Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p

The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of cell biology Vol. 135; no. 3; pp. 597 - 610
Main Authors Chuang, J.S. (University of California, Berkeley.), Schekman, R.W
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 01.11.1996
The Rockefeller University Press
Subjects
Online AccessGet full text
ISSN0021-9525
1540-8140
1540-8140
DOI10.1083/jcb.135.3.597

Cover

Abstract The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small-budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4 indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal-Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988. Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336) Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived
AbstractList Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence in Saccharomyces cerevisiae, marking the base of the incipient bud, and chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck at distinct times during the cell cycle. Data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis.
The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small- budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4, indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal- Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988, Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336). Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived. Collectively, these data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis; Chs3p is not delivered to the vacuole, but instead may be recycled.
The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small-budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4, indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome. Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived. Collectively, these data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis; Chs3p is not delivered to the vacuole, but instead may be recycled.
The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small-budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4, indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal-Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988, Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336). Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived. Collectively, these data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis; Chs3p is not delivered to the vacuole, but instead may be recycled.The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small-budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4, indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal-Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988, Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336). Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived. Collectively, these data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis; Chs3p is not delivered to the vacuole, but instead may be recycled.
The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small-budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4 indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal-Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988. Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336) Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived
The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small-budded cells. Cell synchronization and pulsechase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4, indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal-Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988. Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336). Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived. Collectively, these data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis; Chs3p is not delivered to the vacuole, but instead may be recycled.
Author Chuang, J.S. (University of California, Berkeley.)
Schekman, R.W
Author_xml – sequence: 1
  fullname: Chuang, J.S. (University of California, Berkeley.)
– sequence: 2
  fullname: Schekman, R.W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/8909536$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v0zAYxi00NLrBkQsCydqBEwl2bMfJBQmVT2kSB9jZOMmb1iW1g-0wdX897lIxmIR6sqXned6Pn32GTqyzgNBTSnJKKvZ60zY5ZSJnuajlA7SggpOsopycoAUhBc1qUYhH6CyEDSGES85O0WlVk1qwcoG-vzN9Dx5sNHrA0eu-N-0PY1dY2w5Hs4UOD67Vg7nR0TiLXY_jtcPt2kRjcdjZuNYB8OhdBGPDK7xch2K8TacbGx-jh70eAjw5nOfo6sP7b8tP2eWXj5-Xby-zVkgZMwYFiIYRAWVX6YYDVFJ0UJe8STNT2nMKDRcEKG87LYoCJGGMadCc9J2U7Bzlc93Jjnp3rYdBjd5std8pStSelEqkVCKlmEqkUuDNHBinJm3ZJgRe34WcNupfxZq1WrlfqqAFJSVJBV4eCnj3c4IQ1daEFoZBW3BTULISRSUrftTIq4pIQYujRlrun0-wZLy4Z9y4ydvEN00nSWos9m1f_L3gn80Ob5_0bNZb70Lw0B8Fxu75WxNvP0XCY4b_pp7PqU2Izt-1KKks5X6IZ7Pca6f0ypugrr7WknAuKPsN-wjjeA
CODEN JCLBA3
CitedBy_id crossref_primary_10_1016_j_tcb_2015_02_005
crossref_primary_10_1016_j_fbr_2016_03_002
crossref_primary_10_1016_S1534_5807_02_00127_2
crossref_primary_10_1083_jcb_137_3_563
crossref_primary_10_1091_mbc_e02_11_0736
crossref_primary_10_1093_plphys_kiad274
crossref_primary_10_1034_j_1600_0854_2002_30904_x
crossref_primary_10_1091_mbc_e02_06_0314
crossref_primary_10_1242_jcs_005124
crossref_primary_10_1247_csf_06021
crossref_primary_10_1016_j_devcel_2013_10_018
crossref_primary_10_1083_jcb_151_3_731
crossref_primary_10_1093_jb_mvq155
crossref_primary_10_1534_genetics_111_132886
crossref_primary_10_1016_S0960_9822_01_00449_3
crossref_primary_10_1111_tra_12693
crossref_primary_10_1080_00275514_2000_12061131
crossref_primary_10_3390_jof10090642
crossref_primary_10_1099_00221287_144_2_391
crossref_primary_10_1099_00221287_147_4_781
crossref_primary_10_1091_mbc_12_2_475
crossref_primary_10_1091_mbc_e09_05_0412
crossref_primary_10_1091_mbc_e04_06_0514
crossref_primary_10_3390_ijms18040702
crossref_primary_10_1016_j_celrep_2021_109122
crossref_primary_10_1242_jcs_113_4_571
crossref_primary_10_1091_mbc_e07_09_0896
crossref_primary_10_1091_mbc_e14_04_0907
crossref_primary_10_1091_mbc_12_4_1035
crossref_primary_10_1534_genetics_117_300322
crossref_primary_10_1242_bio_011528
crossref_primary_10_3390_ijms232012251
crossref_primary_10_1006_mcbr_2000_0180
crossref_primary_10_1007_s00294_007_0151_0
crossref_primary_10_1002_yea_3659
crossref_primary_10_1091_mbc_10_4_1001
crossref_primary_10_1242_jcs_072371
crossref_primary_10_1091_mbc_9_6_1565
crossref_primary_10_1146_annurev_micro_52_1_687
crossref_primary_10_1007_s00232_009_9173_5
crossref_primary_10_1128_EC_4_6_1125_1136_2005
crossref_primary_10_1002_cm_21046
crossref_primary_10_1016_j_fbr_2008_05_003
crossref_primary_10_1016_S0925_4439_01_00028_X
crossref_primary_10_3109_13693786_2011_577104
crossref_primary_10_3390_ijms22084029
crossref_primary_10_1007_s00360_005_0005_3
crossref_primary_10_1074_jbc_R000031200
crossref_primary_10_1083_jcb_145_6_1153
crossref_primary_10_1091_mbc_e02_03_0158
crossref_primary_10_1083_jcb_200505145
crossref_primary_10_1091_mbc_e12_01_0033
crossref_primary_10_1091_mbc_e05_08_0738
crossref_primary_10_1128_MMBR_00013_06
crossref_primary_10_1046_j_1365_2958_2001_02347_x
crossref_primary_10_1002_yea_1206
crossref_primary_10_1016_j_abb_2004_02_030
crossref_primary_10_1073_pnas_250472397
crossref_primary_10_1083_jcb_139_1_75
crossref_primary_10_1091_mbc_e08_10_1082
crossref_primary_10_1016_j_bbalip_2007_01_015
crossref_primary_10_1016_j_semcdb_2016_01_043
crossref_primary_10_1038_emboj_2012_268
crossref_primary_10_1128_mBio_02682_19
crossref_primary_10_1515_BC_2011_091
crossref_primary_10_1099_00221287_146_2_385
crossref_primary_10_1186_1471_2156_6_8
crossref_primary_10_1242_jcs_115915
crossref_primary_10_1002_yea_905
crossref_primary_10_1007_s12551_018_0479_3
crossref_primary_10_1091_mbc_e11_05_0434
crossref_primary_10_1111_j_1600_0854_2004_00255_x
crossref_primary_10_1007_s00709_005_0109_3
crossref_primary_10_1128_EC_2_5_886_900_2003
crossref_primary_10_1534_genetics_112_144485
crossref_primary_10_1042_BJ20081475
crossref_primary_10_1146_annurev_cellbio_100913_013012
crossref_primary_10_1242_jcs_00085
crossref_primary_10_1083_jcb_201302001
crossref_primary_10_1091_mbc_11_2_593
crossref_primary_10_1016_j_bbrc_2010_11_111
crossref_primary_10_1016_j_ejcb_2005_10_006
crossref_primary_10_1242_jcs_063891
crossref_primary_10_1128_EC_00088_07
crossref_primary_10_1134_S0965545X16050047
crossref_primary_10_1002_bies_10106
crossref_primary_10_1074_jbc_M601060200
crossref_primary_10_1128_MMBR_00038_05
crossref_primary_10_1515_BC_2011_083
crossref_primary_10_1073_pnas_0604078103
crossref_primary_10_1016_S0955_0674_98_80067_7
crossref_primary_10_1046_j_1365_2958_2002_02812_x
crossref_primary_10_1534_genetics_111_128314
crossref_primary_10_1242_jcs_060210
crossref_primary_10_1016_j_tcb_2010_11_006
crossref_primary_10_1128_AAC_00450_10
crossref_primary_10_1247_csf_26_529
crossref_primary_10_1073_pnas_0607773104
crossref_primary_10_1074_mcp_M800372_MCP200
crossref_primary_10_1016_j_fgb_2003_08_005
crossref_primary_10_1016_S1087_1845_02_00017_8
crossref_primary_10_1091_mbc_e08_02_0130
crossref_primary_10_1016_j_fbr_2016_12_002
crossref_primary_10_1016_j_celrep_2014_02_026
crossref_primary_10_1091_mbc_e06_03_0210
crossref_primary_10_1016_j_cub_2004_09_022
crossref_primary_10_1083_jcb_200903125
crossref_primary_10_1091_mbc_e16_02_0106
crossref_primary_10_1091_mbc_11_2_579
crossref_primary_10_1093_genetics_166_4_1687
crossref_primary_10_1128_MCB_21_14_4482_4494_2001
crossref_primary_10_1111_tra_12401
crossref_primary_10_1007_s00018_016_2220_3
crossref_primary_10_1091_mbc_e03_04_0238
crossref_primary_10_1007_s00018_010_0596_z
crossref_primary_10_1091_mbc_e02_06_0373
crossref_primary_10_1083_jcb_201208030
crossref_primary_10_1091_mbc_e02_03_0172
crossref_primary_10_1091_mbc_02_07_0105
crossref_primary_10_1099_mic_0_26661_0
crossref_primary_10_1111_tra_12125
crossref_primary_10_1111_j_1600_0854_2006_00496_x
crossref_primary_10_1002_yea_1156
crossref_primary_10_1034_j_1600_0854_2002_030204_x
crossref_primary_10_1080_mmy_39_1_41_53
crossref_primary_10_1016_S0031_9422_03_00350_9
crossref_primary_10_1534_genetics_112_145516
crossref_primary_10_1242_jcs_098947
crossref_primary_10_1534_genetics_111_127126
crossref_primary_10_1007_s00294_003_0380_9
crossref_primary_10_1016_j_isci_2020_101917
crossref_primary_10_1080_mmy_38_1_31_39
crossref_primary_10_1091_mbc_e12_11_0804
crossref_primary_10_1111_j_1365_2958_2003_03973_x
crossref_primary_10_1091_mbc_E23_05_0186
crossref_primary_10_1016_S0923_2508_99_80041_2
crossref_primary_10_1016_j_fgb_2016_07_005
crossref_primary_10_1242_jcs_115_12_2549
crossref_primary_10_1016_j_fgb_2018_05_002
crossref_primary_10_1006_fgbi_1997_0990
crossref_primary_10_1042_BJ20100693
crossref_primary_10_1016_j_semcdb_2016_12_010
crossref_primary_10_3390_jof10090662
crossref_primary_10_1091_mbc_e06_11_1000
crossref_primary_10_1091_mbc_10_4_1077
crossref_primary_10_1242_jcs_115_2_293
crossref_primary_10_1007_s00294_013_0403_0
crossref_primary_10_3390_membranes5010084
crossref_primary_10_4161_cib_19977
crossref_primary_10_1091_mbc_11_2_435
crossref_primary_10_1038_ncb1701
crossref_primary_10_1083_jcb_200604094
crossref_primary_10_1091_mbc_9_12_3383
crossref_primary_10_1073_pnas_1834246100
crossref_primary_10_1083_jcb_149_2_397
crossref_primary_10_1091_mbc_e09_04_0324
crossref_primary_10_1016_j_mib_2010_05_002
crossref_primary_10_1017_S0953756297004462
crossref_primary_10_1091_mbc_e10_06_0484
crossref_primary_10_1128_mBio_02421_18
crossref_primary_10_1091_mbc_e04_12_1090
crossref_primary_10_3390_cells9030672
crossref_primary_10_1046_j_1365_2818_2000_00708_x
crossref_primary_10_1002_jmor_10324
crossref_primary_10_3389_fcell_2014_00047
ContentType Journal Article
Copyright Copyright 1996 The Rockefeller University Press
Copyright Rockefeller University Press Nov 1996
Copyright_xml – notice: Copyright 1996 The Rockefeller University Press
– notice: Copyright Rockefeller University Press Nov 1996
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ADTOC
UNPAY
DOI 10.1083/jcb.135.3.597
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

AGRICOLA

MEDLINE
MEDLINE - Academic

Algology Mycology and Protozoology Abstracts (Microbiology C)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1540-8140
EndPage 610
ExternalDocumentID 10.1083/jcb.135.3.597
PMC2121060
10977981
8909536
10_1083_jcb_135_3_597
1617676
US9704451
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
123
18M
1VV
29K
2WC
34G
36B
39C
3O-
4.4
53G
85S
9QQ
AAUTI
ABDNZ
ABOCM
ABPPZ
ABPTK
ABRJW
ABTAH
ABZEH
ACGFO
ACGOD
ACIWK
ACKIV
ACKOT
ACNCT
ACNKL
ACPRK
ACPVT
ACYGS
ADBBV
AENEX
AEUPB
AFFDN
AFMIJ
AFNDN
AFOSN
AFRAH
AGCDD
AGHSJ
AHJTV
AI.
AKZZP
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B-7
BAWUL
BKOMP
BTFSW
C1A
C45
CS3
D-I
D0L
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F20
F5P
F9R
FBQ
FRP
GX1
HF~
HGD
HYE
IH2
J5H
JENOY
JST
JZ9
KQ8
MVM
N9A
NHB
O5R
O5S
OK1
OVD
P2P
PQQKQ
R.V
RHF
RHI
RNS
RPM
RXW
SJN
SV3
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
VH1
VQA
W8F
WH7
WOQ
X7L
X7M
XOL
YKV
YNH
YOC
YQT
YSK
YWH
YYP
YZZ
ZA5
ZCA
ZGI
ZY4
~KM
ADXHL
AEILP
H13
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIN
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c577t-3e2e5b305e6d8ab4ee875de964b04711f41eb450e14cda522e70333aea40fd773
IEDL.DBID UNPAY
ISSN 0021-9525
1540-8140
IngestDate Tue Aug 19 22:27:35 EDT 2025
Thu Aug 21 14:01:15 EDT 2025
Fri Sep 05 14:38:04 EDT 2025
Thu Sep 04 18:42:08 EDT 2025
Fri Sep 05 06:50:54 EDT 2025
Wed Aug 13 09:39:33 EDT 2025
Wed Feb 19 02:32:56 EST 2025
Wed Oct 01 03:33:35 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
Thu Jul 03 21:09:17 EDT 2025
Wed Dec 27 18:55:10 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c577t-3e2e5b305e6d8ab4ee875de964b04711f41eb450e14cda522e70333aea40fd773
Notes 9704451
F60
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://proxy.k.utb.cz/login?url=https://rupress.org/jcb/article-pdf/135/3/597/1266003/597.pdf
PMID 8909536
PQID 217085254
PQPubID 48855
PageCount 14
ParticipantIDs unpaywall_primary_10_1083_jcb_135_3_597
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2121060
proquest_miscellaneous_78528784
proquest_miscellaneous_48807512
proquest_miscellaneous_16474353
proquest_journals_217085254
pubmed_primary_8909536
crossref_primary_10_1083_jcb_135_3_597
crossref_citationtrail_10_1083_jcb_135_3_597
jstor_primary_1617676
fao_agris_US9704451
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate (Nov 1996)
19961101
1996-11-01
1996-Nov
PublicationDateYYYYMMDD 1996-11-01
PublicationDate_xml – month: 11
  year: 1996
  text: (Nov 1996)
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 1996
Publisher Rockefeller University Press
The Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
– name: The Rockefeller University Press
References J Cell Biol 1996 Dec;135(6 Pt 2):1925
References_xml – reference: - J Cell Biol 1996 Dec;135(6 Pt 2):1925
SSID ssj0004743
Score 1.968351
Snippet The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p)...
Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence in Saccharomyces cerevisiae, marking the base of the incipient bud, and...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 597
SubjectTerms ABSORCION
ABSORPTION
analysis
Aspartic Acid Endopeptidases
Aspartic Acid Endopeptidases - metabolism
Biological Transport
biosynthesis
carbohydrate metabolism
Cell Cycle
Cell division
Cell membranes
Cell walls
Cells
Cellular biology
Chitin
Chitin - biosynthesis
chitin synthase
Chitin Synthase - analysis
Chitin Synthase - biosynthesis
Chitin Synthase - genetics
Chitin Synthase - metabolism
CHITINE
DEGRADACION
DEGRADATION
DIVISION CELLULAIRE
DIVISION CELULAR
Endocytosis
endoplasmic reticulum
Endoplasmic Reticulum - metabolism
enzymology
Epitopes
Epitopes - analysis
ESTRUCTURA CELULAR
Fungal Proteins
Fungal Proteins - physiology
genetics
GLICOSILTRANSFERASAS
GLYCOSYLTRANSFERASE
growth & development
immunocytochemistry
IMMUNOLOGIE
INMUNOLOGIA
metabolism
METABOLISME DES GLUCIDES
METABOLISMO DE CARBOHIDRATOS
Munc18 Proteins
MUTACION
MUTATION
Nerve Tissue Proteins
Nerve Tissue Proteins - physiology
ORGANITE CELLULAIRE
ORGANULOS CITOPLASMICOS
PARED CELULAR
PAROI CELLULAIRE
Perceptual localization
physiology
plasma membrane
PROTEASAS
PROTEASE
protein degradation
protein secretion
protein synthesis
PROTEINAS
proteinases
PROTEINE
Proteins
QUITINA
Recombinant Fusion Proteins
Recombinant Fusion Proteins - metabolism
RETICULO ENDOPLASMATICO
RETICULUM ENDOPLASMIQUE
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae Proteins
SECRECION
SECRETION
SINTESIS DE PROTEINAS
STRUCTURE CELLULAIRE
SYNTHESE PROTEIQUE
Temperature
VACUOLA
VACUOLE
Vacuoles
Vacuoles - metabolism
Vesicular Transport Proteins
Yeast
Yeasts
Title Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p
URI https://www.jstor.org/stable/1617676
https://www.ncbi.nlm.nih.gov/pubmed/8909536
https://www.proquest.com/docview/217085254
https://www.proquest.com/docview/16474353
https://www.proquest.com/docview/48807512
https://www.proquest.com/docview/78528784
https://pubmed.ncbi.nlm.nih.gov/PMC2121060
https://rupress.org/jcb/article-pdf/135/3/597/1266003/597.pdf
UnpaywallVersion publishedVersion
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1540-8140
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004743
  issn: 0021-9525
  databaseCode: KQ8
  dateStart: 19550125
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1540-8140
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004743
  issn: 0021-9525
  databaseCode: KQ8
  dateStart: 19590101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1540-8140
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004743
  issn: 0021-9525
  databaseCode: KQ8
  dateStart: 19620101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1540-8140
  dateEnd: 20250501
  omitProxy: true
  ssIdentifier: ssj0004743
  issn: 0021-9525
  databaseCode: DIK
  dateStart: 19620101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1540-8140
  dateEnd: 20250501
  omitProxy: true
  ssIdentifier: ssj0004743
  issn: 0021-9525
  databaseCode: GX1
  dateStart: 19620101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZoJ8QnXsamhZfhD4gXaWmTOIlT-DR1jGkS0ySoVIRQ5LfQQkijJtVU_g__k7vELRtQhPgWyefEcc53j32X5wh5bKTWccZCDLobN1QBc0XAM3eQJKGKQqUjheeQb87ik1F4Oo7GNjcH_4WZL5r8zyaG_1nJvp0_t9RZ32dRn_UBAfd9cCt4AgfXPWjpkK04AijeJVujs_PD921ah-8Ooqboqo_Bf2R2shybgDrw3ljyocd6EfI9XfJJnUzMVsmJf4Kdv2dP3lgUpVheiDy_5JqOb7X1V6uG0RAzUr70FrXsqW-_8D3-91vfJjctaKWHrfwdcs0U2-R6W8ZyeZd8P7JVVsBa5BRGi7QUeARPRaEpVq_XtPGZ9p9POstofTGjGMKYFrRaFvUEnCltOCOmRXVAh5MqKJvecMVK-qG02fuamjmyQH-loixhkVYUbnBKhybPKY6HYrozPTLqJbzQs5ie1zR4_gLwZfRxh4yOX70bnri2_IOrIs5rl5nARBLskYl1ImRoDOyttBnEofTApfpZ6BsZRp7xQaUE4EgD1osxYUToZZpztku6xawwe4R6PBAx11oG0NXXSnCjMialYngGbKRDDlYKkCrLjY4lOvK0idEnLIWvksLAU5bC7DvkyVq8bElBNglugzal4hMY7HT0dsA95INzyE6jXT_7AoyMeeyQ-yttS60lqVLYMgIqhm28Qx6tW8EEYFxHFGa2qFKkhAPUyzZLoJXmAO02S3B4RsITeMpuq93rwSUDpCSEwfErar9uR37yqy3FdNLwlAdIThd7Dnm6XiB_n657_yz5gHTr-cI8BEBYy33SeT329-3i_wG-bV3T
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELZYJ8QnXsamhVd_QLxIS5vESZzCp6ljmiYxTYJKQwhZfgsthDRqUk3l__A_uUvcsgFDiG-RfE4c53z32Hd5jpAnVhmT5izGoLv1Yx0xX0Y894dZFusk1ibReA755iQ9GsfHZ8mZy83Bf2Hmizb_s43hf9Zq4ObPr0w-CFkyYANAwIMQ3AqewMF1H1o2yGaaABTvkc3xyen--y6tI_SHSVt0NcTgPzI7OY5NQB14byz50Gf9BPmeLvikjVzOVsmJf4Kdv2dP3liUlVyey6K44JoOb3X1V-uW0RAzUr70F43q62-_8D3-91vfJjcdaKX7nfwdcs2WW-R6V8ZyeZd8P3BVVsBaFBRGi7QUeARPZWkoVq83tPWZ7p9POstpcz6jGMKYlrRels0EnCltOSOmZb1HR5M6qtrecMUq-qFy2fuG2jmyQH-lsqpgkdYUbnBMR7YoKI6HYrozPbD6FbzQ85SeNjR68RLwZfJxm4wPX78bHfmu_IOvE84bn9nIJgrskU1NJlVsLeytjB2msQrApYZ5HFoVJ4ENQaUk4EgL1osxaWUc5IZztkN65ay0u4QGPJIpN0ZF0DU0WnKrc6aUZngGbJVH9lYKILTjRscSHYVoY_QZE_BVBAxcMAGz75Gna_GqIwW5SnALtEnIT2CwxfjtkAfIB-eR7Va7fvYFGJny1CP3V9omnCWpBWwZARXDNt4jj9etYAIwriNLO1vUAinhAPWyqyXQSnOAdldLcHhGxjN4yk6n3evBZUOkJITB8Utqv25HfvLLLeV00vKUR0hOlwYeebZeIH-frnv_LPmA9Jr5wj4EQNioR27Z_wCRJVzi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+trafficking+and+timed+localization+of+two+chitin+synthase+proteins%2C+Chs2p+and+Chs3p&rft.jtitle=The+Journal+of+cell+biology&rft.au=Chuang%2C+J+S&rft.au=Schekman%2C+R+W&rft.date=1996-11-01&rft.issn=0021-9525&rft.volume=135&rft.issue=3&rft.spage=597&rft.epage=610&rft_id=info:doi/10.1083%2Fjcb.135.3.597&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon