Comparative Algorithms for Identifying and Counting Hospitalisation Episodes of Care for Coronary Heart Disease Using Administrative Data

Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that acco...

Full description

Saved in:
Bibliographic Details
Published inClinical epidemiology Vol. 16; pp. 921 - 928
Main Authors Lopez, Derrick, Lu, Juan, Sanfilippo, Frank, Katzenellenbogen, Judith, Briffa, Tom, Nedkoff, Lee
Format Journal Article
LanguageEnglish
Published New Zealand Dove Medical Press Limited 01.01.2024
Taylor & Francis Ltd
Dove
Dove Medical Press
Subjects
Online AccessGet full text
ISSN1179-1349
1179-1349
DOI10.2147/CLEP.S497760

Cover

Abstract Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers. We used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm. Counts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1-2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively. The date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes.
AbstractList Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers.PurposeMeasures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers.We used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm.Patient and MethodsWe used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm.Counts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1-2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively.ResultsCounts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1-2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively.The date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes.ConclusionThe date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes.
Patient and Methods: We used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm.
Derrick Lopez,1 Juan Lu,1,2 Frank M Sanfilippo,1 Judith M Katzenellenbogen,1 Tom Briffa,1 Lee Nedkoff1,3 1Cardiovascular Epidemiology Research Centre, School of Population and Global Health, The University of Western Australia, Crawley, Western Australia, Australia; 2Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia; 3Victor Chang Cardiac Research Institute, Sydney, New South Wales, AustraliaCorrespondence: Derrick Lopez, School of Population and Global Health (M431), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia, Email Derrick.Lopez@uwa.edu.auPurpose: Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers.Patient and Methods: We used person-linked hospitalisations for CHD and MI for 2000– 2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm.Results: Counts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1– 2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively.Conclusion: The date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes.Keywords: patient transfer, rates, trends, Western Australia
Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers. We used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm. Counts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1-2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively. The date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes.
Purpose: Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers. Patient and Methods: We used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm. Results: Counts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1-2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively. Conclusion: The date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes. Keywords: patient transfer, rates, trends, Western Australia
Purpose: Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We aimed to identify and compare measures of coronary heart disease (CHD) and myocardial infarction (MI) episodes using six algorithms that account for transfers.Patient and Methods: We used person-linked hospitalisations for CHD and MI for 2000– 2016 in Western Australia based on the interval between discharge and subsequent admission (date, datetime algorithms), pathway (admission source, discharge destination) and any combination to generate machine learning models (random forest [RF], gradient boosting machine [GBM]). The date and datetime algorithms used deidentified patient identifiers to identify records belonging to the same individual. We calculated counts, age-standardised rates (ASR) and age-adjusted trends for CHD and MI for each algorithm.Results: Counts of CHD increased from 11,733 in 2000 to 13,274 in 2016, while MI increased from 2605 to 4480 using the date algorithm. Correspondingly ASR for CHD decreased from 2086.2 to 1463.1 while MI increased from 468.2 to 498.1 per 100,000 person-years. ASR for CHD and MI for datetime algorithm were consistently 1– 2% higher than the date algorithm. Differences in ASR of CHD and MI counts increased over time with the admission source, RF and GBM algorithms relative to the date algorithm. Age-adjusted trends in CHD and MI episode rates using RF and GBM differed significantly from all other algorithms. Only 86.7% and 87.6% of MI episodes identified by the date algorithm were identified by the admission source and discharge destination algorithms, respectively.Conclusion: The date and datetime algorithms produced the most valid measures of CHD and MI episodes. Findings underscore the importance of identifying admission and discharge dates/times belonging to the same individual in enumerating these episodes.
Audience Academic
Author Katzenellenbogen, Judith
Lu, Juan
Lopez, Derrick
Nedkoff, Lee
Sanfilippo, Frank
Briffa, Tom
Author_xml – sequence: 1
  givenname: Derrick
  orcidid: 0000-0003-0677-0420
  surname: Lopez
  fullname: Lopez, Derrick
– sequence: 2
  givenname: Juan
  surname: Lu
  fullname: Lu, Juan
– sequence: 3
  givenname: Frank
  orcidid: 0000-0003-3639-0787
  surname: Sanfilippo
  fullname: Sanfilippo, Frank
– sequence: 4
  givenname: Judith
  orcidid: 0000-0001-5287-5819
  surname: Katzenellenbogen
  fullname: Katzenellenbogen, Judith
– sequence: 5
  givenname: Tom
  surname: Briffa
  fullname: Briffa, Tom
– sequence: 6
  givenname: Lee
  orcidid: 0000-0002-3970-625X
  surname: Nedkoff
  fullname: Nedkoff, Lee
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39741528$$D View this record in MEDLINE/PubMed
BookMark eNptk11v0zAUhiM0xMbYHdcoEhLigg5_pY6vUJUVNqkSSGPXluvYravEDnYy1J_Av-ZkHVVbkSgftp_z-uQ9J6-zMx-8ybK3GF0TzPjnajH_cX3PBOdT9CK7wJiLCaZMnB28n2dXKW0QHJRiztGr7JwKznBByovsTxXaTkXVu0eTz5pViK5ftym3IeZ3tfG9s1vnV7nydV6FAcYwuA2pc71qXIK44PN551KoTcqDzSsVzVN0FWLwKm7zW6Nin9-4ZFQy-UMaFWZ167xL_fPGN6pXb7KXVjXJXD0_L7OHr_Of1e1k8f3bXTVbTHTBeT8ppkoQow2iTCmqCMJTykixpKQkQtTYaqxJATdBCy0sLrnlrJgSoVldUlLTy-xup1sHtZFddC0kKYNy8mkixJWEfJ1ujESKaY6wLQTFjBXLsuC2REWNtTV2yRhoTXZag-_U9rdqmr0gRnKskASdTqZdhYD_suO7YdmaWoO_UTVHSRyveLeWq_AoMZ6WnBIMCh-fFWL4NZjUy9YlbZpGeROGJCkuUEkZXIC-P0E3YYgevB2pKRII4QNqpeCLnbcBNtajqJyVBBwjHAmgrv9DwVmb1mnoSetg_ijgw0HA2qimX6fQDGO_pGPw3aEley_-tSgAZAfoGFKKxkoNvTfqQAqu2Rs9_gryfm_0p5Og07oc4X8BrAYHKg
CitedBy_id crossref_primary_10_1016_j_ijmedinf_2025_105847
Cites_doi 10.1016/S0002-9149(02)02183-5
10.1097/MLR.0000000000001290
10.1136/hrt.2008.142588
10.1136/bmjopen-2017-019226
10.1023/A:1010933404324
10.1177/1460458217730866
10.1097/MLR.0000000000000624
10.1097/MD.0000000000002677
10.1186/1471-2261-14-58
10.1002/bimj.200410135
10.1001/archinte.166.13.1410
10.1111/1753-6405.12310
10.1161/CIRCULATIONAHA.114.014776
10.1111/jgs.16308
10.1214/aos/1013203451
10.1186/1756-0500-3-205
10.1016/j.ijmedinf.2018.02.012
10.1186/1471-2288-12-133
10.1016/j.ejim.2015.05.011
ContentType Journal Article
Copyright 2024 Lopez et al.
COPYRIGHT 2024 Dove Medical Press Limited
2024. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Lopez et al. 2024 Lopez et al.
Copyright_xml – notice: 2024 Lopez et al.
– notice: COPYRIGHT 2024 Dove Medical Press Limited
– notice: 2024. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Lopez et al. 2024 Lopez et al.
DBID AAYXX
CITATION
NPM
3V.
7XB
8C1
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.2147/CLEP.S497760
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Public Health Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Public Health
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Health Research Premium Collection (Alumni)
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
DocumentTitleAlternate Lopez et al
EISSN 1179-1349
EndPage 928
ExternalDocumentID oai_doaj_org_article_0a4c701f5931445b857f805d1cfefb44
10.2147/clep.s497760
PMC11687321
A828322709
39741528
10_2147_CLEP_S497760
Genre Journal Article
GeographicLocations Australia
Michigan
GeographicLocations_xml – name: Michigan
– name: Australia
GrantInformation_xml – fundername: ;
GroupedDBID ---
0YH
29B
2WC
53G
5VS
8C1
8G5
AAYXX
ABUWG
ADBBV
ADRAZ
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
C1A
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HYE
IAO
IHR
IHW
IPNFZ
ITC
KQ8
M2O
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PUEGO
RIG
RPM
TDBHL
TR2
UKHRP
VDV
ALIPV
NPM
AQTUD
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c577t-56a92ece034aa3a20163425b328299d1fc1c25c1c935c9f187f745629c4d832d3
IEDL.DBID M48
ISSN 1179-1349
IngestDate Tue Oct 14 18:56:41 EDT 2025
Sun Oct 26 04:02:43 EDT 2025
Tue Sep 30 17:06:36 EDT 2025
Thu Oct 02 10:47:37 EDT 2025
Sat Oct 25 09:00:46 EDT 2025
Mon Oct 20 22:45:05 EDT 2025
Mon Oct 20 16:56:07 EDT 2025
Thu May 22 21:23:52 EDT 2025
Sun Jan 05 01:57:46 EST 2025
Wed Oct 01 03:10:49 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Western Australia
patient transfer
trends
rates
Language English
License https://creativecommons.org/licenses/by-nc/3.0
2024 Lopez et al.
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-56a92ece034aa3a20163425b328299d1fc1c25c1c935c9f187f745629c4d832d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3639-0787
0000-0001-5287-5819
0000-0003-0677-0420
0000-0002-3970-625X
OpenAccessLink https://www.proquest.com/docview/3156090013?pq-origsite=%requestingapplication%&accountid=15518
PMID 39741528
PQID 3156090013
PQPubID 3933188
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_0a4c701f5931445b857f805d1cfefb44
unpaywall_primary_10_2147_clep_s497760
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11687321
proquest_miscellaneous_3150834083
proquest_journals_3156090013
gale_infotracmisc_A828322709
gale_infotracacademiconefile_A828322709
gale_healthsolutions_A828322709
pubmed_primary_39741528
crossref_citationtrail_10_2147_CLEP_S497760
crossref_primary_10_2147_CLEP_S497760
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New Zealand
PublicationPlace_xml – name: New Zealand
– name: Macclesfield
PublicationTitle Clinical epidemiology
PublicationTitleAlternate Clin Epidemiol
PublicationYear 2024
Publisher Dove Medical Press Limited
Taylor & Francis Ltd
Dove
Dove Medical Press
Publisher_xml – name: Dove Medical Press Limited
– name: Taylor & Francis Ltd
– name: Dove
– name: Dove Medical Press
References Dreyer (ref22) 2015; 132
Mitchell (ref13) 2015; 39
Zhu (ref24) 2020; 68
Leightley (ref8) 2018; 113
ref17
Lopez (ref1) 2017; 7
Friedman (ref16) 2001; 29
Lopez (ref2) 2014; 14
Erne (ref21) 2015; 26
Kim (ref23) 2020; 58
Breiman (ref15) 2001; 45
Maynard (ref20) 2006; 166
Kahn (ref19) 2010; 3
Chan (ref4) 2008; 94
Peng (ref10) 2017; 55
Fransoo (ref12) 2012; 12
Westfall (ref3) 2002; 89
Fluss (ref14) 2005; 47
Assareh (ref25) 2019; 25
ref7
ref9
ref6
ref5
Pedregosa (ref18) 2011; 12
Zhang (ref11) 2016; 95
References_xml – volume: 89
  start-page: 651
  year: 2002
  ident: ref3
  publication-title: Am J Cardiol
  doi: 10.1016/S0002-9149(02)02183-5
– volume: 58
  start-page: 491
  year: 2020
  ident: ref23
  publication-title: Med Care
  doi: 10.1097/MLR.0000000000001290
– ident: ref5
– ident: ref7
– volume: 94
  start-page: 1589
  year: 2008
  ident: ref4
  publication-title: Heart
  doi: 10.1136/hrt.2008.142588
– volume: 7
  start-page: e019226
  year: 2017
  ident: ref1
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-019226
– volume: 45
  start-page: 5
  year: 2001
  ident: ref15
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 25
  start-page: 960
  year: 2019
  ident: ref25
  publication-title: Health Inform J
  doi: 10.1177/1460458217730866
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref18
  publication-title: J Mach Learn Res
– ident: ref9
– volume: 55
  start-page: 74
  year: 2017
  ident: ref10
  publication-title: Med Care
  doi: 10.1097/MLR.0000000000000624
– ident: ref17
– volume: 95
  start-page: e2677
  year: 2016
  ident: ref11
  publication-title: Medicine
  doi: 10.1097/MD.0000000000002677
– volume: 14
  start-page: 58
  year: 2014
  ident: ref2
  publication-title: BMC Cardiovasc Disord
  doi: 10.1186/1471-2261-14-58
– ident: ref6
– volume: 47
  start-page: 458
  year: 2005
  ident: ref14
  publication-title: Biom J
  doi: 10.1002/bimj.200410135
– volume: 166
  start-page: 1410
  year: 2006
  ident: ref20
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.166.13.1410
– volume: 39
  start-page: 319
  year: 2015
  ident: ref13
  publication-title: Aust NZ J Public Health
  doi: 10.1111/1753-6405.12310
– volume: 132
  start-page: 158
  year: 2015
  ident: ref22
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.114.014776
– volume: 68
  start-page: 847
  year: 2020
  ident: ref24
  publication-title: J Am Geriatr Soc
  doi: 10.1111/jgs.16308
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref16
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
– volume: 3
  start-page: 205
  year: 2010
  ident: ref19
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-3-205
– volume: 113
  start-page: 17
  year: 2018
  ident: ref8
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2018.02.012
– volume: 12
  start-page: 133
  year: 2012
  ident: ref12
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-12-133
– volume: 26
  start-page: 414
  year: 2015
  ident: ref21
  publication-title: Eur J Intern Med
  doi: 10.1016/j.ejim.2015.05.011
SSID ssj0000331770
Score 2.3333287
Snippet Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of care. We...
Purpose: Measures of disease burden using hospital administrative data are susceptible to over-inflation if the patient is transferred during their episode of...
Patient and Methods: We used person-linked hospitalisations for CHD and MI for 2000-2016 in Western Australia based on the interval between discharge and...
Derrick Lopez,1 Juan Lu,1,2 Frank M Sanfilippo,1 Judith M Katzenellenbogen,1 Tom Briffa,1 Lee Nedkoff1,3 1Cardiovascular Epidemiology Research Centre, School...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 921
SubjectTerms Age groups
Algorithms
Australia
Cardiovascular disease
Decision trees
Heart attack
Heart attacks
Hospitalization
Hospitals
Inflation (Finance)
Machine learning
Michigan
Original Research
patient transfer
rates
Research ethics
Trends
western australia
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQLyAhVN5pCzUSjwMKdR6O4-OSblUhQEhQqTfLcRK60pKsNllV_Qn8a2bsbJq0Qlw47B7Wk00yHo-_SWa-IeS1rIJEhkz6mpvcjwFh-1JAlFKmmpkkZEZoDBS_fE1Oz-JP5_x81OoLc8IcPbBT3BHTsREsqLiMAPvzPOWiShkvAlOVVR5bJlCWylEwZX1wBPuiYC7THVvxHGWf598-fI8B7lg2yus9yFL133bIox3pZrbk3U290leXerkcbUUnu-RBjyHpzF37Q3KnrB-R--4BHHV1RY_J7-ya15vOlj-b9aK7-NVSAKnUVefaCieq64JmfcMIuu0i0uf40Plq0TZF2dKmolipZI_OkPRAr6_wVOuOHrtXPNQmH9AxGS-c-Fh3-gk5O5n_yE79vu-Cb7gQnc8TLcMSG4nFWkcaIEISwdLOI3zrKougMoEJOXzJiBuY7FRUAgMpaeICHEQRPSU7dVOXzwlNsNgeUFyhSxPnOcu1hhAInYaBP5XcI--3M6FMT0qOvTGWCoITnDeF86b6efPIm0F65cg4_iL3ESd1kEEKbfsDGJbqDUv9y7A8cogmoVw96uAI1CzF7k6hYNIj76wEugK4aKP7iga4dSTVmkgeTCRhCZvp8NbsVO9CWhVhjbtEiO6RV8MwHolpcXXZbKwMQOgYPh555qx0uGkAmgjOUo-kE_udaGU6Ui8uLMF4ECSpiMLAI28HU7-lcNDhSrVO4Xv_Q-H75F4IiNE93zogO916U74AxNflL-3i_gMmJ1Jb
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdG9wASQnwTGGAkPh5Qtnw5jh8Q6rpOE4JpAibtzXKcZJtUktKmQvsT-K-5s520YYKH9qG-NLF9Pv_OufsdIa9FFaYiCoSvmM79BBC2Lzh4KWWmAp1GgeYKHcUvx-nRafLpjJ1tkeMuFwbDKjubaAx10Wg8I9-LMeVXIGL5OP_pY9UofLvaldBQrrRC8cFQjN0g2xEyY43I9v70-ORrf-oSxLBf8sBGwGOJnr3J5-nJ7rcEYJBhqVzvTYbC_7qh3tip_o6ivLmq5-rql5rNNraow7vkjsOWdGyV4R7ZKuv75LY9mKM23-gB-T1Z833T8ewc-the_FhSAK_UZu2azCeq6oJOXCEJ2lUXcbE_dDq_XDZFuaRNRTGDyVw9QTIEtbjCWy1aemBf_VATlEA3SXrhxgeqVQ_J6eH0--TId_UYfM04b32WKhGVWGAsUSpWAB3SGJZ8HuPbWFGElQ51xOBLxEyDEmS84uhgCZ0UYDiK-BEZ1U1dPiE0xSR8QHeFKnWS50GuFLhGaEw0_KlgHnnfzYTUjqwca2bMJDgtOG8S5026efPIm156bkk6_iG3j5PayyC1tvmhWZxLt1JloBLNg7BiIgZnk-UZ41UWsCLUVVnlSeKRl6gS0uap9gZCjjOs-hTxQHjknZFAEwEPrZXLdICuI9nWQHJnIAlLWw-bO7WTzrQs5XoheORV34xXYrhcXTYrIwPQOoGPRx5bLe07DQAUQVvmkWygv4NRGbbUlxeGeDwM04zHUeiRt72qXxtwGMO5XNoBf_r_DjwjtyLAiPZEa4eM2sWqfA4Yr81fuIX7B6LxUIo
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB6tugeQEO9HYAEjLXBAKXk5iY8l29UKwWolqLScLMdJ2IqSVE0qtPwD_jUzcRqarRAc2kM9bmJnPP4mnvkG4FAUbig8R9iK69QOEGHbIkIvJY-Vo0PP0ZEiR_HjaXgyC96f8_M9ONzkwmyd31MFnbc4d8txHSBKCdEx3w85Iu4R7M9OzyZfTN0UYRPDnolp3-ky2G1aUv5d07u191yNi7y2Lpfq8odaLLY2neNbMN3crok1-TZeN-lY_7zC5Piv8dyGmx3qZBOjJndgLy_vwg3zyo6ZTKR78Cv5wwTOJouv1WreXHyvGcJaZvJ525wopsqMJV2JCbapO9JFBbHpcl5XWV6zqmCU29T2TogmQa0u6VKrhh2ZQyHWhiuwbfpevPCRatR9mB1PPycndlepwdY8ihqbh0p4OZUeC5TyFYKK0EdjkPp0Tisyt9Cu9jh-CZ9rVI84KiJyvYQOMjQpmf8ARmVV5o-AhZSej7gvU7kO0tRJlUKnicyMxj8V3II3mycqdUdjTtU0FhLdGZpimXyYnslPZooteNlLLw19x1_k3pFy9DJEut3-gM9OdmtYOirQkeMWXPjohvI05lEROzxzdZEXaRBY8JxUS5oM1t50yElM9aC8yBEWvG4lyHjgTWvV5UDg0ImGayB5MJDERa-HzRv1lZ3RqaVPWfGCQL0FL_pm6kmBdGVerVsZBN0Bfix4aLS9HzRCU4JzsQXxYB0MZmXYUs4vWkpy1w3jyPdcC171S2Znwkn3Zaf7j_9X8Alc9xBHmrdeBzBqVuv8KeLAJn3WmYHfT3NaMw
  priority: 102
  providerName: Unpaywall
Title Comparative Algorithms for Identifying and Counting Hospitalisation Episodes of Care for Coronary Heart Disease Using Administrative Data
URI https://www.ncbi.nlm.nih.gov/pubmed/39741528
https://www.proquest.com/docview/3156090013
https://www.proquest.com/docview/3150834083
https://pubmed.ncbi.nlm.nih.gov/PMC11687321
https://doi.org/10.2147/clep.s497760
https://doaj.org/article/0a4c701f5931445b857f805d1cfefb44
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: 8C1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: M48
  dateStart: 20090801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1179-1349
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331770
  issn: 1179-1349
  databaseCode: 0YH
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj5NAEN-cdw-aGOO36FnXxI8Hw8nXsuyDMT2u58V4TaM2qU-bZYG7JhUq0Gj_BP9rZ4BisZr4UB7YAcrszM5vlvkg5JlIbV84ljAV05HpAcI2BQcvJQmUpX3H0lyho3g-9s-m3vsZm-2RTbfRloHlX1077Cc1LRZHP76t34LCv8EwZtvjr8MPo8nRJw-QjA_O-wHYKIFNHM5boF-vyS7YybpzHJZAM7EmXxMFv3ODnn2qy_jvLtZb1urPSMqrq2yp1t_VYrFlpk5vkhstvqTDRiBukb0ku02uN5tztMk5ukN-hr9rftPh4iIv5tXl15ICgKVN5m6d_URVFtOwbSZBNx1G2vgfOlrOyzxOSpqnFLOY6qtDLIigijU-qqjoSfP5h9aBCXS7UC88-ERV6i6Zno4-h2dm25PB1IzzymS-Ek6CTcY8pVwF8MF3Qe0jF7_IithOta0dBgfhMg2CEPCUo5MltBfD4hG798h-lmfJA0J9TMQHhBerRHtRZEVKgXuEC4qGmwpmkFebmZC6LViOfTMWEhwXnDeJ8ybbeTPI84562RTq-AfdMU5qR4PltesTeXEhW22VlvI0t-yUCRccThYFjKeBxWJbp0kaeZ5BnqBIyCZXtVsk5DDAzk8Ot4RBXtYUKLjwp7Vqsx3g1bHgVo_ysEcJ6q37wxuxkxvtkC7mvwuE7wZ52g3jlRgylyX5qqYBeO3BzyD3GyntXhpAKAK3wCBBT357XOmPZPPLuvi4bfsBdx3bIC86Ud9hOPBwKcuG4Q__mxOPyDUHIGOzwXVI9qtilTwGyFdFA3IlCO0BOTgejScfB_XGCRzfzeAc6jmMTMeT4Zdfx5FYXQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lAkhHhjKHSRKByQqd_rPVQoTVKlNI0qaKXetuu13VYKdogdVfkJ_Cl-GzP22kmo4NZDcsiO7ezOeB67M_MR8p6ndsAdi5vSV5HpgYdtcgZRShJKSwWOpZjEQPF4FAzOvK_n_vka-d3UwmBaZaMTK0Ud5wr3yHddLPnl6LF8mfw0ETUKT1cbCA2poRXivarFmC7sOErmNxDCFXuHPeD3juMc9E-7A1OjDJjKZ6w0_UByJ0HYLE9KV4JBDFwQ5MjFM0Ye26mylePDF3d9BVMLWcowbODKi-F1iF247z2y4bkeh-BvY78_OvnW7vJYLthnZtUZ9wgJtNsd9k8-fwdaVnXFXNjCCjLgtmFYsox_Z21uzrKJnN_I8XjJJB48Ig-1L0s7tfA9JmtJ9oQ8qDcCaV3f9JT86i76i9PO-BLWtLz6UVBwlmldJVxVWlGZxbSrgStog2aic41of3Jd5HFS0DylWDFVXd3F5gtyOsdHTUvaq4-aaJUEQZebAsODe7KUz8jZnXDmOVnP8ix5SWiARf_gTcYyUV4UWZGUEIqh8lJwU-4b5FPDCaF0c3TE6BgLCJKQbwL5JjTfDLLTUk_qpiD_oNtHprY02Mq7-iGfXgqtGYQlPcUsO_W5C8GtH4U-S0PLj22VJmnkeQbZRpEQdV1sq5BEJ0SUKYdZ3CAfKwpUSfCnldSVFTB1bO61Qrm1QgmqRK0ON2IntCorxOLFM8i7dhivxPS8LMlnFQ248h58DPKiltJ20uDwopMYGiRckd-VVVkdya6vqkbnth2EzHVsg3xoRf3WgsMaTkRRL_ir_09gm2wOTo-HYng4OnpN7jvgn9a7aVtkvZzOkjfgX5bRW_0SU3Jx13rjD3g_i84
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgESQrwxFLpIFA6Vid_rPSAUnEQtLVUlqNTbsl7bbaVgh9hRlZ_AX-LXMeO1nZgKbj0kh-zYzu6MZ77ZnQchb3hmB9yxuCl9FZseIGyTM_BS0lBaKnAsxSQ6il-Ogr0T7_Opf7pBfre5MBhW2erEWlEnhcI98oGLKb8cEcsga8IijkeTj7OfJnaQwpPWtp2GFpGDdHkJ7lv5YX8EvN5xnMn4W7RnNh0GTOUzVpl-ILmTYsssT0pXgjEMXBDi2MXzRZ7YmbKV48MXd30F0wpZxtBl4MpL4FVIXLjvDXKTuUGAdfvDyO72dywXLDOzdKw9NgMaRIfj4_dfPQBcdT3MlRWsmwVcNQlrNvHveM3bi3wml5dyOl0zhpP75F6DYulQi90DspHmD8ldvQVIdWbTI_IrWlUWp8PpGaxgdf6jpACTqc4PrnOsqMwTGjUtK2jbx6SJMqLj2UVZJGlJi4xirlR9dYRlF-R8iY-aV3SkD5loHf5A18sBw4NHspKPycm18OUJ2cyLPH1GaIDp_oAjE5kqL46tWEpwwlBtKbgp9w2y23JCqKYsOnbnmApwj5BvAvkmGr4ZZKejnulyIP-g-4RM7WiwiHf9QzE_E41OEJb0FLPszOcuuLV-HPosCy0_sVWWZrHnGWQbRULojNhOFYlhiP2lHGZxg7yrKVAZwZ9WssmpgKljWa8e5VaPEpSI6g-3YicaJVaK1StnkNfdMF6JgXl5WixqGgDxHnwM8lRLaTdpgLoID0ODhD357a1KfyS_OK9LnNt2EDLXsQ3ythP1KwsOazgTpV7w5_-fwDa5BdpCHO4fHbwgdxwApnobbYtsVvNF-hKAZRW_qt9gSr5ft8r4AyPtiTM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB6tugeQEO9HYAEjLXBAKXk5iY8l29UKwWolqLScLMdJ2IqSVE0qtPwD_jUzcRqarRAc2kM9bmJnPP4mnvkG4FAUbig8R9iK69QOEGHbIkIvJY-Vo0PP0ZEiR_HjaXgyC96f8_M9ONzkwmyd31MFnbc4d8txHSBKCdEx3w85Iu4R7M9OzyZfTN0UYRPDnolp3-ky2G1aUv5d07u191yNi7y2Lpfq8odaLLY2neNbMN3crok1-TZeN-lY_7zC5Piv8dyGmx3qZBOjJndgLy_vwg3zyo6ZTKR78Cv5wwTOJouv1WreXHyvGcJaZvJ525wopsqMJV2JCbapO9JFBbHpcl5XWV6zqmCU29T2TogmQa0u6VKrhh2ZQyHWhiuwbfpevPCRatR9mB1PPycndlepwdY8ihqbh0p4OZUeC5TyFYKK0EdjkPp0Tisyt9Cu9jh-CZ9rVI84KiJyvYQOMjQpmf8ARmVV5o-AhZSej7gvU7kO0tRJlUKnicyMxj8V3II3mycqdUdjTtU0FhLdGZpimXyYnslPZooteNlLLw19x1_k3pFy9DJEut3-gM9OdmtYOirQkeMWXPjohvI05lEROzxzdZEXaRBY8JxUS5oM1t50yElM9aC8yBEWvG4lyHjgTWvV5UDg0ImGayB5MJDERa-HzRv1lZ3RqaVPWfGCQL0FL_pm6kmBdGVerVsZBN0Bfix4aLS9HzRCU4JzsQXxYB0MZmXYUs4vWkpy1w3jyPdcC171S2Znwkn3Zaf7j_9X8Alc9xBHmrdeBzBqVuv8KeLAJn3WmYHfT3NaMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Algorithms+for+Identifying+and+Counting+Hospitalisation+Episodes+of+Care+for+Coronary+Heart+Disease+Using+Administrative+Data&rft.jtitle=Clinical+epidemiology&rft.au=Lopez%2C+Derrick&rft.au=Lu%2C+Juan&rft.au=Sanfilippo%2C+Frank+M&rft.au=Katzenellenbogen%2C+Judith+M&rft.date=2024-01-01&rft.pub=Dove+Medical+Press+Limited&rft.issn=1179-1349&rft.eissn=1179-1349&rft.volume=16&rft.spage=921&rft_id=info:doi/10.2147%2FCLEP.S497760&rft.externalDocID=A828322709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1179-1349&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1179-1349&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1179-1349&client=summon