Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p
The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p...
Saved in:
| Published in | The Journal of cell biology Vol. 135; no. 3; pp. 597 - 610 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Rockefeller University Press
01.11.1996
The Rockefeller University Press |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9525 1540-8140 1540-8140 |
| DOI | 10.1083/jcb.135.3.597 |
Cover
| Abstract | The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small-budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4 indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal-Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988. Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336) Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived |
|---|---|
| AbstractList | Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence in Saccharomyces cerevisiae, marking the base of the incipient bud, and chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck at distinct times during the cell cycle. Data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis. The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small- budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4, indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal- Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988, Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336). Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived. Collectively, these data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis; Chs3p is not delivered to the vacuole, but instead may be recycled. The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small-budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4, indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome. Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived. Collectively, these data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis; Chs3p is not delivered to the vacuole, but instead may be recycled. The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small-budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4, indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal-Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988, Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336). Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived. Collectively, these data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis; Chs3p is not delivered to the vacuole, but instead may be recycled.The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small-budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4, indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal-Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988, Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336). Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived. Collectively, these data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis; Chs3p is not delivered to the vacuole, but instead may be recycled. The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small-budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4 indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal-Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988. Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336) Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small-budded cells. Cell synchronization and pulsechase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4, indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal-Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988. Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336). Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived. Collectively, these data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis; Chs3p is not delivered to the vacuole, but instead may be recycled. |
| Author | Chuang, J.S. (University of California, Berkeley.) Schekman, R.W |
| Author_xml | – sequence: 1 fullname: Chuang, J.S. (University of California, Berkeley.) – sequence: 2 fullname: Schekman, R.W |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/8909536$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks1v0zAYxi00NLrBkQsCydqBEwl2bMfJBQmVT2kSB9jZOMmb1iW1g-0wdX897lIxmIR6sqXned6Pn32GTqyzgNBTSnJKKvZ60zY5ZSJnuajlA7SggpOsopycoAUhBc1qUYhH6CyEDSGES85O0WlVk1qwcoG-vzN9Dx5sNHrA0eu-N-0PY1dY2w5Hs4UOD67Vg7nR0TiLXY_jtcPt2kRjcdjZuNYB8OhdBGPDK7xch2K8TacbGx-jh70eAjw5nOfo6sP7b8tP2eWXj5-Xby-zVkgZMwYFiIYRAWVX6YYDVFJ0UJe8STNT2nMKDRcEKG87LYoCJGGMadCc9J2U7Bzlc93Jjnp3rYdBjd5std8pStSelEqkVCKlmEqkUuDNHBinJm3ZJgRe34WcNupfxZq1WrlfqqAFJSVJBV4eCnj3c4IQ1daEFoZBW3BTULISRSUrftTIq4pIQYujRlrun0-wZLy4Z9y4ydvEN00nSWos9m1f_L3gn80Ob5_0bNZb70Lw0B8Fxu75WxNvP0XCY4b_pp7PqU2Izt-1KKks5X6IZ7Pca6f0ypugrr7WknAuKPsN-wjjeA |
| CODEN | JCLBA3 |
| CitedBy_id | crossref_primary_10_1016_j_tcb_2015_02_005 crossref_primary_10_1016_j_fbr_2016_03_002 crossref_primary_10_1016_S1534_5807_02_00127_2 crossref_primary_10_1083_jcb_137_3_563 crossref_primary_10_1091_mbc_e02_11_0736 crossref_primary_10_1093_plphys_kiad274 crossref_primary_10_1034_j_1600_0854_2002_30904_x crossref_primary_10_1091_mbc_e02_06_0314 crossref_primary_10_1242_jcs_005124 crossref_primary_10_1247_csf_06021 crossref_primary_10_1016_j_devcel_2013_10_018 crossref_primary_10_1083_jcb_151_3_731 crossref_primary_10_1093_jb_mvq155 crossref_primary_10_1534_genetics_111_132886 crossref_primary_10_1016_S0960_9822_01_00449_3 crossref_primary_10_1111_tra_12693 crossref_primary_10_1080_00275514_2000_12061131 crossref_primary_10_3390_jof10090642 crossref_primary_10_1099_00221287_144_2_391 crossref_primary_10_1099_00221287_147_4_781 crossref_primary_10_1091_mbc_12_2_475 crossref_primary_10_1091_mbc_e09_05_0412 crossref_primary_10_1091_mbc_e04_06_0514 crossref_primary_10_3390_ijms18040702 crossref_primary_10_1016_j_celrep_2021_109122 crossref_primary_10_1242_jcs_113_4_571 crossref_primary_10_1091_mbc_e07_09_0896 crossref_primary_10_1091_mbc_e14_04_0907 crossref_primary_10_1091_mbc_12_4_1035 crossref_primary_10_1534_genetics_117_300322 crossref_primary_10_1242_bio_011528 crossref_primary_10_3390_ijms232012251 crossref_primary_10_1006_mcbr_2000_0180 crossref_primary_10_1007_s00294_007_0151_0 crossref_primary_10_1002_yea_3659 crossref_primary_10_1091_mbc_10_4_1001 crossref_primary_10_1242_jcs_072371 crossref_primary_10_1091_mbc_9_6_1565 crossref_primary_10_1146_annurev_micro_52_1_687 crossref_primary_10_1007_s00232_009_9173_5 crossref_primary_10_1128_EC_4_6_1125_1136_2005 crossref_primary_10_1002_cm_21046 crossref_primary_10_1016_j_fbr_2008_05_003 crossref_primary_10_1016_S0925_4439_01_00028_X crossref_primary_10_3109_13693786_2011_577104 crossref_primary_10_3390_ijms22084029 crossref_primary_10_1007_s00360_005_0005_3 crossref_primary_10_1074_jbc_R000031200 crossref_primary_10_1083_jcb_145_6_1153 crossref_primary_10_1091_mbc_e02_03_0158 crossref_primary_10_1083_jcb_200505145 crossref_primary_10_1091_mbc_e12_01_0033 crossref_primary_10_1091_mbc_e05_08_0738 crossref_primary_10_1128_MMBR_00013_06 crossref_primary_10_1046_j_1365_2958_2001_02347_x crossref_primary_10_1002_yea_1206 crossref_primary_10_1016_j_abb_2004_02_030 crossref_primary_10_1073_pnas_250472397 crossref_primary_10_1083_jcb_139_1_75 crossref_primary_10_1091_mbc_e08_10_1082 crossref_primary_10_1016_j_bbalip_2007_01_015 crossref_primary_10_1016_j_semcdb_2016_01_043 crossref_primary_10_1038_emboj_2012_268 crossref_primary_10_1128_mBio_02682_19 crossref_primary_10_1515_BC_2011_091 crossref_primary_10_1099_00221287_146_2_385 crossref_primary_10_1186_1471_2156_6_8 crossref_primary_10_1242_jcs_115915 crossref_primary_10_1002_yea_905 crossref_primary_10_1007_s12551_018_0479_3 crossref_primary_10_1091_mbc_e11_05_0434 crossref_primary_10_1111_j_1600_0854_2004_00255_x crossref_primary_10_1007_s00709_005_0109_3 crossref_primary_10_1128_EC_2_5_886_900_2003 crossref_primary_10_1534_genetics_112_144485 crossref_primary_10_1042_BJ20081475 crossref_primary_10_1146_annurev_cellbio_100913_013012 crossref_primary_10_1242_jcs_00085 crossref_primary_10_1083_jcb_201302001 crossref_primary_10_1091_mbc_11_2_593 crossref_primary_10_1016_j_bbrc_2010_11_111 crossref_primary_10_1016_j_ejcb_2005_10_006 crossref_primary_10_1242_jcs_063891 crossref_primary_10_1128_EC_00088_07 crossref_primary_10_1134_S0965545X16050047 crossref_primary_10_1002_bies_10106 crossref_primary_10_1074_jbc_M601060200 crossref_primary_10_1128_MMBR_00038_05 crossref_primary_10_1515_BC_2011_083 crossref_primary_10_1073_pnas_0604078103 crossref_primary_10_1016_S0955_0674_98_80067_7 crossref_primary_10_1046_j_1365_2958_2002_02812_x crossref_primary_10_1534_genetics_111_128314 crossref_primary_10_1242_jcs_060210 crossref_primary_10_1016_j_tcb_2010_11_006 crossref_primary_10_1128_AAC_00450_10 crossref_primary_10_1247_csf_26_529 crossref_primary_10_1073_pnas_0607773104 crossref_primary_10_1074_mcp_M800372_MCP200 crossref_primary_10_1016_j_fgb_2003_08_005 crossref_primary_10_1016_S1087_1845_02_00017_8 crossref_primary_10_1091_mbc_e08_02_0130 crossref_primary_10_1016_j_fbr_2016_12_002 crossref_primary_10_1016_j_celrep_2014_02_026 crossref_primary_10_1091_mbc_e06_03_0210 crossref_primary_10_1016_j_cub_2004_09_022 crossref_primary_10_1083_jcb_200903125 crossref_primary_10_1091_mbc_e16_02_0106 crossref_primary_10_1091_mbc_11_2_579 crossref_primary_10_1093_genetics_166_4_1687 crossref_primary_10_1128_MCB_21_14_4482_4494_2001 crossref_primary_10_1111_tra_12401 crossref_primary_10_1007_s00018_016_2220_3 crossref_primary_10_1091_mbc_e03_04_0238 crossref_primary_10_1007_s00018_010_0596_z crossref_primary_10_1091_mbc_e02_06_0373 crossref_primary_10_1083_jcb_201208030 crossref_primary_10_1091_mbc_e02_03_0172 crossref_primary_10_1091_mbc_02_07_0105 crossref_primary_10_1099_mic_0_26661_0 crossref_primary_10_1111_tra_12125 crossref_primary_10_1111_j_1600_0854_2006_00496_x crossref_primary_10_1002_yea_1156 crossref_primary_10_1034_j_1600_0854_2002_030204_x crossref_primary_10_1080_mmy_39_1_41_53 crossref_primary_10_1016_S0031_9422_03_00350_9 crossref_primary_10_1534_genetics_112_145516 crossref_primary_10_1242_jcs_098947 crossref_primary_10_1534_genetics_111_127126 crossref_primary_10_1007_s00294_003_0380_9 crossref_primary_10_1016_j_isci_2020_101917 crossref_primary_10_1080_mmy_38_1_31_39 crossref_primary_10_1091_mbc_e12_11_0804 crossref_primary_10_1111_j_1365_2958_2003_03973_x crossref_primary_10_1091_mbc_E23_05_0186 crossref_primary_10_1016_S0923_2508_99_80041_2 crossref_primary_10_1016_j_fgb_2016_07_005 crossref_primary_10_1242_jcs_115_12_2549 crossref_primary_10_1016_j_fgb_2018_05_002 crossref_primary_10_1006_fgbi_1997_0990 crossref_primary_10_1042_BJ20100693 crossref_primary_10_1016_j_semcdb_2016_12_010 crossref_primary_10_3390_jof10090662 crossref_primary_10_1091_mbc_e06_11_1000 crossref_primary_10_1091_mbc_10_4_1077 crossref_primary_10_1242_jcs_115_2_293 crossref_primary_10_1007_s00294_013_0403_0 crossref_primary_10_3390_membranes5010084 crossref_primary_10_4161_cib_19977 crossref_primary_10_1091_mbc_11_2_435 crossref_primary_10_1038_ncb1701 crossref_primary_10_1083_jcb_200604094 crossref_primary_10_1091_mbc_9_12_3383 crossref_primary_10_1073_pnas_1834246100 crossref_primary_10_1083_jcb_149_2_397 crossref_primary_10_1091_mbc_e09_04_0324 crossref_primary_10_1016_j_mib_2010_05_002 crossref_primary_10_1017_S0953756297004462 crossref_primary_10_1091_mbc_e10_06_0484 crossref_primary_10_1128_mBio_02421_18 crossref_primary_10_1091_mbc_e04_12_1090 crossref_primary_10_3390_cells9030672 crossref_primary_10_1046_j_1365_2818_2000_00708_x crossref_primary_10_1002_jmor_10324 crossref_primary_10_3389_fcell_2014_00047 |
| ContentType | Journal Article |
| Copyright | Copyright 1996 The Rockefeller University Press Copyright Rockefeller University Press Nov 1996 |
| Copyright_xml | – notice: Copyright 1996 The Rockefeller University Press – notice: Copyright Rockefeller University Press Nov 1996 |
| DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM ADTOC UNPAY |
| DOI | 10.1083/jcb.135.3.597 |
| DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | Virology and AIDS Abstracts AGRICOLA MEDLINE MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1540-8140 |
| EndPage | 610 |
| ExternalDocumentID | 10.1083/jcb.135.3.597 PMC2121060 10977981 8909536 10_1083_jcb_135_3_597 1617676 US9704451 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
| GroupedDBID | --- -DZ -~X .55 .GJ 0VX 123 18M 1VV 29K 2WC 34G 36B 39C 3O- 4.4 53G 85S 9QQ AAUTI ABDNZ ABOCM ABPPZ ABPTK ABRJW ABTAH ABZEH ACGFO ACGOD ACIWK ACKIV ACKOT ACNCT ACNKL ACPRK ACPVT ACYGS ADBBV AENEX AEUPB AFFDN AFMIJ AFNDN AFOSN AFRAH AGCDD AGHSJ AHJTV AI. AKZZP ALMA_UNASSIGNED_HOLDINGS AOIJS B-7 BAWUL BKOMP BTFSW C1A C45 CS3 D-I D0L DIK DU5 E3Z EBS EJD EMB EMOBN F20 F5P F9R FBQ FRP GX1 HF~ HGD HYE IH2 J5H JENOY JST JZ9 KQ8 MVM N9A NHB O5R O5S OK1 OVD P2P PQQKQ R.V RHF RHI RNS RPM RXW SJN SV3 TAE TN5 TR2 TRP TWZ UBX UHB UKR UPT VH1 VQA W8F WH7 WOQ X7L X7M XOL YKV YNH YOC YQT YSK YWH YYP YZZ ZA5 ZCA ZGI ZY4 ~KM ADXHL AEILP H13 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIN 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c577t-3e2e5b305e6d8ab4ee875de964b04711f41eb450e14cda522e70333aea40fd773 |
| IEDL.DBID | UNPAY |
| ISSN | 0021-9525 1540-8140 |
| IngestDate | Tue Aug 19 22:27:35 EDT 2025 Thu Aug 21 14:01:15 EDT 2025 Fri Sep 05 14:38:04 EDT 2025 Thu Sep 04 18:42:08 EDT 2025 Fri Sep 05 06:50:54 EDT 2025 Wed Aug 13 09:39:33 EDT 2025 Wed Feb 19 02:32:56 EST 2025 Wed Oct 01 03:33:35 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 Thu Jul 03 21:09:17 EDT 2025 Wed Dec 27 18:55:10 EST 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c577t-3e2e5b305e6d8ab4ee875de964b04711f41eb450e14cda522e70333aea40fd773 |
| Notes | 9704451 F60 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://rupress.org/jcb/article-pdf/135/3/597/1266003/597.pdf |
| PMID | 8909536 |
| PQID | 217085254 |
| PQPubID | 48855 |
| PageCount | 14 |
| ParticipantIDs | unpaywall_primary_10_1083_jcb_135_3_597 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2121060 proquest_miscellaneous_78528784 proquest_miscellaneous_48807512 proquest_miscellaneous_16474353 proquest_journals_217085254 pubmed_primary_8909536 crossref_primary_10_1083_jcb_135_3_597 crossref_citationtrail_10_1083_jcb_135_3_597 jstor_primary_1617676 fao_agris_US9704451 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 1900 |
| PublicationDate | (Nov 1996) 19961101 1996-11-01 1996-Nov |
| PublicationDateYYYYMMDD | 1996-11-01 |
| PublicationDate_xml | – month: 11 year: 1996 text: (Nov 1996) |
| PublicationDecade | 1990 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | The Journal of cell biology |
| PublicationTitleAlternate | J Cell Biol |
| PublicationYear | 1996 |
| Publisher | Rockefeller University Press The Rockefeller University Press |
| Publisher_xml | – name: Rockefeller University Press – name: The Rockefeller University Press |
| References | J Cell Biol 1996 Dec;135(6 Pt 2):1925 |
| References_xml | – reference: - J Cell Biol 1996 Dec;135(6 Pt 2):1925 |
| SSID | ssj0004743 |
| Score | 1.968351 |
| Snippet | The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p)... Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence in Saccharomyces cerevisiae, marking the base of the incipient bud, and... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref jstor fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 597 |
| SubjectTerms | ABSORCION ABSORPTION analysis Aspartic Acid Endopeptidases Aspartic Acid Endopeptidases - metabolism Biological Transport biosynthesis carbohydrate metabolism Cell Cycle Cell division Cell membranes Cell walls Cells Cellular biology Chitin Chitin - biosynthesis chitin synthase Chitin Synthase - analysis Chitin Synthase - biosynthesis Chitin Synthase - genetics Chitin Synthase - metabolism CHITINE DEGRADACION DEGRADATION DIVISION CELLULAIRE DIVISION CELULAR Endocytosis endoplasmic reticulum Endoplasmic Reticulum - metabolism enzymology Epitopes Epitopes - analysis ESTRUCTURA CELULAR Fungal Proteins Fungal Proteins - physiology genetics GLICOSILTRANSFERASAS GLYCOSYLTRANSFERASE growth & development immunocytochemistry IMMUNOLOGIE INMUNOLOGIA metabolism METABOLISME DES GLUCIDES METABOLISMO DE CARBOHIDRATOS Munc18 Proteins MUTACION MUTATION Nerve Tissue Proteins Nerve Tissue Proteins - physiology ORGANITE CELLULAIRE ORGANULOS CITOPLASMICOS PARED CELULAR PAROI CELLULAIRE Perceptual localization physiology plasma membrane PROTEASAS PROTEASE protein degradation protein secretion protein synthesis PROTEINAS proteinases PROTEINE Proteins QUITINA Recombinant Fusion Proteins Recombinant Fusion Proteins - metabolism RETICULO ENDOPLASMATICO RETICULUM ENDOPLASMIQUE SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae Proteins SECRECION SECRETION SINTESIS DE PROTEINAS STRUCTURE CELLULAIRE SYNTHESE PROTEIQUE Temperature VACUOLA VACUOLE Vacuoles Vacuoles - metabolism Vesicular Transport Proteins Yeast Yeasts |
| Title | Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p |
| URI | https://www.jstor.org/stable/1617676 https://www.ncbi.nlm.nih.gov/pubmed/8909536 https://www.proquest.com/docview/217085254 https://www.proquest.com/docview/16474353 https://www.proquest.com/docview/48807512 https://www.proquest.com/docview/78528784 https://pubmed.ncbi.nlm.nih.gov/PMC2121060 https://rupress.org/jcb/article-pdf/135/3/597/1266003/597.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 135 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1540-8140 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004743 issn: 0021-9525 databaseCode: KQ8 dateStart: 19550125 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1540-8140 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004743 issn: 0021-9525 databaseCode: KQ8 dateStart: 19590101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1540-8140 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004743 issn: 0021-9525 databaseCode: KQ8 dateStart: 19620101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1540-8140 dateEnd: 20250501 omitProxy: true ssIdentifier: ssj0004743 issn: 0021-9525 databaseCode: DIK dateStart: 19620101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1540-8140 dateEnd: 20250501 omitProxy: true ssIdentifier: ssj0004743 issn: 0021-9525 databaseCode: GX1 dateStart: 19620101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZoJ8QnXsamhZfhD4gXaWmTOIlT-DR1jGkS0ySoVIRQ5LfQQkijJtVU_g__k7vELRtQhPgWyefEcc53j32X5wh5bKTWccZCDLobN1QBc0XAM3eQJKGKQqUjheeQb87ik1F4Oo7GNjcH_4WZL5r8zyaG_1nJvp0_t9RZ32dRn_UBAfd9cCt4AgfXPWjpkK04AijeJVujs_PD921ah-8Ooqboqo_Bf2R2shybgDrw3ljyocd6EfI9XfJJnUzMVsmJf4Kdv2dP3lgUpVheiDy_5JqOb7X1V6uG0RAzUr70FrXsqW-_8D3-91vfJjctaKWHrfwdcs0U2-R6W8ZyeZd8P7JVVsBa5BRGi7QUeARPRaEpVq_XtPGZ9p9POstofTGjGMKYFrRaFvUEnCltOCOmRXVAh5MqKJvecMVK-qG02fuamjmyQH-loixhkVYUbnBKhybPKY6HYrozPTLqJbzQs5ie1zR4_gLwZfRxh4yOX70bnri2_IOrIs5rl5nARBLskYl1ImRoDOyttBnEofTApfpZ6BsZRp7xQaUE4EgD1osxYUToZZpztku6xawwe4R6PBAx11oG0NXXSnCjMialYngGbKRDDlYKkCrLjY4lOvK0idEnLIWvksLAU5bC7DvkyVq8bElBNglugzal4hMY7HT0dsA95INzyE6jXT_7AoyMeeyQ-yttS60lqVLYMgIqhm28Qx6tW8EEYFxHFGa2qFKkhAPUyzZLoJXmAO02S3B4RsITeMpuq93rwSUDpCSEwfErar9uR37yqy3FdNLwlAdIThd7Dnm6XiB_n657_yz5gHTr-cI8BEBYy33SeT329-3i_wG-bV3T |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZYJ8QnXsamhVd_QLxIS5vESZzCp6ljmiYxTYJKQwhZfgsthDRqUk3l__A_uUvcsgFDiG-RfE4c53z32Hd5jpAnVhmT5izGoLv1Yx0xX0Y894dZFusk1ibReA755iQ9GsfHZ8mZy83Bf2Hmizb_s43hf9Zq4ObPr0w-CFkyYANAwIMQ3AqewMF1H1o2yGaaABTvkc3xyen--y6tI_SHSVt0NcTgPzI7OY5NQB14byz50Gf9BPmeLvikjVzOVsmJf4Kdv2dP3liUlVyey6K44JoOb3X1V-uW0RAzUr70F43q62-_8D3-91vfJjcdaKX7nfwdcs2WW-R6V8ZyeZd8P3BVVsBaFBRGi7QUeARPZWkoVq83tPWZ7p9POstpcz6jGMKYlrRels0EnCltOSOmZb1HR5M6qtrecMUq-qFy2fuG2jmyQH-lsqpgkdYUbnBMR7YoKI6HYrozPbD6FbzQ85SeNjR68RLwZfJxm4wPX78bHfmu_IOvE84bn9nIJgrskU1NJlVsLeytjB2msQrApYZ5HFoVJ4ENQaUk4EgL1osxaWUc5IZztkN65ay0u4QGPJIpN0ZF0DU0WnKrc6aUZngGbJVH9lYKILTjRscSHYVoY_QZE_BVBAxcMAGz75Gna_GqIwW5SnALtEnIT2CwxfjtkAfIB-eR7Va7fvYFGJny1CP3V9omnCWpBWwZARXDNt4jj9etYAIwriNLO1vUAinhAPWyqyXQSnOAdldLcHhGxjN4yk6n3evBZUOkJITB8Utqv25HfvLLLeV00vKUR0hOlwYeebZeIH-frnv_LPmA9Jr5wj4EQNioR27Z_wCRJVzi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+trafficking+and+timed+localization+of+two+chitin+synthase+proteins%2C+Chs2p+and+Chs3p&rft.jtitle=The+Journal+of+cell+biology&rft.au=Chuang%2C+J+S&rft.au=Schekman%2C+R+W&rft.date=1996-11-01&rft.issn=0021-9525&rft.volume=135&rft.issue=3&rft.spage=597&rft.epage=610&rft_id=info:doi/10.1083%2Fjcb.135.3.597&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon |