一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法
从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键。本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出了一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法。通过主成分分析计算点云特征,构建特征直方图,选取可靠种子点;利用提出的局部点云法向量分布密度聚类算法聚类种子点,快速准确地提取初始屋顶面片;构建基于邻域信息的投票模型,有效地解决屋顶面竞争现象。试验结果表明,本文方法可自动、高精度地提取屋顶面,对不同复杂程度的建筑物具有较好的适应性,能为建筑物三维模型重建提供可靠的屋顶面信息。...
Saved in:
Published in | 测绘学报 Vol. 46; no. 9; pp. 1123 - 1134 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
信息工程大学地理空间信息学院,河南 郑州 450001
2017
地理信息工程国家重点实验室,陕西西安710054%信息工程大学地理空间信息学院,河南 郑州,450001 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-1595 |
Cover
Abstract | 从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键。本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出了一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法。通过主成分分析计算点云特征,构建特征直方图,选取可靠种子点;利用提出的局部点云法向量分布密度聚类算法聚类种子点,快速准确地提取初始屋顶面片;构建基于邻域信息的投票模型,有效地解决屋顶面竞争现象。试验结果表明,本文方法可自动、高精度地提取屋顶面,对不同复杂程度的建筑物具有较好的适应性,能为建筑物三维模型重建提供可靠的屋顶面信息。 |
---|---|
AbstractList | 从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键。本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出了一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法。通过主成分分析计算点云特征,构建特征直方图,选取可靠种子点;利用提出的局部点云法向量分布密度聚类算法聚类种子点,快速准确地提取初始屋顶面片;构建基于邻域信息的投票模型,有效地解决屋顶面竞争现象。试验结果表明,本文方法可自动、高精度地提取屋顶面,对不同复杂程度的建筑物具有较好的适应性,能为建筑物三维模型重建提供可靠的屋顶面信息。 P237; 从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键.本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出了一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法.通过主成分分析计算点云特征,构建特征直方图,选取可靠种子点;利用提出的局部点云法向量分布密度聚类算法聚类种子点,快速准确地提取初始屋顶面片;构建基于邻域信息的投票模型,有效地解决屋顶面竞争现象.试验结果表明,本文方法可自动、高精度地提取屋顶面,对不同复杂程度的建筑物具有较好的适应性,能为建筑物三维模型重建提供可靠的屋顶面信息. |
Abstract_FL | High accuracy building roof extraction from LiDAR data is the key to build topological rel ationship of building roofs and reconstruct buildings .Aiming at the poor adaptation and low extraction precision of existing roof extraction methods for complex building ,an accurate and automatic building roof extraction method using neighborhood information of point clouds is proposed .Point clouds features are calculated by principle component analysis ,and reliable seed points are selected after feature histogram construction .Initi al roof surfaces are extracted quickly and precisely by the proposed local normal vector distribution density-based spatial clustering of applications with noise (LNVD-DBSCAN) .Roof competition problem is solved effectively by the poll model based on neighborhood information .Experimental results show that the proposed method can extract building roofs automatically and precisely ,and has preferable adaptation to buildings with different complexity ,which is able to provide reliable roof information for building reconstruction . |
Author | 赵传 张保明 陈小卫 郭海涛 卢俊 |
AuthorAffiliation | 信息工程大学地理空间信息学院,河南郑州450001 地理信息工程国家重点实验室,陕西西安710054 |
AuthorAffiliation_xml | – name: 信息工程大学地理空间信息学院,河南 郑州 450001;地理信息工程国家重点实验室,陕西西安710054%信息工程大学地理空间信息学院,河南 郑州,450001 |
Author_FL | ZHANG Baoming GUO Haitao LU Jun ZHAO Chuan CHEN Xiaowei |
Author_FL_xml | – sequence: 1 fullname: ZHAO Chuan – sequence: 2 fullname: ZHANG Baoming – sequence: 3 fullname: CHEN Xiaowei – sequence: 4 fullname: GUO Haitao – sequence: 5 fullname: LU Jun |
Author_xml | – sequence: 1 fullname: 赵传 张保明 陈小卫 郭海涛 卢俊 |
BookMark | eNotjU1LAkEAhudgkJl_Iui4MOvMzscxpC-QOtR9GWd31ajdUqK6lQRlESaURBBih9IiooJIhfozOzvtv2jBTu8D78P7ToGUH_huCqRNCE3DtLg1CbK1WqUIoYURtRBPg5Xw61A_XqjTvr7q6fogHLbi-kh1OuFPNzp61bfHajTULy3d6Ku387j7Gd_dx883-v1bDR9-T57UWS9qXqpmO2oPoo_raTDhic2am_3PDFhbmF_PLxmF1cXl_FzBkBZlBhYIOpx6DuaUQCYldoWkToKCYcYELmIOCWGSmC7DSeE4AksHeZZHEacoA2bHq3vC94RfsjeC3aqf_NmyvF_MQZNCDiFLvJmxJ8uBX9qpJOZ2tbIlqgc2oQgTE5Ic-gPzB3I6 |
ClassificationCodes | P237 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 ~WA 2B. 4A8 92I 93N PSX TCJ |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
DocumentTitleAlternate | Accurate and Automatic Building Roof Extraction Using Neighborhood Information of Point Clouds |
DocumentTitle_FL | Accurate and Automatic Building Roof Extraction Using Neighborhood Information of Point Clouds |
EndPage | 1134 |
ExternalDocumentID | chxb201709008 673461062 |
GrantInformation_xml | – fundername: 国家自然科学基金; 地理信息工程国家重点实验室开放基金(SKLGIE2015-M-3-3)The National Natural Science Foundation of China; The Open Research Foundation of State Key Laboratory of Geo-information Engineering funderid: (41601507); (.41601507); (.SKLGIE2015-M-3-3) |
GroupedDBID | -01 2RA 5VS 5XA 5XB 7X2 92E 92I 92L ABJNI ACGFS AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI BKSAR CCEZO CCPQU CCVFK CQIGP CW9 HCIFZ IPNFZ M0K M7P OK1 P2P PATMY PCBAR PHGZT PIMPY PYCSY RIG TCJ TGP U1G U5K W94 ~WA 2B. 4A8 93N PHGZM PMFND PSX |
ID | FETCH-LOGICAL-c578-4a30d97fd497608cc4eac7d608a8488a4b490668c61e847d6dda4cd3f5f73973 |
ISSN | 1001-1595 |
IngestDate | Thu May 29 04:11:08 EDT 2025 Sun Apr 27 02:08:43 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Keywords | 建筑物屋顶面 建筑物三维重建 LiDAR data neighborhood information density-based clustering 点云 LiDAR数据 building roofs point cloud 密度聚类 邻域信息 3D building reconstruction |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c578-4a30d97fd497608cc4eac7d608a8488a4b490668c61e847d6dda4cd3f5f73973 |
Notes | 11-2089/P building roofs; LiDAR data; neighborhood information; density-based clustering; point cloud; 3D building reconstruction ZHAO Chuan1,2,ZHANG Booming1 ,CHEN Xiaowei1,2 ,GUO Haitao1 ,LU Jun1(1. Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China; 2. State Key Laboratory of Geo-information Engineering, Xi7an 710054, China) High accuracy building roof extraction from LiDAR data is the key to build topological relationship of building roofs and reconstruct buildings.Aiming at the poor adaptation and low extraction precision of existing roof extraction methods for complex building,an accurate and automatic building roof extraction method using neighborhood information of point clouds is proposed.Point clouds features are calculated by principle component analysis,and reliable seed points are selected after feature histogram construction.Initial roof surfaces are extracted quickly and precisely by the proposed local normal vector distribution density-based spatial cl |
PageCount | 12 |
ParticipantIDs | wanfang_journals_chxb201709008 chongqing_primary_673461062 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 测绘学报 |
PublicationTitleAlternate | Acta Geodaetica et Cartographica Sinica |
PublicationTitle_FL | Acta Geodaetica et Cartographica Sinica |
PublicationYear | 2017 |
Publisher | 信息工程大学地理空间信息学院,河南 郑州 450001 地理信息工程国家重点实验室,陕西西安710054%信息工程大学地理空间信息学院,河南 郑州,450001 |
Publisher_xml | – name: 地理信息工程国家重点实验室,陕西西安710054%信息工程大学地理空间信息学院,河南 郑州,450001 – name: 信息工程大学地理空间信息学院,河南 郑州 450001 |
SSID | ssib005437539 ssib038074662 ssib051373695 ssib002263888 ssib000862384 ssj0058465 |
Score | 2.1403165 |
Snippet | 从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键。本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出了一种... P237; 从LiDAR数据中高精度地提取建筑物屋顶面是构建屋顶面拓扑关系、实现建筑物三维模型重建的关键.本文针对现有算法提取复杂建筑物屋顶面适应性较差、精度较低等问题,提出... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 1123 |
SubjectTerms | LiDAR数据 密度聚类 建筑物三维重建 建筑物屋顶面 点云 邻域信息 |
Title | 一种利用点云邻域信息的建筑物屋顶面高精度自动提取方法 |
URI | http://lib.cqvip.com/qk/90069X/201709/673461062.html https://d.wanfangdata.com.cn/periodical/chxb201709008 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 1001-1595 databaseCode: KQ8 dateStart: 20120101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssib005437539 providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: ProQuest Central issn: 1001-1595 databaseCode: BENPR dateStart: 20100201 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 isFulltext: true dateEnd: 20221231 titleUrlDefault: https://www.proquest.com/central omitProxy: true ssIdentifier: ssj0058465 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFA61T76IV1qrZR8cX8rKZjOTzDxOtlmKQkGs0LeSTXbbF7dqW9A-aRG8IbWgRRQp9UFbRUQFsS3on2l23X_hdybpbgoFL7CE4eTMnO_MyWa-mczFss7VRew4Ed5-9I2vyGtOoxjWBToroUCGOg-ddLfPcXfsKr84KSb7Dr3KzVpamK9diBYPXFfyP1GFDHGlVbL_ENluoRAgjfjiigjj-lcxZgFnvqTJCoHHtMfkKAsEk5JpRRLFmZaUkGXmK6OsmbJZoIzEJ2VVpR_dqjKNWy6oJdNVk10zyUkHmshIJkZNdhSojAncspn0qUDk9V1KqFGmy0biM2Ws-7AVGGXNNHQAGEVpA1UbhDAKGCUjQcIlCa6EGVeHpQdk7nFoIxTGrkfYyIogbNpkpDLF3nNE1qCLH7lYYbrUuyNSQeY8cJNVgAt6KnBHUX2SbomwEUIY8vMq0iHjKSjfMwkU5OfHU9KFo-bZP6iuTT4tTBVL4xj84RTRnmMIVYVAUGAAxTXKygQGKFER_OCSs-zGEwSmXDEAy1StqTPKG8m8oNgaKCoY4XSEhZ1rsmhSHEipyLdp2bBu-t9VuQYK9NrJkR3bzoaS9-85Hs3cqlHdlFS6kB4slo5FuXQ5T91BnGWeGuJNntv6TnAHPeEuVaZzDbjb25pS2I7nuKrbVSUeLMzMhMwb2utkZrY5fQMMziyoazbC5nSO-00ctY5knbaCTv-Bx6y-xZnj1oCeo89Is9duF84XTDodJZw7YY3vfr_TfvckebDZfrbRXtra3V7pLO0ka2u7P9dbdz-1X95LdrbbH1faDzeTz4876986r990Prxof_mRbL_9df998mijtfw0WV5trW61vj4_aV2pBhOVsWJ2cEkxQgNYxAuuFCuvEXNw_ZKMIg5248VIhhLtZchrXIHpy8i16yCHsRvHIY9ipyEaHroHzimrvznbrA9YBVepSEou7Joqc-F4IR00p9woBnEPGyIetIa6lTR1Pd2ehmZq0iEKbnnQGs6qbSp7ac1N7Yvs6T8pDFmHKZ0OOZ6x-udvLtTPgoTP14bN0_AbDgyspA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E5%88%A9%E7%94%A8%E7%82%B9%E4%BA%91%E9%82%BB%E5%9F%9F%E4%BF%A1%E6%81%AF%E7%9A%84%E5%BB%BA%E7%AD%91%E7%89%A9%E5%B1%8B%E9%A1%B6%E9%9D%A2%E9%AB%98%E7%B2%BE%E5%BA%A6%E8%87%AA%E5%8A%A8%E6%8F%90%E5%8F%96%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E8%B5%B5%E4%BC%A0&rft.au=%E5%BC%A0%E4%BF%9D%E6%98%8E&rft.au=%E9%99%88%E5%B0%8F%E5%8D%AB&rft.au=%E9%83%AD%E6%B5%B7%E6%B6%9B&rft.date=2017&rft.pub=%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%9C%B0%E7%90%86%E7%A9%BA%E9%97%B4%E4%BF%A1%E6%81%AF%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97+%E9%83%91%E5%B7%9E+450001&rft.issn=1001-1595&rft.volume=46&rft.issue=9&rft.spage=1123&rft.epage=1134&rft.externalDocID=chxb201709008 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90069X%2F90069X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg |