Comparative Algorithms for Identifying and Counting Hospitalisation Episodes of Care for Coronary Heart Disease Using Administrative Data
Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that acco...
Saved in:
| Published in | Clinical epidemiology Vol. 16; pp. 921 - 928 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New Zealand
Dove Medical Press Limited
01.01.2024
Taylor & Francis Ltd Dove Dove Medical Press |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1179-1349 1179-1349 |
| DOI | 10.2147/CLEP.S497760 |
Cover
| Abstract | Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers.
We used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm.
Counts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1-2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively.
The date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes. |
|---|---|
| AbstractList | Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers.PurposeMeasures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers.We used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm.Patient and MethodsWe used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm.Counts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1-2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively.ResultsCounts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1-2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively.The date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes.ConclusionThe date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes. Patient and Methods: We used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm. Derrick Lopez,1 Juan Lu,1,2 Frank M Sanfilippo,1 Judith M Katzenellenbogen,1 Tom Briffa,1 Lee Nedkoff1,3 1Cardiovascular Epidemiology Research Centre, School of Population and Global Health, The University of Western Australia, Crawley, Western Australia, Australia; 2Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia; 3Victor Chang Cardiac Research Institute, Sydney, New South Wales, AustraliaCorrespondence: Derrick Lopez, School of Population and Global Health (M431), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia, Email Derrick.Lopez@uwa.edu.auPurpose: Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers.Patient and Methods: We used person-linked hospitalisations for CHD and MI for 2000– 2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm.Results: Counts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1– 2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively.Conclusion: The date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes.Keywords: patient transfer, rates, trends, Western Australia Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers. We used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm. Counts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1-2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively. The date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes. Purpose: Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers. Patient and Methods: We used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm. Results: Counts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1-2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively. Conclusion: The date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes. Keywords: patient transfer, rates, trends, Western Australia Purpose: Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers.Patient and Methods: We used person-linked hospitalisations for CHD and MI for 2000– 2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm.Results: Counts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1– 2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively.Conclusion: The date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes. |
| Audience | Academic |
| Author | Katzenellenbogen, Judith Lu, Juan Lopez, Derrick Nedkoff, Lee Sanfilippo, Frank Briffa, Tom |
| Author_xml | – sequence: 1 givenname: Derrick orcidid: 0000-0003-0677-0420 surname: Lopez fullname: Lopez, Derrick – sequence: 2 givenname: Juan surname: Lu fullname: Lu, Juan – sequence: 3 givenname: Frank orcidid: 0000-0003-3639-0787 surname: Sanfilippo fullname: Sanfilippo, Frank – sequence: 4 givenname: Judith orcidid: 0000-0001-5287-5819 surname: Katzenellenbogen fullname: Katzenellenbogen, Judith – sequence: 5 givenname: Tom surname: Briffa fullname: Briffa, Tom – sequence: 6 givenname: Lee orcidid: 0000-0002-3970-625X surname: Nedkoff fullname: Nedkoff, Lee |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39741528$$D View this record in MEDLINE/PubMed |
| BookMark | eNptk11v0zAUhiM0xMbYHdcoEhLigg5_pY6vUJUVNqkSSGPXluvYravEDnYy1J_Av-ZkHVVbkSgftp_z-uQ9J6-zMx-8ybK3GF0TzPjnajH_cX3PBOdT9CK7wJiLCaZMnB28n2dXKW0QHJRiztGr7JwKznBByovsTxXaTkXVu0eTz5pViK5ftym3IeZ3tfG9s1vnV7nydV6FAcYwuA2pc71qXIK44PN551KoTcqDzSsVzVN0FWLwKm7zW6Nin9-4ZFQy-UMaFWZ167xL_fPGN6pXb7KXVjXJXD0_L7OHr_Of1e1k8f3bXTVbTHTBeT8ppkoQow2iTCmqCMJTykixpKQkQtTYaqxJATdBCy0sLrnlrJgSoVldUlLTy-xup1sHtZFddC0kKYNy8mkixJWEfJ1ujESKaY6wLQTFjBXLsuC2REWNtTV2yRhoTXZag-_U9rdqmr0gRnKskASdTqZdhYD_suO7YdmaWoO_UTVHSRyveLeWq_AoMZ6WnBIMCh-fFWL4NZjUy9YlbZpGeROGJCkuUEkZXIC-P0E3YYgevB2pKRII4QNqpeCLnbcBNtajqJyVBBwjHAmgrv9DwVmb1mnoSetg_ijgw0HA2qimX6fQDGO_pGPw3aEley_-tSgAZAfoGFKKxkoNvTfqQAqu2Rs9_gryfm_0p5Og07oc4X8BrAYHKg |
| CitedBy_id | crossref_primary_10_1016_j_ijmedinf_2025_105847 |
| Cites_doi | 10.1016/S0002-9149(02)02183-5 10.1097/MLR.0000000000001290 10.1136/hrt.2008.142588 10.1136/bmjopen-2017-019226 10.1023/A:1010933404324 10.1177/1460458217730866 10.1097/MLR.0000000000000624 10.1097/MD.0000000000002677 10.1186/1471-2261-14-58 10.1002/bimj.200410135 10.1001/archinte.166.13.1410 10.1111/1753-6405.12310 10.1161/CIRCULATIONAHA.114.014776 10.1111/jgs.16308 10.1214/aos/1013203451 10.1186/1756-0500-3-205 10.1016/j.ijmedinf.2018.02.012 10.1186/1471-2288-12-133 10.1016/j.ejim.2015.05.011 |
| ContentType | Journal Article |
| Copyright | 2024 Lopez et al. COPYRIGHT 2024 Dove Medical Press Limited 2024. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Lopez et al. 2024 Lopez et al. |
| Copyright_xml | – notice: 2024 Lopez et al. – notice: COPYRIGHT 2024 Dove Medical Press Limited – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Lopez et al. 2024 Lopez et al. |
| DBID | AAYXX CITATION NPM 3V. 7XB 8C1 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.2147/CLEP.S497760 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Public Health Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Public Health ProQuest Central Basic ProQuest One Academic Eastern Edition Health Research Premium Collection (Alumni) ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health |
| DocumentTitleAlternate | Lopez et al |
| EISSN | 1179-1349 |
| EndPage | 928 |
| ExternalDocumentID | oai_doaj_org_article_0a4c701f5931445b857f805d1cfefb44 10.2147/clep.s497760 PMC11687321 A828322709 39741528 10_2147_CLEP_S497760 |
| Genre | Journal Article |
| GeographicLocations | Australia Michigan |
| GeographicLocations_xml | – name: Michigan – name: Australia |
| GrantInformation_xml | – fundername: ; |
| GroupedDBID | --- 0YH 29B 2WC 53G 5VS 8C1 8G5 AAYXX ABUWG ADBBV ADRAZ AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ C1A CCPQU CITATION DIK DWQXO E3Z EBD FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HYE IAO IHR IHW IPNFZ ITC KQ8 M2O M48 M~E O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PUEGO RIG RPM TDBHL TR2 UKHRP VDV ALIPV NPM AQTUD 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c577t-56a92ece034aa3a20163425b328299d1fc1c25c1c935c9f187f745629c4d832d3 |
| IEDL.DBID | M48 |
| ISSN | 1179-1349 |
| IngestDate | Tue Oct 14 18:56:41 EDT 2025 Sun Oct 26 04:02:43 EDT 2025 Tue Sep 30 17:06:36 EDT 2025 Thu Oct 02 10:47:37 EDT 2025 Sat Oct 25 09:00:46 EDT 2025 Mon Oct 20 22:45:05 EDT 2025 Mon Oct 20 16:56:07 EDT 2025 Thu May 22 21:23:52 EDT 2025 Sun Jan 05 01:57:46 EST 2025 Wed Oct 01 03:10:49 EDT 2025 Thu Apr 24 22:59:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Western Australia patient transfer trends rates |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc/3.0 2024 Lopez et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c577t-56a92ece034aa3a20163425b328299d1fc1c25c1c935c9f187f745629c4d832d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3639-0787 0000-0001-5287-5819 0000-0003-0677-0420 0000-0002-3970-625X |
| OpenAccessLink | https://www.proquest.com/docview/3156090013?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 39741528 |
| PQID | 3156090013 |
| PQPubID | 3933188 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0a4c701f5931445b857f805d1cfefb44 unpaywall_primary_10_2147_clep_s497760 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11687321 proquest_miscellaneous_3150834083 proquest_journals_3156090013 gale_infotracmisc_A828322709 gale_infotracacademiconefile_A828322709 gale_healthsolutions_A828322709 pubmed_primary_39741528 crossref_citationtrail_10_2147_CLEP_S497760 crossref_primary_10_2147_CLEP_S497760 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New Zealand |
| PublicationPlace_xml | – name: New Zealand – name: Macclesfield |
| PublicationTitle | Clinical epidemiology |
| PublicationTitleAlternate | Clin Epidemiol |
| PublicationYear | 2024 |
| Publisher | Dove Medical Press Limited Taylor & Francis Ltd Dove Dove Medical Press |
| Publisher_xml | – name: Dove Medical Press Limited – name: Taylor & Francis Ltd – name: Dove – name: Dove Medical Press |
| References | Dreyer (ref22) 2015; 132 Mitchell (ref13) 2015; 39 Zhu (ref24) 2020; 68 Leightley (ref8) 2018; 113 ref17 Lopez (ref1) 2017; 7 Friedman (ref16) 2001; 29 Lopez (ref2) 2014; 14 Erne (ref21) 2015; 26 Kim (ref23) 2020; 58 Breiman (ref15) 2001; 45 Maynard (ref20) 2006; 166 Kahn (ref19) 2010; 3 Chan (ref4) 2008; 94 Peng (ref10) 2017; 55 Fransoo (ref12) 2012; 12 Westfall (ref3) 2002; 89 Fluss (ref14) 2005; 47 Assareh (ref25) 2019; 25 ref7 ref9 ref6 ref5 Pedregosa (ref18) 2011; 12 Zhang (ref11) 2016; 95 |
| References_xml | – volume: 89 start-page: 651 year: 2002 ident: ref3 publication-title: Am J Cardiol doi: 10.1016/S0002-9149(02)02183-5 – volume: 58 start-page: 491 year: 2020 ident: ref23 publication-title: Med Care doi: 10.1097/MLR.0000000000001290 – ident: ref5 – ident: ref7 – volume: 94 start-page: 1589 year: 2008 ident: ref4 publication-title: Heart doi: 10.1136/hrt.2008.142588 – volume: 7 start-page: e019226 year: 2017 ident: ref1 publication-title: BMJ Open doi: 10.1136/bmjopen-2017-019226 – volume: 45 start-page: 5 year: 2001 ident: ref15 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 25 start-page: 960 year: 2019 ident: ref25 publication-title: Health Inform J doi: 10.1177/1460458217730866 – volume: 12 start-page: 2825 year: 2011 ident: ref18 publication-title: J Mach Learn Res – ident: ref9 – volume: 55 start-page: 74 year: 2017 ident: ref10 publication-title: Med Care doi: 10.1097/MLR.0000000000000624 – ident: ref17 – volume: 95 start-page: e2677 year: 2016 ident: ref11 publication-title: Medicine doi: 10.1097/MD.0000000000002677 – volume: 14 start-page: 58 year: 2014 ident: ref2 publication-title: BMC Cardiovasc Disord doi: 10.1186/1471-2261-14-58 – ident: ref6 – volume: 47 start-page: 458 year: 2005 ident: ref14 publication-title: Biom J doi: 10.1002/bimj.200410135 – volume: 166 start-page: 1410 year: 2006 ident: ref20 publication-title: Arch Intern Med doi: 10.1001/archinte.166.13.1410 – volume: 39 start-page: 319 year: 2015 ident: ref13 publication-title: Aust NZ J Public Health doi: 10.1111/1753-6405.12310 – volume: 132 start-page: 158 year: 2015 ident: ref22 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.114.014776 – volume: 68 start-page: 847 year: 2020 ident: ref24 publication-title: J Am Geriatr Soc doi: 10.1111/jgs.16308 – volume: 29 start-page: 1189 year: 2001 ident: ref16 publication-title: Ann Stat doi: 10.1214/aos/1013203451 – volume: 3 start-page: 205 year: 2010 ident: ref19 publication-title: BMC Res Notes doi: 10.1186/1756-0500-3-205 – volume: 113 start-page: 17 year: 2018 ident: ref8 publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2018.02.012 – volume: 12 start-page: 133 year: 2012 ident: ref12 publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-12-133 – volume: 26 start-page: 414 year: 2015 ident: ref21 publication-title: Eur J Intern Med doi: 10.1016/j.ejim.2015.05.011 |
| SSID | ssj0000331770 |
| Score | 2.3333287 |
| Snippet | Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We... Purpose: Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of... Patient and Methods: We used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and... Derrick Lopez,1 Juan Lu,1,2 Frank M Sanfilippo,1 Judith M Katzenellenbogen,1 Tom Briffa,1 Lee Nedkoff1,3 1Cardiovascular Epidemiology Research Centre, School... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 921 |
| SubjectTerms | Age groups Algorithms Australia Cardiovascular disease Decision trees Heart attack Heart attacks Hospitalization Hospitals Inflation (Finance) Machine learning Michigan Original Research patient transfer rates Research ethics Trends western australia |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQLyAhVN5pCzUSjwMKdR6O4-OSblUhQEhQqTfLcRK60pKsNllV_Qn8a2bsbJq0Qlw47B7Wk00yHo-_SWa-IeS1rIJEhkz6mpvcjwFh-1JAlFKmmpkkZEZoDBS_fE1Oz-JP5_x81OoLc8IcPbBT3BHTsREsqLiMAPvzPOWiShkvAlOVVR5bJlCWylEwZX1wBPuiYC7THVvxHGWf598-fI8B7lg2yus9yFL133bIox3pZrbk3U290leXerkcbUUnu-RBjyHpzF37Q3KnrB-R--4BHHV1RY_J7-ya15vOlj-b9aK7-NVSAKnUVefaCieq64JmfcMIuu0i0uf40Plq0TZF2dKmolipZI_OkPRAr6_wVOuOHrtXPNQmH9AxGS-c-Fh3-gk5O5n_yE79vu-Cb7gQnc8TLcMSG4nFWkcaIEISwdLOI3zrKougMoEJOXzJiBuY7FRUAgMpaeICHEQRPSU7dVOXzwlNsNgeUFyhSxPnOcu1hhAInYaBP5XcI--3M6FMT0qOvTGWCoITnDeF86b6efPIm0F65cg4_iL3ESd1kEEKbfsDGJbqDUv9y7A8cogmoVw96uAI1CzF7k6hYNIj76wEugK4aKP7iga4dSTVmkgeTCRhCZvp8NbsVO9CWhVhjbtEiO6RV8MwHolpcXXZbKwMQOgYPh555qx0uGkAmgjOUo-kE_udaGU6Ui8uLMF4ECSpiMLAI28HU7-lcNDhSrVO4Xv_Q-H75F4IiNE93zogO916U74AxNflL-3i_gMmJ1Jb priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdG9wASQnwTGGAkPh5Qtnw5jh8Q6rpOE4JpAibtzXKcZJtUktKmQvsT-K-5s520YYKH9qG-NLF9Pv_OufsdIa9FFaYiCoSvmM79BBC2Lzh4KWWmAp1GgeYKHcUvx-nRafLpjJ1tkeMuFwbDKjubaAx10Wg8I9-LMeVXIGL5OP_pY9UofLvaldBQrrRC8cFQjN0g2xEyY43I9v70-ORrf-oSxLBf8sBGwGOJnr3J5-nJ7rcEYJBhqVzvTYbC_7qh3tip_o6ivLmq5-rql5rNNraow7vkjsOWdGyV4R7ZKuv75LY9mKM23-gB-T1Z833T8ewc-the_FhSAK_UZu2azCeq6oJOXCEJ2lUXcbE_dDq_XDZFuaRNRTGDyVw9QTIEtbjCWy1aemBf_VATlEA3SXrhxgeqVQ_J6eH0--TId_UYfM04b32WKhGVWGAsUSpWAB3SGJZ8HuPbWFGElQ51xOBLxEyDEmS84uhgCZ0UYDiK-BEZ1U1dPiE0xSR8QHeFKnWS50GuFLhGaEw0_KlgHnnfzYTUjqwca2bMJDgtOG8S5026efPIm156bkk6_iG3j5PayyC1tvmhWZxLt1JloBLNg7BiIgZnk-UZ41UWsCLUVVnlSeKRl6gS0uap9gZCjjOs-hTxQHjknZFAEwEPrZXLdICuI9nWQHJnIAlLWw-bO7WTzrQs5XoheORV34xXYrhcXTYrIwPQOoGPRx5bLe07DQAUQVvmkWygv4NRGbbUlxeGeDwM04zHUeiRt72qXxtwGMO5XNoBf_r_DjwjtyLAiPZEa4eM2sWqfA4Yr81fuIX7B6LxUIo priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB6tugeQEO9HYAEjLXBAKXk5iY8l29UKwWolqLScLMdJ2IqSVE0qtPwD_jUzcRqarRAc2kM9bmJnPP4mnvkG4FAUbig8R9iK69QOEGHbIkIvJY-Vo0PP0ZEiR_HjaXgyC96f8_M9ONzkwmyd31MFnbc4d8txHSBKCdEx3w85Iu4R7M9OzyZfTN0UYRPDnolp3-ky2G1aUv5d07u191yNi7y2Lpfq8odaLLY2neNbMN3crok1-TZeN-lY_7zC5Piv8dyGmx3qZBOjJndgLy_vwg3zyo6ZTKR78Cv5wwTOJouv1WreXHyvGcJaZvJ525wopsqMJV2JCbapO9JFBbHpcl5XWV6zqmCU29T2TogmQa0u6VKrhh2ZQyHWhiuwbfpevPCRatR9mB1PPycndlepwdY8ihqbh0p4OZUeC5TyFYKK0EdjkPp0Tisyt9Cu9jh-CZ9rVI84KiJyvYQOMjQpmf8ARmVV5o-AhZSej7gvU7kO0tRJlUKnicyMxj8V3II3mycqdUdjTtU0FhLdGZpimXyYnslPZooteNlLLw19x1_k3pFy9DJEut3-gM9OdmtYOirQkeMWXPjohvI05lEROzxzdZEXaRBY8JxUS5oM1t50yElM9aC8yBEWvG4lyHjgTWvV5UDg0ImGayB5MJDERa-HzRv1lZ3RqaVPWfGCQL0FL_pm6kmBdGVerVsZBN0Bfix4aLS9HzRCU4JzsQXxYB0MZmXYUs4vWkpy1w3jyPdcC171S2Znwkn3Zaf7j_9X8Alc9xBHmrdeBzBqVuv8KeLAJn3WmYHfT3NaMw priority: 102 providerName: Unpaywall |
| Title | Comparative Algorithms for Identifying and Counting Hospitalisation Episodes of Care for Coronary Heart Disease Using Administrative Data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39741528 https://www.proquest.com/docview/3156090013 https://www.proquest.com/docview/3150834083 https://pubmed.ncbi.nlm.nih.gov/PMC11687321 https://doi.org/10.2147/clep.s497760 https://doaj.org/article/0a4c701f5931445b857f805d1cfefb44 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: 8C1 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1179-1349 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: M48 dateStart: 20090801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1179-1349 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331770 issn: 1179-1349 databaseCode: 0YH dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj5NAEN-cdw-aGOO36FnXxI8Hw8nXsuyDMT2u58V4TaM2qU-bZYG7JhUq0Gj_BP9rZ4BisZr4UB7YAcrszM5vlvkg5JlIbV84ljAV05HpAcI2BQcvJQmUpX3H0lyho3g-9s-m3vsZm-2RTbfRloHlX1077Cc1LRZHP76t34LCv8EwZtvjr8MPo8nRJw-QjA_O-wHYKIFNHM5boF-vyS7YybpzHJZAM7EmXxMFv3ODnn2qy_jvLtZb1urPSMqrq2yp1t_VYrFlpk5vkhstvqTDRiBukb0ku02uN5tztMk5ukN-hr9rftPh4iIv5tXl15ICgKVN5m6d_URVFtOwbSZBNx1G2vgfOlrOyzxOSpqnFLOY6qtDLIigijU-qqjoSfP5h9aBCXS7UC88-ERV6i6Zno4-h2dm25PB1IzzymS-Ek6CTcY8pVwF8MF3Qe0jF7_IithOta0dBgfhMg2CEPCUo5MltBfD4hG798h-lmfJA0J9TMQHhBerRHtRZEVKgXuEC4qGmwpmkFebmZC6LViOfTMWEhwXnDeJ8ybbeTPI84562RTq-AfdMU5qR4PltesTeXEhW22VlvI0t-yUCRccThYFjKeBxWJbp0kaeZ5BnqBIyCZXtVsk5DDAzk8Ot4RBXtYUKLjwp7Vqsx3g1bHgVo_ysEcJ6q37wxuxkxvtkC7mvwuE7wZ52g3jlRgylyX5qqYBeO3BzyD3GyntXhpAKAK3wCBBT357XOmPZPPLuvi4bfsBdx3bIC86Ud9hOPBwKcuG4Q__mxOPyDUHIGOzwXVI9qtilTwGyFdFA3IlCO0BOTgejScfB_XGCRzfzeAc6jmMTMeT4Zdfx5FYXQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lAkhHhjKHSRKByQqd_rPVQoTVKlNI0qaKXetuu13VYKdogdVfkJ_Cl-GzP22kmo4NZDcsiO7ezOeB67M_MR8p6ndsAdi5vSV5HpgYdtcgZRShJKSwWOpZjEQPF4FAzOvK_n_vka-d3UwmBaZaMTK0Ud5wr3yHddLPnl6LF8mfw0ETUKT1cbCA2poRXivarFmC7sOErmNxDCFXuHPeD3juMc9E-7A1OjDJjKZ6w0_UByJ0HYLE9KV4JBDFwQ5MjFM0Ye26mylePDF3d9BVMLWcowbODKi-F1iF247z2y4bkeh-BvY78_OvnW7vJYLthnZtUZ9wgJtNsd9k8-fwdaVnXFXNjCCjLgtmFYsox_Z21uzrKJnN_I8XjJJB48Ig-1L0s7tfA9JmtJ9oQ8qDcCaV3f9JT86i76i9PO-BLWtLz6UVBwlmldJVxVWlGZxbSrgStog2aic41of3Jd5HFS0DylWDFVXd3F5gtyOsdHTUvaq4-aaJUEQZebAsODe7KUz8jZnXDmOVnP8ix5SWiARf_gTcYyUV4UWZGUEIqh8lJwU-4b5FPDCaF0c3TE6BgLCJKQbwL5JjTfDLLTUk_qpiD_oNtHprY02Mq7-iGfXgqtGYQlPcUsO_W5C8GtH4U-S0PLj22VJmnkeQbZRpEQdV1sq5BEJ0SUKYdZ3CAfKwpUSfCnldSVFTB1bO61Qrm1QgmqRK0ON2IntCorxOLFM8i7dhivxPS8LMlnFQ248h58DPKiltJ20uDwopMYGiRckd-VVVkdya6vqkbnth2EzHVsg3xoRf3WgsMaTkRRL_ir_09gm2wOTo-HYng4OnpN7jvgn9a7aVtkvZzOkjfgX5bRW_0SU3Jx13rjD3g_i84 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgESQrwxFLpIFA6Vid_rPSAUnEQtLVUlqNTbsl7bbaVgh9hRlZ_AX-LXMeO1nZgKbj0kh-zYzu6MZ77ZnQchb3hmB9yxuCl9FZseIGyTM_BS0lBaKnAsxSQ6il-Ogr0T7_Opf7pBfre5MBhW2erEWlEnhcI98oGLKb8cEcsga8IijkeTj7OfJnaQwpPWtp2GFpGDdHkJ7lv5YX8EvN5xnMn4W7RnNh0GTOUzVpl-ILmTYsssT0pXgjEMXBDi2MXzRZ7YmbKV48MXd30F0wpZxtBl4MpL4FVIXLjvDXKTuUGAdfvDyO72dywXLDOzdKw9NgMaRIfj4_dfPQBcdT3MlRWsmwVcNQlrNvHveM3bi3wml5dyOl0zhpP75F6DYulQi90DspHmD8ldvQVIdWbTI_IrWlUWp8PpGaxgdf6jpACTqc4PrnOsqMwTGjUtK2jbx6SJMqLj2UVZJGlJi4xirlR9dYRlF-R8iY-aV3SkD5loHf5A18sBw4NHspKPycm18OUJ2cyLPH1GaIDp_oAjE5kqL46tWEpwwlBtKbgp9w2y23JCqKYsOnbnmApwj5BvAvkmGr4ZZKejnulyIP-g-4RM7WiwiHf9QzE_E41OEJb0FLPszOcuuLV-HPosCy0_sVWWZrHnGWQbRULojNhOFYlhiP2lHGZxg7yrKVAZwZ9WssmpgKljWa8e5VaPEpSI6g-3YicaJVaK1StnkNfdMF6JgXl5WixqGgDxHnwM8lRLaTdpgLoID0ODhD357a1KfyS_OK9LnNt2EDLXsQ3ythP1KwsOazgTpV7w5_-fwDa5BdpCHO4fHbwgdxwApnobbYtsVvNF-hKAZRW_qt9gSr5ft8r4AyPtiTM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB6tugeQEO9HYAEjLXBAKXk5iY8l29UKwWolqLScLMdJ2IqSVE0qtPwD_jUzcRqarRAc2kM9bmJnPP4mnvkG4FAUbig8R9iK69QOEGHbIkIvJY-Vo0PP0ZEiR_HjaXgyC96f8_M9ONzkwmyd31MFnbc4d8txHSBKCdEx3w85Iu4R7M9OzyZfTN0UYRPDnolp3-ky2G1aUv5d07u191yNi7y2Lpfq8odaLLY2neNbMN3crok1-TZeN-lY_7zC5Piv8dyGmx3qZBOjJndgLy_vwg3zyo6ZTKR78Cv5wwTOJouv1WreXHyvGcJaZvJ525wopsqMJV2JCbapO9JFBbHpcl5XWV6zqmCU29T2TogmQa0u6VKrhh2ZQyHWhiuwbfpevPCRatR9mB1PPycndlepwdY8ihqbh0p4OZUeC5TyFYKK0EdjkPp0Tisyt9Cu9jh-CZ9rVI84KiJyvYQOMjQpmf8ARmVV5o-AhZSej7gvU7kO0tRJlUKnicyMxj8V3II3mycqdUdjTtU0FhLdGZpimXyYnslPZooteNlLLw19x1_k3pFy9DJEut3-gM9OdmtYOirQkeMWXPjohvI05lEROzxzdZEXaRBY8JxUS5oM1t50yElM9aC8yBEWvG4lyHjgTWvV5UDg0ImGayB5MJDERa-HzRv1lZ3RqaVPWfGCQL0FL_pm6kmBdGVerVsZBN0Bfix4aLS9HzRCU4JzsQXxYB0MZmXYUs4vWkpy1w3jyPdcC171S2Znwkn3Zaf7j_9X8Alc9xBHmrdeBzBqVuv8KeLAJn3WmYHfT3NaMw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Algorithms+for+Identifying+and+Counting+Hospitalisation+Episodes+of+Care+for+Coronary+Heart+Disease+Using+Administrative+Data&rft.jtitle=Clinical+epidemiology&rft.au=Lopez%2C+Derrick&rft.au=Lu%2C+Juan&rft.au=Sanfilippo%2C+Frank+M&rft.au=Katzenellenbogen%2C+Judith+M&rft.date=2024-01-01&rft.pub=Dove+Medical+Press+Limited&rft.issn=1179-1349&rft.eissn=1179-1349&rft.volume=16&rft.spage=921&rft_id=info:doi/10.2147%2FCLEP.S497760&rft.externalDocID=A828322709 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1179-1349&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1179-1349&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1179-1349&client=summon |