Possibilities and limitations of the ART-Sample algorithm for reconstruction of 3D temperature fields and the influence of opaque obstacles

The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and tomographic techniques are applied to accomplish this goal. Holographic interferometry (HI), one of the optical methods used for visualizing temper...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 62; pp. 680 - 696
Main Authors Li, Yuanyang, Herman, Cila
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2013
Subjects
Online AccessGet full text
ISSN0017-9310
1879-2189
1879-2189
DOI10.1016/j.ijheatmasstransfer.2013.03.026

Cover

Abstract The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and tomographic techniques are applied to accomplish this goal. Holographic interferometry (HI), one of the optical methods used for visualizing temperature fields, combined with tomographic reconstruction techniques requires multi-directional interferometric data to recover the 3D information. However, the presence of opaque obstacles (such as solid objects in the flow field and heaters) in the measurement volume, prevents the probing light beams from traversing the entire measurement volume. As a consequence, information on the average value of the field variable will be lost in regions located in the shade of the obstacle. The capability of the ART-Sample tomographic reconstruction method to recover 3D temperature distributions both in unobstructed temperature fields and in the presence of opaque obstacles is discussed in this paper. A computer code for tomographic reconstruction of 3D temperature fields from 2D projections was developed. In the paper, the reconstruction accuracy is discussed quantitatively both without and with obstacles in the measurement volume for a set of phantom functions mimicking realistic temperature distributions. The reconstruction performance is optimized while minimizing the number of irradiation directions (experimental hardware requirements) and computational effort. For the smooth temperature field both with and without obstacles, the reconstructions produced by this algorithm are good, both visually and using quantitative criteria. The results suggest that the location and the size of the obstacle and the number of viewing directions will affect the reconstruction of the temperature field. When the best performance parameters of the ART-Sample algorithm identified in this paper are used to reconstruct the 3D temperature field, the 3D reconstructions with and without obstacle are both excellent, and the obstacle has little influence on the reconstruction. The results indicate that the ART-Sample algorithm can successfully recover instantaneous 3D temperature distributions in the presence of opaque obstacles with only 4 viewing directions.
AbstractList The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and tomographic techniques are applied to accomplish this goal. Holographic interferometry (HI), one of the optical methods used for visualizing temperature fields, combined with tomographic reconstruction techniques requires multi-directional interferometric data to recover the 3D information. However, the presence of opaque obstacles (such as solid objects in the flow field and heaters) in the measurement volume, prevents the probing light beams from traversing the entire measurement volume. As a consequence, information on the average value of the field variable will be lost in regions located in the shade of the obstacle. The capability of the ART-Sample tomographic reconstruction method to recover 3D temperature distributions both in unobstructed temperature fields and in the presence of opaque obstacles is discussed in this paper. A computer code for tomographic reconstruction of 3D temperature fields from 2D projections was developed. In the paper, the reconstruction accuracy is discussed quantitatively both without and with obstacles in the measurement volume for a set of phantom functions mimicking realistic temperature distributions. The reconstruction performance is optimized while minimizing the number of irradiation directions (experimental hardware requirements) and computational effort. For the smooth temperature field both with and without obstacles, the reconstructions produced by this algorithm are good, both visually and using quantitative criteria. The results suggest that the location and the size of the obstacle and the number of viewing directions will affect the reconstruction of the temperature field. When the best performance parameters of the ART-Sample algorithm identified in this paper are used to reconstruct the 3D temperature field, the 3D reconstructions with and without obstacle are both excellent, and the obstacle has little influence on the reconstruction. The results indicate that the ART-Sample algorithm can successfully recover instantaneous 3D temperature distributions in the presence of opaque obstacles with only 4 viewing directions.
The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and tomographic techniques are applied to accomplish this goal. Holographic interferometry (HI), one of the optical methods used for visualizing temperature fields, combined with tomographic reconstruction techniques requires multi-directional interferometric data to recover the 3D information. However, the presence of opaque obstacles (such as solid objects in the flow field and heaters) in the measurement volume, prevents the probing light beams from traversing the entire measurement volume. As a consequence, information on the average value of the field variable will be lost in regions located in the shade of the obstacle. The capability of the ART-Sample tomographic reconstruction method to recover 3D temperature distributions both in unobstructed temperature fields and in the presence of opaque obstacles is discussed in this paper. A computer code for tomographic reconstruction of 3D temperature fields from 2D projections was developed. In the paper, the reconstruction accuracy is discussed quantitatively both without and with obstacles in the measurement volume for a set of phantom functions mimicking realistic temperature distributions. The reconstruction performance is optimized while minimizing the number of irradiation directions (experimental hardware requirements) and computational effort. For the smooth temperature field both with and without obstacles, the reconstructions produced by this algorithm are good, both visually and using quantitative criteria. The results suggest that the location and the size of the obstacle and the number of viewing directions will affect the reconstruction of the temperature field. When the best performance parameters of the ART-Sample algorithm identified in this paper are used to reconstruct the 3D temperature field, the 3D reconstructions with and without obstacle are both excellent, and the obstacle has little influence on the reconstruction. The results indicate that the ART-Sample algorithm can successfully recover instantaneous 3D temperature distributions in the presence of opaque obstacles with only 4 viewing directions.The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and tomographic techniques are applied to accomplish this goal. Holographic interferometry (HI), one of the optical methods used for visualizing temperature fields, combined with tomographic reconstruction techniques requires multi-directional interferometric data to recover the 3D information. However, the presence of opaque obstacles (such as solid objects in the flow field and heaters) in the measurement volume, prevents the probing light beams from traversing the entire measurement volume. As a consequence, information on the average value of the field variable will be lost in regions located in the shade of the obstacle. The capability of the ART-Sample tomographic reconstruction method to recover 3D temperature distributions both in unobstructed temperature fields and in the presence of opaque obstacles is discussed in this paper. A computer code for tomographic reconstruction of 3D temperature fields from 2D projections was developed. In the paper, the reconstruction accuracy is discussed quantitatively both without and with obstacles in the measurement volume for a set of phantom functions mimicking realistic temperature distributions. The reconstruction performance is optimized while minimizing the number of irradiation directions (experimental hardware requirements) and computational effort. For the smooth temperature field both with and without obstacles, the reconstructions produced by this algorithm are good, both visually and using quantitative criteria. The results suggest that the location and the size of the obstacle and the number of viewing directions will affect the reconstruction of the temperature field. When the best performance parameters of the ART-Sample algorithm identified in this paper are used to reconstruct the 3D temperature field, the 3D reconstructions with and without obstacle are both excellent, and the obstacle has little influence on the reconstruction. The results indicate that the ART-Sample algorithm can successfully recover instantaneous 3D temperature distributions in the presence of opaque obstacles with only 4 viewing directions.
Author Herman, Cila
Li, Yuanyang
AuthorAffiliation b Department of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
a Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2868, USA
AuthorAffiliation_xml – name: b Department of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
– name: a Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2868, USA
Author_xml – sequence: 1
  givenname: Yuanyang
  surname: Li
  fullname: Li, Yuanyang
  email: liyuanyang8@gmail.com
  organization: Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2868, USA
– sequence: 2
  givenname: Cila
  surname: Herman
  fullname: Herman, Cila
  email: cherman.jhu@gmail.com
  organization: Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2868, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24039276$$D View this record in MEDLINE/PubMed
BookMark eNqdkstu1DAUhi1URKeFV0BZdpPBdhJ7skGMCuWiSiAoa-skPul45MTBdor6DLw0jjLcFwUkS7blT598fv0n5GhwAxJyxuiaUSae7Ndmv0OIPYQQPQyhQ7_mlBVrmhYX98iKbWSdc7apj8iKUibzumD0mJyEsJ-vtBQPyDEvaVFzKVbkyzsXgmmMNdFgyGDQmTW9iRCNG0LmuizuMNu-v8o_QD9azMBeO2_irs865zOPbcKin9qZn_HieRaxH9FDnDxmnUGrF-8sMkNnJxxanFE3wqcpnZoQobUYHpL7HdiAjw77Kfl48eLq_FV--fbl6_PtZd5WUsZcFxwaWlIJpQZead3IumuKSqNm2AEvSgBeNpqneXkFGilHDQ0IzaGmZVWcku3inYYRbj-DtWr0pgd_qxhVc9Bqr_4MWs1BK5oWF8nxdHGMU9OjbnFI2A-PA6N-fRnMTl27G1VIsaGcJ8HZQeBdSiFE1ZvQorUwoJuCYhsuqpoyWt2NCsmqQkop7kZLUVYbVtQz-vjnCb5__Vs3EvBsAVqfOuKx-5-ULn5TtIdqJdzYfxG9WUSYenFj0mtozdwjbVIFo9LO_L3sKw9YEe8
CitedBy_id crossref_primary_10_1016_j_measurement_2020_108238
crossref_primary_10_1016_j_tsep_2024_102741
crossref_primary_10_1088_1361_6501_ab173c
crossref_primary_10_1364_AO_459725
crossref_primary_10_1109_JSEN_2022_3192924
crossref_primary_10_1016_j_measurement_2016_09_011
crossref_primary_10_1016_j_measurement_2022_111642
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126232
crossref_primary_10_1109_TIM_2022_3203097
crossref_primary_10_1109_TIM_2017_2677638
Cites_doi 10.1364/AO.23.003650
10.1007/s002310000101
10.1016/S0017-9310(02)00092-3
10.1007/s003480050389
10.1007/s003480050193
10.1016/0017-9310(91)90006-Z
10.1088/0957-0233/5/5/005
10.1615/JEnhHeatTransf.v8.i6.10
10.1016/0017-9310(74)90054-4
10.1117/12.179406
10.1115/1.2835513
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2013 Elsevier Ltd. All rights reserved. 2013
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2013 Elsevier Ltd. All rights reserved. 2013
DBID AAYXX
CITATION
NPM
7TB
8FD
FR3
H8D
KR7
L7M
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.ijheatmasstransfer.2013.03.026
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList Aerospace Database
PubMed
MEDLINE - Academic

Aerospace Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 696
ExternalDocumentID oai:pubmedcentral.nih.gov:3768022
PMC3768022
24039276
10_1016_j_ijheatmasstransfer_2013_03_026
S0017931013002330
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA161265
– fundername: National Cancer Institute : NCI
  grantid: R01 CA161265 || CA
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
NPM
SSH
7TB
8FD
FR3
H8D
KR7
L7M
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c577t-d32ab0407a4da25ddb79fb35ded1efa234aa24bd200125ade02edaba6d2a90453
IEDL.DBID .~1
ISSN 0017-9310
1879-2189
IngestDate Sun Oct 26 04:12:57 EDT 2025
Tue Sep 30 15:35:41 EDT 2025
Sat Sep 27 22:08:23 EDT 2025
Sun Sep 28 02:29:31 EDT 2025
Mon Sep 29 06:26:35 EDT 2025
Mon Jul 21 05:56:37 EDT 2025
Wed Oct 01 02:55:39 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Fri Feb 23 02:23:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Obstacle
Opaque obstacle
3D temperature measurement
Tomography
Inverse methods
Holographic interferometry
ART-Sample algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-d32ab0407a4da25ddb79fb35ded1efa234aa24bd200125ade02edaba6d2a90453
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/3768022
PMID 24039276
PQID 1464581396
PQPubID 23500
PageCount 17
ParticipantIDs unpaywall_primary_10_1016_j_ijheatmasstransfer_2013_03_026
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3768022
proquest_miscellaneous_1826590105
proquest_miscellaneous_1671537776
proquest_miscellaneous_1464581396
pubmed_primary_24039276
crossref_primary_10_1016_j_ijheatmasstransfer_2013_03_026
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2013_03_026
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2013_03_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle International journal of heat and mass transfer
PublicationTitleAlternate Int J Heat Mass Transf
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Herman (b0055) 1980
Hauf, Grigull (b0065) 1970
Zhang, Ruff (b0040) 1994; 5
Natterer (b0015) 1986
Soller, Wenskus (b0045) 1994; 33
Sweeney, Vest (b0070) 1974; 17
Bahl, Liburdy (b0080) 1992; 34
Narrow, Yoda, Abdel–Khalik (b0090) 2000; 28
Herman, Kang (b0035) 2001; 8
Herman, Kang, Wetzel (b0020) 1998; 24
Herman, Mewes, Mayinger (b0005) 1992
Mewes, Herman, Renz (b0010) 1994
Parker, Merati (b0085) 1996; 118
Lang, Donohoe (b0050) 1994; 33
M. Wetzel, Measurement of three dimensional concentration fields using optical techniques, MS Thesis, The Johns Hopkins University, Baltimore, MD, 1994.
Snyder, Hesselink (b0075) 1984; 23
Herman, Kang (b0025) 2000; 45
Herman, Kang (b0030) 2001; 37
Herman (10.1016/j.ijheatmasstransfer.2013.03.026_b0030) 2001; 37
10.1016/j.ijheatmasstransfer.2013.03.026_b0060
Soller (10.1016/j.ijheatmasstransfer.2013.03.026_b0045) 1994; 33
Lang (10.1016/j.ijheatmasstransfer.2013.03.026_b0050) 1994; 33
Herman (10.1016/j.ijheatmasstransfer.2013.03.026_b0020) 1998; 24
Herman (10.1016/j.ijheatmasstransfer.2013.03.026_b0035) 2001; 8
Natterer (10.1016/j.ijheatmasstransfer.2013.03.026_b0015) 1986
Snyder (10.1016/j.ijheatmasstransfer.2013.03.026_b0075) 1984; 23
Sweeney (10.1016/j.ijheatmasstransfer.2013.03.026_b0070) 1974; 17
Hauf (10.1016/j.ijheatmasstransfer.2013.03.026_b0065) 1970
Bahl (10.1016/j.ijheatmasstransfer.2013.03.026_b0080) 1992; 34
Herman (10.1016/j.ijheatmasstransfer.2013.03.026_b0005) 1992
Herman (10.1016/j.ijheatmasstransfer.2013.03.026_b0055) 1980
Narrow (10.1016/j.ijheatmasstransfer.2013.03.026_b0090) 2000; 28
Herman (10.1016/j.ijheatmasstransfer.2013.03.026_b0025) 2000; 45
Zhang (10.1016/j.ijheatmasstransfer.2013.03.026_b0040) 1994; 5
Mewes (10.1016/j.ijheatmasstransfer.2013.03.026_b0010) 1994
Parker (10.1016/j.ijheatmasstransfer.2013.03.026_b0085) 1996; 118
20885654 - Appl Opt. 1994 May 10;33(14):2921-32
18213207 - Appl Opt. 1984 Oct 15;23(20):3650
References_xml – year: 1970
  ident: b0065
  article-title: Optical methods in heat transfer, Advances in Heat Transfer
– volume: 33
  start-page: 2921
  year: 1994
  end-page: 2932
  ident: b0045
  article-title: Interferometric tomography for flow visualization of density fields in supersonic jets and convective flow
  publication-title: Appl. Phys.
– start-page: 371
  year: 1994
  end-page: 424
  ident: b0010
  article-title: Tomographic measurement and reconstruction techniques
  publication-title: Optical Measurements – Techniques and Applications
– volume: 8
  start-page: 1
  year: 2001
  end-page: 19
  ident: b0035
  article-title: An experimental study of convective heat transfer enhancement in a grooved channel using cylindrical eddy promoters
  publication-title: J. Enhanced Heat Transfer
– volume: 24
  start-page: 431
  year: 1998
  end-page: 446
  ident: b0020
  article-title: Expanding the applications of holographic interferometry to the quantitative visualization of complex, oscillatory thermofluid processes
  publication-title: Exp. Fluids
– year: 1980
  ident: b0055
  article-title: Image reconstruction from projections: The fundamentals of computerized tomography
– volume: 28
  start-page: 282
  year: 2000
  end-page: 283
  ident: b0090
  article-title: A simple model for the refractive index of sodium iodide aqueous solutions
  publication-title: Exp. Fluids
– volume: 23
  start-page: 3650
  year: 1984
  ident: b0075
  article-title: Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade
  publication-title: Appl. Opt.
– volume: 5
  start-page: 495
  year: 1994
  end-page: 502
  ident: b0040
  article-title: Three-dimensional temperature measurements in enclosures by using multiview interferometric tomography
  publication-title: Meas. Sci. Technol.
– reference: M. Wetzel, Measurement of three dimensional concentration fields using optical techniques, MS Thesis, The Johns Hopkins University, Baltimore, MD, 1994.
– volume: 34
  start-page: 949
  year: 1992
  end-page: 960
  ident: b0080
  article-title: Measurement of local convective heat transfer coefficients using three-dimensional interferometry
  publication-title: Int. J. Heat Mass Transfer
– volume: 37
  start-page: 87
  year: 2001
  end-page: 99
  ident: b0030
  article-title: Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel
  publication-title: Heat Mass Transfer
– volume: 17
  start-page: 1443
  year: 1974
  end-page: 1454
  ident: b0070
  article-title: Measurement of 3D temperature fields above heated surfaces by holographic interferometry
  publication-title: Int. J. Heat Mass Transfer
– year: 1986
  ident: b0015
  article-title: The Mathematics of Computerized Tomography
– start-page: 1
  year: 1992
  end-page: 58
  ident: b0005
  article-title: Optical techniques in transport phenomena
  publication-title: Advances in Transport Processes VIII
– volume: 45
  start-page: 3741
  year: 2000
  end-page: 3757
  ident: b0025
  article-title: Heat transfer enhancement in a grooved channel with curved vanes
  publication-title: Int. J. Heat Mass Transfer
– volume: 33
  start-page: 3465
  year: 1994
  end-page: 3471
  ident: b0050
  article-title: Real-time image processing techniques for noncontact temperature measurement
  publication-title: Opt. Eng.
– volume: 118
  start-page: 810
  year: 1996
  end-page: 818
  ident: b0085
  article-title: An investigation of turbulent Taylor–Couette flow using laser Doppler velocimetry in a refractive index matched facility
  publication-title: J. Fluid Eng. Trans. ASME
– volume: 23
  start-page: 3650
  year: 1984
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0075
  article-title: Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade
  publication-title: Appl. Opt.
  doi: 10.1364/AO.23.003650
– start-page: 371
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0010
  article-title: Tomographic measurement and reconstruction techniques
– ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0060
– volume: 37
  start-page: 87
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0030
  article-title: Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel
  publication-title: Heat Mass Transfer
  doi: 10.1007/s002310000101
– start-page: 1
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0005
  article-title: Optical techniques in transport phenomena
– volume: 45
  start-page: 3741
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0025
  article-title: Heat transfer enhancement in a grooved channel with curved vanes
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(02)00092-3
– year: 1980
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0055
– year: 1986
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0015
– volume: 28
  start-page: 282
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0090
  article-title: A simple model for the refractive index of sodium iodide aqueous solutions
  publication-title: Exp. Fluids
  doi: 10.1007/s003480050389
– year: 1970
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0065
– volume: 24
  start-page: 431
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0020
  article-title: Expanding the applications of holographic interferometry to the quantitative visualization of complex, oscillatory thermofluid processes
  publication-title: Exp. Fluids
  doi: 10.1007/s003480050193
– volume: 34
  start-page: 949
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0080
  article-title: Measurement of local convective heat transfer coefficients using three-dimensional interferometry
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(91)90006-Z
– volume: 5
  start-page: 495
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0040
  article-title: Three-dimensional temperature measurements in enclosures by using multiview interferometric tomography
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/5/5/005
– volume: 8
  start-page: 1
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0035
  article-title: An experimental study of convective heat transfer enhancement in a grooved channel using cylindrical eddy promoters
  publication-title: J. Enhanced Heat Transfer
  doi: 10.1615/JEnhHeatTransf.v8.i6.10
– volume: 17
  start-page: 1443
  year: 1974
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0070
  article-title: Measurement of 3D temperature fields above heated surfaces by holographic interferometry
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(74)90054-4
– volume: 33
  start-page: 2921
  issue: 14
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0045
  article-title: Interferometric tomography for flow visualization of density fields in supersonic jets and convective flow
  publication-title: Appl. Phys.
– volume: 33
  start-page: 3465
  issue: 10
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0050
  article-title: Real-time image processing techniques for noncontact temperature measurement
  publication-title: Opt. Eng.
  doi: 10.1117/12.179406
– volume: 118
  start-page: 810
  year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2013.03.026_b0085
  article-title: An investigation of turbulent Taylor–Couette flow using laser Doppler velocimetry in a refractive index matched facility
  publication-title: J. Fluid Eng. Trans. ASME
  doi: 10.1115/1.2835513
– reference: 18213207 - Appl Opt. 1984 Oct 15;23(20):3650
– reference: 20885654 - Appl Opt. 1994 May 10;33(14):2921-32
SSID ssj0017046
Score 2.131058
Snippet The need for the measurement of complex, unsteady, three-dimensional (3D) temperature distributions arises in a variety of engineering applications, and...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 680
SubjectTerms 3D temperature measurement
Algorithms
ART-Sample algorithm
Heaters
Holographic interferometry
Inverse methods
Mass transfer
Obstacle
Obstacles
Opaque obstacle
Reconstruction
Temperature distribution
Three dimensional
Tomography
Viewing
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrXhceFOWl4zEgUu2iR3HCRdUFaoKiaoCViqnyI69NG02WbFZIfgL_Glm8oKyqNIKaW-xrbV3PPNN9ptvAF5kidRxjBcQsyvhhVopz8RWer4ODYbLUFhF1cjvj6LDafjuRJ5sQdDXwjSk_czkk7KYT8r8tOFWLubZbs8T28UbQeWhV2A7kgi_R7A9PTre-9x73ES0CgSxSjwMX8k1ePmb05WfkYebIyytG1joSBE0EI3MKckr_Ds0rUPPdQbl9VW50N-_6aL4Izwd3IIP_cZaVsr5ZFWbSfbjL83HjXZ-G252YJXttY_uwJYr78LVhjSaLe_Bz-Nq2bFrMd9murSsoHqp9iUgq2YM0SVDxOx91CRCzHTxpfqa16dzhlCZNbn4oF9Lw8UbRlJZnc4za9h17bq0UN73U6GhmOvjYbHKILqlr30fpgdvP-0fel1zBy-TStWeFVwb9CBKh1Zzaa1RycwIaZ0N3ExzEWrNQ2OJ88Wlts7nzmqjI8t1gjhUPIBRWZXuITAxQ2uTmcVYjODOBklGbT8D58sY70kYj-F1_7umWXcI1ICjSHuK21m6bhkpWUbq44dHY0iGFRatCsgGc_d7U0o7VNOilRSD1garPO-tMEUHQP_q6NJVqyXlbqGMEchfNiZSGNmUUpeNwUSTCpF9OYad1rqHvZJoY8Jptrpg98MAEim_-AQtuBEr74x2DK-GG7LxET76n8mP4QZvWpgQxfoJjNCs3VMEkrV51rmOX-e-fHI
  priority: 102
  providerName: Unpaywall
Title Possibilities and limitations of the ART-Sample algorithm for reconstruction of 3D temperature fields and the influence of opaque obstacles
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.03.026
https://www.ncbi.nlm.nih.gov/pubmed/24039276
https://www.proquest.com/docview/1464581396
https://www.proquest.com/docview/1671537776
https://www.proquest.com/docview/1826590105
https://pubmed.ncbi.nlm.nih.gov/PMC3768022
https://www.ncbi.nlm.nih.gov/pmc/articles/3768022
UnpaywallVersion submittedVersion
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AKRWK
  dateStart: 19600601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5CSh-X0GfqNA1b6KEXNdI-vFIuxbgNbk1NaGuansRIu24UFMnUDiWX_oH-6czo1RqXgKFgENijBe3O7nxjffMNYy_TSEMY4gbE7Ep6CozxktBqzweVYLhU0hqqRv446Y-m6sOpPt1iw7YWhmiVzdlfn-nVad18c9jM5uE8y6jGl5wroFdvGHgk5e1KGepi8PpXR_MIjF8X69BpTNZ32Ks_HK_snE68C4SpywomOlIIDWQle0pyC_8OVetQdJ1RefeymMPVT8jzv8LV8X220-BMPqgf5QHbcsVDdrvie6aLR-z3SbloiLGYKnMoLM-p1Kn-_46XM47AkCPY9T4D6QdzyL-XP7Ll2QVHlMurNLqTniVz-ZaTylUj0cwrYlw9Lg2Uta1QyBTTdHwuXiYITImT95hNj999GY68pi-Dl2pjlp6VAhLc_AaUBaGtTUw0S6S2zgZuBkIqAKESS3QtocE6XzgLCfStgAghpHzCtouycE8ZlzN0FJ1aDKOIy2wQpdSxM3C-DtHFVdhjb9oliNNmEqh3Rh637LTzeH0RY1rE2MeP6PdY1I0wrwU8Nrh32K56vOKUMcabDUZ50TpMjHuXXshA4crLBaVdSoeIwW-y6RsMSsaYm2wwR6QaYl_32G7tiN2zkt5iJOhus-KinQHpi6_-UmRnlc44xh4qxO6xo86ZN57Cvf8yhc_YPVG1ISGa9D7bRv92zxEMLpODarcfsFuD9-PRhK7jT1_HeJ1OTgbfrgHQsWv3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5VRVAuiDfhuUgcuJja-8jaXBAKVAHaColW6m019m6oK9eOSCrEhT_An2Zm_YAoqFIkpJyS8Uq7O7vzTfzNN4y9KDINaYoHELMrGSkwJspTp6MYVI7hUklnqBr54HA8PVYfT_TJFpv0tTBEq-zu_vZOD7d1981ut5q787KkGl9yroRevWHgkZi3X1FaGMrAXv0ceB6JidtqHbqOyfwae_mH5FWe0ZV3jjh1GXCiJ4nQRAbdU9Jb-HesWsei65TKnYt6Dj--Q1X9Fa_2brIbHdDkb9u53GJbvr7NrgbCZ7G4w359bhYdMxZzZQ614xXVOrV_4PFmxhEZckS70RcgAWEO1dfmW7k8PecIc3nIowftWTKX7zjJXHUazTww49pxaaCy74VCppin47x4kyMyJVLeXXa89_5oMo26xgxRoY1ZRk4KyPH0G1AOhHYuN9ksl9p5l_gZCKkAhMod8bWEBudj4R3kMHYCMsSQ8h7brpvaP2BcztBTdOEwjiIwc0lWUMvOxMc6RR9X6Yi96bfAFt0iUPOMyvb0tDO7vomWNtHG-BHjEcuGEeatgscGz076XbcrXmkx4GwwyvPeYSweXnojA7VvLhaUdymdIgi_zGZsMCoZYy6zwSSRiohjPWL3W0cc5kqCi5mgp82Kiw4GJDC--ktdngahcQw-VIk9Yq8HZ954CR_-lyV8xnamRwf7dv_D4adH7LoIPUmIM_2YbaOv-yeIDJf503DyfwPtnmo5
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrXhceFOWl4zEgUu2iR3HCRdUFaoKiaoCViqnyI69NG02WbFZIfgL_Glm8oKyqNIKaW-xrbV3PPNN9ptvAF5kidRxjBcQsyvhhVopz8RWer4ODYbLUFhF1cjvj6LDafjuRJ5sQdDXwjSk_czkk7KYT8r8tOFWLubZbs8T28UbQeWhV2A7kgi_R7A9PTre-9x73ES0CgSxSjwMX8k1ePmb05WfkYebIyytG1joSBE0EI3MKckr_Ds0rUPPdQbl9VW50N-_6aL4Izwd3IIP_cZaVsr5ZFWbSfbjL83HjXZ-G252YJXttY_uwJYr78LVhjSaLe_Bz-Nq2bFrMd9murSsoHqp9iUgq2YM0SVDxOx91CRCzHTxpfqa16dzhlCZNbn4oF9Lw8UbRlJZnc4za9h17bq0UN73U6GhmOvjYbHKILqlr30fpgdvP-0fel1zBy-TStWeFVwb9CBKh1Zzaa1RycwIaZ0N3ExzEWrNQ2OJ88Wlts7nzmqjI8t1gjhUPIBRWZXuITAxQ2uTmcVYjODOBklGbT8D58sY70kYj-F1_7umWXcI1ICjSHuK21m6bhkpWUbq44dHY0iGFRatCsgGc_d7U0o7VNOilRSD1garPO-tMEUHQP_q6NJVqyXlbqGMEchfNiZSGNmUUpeNwUSTCpF9OYad1rqHvZJoY8Jptrpg98MAEim_-AQtuBEr74x2DK-GG7LxET76n8mP4QZvWpgQxfoJjNCs3VMEkrV51rmOX-e-fHI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Possibilities+and+limitations+of+the+ART-Sample+algorithm+for+reconstruction+of+3D+temperature+fields+and+the+influence+of+opaque+obstacles&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Li%2C+Yuanyang&rft.au=Herman%2C+Cila&rft.date=2013-07-01&rft.issn=0017-9310&rft.volume=62&rft.spage=680&rft.epage=696&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2013.03.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon