Possibilities and limitations of the ART-Sample algorithm for reconstruction of 3D temperature fields and the influence of opaque obstacles
The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and tomographic techniques are applied to accomplish this goal. Holographic interferometry (HI), one of the optical methods used for visualizing temper...
        Saved in:
      
    
          | Published in | International journal of heat and mass transfer Vol. 62; pp. 680 - 696 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Elsevier Ltd
    
        01.07.2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0017-9310 1879-2189 1879-2189  | 
| DOI | 10.1016/j.ijheatmasstransfer.2013.03.026 | 
Cover
| Abstract | The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and tomographic techniques are applied to accomplish this goal. Holographic interferometry (HI), one of the optical methods used for visualizing temperature fields, combined with tomographic reconstruction techniques requires multi-directional interferometric data to recover the 3D information. However, the presence of opaque obstacles (such as solid objects in the flow field and heaters) in the measurement volume, prevents the probing light beams from traversing the entire measurement volume. As a consequence, information on the average value of the field variable will be lost in regions located in the shade of the obstacle. The capability of the ART-Sample tomographic reconstruction method to recover 3D temperature distributions both in unobstructed temperature fields and in the presence of opaque obstacles is discussed in this paper. A computer code for tomographic reconstruction of 3D temperature fields from 2D projections was developed. In the paper, the reconstruction accuracy is discussed quantitatively both without and with obstacles in the measurement volume for a set of phantom functions mimicking realistic temperature distributions. The reconstruction performance is optimized while minimizing the number of irradiation directions (experimental hardware requirements) and computational effort. For the smooth temperature field both with and without obstacles, the reconstructions produced by this algorithm are good, both visually and using quantitative criteria. The results suggest that the location and the size of the obstacle and the number of viewing directions will affect the reconstruction of the temperature field. When the best performance parameters of the ART-Sample algorithm identified in this paper are used to reconstruct the 3D temperature field, the 3D reconstructions with and without obstacle are both excellent, and the obstacle has little influence on the reconstruction. The results indicate that the ART-Sample algorithm can successfully recover instantaneous 3D temperature distributions in the presence of opaque obstacles with only 4 viewing directions. | 
    
|---|---|
| AbstractList | The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and tomographic techniques are applied to accomplish this goal. Holographic interferometry (HI), one of the optical methods used for visualizing temperature fields, combined with tomographic reconstruction techniques requires multi-directional interferometric data to recover the 3D information. However, the presence of opaque obstacles (such as solid objects in the flow field and heaters) in the measurement volume, prevents the probing light beams from traversing the entire measurement volume. As a consequence, information on the average value of the field variable will be lost in regions located in the shade of the obstacle. The capability of the ART-Sample tomographic reconstruction method to recover 3D temperature distributions both in unobstructed temperature fields and in the presence of opaque obstacles is discussed in this paper. A computer code for tomographic reconstruction of 3D temperature fields from 2D projections was developed. In the paper, the reconstruction accuracy is discussed quantitatively both without and with obstacles in the measurement volume for a set of phantom functions mimicking realistic temperature distributions. The reconstruction performance is optimized while minimizing the number of irradiation directions (experimental hardware requirements) and computational effort. For the smooth temperature field both with and without obstacles, the reconstructions produced by this algorithm are good, both visually and using quantitative criteria. The results suggest that the location and the size of the obstacle and the number of viewing directions will affect the reconstruction of the temperature field. When the best performance parameters of the ART-Sample algorithm identified in this paper are used to reconstruct the 3D temperature field, the 3D reconstructions with and without obstacle are both excellent, and the obstacle has little influence on the reconstruction. The results indicate that the ART-Sample algorithm can successfully recover instantaneous 3D temperature distributions in the presence of opaque obstacles with only 4 viewing directions. The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and tomographic techniques are applied to accomplish this goal. Holographic interferometry (HI), one of the optical methods used for visualizing temperature fields, combined with tomographic reconstruction techniques requires multi-directional interferometric data to recover the 3D information. However, the presence of opaque obstacles (such as solid objects in the flow field and heaters) in the measurement volume, prevents the probing light beams from traversing the entire measurement volume. As a consequence, information on the average value of the field variable will be lost in regions located in the shade of the obstacle. The capability of the ART-Sample tomographic reconstruction method to recover 3D temperature distributions both in unobstructed temperature fields and in the presence of opaque obstacles is discussed in this paper. A computer code for tomographic reconstruction of 3D temperature fields from 2D projections was developed. In the paper, the reconstruction accuracy is discussed quantitatively both without and with obstacles in the measurement volume for a set of phantom functions mimicking realistic temperature distributions. The reconstruction performance is optimized while minimizing the number of irradiation directions (experimental hardware requirements) and computational effort. For the smooth temperature field both with and without obstacles, the reconstructions produced by this algorithm are good, both visually and using quantitative criteria. The results suggest that the location and the size of the obstacle and the number of viewing directions will affect the reconstruction of the temperature field. When the best performance parameters of the ART-Sample algorithm identified in this paper are used to reconstruct the 3D temperature field, the 3D reconstructions with and without obstacle are both excellent, and the obstacle has little influence on the reconstruction. The results indicate that the ART-Sample algorithm can successfully recover instantaneous 3D temperature distributions in the presence of opaque obstacles with only 4 viewing directions.The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and tomographic techniques are applied to accomplish this goal. Holographic interferometry (HI), one of the optical methods used for visualizing temperature fields, combined with tomographic reconstruction techniques requires multi-directional interferometric data to recover the 3D information. However, the presence of opaque obstacles (such as solid objects in the flow field and heaters) in the measurement volume, prevents the probing light beams from traversing the entire measurement volume. As a consequence, information on the average value of the field variable will be lost in regions located in the shade of the obstacle. The capability of the ART-Sample tomographic reconstruction method to recover 3D temperature distributions both in unobstructed temperature fields and in the presence of opaque obstacles is discussed in this paper. A computer code for tomographic reconstruction of 3D temperature fields from 2D projections was developed. In the paper, the reconstruction accuracy is discussed quantitatively both without and with obstacles in the measurement volume for a set of phantom functions mimicking realistic temperature distributions. The reconstruction performance is optimized while minimizing the number of irradiation directions (experimental hardware requirements) and computational effort. For the smooth temperature field both with and without obstacles, the reconstructions produced by this algorithm are good, both visually and using quantitative criteria. The results suggest that the location and the size of the obstacle and the number of viewing directions will affect the reconstruction of the temperature field. When the best performance parameters of the ART-Sample algorithm identified in this paper are used to reconstruct the 3D temperature field, the 3D reconstructions with and without obstacle are both excellent, and the obstacle has little influence on the reconstruction. The results indicate that the ART-Sample algorithm can successfully recover instantaneous 3D temperature distributions in the presence of opaque obstacles with only 4 viewing directions.  | 
    
| Author | Herman, Cila Li, Yuanyang  | 
    
| AuthorAffiliation | b Department of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China a Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2868, USA  | 
    
| AuthorAffiliation_xml | – name: b Department of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China – name: a Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2868, USA  | 
    
| Author_xml | – sequence: 1 givenname: Yuanyang surname: Li fullname: Li, Yuanyang email: liyuanyang8@gmail.com organization: Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2868, USA – sequence: 2 givenname: Cila surname: Herman fullname: Herman, Cila email: cherman.jhu@gmail.com organization: Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2868, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24039276$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqdkstu1DAUhi1URKeFV0BZdpPBdhJ7skGMCuWiSiAoa-skPul45MTBdor6DLw0jjLcFwUkS7blT598fv0n5GhwAxJyxuiaUSae7Ndmv0OIPYQQPQyhQ7_mlBVrmhYX98iKbWSdc7apj8iKUibzumD0mJyEsJ-vtBQPyDEvaVFzKVbkyzsXgmmMNdFgyGDQmTW9iRCNG0LmuizuMNu-v8o_QD9azMBeO2_irs865zOPbcKin9qZn_HieRaxH9FDnDxmnUGrF-8sMkNnJxxanFE3wqcpnZoQobUYHpL7HdiAjw77Kfl48eLq_FV--fbl6_PtZd5WUsZcFxwaWlIJpQZead3IumuKSqNm2AEvSgBeNpqneXkFGilHDQ0IzaGmZVWcku3inYYRbj-DtWr0pgd_qxhVc9Bqr_4MWs1BK5oWF8nxdHGMU9OjbnFI2A-PA6N-fRnMTl27G1VIsaGcJ8HZQeBdSiFE1ZvQorUwoJuCYhsuqpoyWt2NCsmqQkop7kZLUVYbVtQz-vjnCb5__Vs3EvBsAVqfOuKx-5-ULn5TtIdqJdzYfxG9WUSYenFj0mtozdwjbVIFo9LO_L3sKw9YEe8 | 
    
| CitedBy_id | crossref_primary_10_1016_j_measurement_2020_108238 crossref_primary_10_1016_j_tsep_2024_102741 crossref_primary_10_1088_1361_6501_ab173c crossref_primary_10_1364_AO_459725 crossref_primary_10_1109_JSEN_2022_3192924 crossref_primary_10_1016_j_measurement_2016_09_011 crossref_primary_10_1016_j_measurement_2022_111642 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126232 crossref_primary_10_1109_TIM_2022_3203097 crossref_primary_10_1109_TIM_2017_2677638  | 
    
| Cites_doi | 10.1364/AO.23.003650 10.1007/s002310000101 10.1016/S0017-9310(02)00092-3 10.1007/s003480050389 10.1007/s003480050193 10.1016/0017-9310(91)90006-Z 10.1088/0957-0233/5/5/005 10.1615/JEnhHeatTransf.v8.i6.10 10.1016/0017-9310(74)90054-4 10.1117/12.179406 10.1115/1.2835513  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2013 Elsevier Ltd 2013 Elsevier Ltd. All rights reserved. 2013  | 
    
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2013 Elsevier Ltd. All rights reserved. 2013  | 
    
| DBID | AAYXX CITATION NPM 7TB 8FD FR3 H8D KR7 L7M 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1016/j.ijheatmasstransfer.2013.03.026 | 
    
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic  | 
    
| DatabaseTitleList | Aerospace Database PubMed MEDLINE - Academic Aerospace Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1879-2189 | 
    
| EndPage | 696 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:3768022 PMC3768022 24039276 10_1016_j_ijheatmasstransfer_2013_03_026 S0017931013002330  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA161265 – fundername: National Cancer Institute : NCI grantid: R01 CA161265 || CA  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS NPM SSH 7TB 8FD FR3 H8D KR7 L7M 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c577t-d32ab0407a4da25ddb79fb35ded1efa234aa24bd200125ade02edaba6d2a90453 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0017-9310 1879-2189  | 
    
| IngestDate | Sun Oct 26 04:12:57 EDT 2025 Tue Sep 30 15:35:41 EDT 2025 Sat Sep 27 22:08:23 EDT 2025 Sun Sep 28 02:29:31 EDT 2025 Mon Sep 29 06:26:35 EDT 2025 Mon Jul 21 05:56:37 EDT 2025 Wed Oct 01 02:55:39 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Fri Feb 23 02:23:46 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Obstacle Opaque obstacle 3D temperature measurement Tomography Inverse methods Holographic interferometry ART-Sample algorithm  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c577t-d32ab0407a4da25ddb79fb35ded1efa234aa24bd200125ade02edaba6d2a90453 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/3768022 | 
    
| PMID | 24039276 | 
    
| PQID | 1464581396 | 
    
| PQPubID | 23500 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_ijheatmasstransfer_2013_03_026 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3768022 proquest_miscellaneous_1826590105 proquest_miscellaneous_1671537776 proquest_miscellaneous_1464581396 pubmed_primary_24039276 crossref_primary_10_1016_j_ijheatmasstransfer_2013_03_026 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2013_03_026 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2013_03_026  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-07-01 | 
    
| PublicationDateYYYYMMDD | 2013-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | International journal of heat and mass transfer | 
    
| PublicationTitleAlternate | Int J Heat Mass Transf | 
    
| PublicationYear | 2013 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Herman (b0055) 1980 Hauf, Grigull (b0065) 1970 Zhang, Ruff (b0040) 1994; 5 Natterer (b0015) 1986 Soller, Wenskus (b0045) 1994; 33 Sweeney, Vest (b0070) 1974; 17 Bahl, Liburdy (b0080) 1992; 34 Narrow, Yoda, Abdel–Khalik (b0090) 2000; 28 Herman, Kang (b0035) 2001; 8 Herman, Kang, Wetzel (b0020) 1998; 24 Herman, Mewes, Mayinger (b0005) 1992 Mewes, Herman, Renz (b0010) 1994 Parker, Merati (b0085) 1996; 118 Lang, Donohoe (b0050) 1994; 33 M. Wetzel, Measurement of three dimensional concentration fields using optical techniques, MS Thesis, The Johns Hopkins University, Baltimore, MD, 1994. Snyder, Hesselink (b0075) 1984; 23 Herman, Kang (b0025) 2000; 45 Herman, Kang (b0030) 2001; 37 Herman (10.1016/j.ijheatmasstransfer.2013.03.026_b0030) 2001; 37 10.1016/j.ijheatmasstransfer.2013.03.026_b0060 Soller (10.1016/j.ijheatmasstransfer.2013.03.026_b0045) 1994; 33 Lang (10.1016/j.ijheatmasstransfer.2013.03.026_b0050) 1994; 33 Herman (10.1016/j.ijheatmasstransfer.2013.03.026_b0020) 1998; 24 Herman (10.1016/j.ijheatmasstransfer.2013.03.026_b0035) 2001; 8 Natterer (10.1016/j.ijheatmasstransfer.2013.03.026_b0015) 1986 Snyder (10.1016/j.ijheatmasstransfer.2013.03.026_b0075) 1984; 23 Sweeney (10.1016/j.ijheatmasstransfer.2013.03.026_b0070) 1974; 17 Hauf (10.1016/j.ijheatmasstransfer.2013.03.026_b0065) 1970 Bahl (10.1016/j.ijheatmasstransfer.2013.03.026_b0080) 1992; 34 Herman (10.1016/j.ijheatmasstransfer.2013.03.026_b0005) 1992 Herman (10.1016/j.ijheatmasstransfer.2013.03.026_b0055) 1980 Narrow (10.1016/j.ijheatmasstransfer.2013.03.026_b0090) 2000; 28 Herman (10.1016/j.ijheatmasstransfer.2013.03.026_b0025) 2000; 45 Zhang (10.1016/j.ijheatmasstransfer.2013.03.026_b0040) 1994; 5 Mewes (10.1016/j.ijheatmasstransfer.2013.03.026_b0010) 1994 Parker (10.1016/j.ijheatmasstransfer.2013.03.026_b0085) 1996; 118 20885654 - Appl Opt. 1994 May 10;33(14):2921-32 18213207 - Appl Opt. 1984 Oct 15;23(20):3650  | 
    
| References_xml | – year: 1970 ident: b0065 article-title: Optical methods in heat transfer, Advances in Heat Transfer – volume: 33 start-page: 2921 year: 1994 end-page: 2932 ident: b0045 article-title: Interferometric tomography for flow visualization of density fields in supersonic jets and convective flow publication-title: Appl. Phys. – start-page: 371 year: 1994 end-page: 424 ident: b0010 article-title: Tomographic measurement and reconstruction techniques publication-title: Optical Measurements – Techniques and Applications – volume: 8 start-page: 1 year: 2001 end-page: 19 ident: b0035 article-title: An experimental study of convective heat transfer enhancement in a grooved channel using cylindrical eddy promoters publication-title: J. Enhanced Heat Transfer – volume: 24 start-page: 431 year: 1998 end-page: 446 ident: b0020 article-title: Expanding the applications of holographic interferometry to the quantitative visualization of complex, oscillatory thermofluid processes publication-title: Exp. Fluids – year: 1980 ident: b0055 article-title: Image reconstruction from projections: The fundamentals of computerized tomography – volume: 28 start-page: 282 year: 2000 end-page: 283 ident: b0090 article-title: A simple model for the refractive index of sodium iodide aqueous solutions publication-title: Exp. Fluids – volume: 23 start-page: 3650 year: 1984 ident: b0075 article-title: Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade publication-title: Appl. Opt. – volume: 5 start-page: 495 year: 1994 end-page: 502 ident: b0040 article-title: Three-dimensional temperature measurements in enclosures by using multiview interferometric tomography publication-title: Meas. Sci. Technol. – reference: M. Wetzel, Measurement of three dimensional concentration fields using optical techniques, MS Thesis, The Johns Hopkins University, Baltimore, MD, 1994. – volume: 34 start-page: 949 year: 1992 end-page: 960 ident: b0080 article-title: Measurement of local convective heat transfer coefficients using three-dimensional interferometry publication-title: Int. J. Heat Mass Transfer – volume: 37 start-page: 87 year: 2001 end-page: 99 ident: b0030 article-title: Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel publication-title: Heat Mass Transfer – volume: 17 start-page: 1443 year: 1974 end-page: 1454 ident: b0070 article-title: Measurement of 3D temperature fields above heated surfaces by holographic interferometry publication-title: Int. J. Heat Mass Transfer – year: 1986 ident: b0015 article-title: The Mathematics of Computerized Tomography – start-page: 1 year: 1992 end-page: 58 ident: b0005 article-title: Optical techniques in transport phenomena publication-title: Advances in Transport Processes VIII – volume: 45 start-page: 3741 year: 2000 end-page: 3757 ident: b0025 article-title: Heat transfer enhancement in a grooved channel with curved vanes publication-title: Int. J. Heat Mass Transfer – volume: 33 start-page: 3465 year: 1994 end-page: 3471 ident: b0050 article-title: Real-time image processing techniques for noncontact temperature measurement publication-title: Opt. Eng. – volume: 118 start-page: 810 year: 1996 end-page: 818 ident: b0085 article-title: An investigation of turbulent Taylor–Couette flow using laser Doppler velocimetry in a refractive index matched facility publication-title: J. Fluid Eng. Trans. ASME – volume: 23 start-page: 3650 year: 1984 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0075 article-title: Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade publication-title: Appl. Opt. doi: 10.1364/AO.23.003650 – start-page: 371 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0010 article-title: Tomographic measurement and reconstruction techniques – ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0060 – volume: 37 start-page: 87 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0030 article-title: Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel publication-title: Heat Mass Transfer doi: 10.1007/s002310000101 – start-page: 1 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0005 article-title: Optical techniques in transport phenomena – volume: 45 start-page: 3741 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0025 article-title: Heat transfer enhancement in a grooved channel with curved vanes publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(02)00092-3 – year: 1980 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0055 – year: 1986 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0015 – volume: 28 start-page: 282 year: 2000 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0090 article-title: A simple model for the refractive index of sodium iodide aqueous solutions publication-title: Exp. Fluids doi: 10.1007/s003480050389 – year: 1970 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0065 – volume: 24 start-page: 431 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0020 article-title: Expanding the applications of holographic interferometry to the quantitative visualization of complex, oscillatory thermofluid processes publication-title: Exp. Fluids doi: 10.1007/s003480050193 – volume: 34 start-page: 949 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0080 article-title: Measurement of local convective heat transfer coefficients using three-dimensional interferometry publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(91)90006-Z – volume: 5 start-page: 495 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0040 article-title: Three-dimensional temperature measurements in enclosures by using multiview interferometric tomography publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/5/5/005 – volume: 8 start-page: 1 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0035 article-title: An experimental study of convective heat transfer enhancement in a grooved channel using cylindrical eddy promoters publication-title: J. Enhanced Heat Transfer doi: 10.1615/JEnhHeatTransf.v8.i6.10 – volume: 17 start-page: 1443 year: 1974 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0070 article-title: Measurement of 3D temperature fields above heated surfaces by holographic interferometry publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(74)90054-4 – volume: 33 start-page: 2921 issue: 14 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0045 article-title: Interferometric tomography for flow visualization of density fields in supersonic jets and convective flow publication-title: Appl. Phys. – volume: 33 start-page: 3465 issue: 10 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0050 article-title: Real-time image processing techniques for noncontact temperature measurement publication-title: Opt. Eng. doi: 10.1117/12.179406 – volume: 118 start-page: 810 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0085 article-title: An investigation of turbulent Taylor–Couette flow using laser Doppler velocimetry in a refractive index matched facility publication-title: J. Fluid Eng. Trans. ASME doi: 10.1115/1.2835513 – reference: 18213207 - Appl Opt. 1984 Oct 15;23(20):3650 – reference: 20885654 - Appl Opt. 1994 May 10;33(14):2921-32  | 
    
| SSID | ssj0017046 | 
    
| Score | 2.131058 | 
    
| Snippet | The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 680 | 
    
| SubjectTerms | 3D temperature measurement Algorithms ART-Sample algorithm Heaters Holographic interferometry Inverse methods Mass transfer Obstacle Obstacles Opaque obstacle Reconstruction Temperature distribution Three dimensional Tomography Viewing  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrXhceFOWl4zEgUu2iR3HCRdUFaoKiaoCViqnyI69NG02WbFZIfgL_Glm8oKyqNIKaW-xrbV3PPNN9ptvAF5kidRxjBcQsyvhhVopz8RWer4ODYbLUFhF1cjvj6LDafjuRJ5sQdDXwjSk_czkk7KYT8r8tOFWLubZbs8T28UbQeWhV2A7kgi_R7A9PTre-9x73ES0CgSxSjwMX8k1ePmb05WfkYebIyytG1joSBE0EI3MKckr_Ds0rUPPdQbl9VW50N-_6aL4Izwd3IIP_cZaVsr5ZFWbSfbjL83HjXZ-G252YJXttY_uwJYr78LVhjSaLe_Bz-Nq2bFrMd9murSsoHqp9iUgq2YM0SVDxOx91CRCzHTxpfqa16dzhlCZNbn4oF9Lw8UbRlJZnc4za9h17bq0UN73U6GhmOvjYbHKILqlr30fpgdvP-0fel1zBy-TStWeFVwb9CBKh1Zzaa1RycwIaZ0N3ExzEWrNQ2OJ88Wlts7nzmqjI8t1gjhUPIBRWZXuITAxQ2uTmcVYjODOBklGbT8D58sY70kYj-F1_7umWXcI1ICjSHuK21m6bhkpWUbq44dHY0iGFRatCsgGc_d7U0o7VNOilRSD1garPO-tMEUHQP_q6NJVqyXlbqGMEchfNiZSGNmUUpeNwUSTCpF9OYad1rqHvZJoY8Jptrpg98MAEim_-AQtuBEr74x2DK-GG7LxET76n8mP4QZvWpgQxfoJjNCs3VMEkrV51rmOX-e-fHI priority: 102 providerName: Unpaywall  | 
    
| Title | Possibilities and limitations of the ART-Sample algorithm for reconstruction of 3D temperature fields and the influence of opaque obstacles | 
    
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.03.026 https://www.ncbi.nlm.nih.gov/pubmed/24039276 https://www.proquest.com/docview/1464581396 https://www.proquest.com/docview/1671537776 https://www.proquest.com/docview/1826590105 https://pubmed.ncbi.nlm.nih.gov/PMC3768022 https://www.ncbi.nlm.nih.gov/pmc/articles/3768022  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 62 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2189 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AKRWK dateStart: 19600601 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5CSh-X0GfqNA1b6KEXNdI-vFIuxbgNbk1NaGuansRIu24UFMnUDiWX_oH-6czo1RqXgKFgENijBe3O7nxjffMNYy_TSEMY4gbE7Ep6CozxktBqzweVYLhU0hqqRv446Y-m6sOpPt1iw7YWhmiVzdlfn-nVad18c9jM5uE8y6jGl5wroFdvGHgk5e1KGepi8PpXR_MIjF8X69BpTNZ32Ks_HK_snE68C4SpywomOlIIDWQle0pyC_8OVetQdJ1RefeymMPVT8jzv8LV8X220-BMPqgf5QHbcsVDdrvie6aLR-z3SbloiLGYKnMoLM-p1Kn-_46XM47AkCPY9T4D6QdzyL-XP7Ll2QVHlMurNLqTniVz-ZaTylUj0cwrYlw9Lg2Uta1QyBTTdHwuXiYITImT95hNj999GY68pi-Dl2pjlp6VAhLc_AaUBaGtTUw0S6S2zgZuBkIqAKESS3QtocE6XzgLCfStgAghpHzCtouycE8ZlzN0FJ1aDKOIy2wQpdSxM3C-DtHFVdhjb9oliNNmEqh3Rh637LTzeH0RY1rE2MeP6PdY1I0wrwU8Nrh32K56vOKUMcabDUZ50TpMjHuXXshA4crLBaVdSoeIwW-y6RsMSsaYm2wwR6QaYl_32G7tiN2zkt5iJOhus-KinQHpi6_-UmRnlc44xh4qxO6xo86ZN57Cvf8yhc_YPVG1ISGa9D7bRv92zxEMLpODarcfsFuD9-PRhK7jT1_HeJ1OTgbfrgHQsWv3 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5VRVAuiDfhuUgcuJja-8jaXBAKVAHaColW6m019m6oK9eOSCrEhT_An2Zm_YAoqFIkpJyS8Uq7O7vzTfzNN4y9KDINaYoHELMrGSkwJspTp6MYVI7hUklnqBr54HA8PVYfT_TJFpv0tTBEq-zu_vZOD7d1981ut5q787KkGl9yroRevWHgkZi3X1FaGMrAXv0ceB6JidtqHbqOyfwae_mH5FWe0ZV3jjh1GXCiJ4nQRAbdU9Jb-HesWsei65TKnYt6Dj--Q1X9Fa_2brIbHdDkb9u53GJbvr7NrgbCZ7G4w359bhYdMxZzZQ614xXVOrV_4PFmxhEZckS70RcgAWEO1dfmW7k8PecIc3nIowftWTKX7zjJXHUazTww49pxaaCy74VCppin47x4kyMyJVLeXXa89_5oMo26xgxRoY1ZRk4KyPH0G1AOhHYuN9ksl9p5l_gZCKkAhMod8bWEBudj4R3kMHYCMsSQ8h7brpvaP2BcztBTdOEwjiIwc0lWUMvOxMc6RR9X6Yi96bfAFt0iUPOMyvb0tDO7vomWNtHG-BHjEcuGEeatgscGz076XbcrXmkx4GwwyvPeYSweXnojA7VvLhaUdymdIgi_zGZsMCoZYy6zwSSRiohjPWL3W0cc5kqCi5mgp82Kiw4GJDC--ktdngahcQw-VIk9Yq8HZ954CR_-lyV8xnamRwf7dv_D4adH7LoIPUmIM_2YbaOv-yeIDJf503DyfwPtnmo5 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrXhceFOWl4zEgUu2iR3HCRdUFaoKiaoCViqnyI69NG02WbFZIfgL_Glm8oKyqNIKaW-xrbV3PPNN9ptvAF5kidRxjBcQsyvhhVopz8RWer4ODYbLUFhF1cjvj6LDafjuRJ5sQdDXwjSk_czkk7KYT8r8tOFWLubZbs8T28UbQeWhV2A7kgi_R7A9PTre-9x73ES0CgSxSjwMX8k1ePmb05WfkYebIyytG1joSBE0EI3MKckr_Ds0rUPPdQbl9VW50N-_6aL4Izwd3IIP_cZaVsr5ZFWbSfbjL83HjXZ-G252YJXttY_uwJYr78LVhjSaLe_Bz-Nq2bFrMd9murSsoHqp9iUgq2YM0SVDxOx91CRCzHTxpfqa16dzhlCZNbn4oF9Lw8UbRlJZnc4za9h17bq0UN73U6GhmOvjYbHKILqlr30fpgdvP-0fel1zBy-TStWeFVwb9CBKh1Zzaa1RycwIaZ0N3ExzEWrNQ2OJ88Wlts7nzmqjI8t1gjhUPIBRWZXuITAxQ2uTmcVYjODOBklGbT8D58sY70kYj-F1_7umWXcI1ICjSHuK21m6bhkpWUbq44dHY0iGFRatCsgGc_d7U0o7VNOilRSD1garPO-tMEUHQP_q6NJVqyXlbqGMEchfNiZSGNmUUpeNwUSTCpF9OYad1rqHvZJoY8Jptrpg98MAEim_-AQtuBEr74x2DK-GG7LxET76n8mP4QZvWpgQxfoJjNCs3VMEkrV51rmOX-e-fHI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Possibilities+and+limitations+of+the+ART-Sample+algorithm+for+reconstruction+of+3D+temperature+fields+and+the+influence+of+opaque+obstacles&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Li%2C+Yuanyang&rft.au=Herman%2C+Cila&rft.date=2013-07-01&rft.issn=0017-9310&rft.volume=62&rft.spage=680&rft.epage=696&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2013.03.026&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |