聚类算法聚类种子点,快速准确地提取初始屋顶面片;构建基于邻域信息的投票模型,有效地解决屋顶面竞争现象。试验结果表明,本文方法可自动、高精度地提取屋顶面,对不同复杂程度的建筑物具有较好的适应性,能为建筑物三维模型重建提供可靠的屋顶面信息。...

Full description

Saved in:
Bibliographic Details
Published in测绘学报 Vol. 46; no. 9; pp. 1123 - 1134
Main Author 赵传 张保明 陈小卫 郭海涛 卢俊
Format Journal Article
LanguageChinese
Published 信息工程大学地理空间信息学院,河南 郑州 450001 2017
地理信息工程国家重点实验室,陕西西安710054%信息工程大学地理空间信息学院,河南 郑州,450001
Subjects
Online AccessGet full text
ISSN1001-1595

Cover

Abstract 从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键。本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出了一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法。通过主成分分析计算点云特征,构建特征直方图,选取可靠种子点;利用提出的局部点云法向量分布密度聚类算法聚类种子点,快速准确地提取初始屋顶面片;构建基于邻域信息的投票模型,有效地解决屋顶面竞争现象。试验结果表明,本文方法可自动、高精度地提取屋顶面,对不同复杂程度的建筑物具有较好的适应性,能为建筑物三维模型重建提供可靠的屋顶面信息。
AbstractList 从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键。本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出了一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法。通过主成分分析计算点云特征,构建特征直方图,选取可靠种子点;利用提出的局部点云法向量分布密度聚类算法聚类种子点,快速准确地提取初始屋顶面片;构建基于邻域信息的投票模型,有效地解决屋顶面竞争现象。试验结果表明,本文方法可自动、高精度地提取屋顶面,对不同复杂程度的建筑物具有较好的适应性,能为建筑物三维模型重建提供可靠的屋顶面信息。
P237; 从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键.本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出了一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法.通过主成分分析计算点云特征,构建特征直方图,选取可靠种子点;利用提出的局部点云法向量分布密度聚类算法聚类种子点,快速准确地提取初始屋顶面片;构建基于邻域信息的投票模型,有效地解决屋顶面竞争现象.试验结果表明,本文方法可自动、高精度地提取屋顶面,对不同复杂程度的建筑物具有较好的适应性,能为建筑物三维模型重建提供可靠的屋顶面信息.
Abstract_FL High accuracy building roof extraction from LiDAR data is the key to build topological rel ationship of building roofs and reconstruct buildings .Aiming at the poor adaptation and low extraction precision of existing roof extraction methods for complex building ,an accurate and automatic building roof extraction method using neighborhood information of point clouds is proposed .Point clouds features are calculated by principle component analysis ,and reliable seed points are selected after feature histogram construction .Initi al roof surfaces are extracted quickly and precisely by the proposed local normal vector distribution density-based spatial clustering of applications with noise (LNVD-DBSCAN) .Roof competition problem is solved effectively by the poll model based on neighborhood information .Experimental results show that the proposed method can extract building roofs automatically and precisely ,and has preferable adaptation to buildings with different complexity ,which is able to provide reliable roof information for building reconstruction .
Author 赵传 张保明 陈小卫 郭海涛 卢俊
AuthorAffiliation 信息工程大学地理空间信息学院,河南郑州450001 地理信息工程国家重点实验室,陕西西安710054
AuthorAffiliation_xml – name: 信息工程大学地理空间信息学院,河南 郑州 450001;地理信息工程国家重点实验室,陕西西安710054%信息工程大学地理空间信息学院,河南 郑州,450001
Author_FL ZHANG Baoming
GUO Haitao
LU Jun
ZHAO Chuan
CHEN Xiaowei
Author_FL_xml – sequence: 1
  fullname: ZHAO Chuan
– sequence: 2
  fullname: ZHANG Baoming
– sequence: 3
  fullname: CHEN Xiaowei
– sequence: 4
  fullname: GUO Haitao
– sequence: 5
  fullname: LU Jun
Author_xml – sequence: 1
  fullname: 赵传 张保明 陈小卫 郭海涛 卢俊
BookMark eNotjU1LAkEAhudgkJl_Iui4MOvMzscxpC-QOtR9GWd31ajdUqK6lQRlESaURBBih9IiooJIhfozOzvtv2jBTu8D78P7ToGUH_huCqRNCE3DtLg1CbK1WqUIoYURtRBPg5Xw61A_XqjTvr7q6fogHLbi-kh1OuFPNzp61bfHajTULy3d6Ku387j7Gd_dx883-v1bDR9-T57UWS9qXqpmO2oPoo_raTDhic2am_3PDFhbmF_PLxmF1cXl_FzBkBZlBhYIOpx6DuaUQCYldoWkToKCYcYELmIOCWGSmC7DSeE4AksHeZZHEacoA2bHq3vC94RfsjeC3aqf_NmyvF_MQZNCDiFLvJmxJ8uBX9qpJOZ2tbIlqgc2oQgTE5Ic-gPzB3I6
ClassificationCodes P237
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
2B.
4A8
92I
93N
PSX
TCJ
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitleAlternate Accurate and Automatic Building Roof Extraction Using Neighborhood Information of Point Clouds
DocumentTitle_FL Accurate and Automatic Building Roof Extraction Using Neighborhood Information of Point Clouds
EndPage 1134
ExternalDocumentID chxb201709008
673461062
GrantInformation_xml – fundername: 国家自然科学基金; 地理信息工程国家重点实验室开放基金(SKLGIE2015-M-3-3)The National Natural Science Foundation of China; The Open Research Foundation of State Key Laboratory of Geo-information Engineering
  funderid: (41601507); (.41601507); (.SKLGIE2015-M-3-3)
GroupedDBID -01
2RA
5VS
5XA
5XB
7X2
92E
92I
92L
ABJNI
ACGFS
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CQIGP
CW9
HCIFZ
IPNFZ
M0K
M7P
OK1
P2P
PATMY
PCBAR
PHGZT
PIMPY
PYCSY
RIG
TCJ
TGP
U1G
U5K
W94
~WA
2B.
4A8
93N
PHGZM
PMFND
PSX
ID FETCH-LOGICAL-c578-4a30d97fd497608cc4eac7d608a8488a4b490668c61e847d6dda4cd3f5f73973
ISSN 1001-1595
IngestDate Thu May 29 04:11:08 EDT 2025
Sun Apr 27 02:08:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords 建筑物屋顶面
建筑物三维重建
LiDAR data
neighborhood information
density-based clustering
点云
LiDAR数据
building roofs
point cloud
密度聚类
邻域信息
3D building reconstruction
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c578-4a30d97fd497608cc4eac7d608a8488a4b490668c61e847d6dda4cd3f5f73973
Notes 11-2089/P
building roofs; LiDAR data; neighborhood information; density-based clustering; point cloud; 3D building reconstruction
ZHAO Chuan1,2,ZHANG Booming1 ,CHEN Xiaowei1,2 ,GUO Haitao1 ,LU Jun1(1. Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China; 2. State Key Laboratory of Geo-information Engineering, Xi7an 710054, China)
High accuracy building roof extraction from LiDAR data is the key to build topological relationship of building roofs and reconstruct buildings.Aiming at the poor adaptation and low extraction precision of existing roof extraction methods for complex building,an accurate and automatic building roof extraction method using neighborhood information of point clouds is proposed.Point clouds features are calculated by principle component analysis,and reliable seed points are selected after feature histogram construction.Initial roof surfaces are extracted quickly and precisely by the proposed local normal vector distribution density-based spatial cl
PageCount 12
ParticipantIDs wanfang_journals_chxb201709008
chongqing_primary_673461062
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 测绘学报
PublicationTitleAlternate Acta Geodaetica et Cartographica Sinica
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2017
Publisher 信息工程大学地理空间信息学院,河南 郑州 450001
地理信息工程国家重点实验室,陕西西安710054%信息工程大学地理空间信息学院,河南 郑州,450001
Publisher_xml – name: 地理信息工程国家重点实验室,陕西西安710054%信息工程大学地理空间信息学院,河南 郑州,450001
– name: 信息工程大学地理空间信息学院,河南 郑州 450001
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.1403165
Snippet 从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键。本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出了一种...
P237; 从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键.本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1123
SubjectTerms LiDAR数据
密度聚类
建筑物三维重建
建筑物屋顶面
点云
邻域信息
Title 一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法
URI http://lib.cqvip.com/qk/90069X/201709/673461062.html
https://d.wanfangdata.com.cn/periodical/chxb201709008
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1001-1595
  databaseCode: KQ8
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssib005437539
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 1001-1595
  databaseCode: BENPR
  dateStart: 20100201
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 20221231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssj0058465
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFA61T76IV1qrZR8cX8rKZjOTzDxOtlmKQkGs0LeSTXbbF7dqW9A-aRG8IbWgRRQp9UFbRUQFsS3on2l23X_hdybpbgoFL7CE4eTMnO_MyWa-mczFss7VRew4Ed5-9I2vyGtOoxjWBToroUCGOg-ddLfPcXfsKr84KSb7Dr3KzVpamK9diBYPXFfyP1GFDHGlVbL_ENluoRAgjfjiigjj-lcxZgFnvqTJCoHHtMfkKAsEk5JpRRLFmZaUkGXmK6OsmbJZoIzEJ2VVpR_dqjKNWy6oJdNVk10zyUkHmshIJkZNdhSojAncspn0qUDk9V1KqFGmy0biM2Ws-7AVGGXNNHQAGEVpA1UbhDAKGCUjQcIlCa6EGVeHpQdk7nFoIxTGrkfYyIogbNpkpDLF3nNE1qCLH7lYYbrUuyNSQeY8cJNVgAt6KnBHUX2SbomwEUIY8vMq0iHjKSjfMwkU5OfHU9KFo-bZP6iuTT4tTBVL4xj84RTRnmMIVYVAUGAAxTXKygQGKFER_OCSs-zGEwSmXDEAy1StqTPKG8m8oNgaKCoY4XSEhZ1rsmhSHEipyLdp2bBu-t9VuQYK9NrJkR3bzoaS9-85Hs3cqlHdlFS6kB4slo5FuXQ5T91BnGWeGuJNntv6TnAHPeEuVaZzDbjb25pS2I7nuKrbVSUeLMzMhMwb2utkZrY5fQMMziyoazbC5nSO-00ctY5knbaCTv-Bx6y-xZnj1oCeo89Is9duF84XTDodJZw7YY3vfr_TfvckebDZfrbRXtra3V7pLO0ka2u7P9dbdz-1X95LdrbbH1faDzeTz4876986r990Prxof_mRbL_9df998mijtfw0WV5trW61vj4_aV2pBhOVsWJ2cEkxQgNYxAuuFCuvEXNw_ZKMIg5248VIhhLtZchrXIHpy8i16yCHsRvHIY9ipyEaHroHzimrvznbrA9YBVepSEou7Joqc-F4IR00p9woBnEPGyIetIa6lTR1Pd2ehmZq0iEKbnnQGs6qbSp7ac1N7Yvs6T8pDFmHKZ0OOZ6x-udvLtTPgoTP14bN0_AbDgyspA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E5%88%A9%E7%94%A8%E7%82%B9%E4%BA%91%E9%82%BB%E5%9F%9F%E4%BF%A1%E6%81%AF%E7%9A%84%E5%BB%BA%E7%AD%91%E7%89%A9%E5%B1%8B%E9%A1%B6%E9%9D%A2%E9%AB%98%E7%B2%BE%E5%BA%A6%E8%87%AA%E5%8A%A8%E6%8F%90%E5%8F%96%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E8%B5%B5%E4%BC%A0&rft.au=%E5%BC%A0%E4%BF%9D%E6%98%8E&rft.au=%E9%99%88%E5%B0%8F%E5%8D%AB&rft.au=%E9%83%AD%E6%B5%B7%E6%B6%9B&rft.date=2017&rft.pub=%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%9C%B0%E7%90%86%E7%A9%BA%E9%97%B4%E4%BF%A1%E6%81%AF%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97+%E9%83%91%E5%B7%9E+450001&rft.issn=1001-1595&rft.volume=46&rft.issue=9&rft.spage=1123&rft.epage=1134&rft.externalDocID=chxb201709008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg