Loss of GSTO2 contributes to cell growth and mitochondria function via the p38 signaling in lung squamous cell carcinoma
Glutathione S‐transferase omega 2 (GSTO2) lacks any appreciable GST activity, but it exhibits thioltransferase activity. The significance of GSTO2 in lung function has been reported; however, the precise expression and molecular function of GSTO2 in the lungs remain unclear. In the present study, we...
Saved in:
Published in | Cancer science Vol. 113; no. 1; pp. 195 - 204 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.01.2022
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1347-9032 1349-7006 1349-7006 |
DOI | 10.1111/cas.15189 |
Cover
Abstract | Glutathione S‐transferase omega 2 (GSTO2) lacks any appreciable GST activity, but it exhibits thioltransferase activity. The significance of GSTO2 in lung function has been reported; however, the precise expression and molecular function of GSTO2 in the lungs remain unclear. In the present study, we found that GSTO2 is expressed in airway basal cells, non–ciliated, columnar Clara cells, and type II alveolar cells, which have self‐renewal capacity in the lungs. Contrastingly, no GSTO2 expression was observed in 94 lung squamous cell carcinoma (LSCC) samples. When human LSCC cell lines were treated with 5‐aza‐2′‐deoxycytidine, a DNA‐methyltransferase inhibitor, GSTO2 transcription was induced, suggesting that aberrant GSTO2 hypermethylation in LSCC is the cause of its downregulation. Forced GSTO2 expression in LSCC cell lines inhibited cell growth and colony formation in vitro. In a subcutaneous xenograft model, GSTO2‐transfected cells formed smaller tumors in nude mice than mock‐transfected cells. Upon intravenous injection into nude mice, the incidence of liver metastasis was lower in mice injected with GSTO2‐transfected cells than in those injected with mock‐transfected cells. In addition, GSTO2 induction suppressed the expression of β‐catenin and the oxygen consumption rate, but it did not affect the extracellular acidification rate. Furthermore, GSTO2‐transfected cells displayed lower mitochondrial membrane potential than mock‐transfected cells. When GSTO2‐transfected cells were treated with a p38 inhibitor, β‐catenin expression and mitochondrial membrane potential were recovered. Our study indicated that the loss of GSTO2 via DNA hypermethylation contributes to the growth and progression of LSCC, probably by modulating cancer metabolism via the p38/β‐catenin signaling pathway.
Glutathione S‐transferase omega 2 (GSTO2) is expressed in the stem cells of the bronchial and alveolar epithelium. Loss of GSTO2 might contribute to lung squamous cell carcinoma growth by modulating cancer metabolism via the p38/β‐catenin signaling pathway. |
---|---|
AbstractList | Glutathione S‐transferase omega 2 (GSTO2) lacks any appreciable GST activity, but it exhibits thioltransferase activity. The significance of GSTO2 in lung function has been reported; however, the precise expression and molecular function of GSTO2 in the lungs remain unclear. In the present study, we found that GSTO2 is expressed in airway basal cells, non–ciliated, columnar Clara cells, and type II alveolar cells, which have self‐renewal capacity in the lungs. Contrastingly, no GSTO2 expression was observed in 94 lung squamous cell carcinoma (LSCC) samples. When human LSCC cell lines were treated with 5‐aza‐2′‐deoxycytidine, a DNA‐methyltransferase inhibitor, GSTO2 transcription was induced, suggesting that aberrant GSTO2 hypermethylation in LSCC is the cause of its downregulation. Forced GSTO2 expression in LSCC cell lines inhibited cell growth and colony formation in vitro. In a subcutaneous xenograft model, GSTO2‐transfected cells formed smaller tumors in nude mice than mock‐transfected cells. Upon intravenous injection into nude mice, the incidence of liver metastasis was lower in mice injected with GSTO2‐transfected cells than in those injected with mock‐transfected cells. In addition, GSTO2 induction suppressed the expression of β‐catenin and the oxygen consumption rate, but it did not affect the extracellular acidification rate. Furthermore, GSTO2‐transfected cells displayed lower mitochondrial membrane potential than mock‐transfected cells. When GSTO2‐transfected cells were treated with a p38 inhibitor, β‐catenin expression and mitochondrial membrane potential were recovered. Our study indicated that the loss of GSTO2 via DNA hypermethylation contributes to the growth and progression of LSCC, probably by modulating cancer metabolism via the p38/β‐catenin signaling pathway. Glutathione S‐transferase omega 2 (GSTO2) lacks any appreciable GST activity, but it exhibits thioltransferase activity. The significance of GSTO2 in lung function has been reported; however, the precise expression and molecular function of GSTO2 in the lungs remain unclear. In the present study, we found that GSTO2 is expressed in airway basal cells, non–ciliated, columnar Clara cells, and type II alveolar cells, which have self‐renewal capacity in the lungs. Contrastingly, no GSTO2 expression was observed in 94 lung squamous cell carcinoma (LSCC) samples. When human LSCC cell lines were treated with 5‐aza‐2′‐deoxycytidine, a DNA‐methyltransferase inhibitor, GSTO2 transcription was induced, suggesting that aberrant GSTO2 hypermethylation in LSCC is the cause of its downregulation. Forced GSTO2 expression in LSCC cell lines inhibited cell growth and colony formation in vitro . In a subcutaneous xenograft model, GSTO2 ‐transfected cells formed smaller tumors in nude mice than mock‐transfected cells. Upon intravenous injection into nude mice, the incidence of liver metastasis was lower in mice injected with GSTO2 ‐transfected cells than in those injected with mock‐transfected cells. In addition, GSTO2 induction suppressed the expression of β‐catenin and the oxygen consumption rate, but it did not affect the extracellular acidification rate. Furthermore, GSTO2 ‐transfected cells displayed lower mitochondrial membrane potential than mock‐transfected cells. When GSTO2 ‐transfected cells were treated with a p38 inhibitor, β‐catenin expression and mitochondrial membrane potential were recovered. Our study indicated that the loss of GSTO2 via DNA hypermethylation contributes to the growth and progression of LSCC, probably by modulating cancer metabolism via the p38/β‐catenin signaling pathway. Glutathione S‐transferase omega 2 (GSTO2) lacks any appreciable GST activity, but it exhibits thioltransferase activity. The significance of GSTO2 in lung function has been reported; however, the precise expression and molecular function of GSTO2 in the lungs remain unclear. In the present study, we found that GSTO2 is expressed in airway basal cells, non–ciliated, columnar Clara cells, and type II alveolar cells, which have self‐renewal capacity in the lungs. Contrastingly, no GSTO2 expression was observed in 94 lung squamous cell carcinoma (LSCC) samples. When human LSCC cell lines were treated with 5‐aza‐2′‐deoxycytidine, a DNA‐methyltransferase inhibitor, GSTO2 transcription was induced, suggesting that aberrant GSTO2 hypermethylation in LSCC is the cause of its downregulation. Forced GSTO2 expression in LSCC cell lines inhibited cell growth and colony formation in vitro. In a subcutaneous xenograft model, GSTO2‐transfected cells formed smaller tumors in nude mice than mock‐transfected cells. Upon intravenous injection into nude mice, the incidence of liver metastasis was lower in mice injected with GSTO2‐transfected cells than in those injected with mock‐transfected cells. In addition, GSTO2 induction suppressed the expression of β‐catenin and the oxygen consumption rate, but it did not affect the extracellular acidification rate. Furthermore, GSTO2‐transfected cells displayed lower mitochondrial membrane potential than mock‐transfected cells. When GSTO2‐transfected cells were treated with a p38 inhibitor, β‐catenin expression and mitochondrial membrane potential were recovered. Our study indicated that the loss of GSTO2 via DNA hypermethylation contributes to the growth and progression of LSCC, probably by modulating cancer metabolism via the p38/β‐catenin signaling pathway. Glutathione S‐transferase omega 2 (GSTO2) is expressed in the stem cells of the bronchial and alveolar epithelium. Loss of GSTO2 might contribute to lung squamous cell carcinoma growth by modulating cancer metabolism via the p38/β‐catenin signaling pathway. Glutathione S‐transferase omega 2 (GSTO2) lacks any appreciable GST activity, but it exhibits thioltransferase activity. The significance of GSTO2 in lung function has been reported; however, the precise expression and molecular function of GSTO2 in the lungs remain unclear. In the present study, we found that GSTO2 is expressed in airway basal cells, non–ciliated, columnar Clara cells, and type II alveolar cells, which have self‐renewal capacity in the lungs. Contrastingly, no GSTO2 expression was observed in 94 lung squamous cell carcinoma (LSCC) samples. When human LSCC cell lines were treated with 5‐aza‐2′‐deoxycytidine, a DNA‐methyltransferase inhibitor, GSTO2 transcription was induced, suggesting that aberrant GSTO2 hypermethylation in LSCC is the cause of its downregulation. Forced GSTO2 expression in LSCC cell lines inhibited cell growth and colony formation in vitro. In a subcutaneous xenograft model, GSTO2‐transfected cells formed smaller tumors in nude mice than mock‐transfected cells. Upon intravenous injection into nude mice, the incidence of liver metastasis was lower in mice injected with GSTO2‐transfected cells than in those injected with mock‐transfected cells. In addition, GSTO2 induction suppressed the expression of β‐catenin and the oxygen consumption rate, but it did not affect the extracellular acidification rate. Furthermore, GSTO2‐transfected cells displayed lower mitochondrial membrane potential than mock‐transfected cells. When GSTO2‐transfected cells were treated with a p38 inhibitor, β‐catenin expression and mitochondrial membrane potential were recovered. Our study indicated that the loss of GSTO2 via DNA hypermethylation contributes to the growth and progression of LSCC, probably by modulating cancer metabolism via the p38/β‐catenin signaling pathway. Glutathione S‐transferase omega 2 (GSTO2) is expressed in the stem cells of the bronchial and alveolar epithelium. Loss of GSTO2 might contribute to lung squamous cell carcinoma growth by modulating cancer metabolism via the p38/β‐catenin signaling pathway. Glutathione S-transferase omega 2 (GSTO2) lacks any appreciable GST activity, but it exhibits thioltransferase activity. The significance of GSTO2 in lung function has been reported; however, the precise expression and molecular function of GSTO2 in the lungs remain unclear. In the present study, we found that GSTO2 is expressed in airway basal cells, non-ciliated, columnar Clara cells, and type II alveolar cells, which have self-renewal capacity in the lungs. Contrastingly, no GSTO2 expression was observed in 94 lung squamous cell carcinoma (LSCC) samples. When human LSCC cell lines were treated with 5-aza-2'-deoxycytidine, a DNA-methyltransferase inhibitor, GSTO2 transcription was induced, suggesting that aberrant GSTO2 hypermethylation in LSCC is the cause of its downregulation. Forced GSTO2 expression in LSCC cell lines inhibited cell growth and colony formation in vitro. In a subcutaneous xenograft model, GSTO2-transfected cells formed smaller tumors in nude mice than mock-transfected cells. Upon intravenous injection into nude mice, the incidence of liver metastasis was lower in mice injected with GSTO2-transfected cells than in those injected with mock-transfected cells. In addition, GSTO2 induction suppressed the expression of β-catenin and the oxygen consumption rate, but it did not affect the extracellular acidification rate. Furthermore, GSTO2-transfected cells displayed lower mitochondrial membrane potential than mock-transfected cells. When GSTO2-transfected cells were treated with a p38 inhibitor, β-catenin expression and mitochondrial membrane potential were recovered. Our study indicated that the loss of GSTO2 via DNA hypermethylation contributes to the growth and progression of LSCC, probably by modulating cancer metabolism via the p38/β-catenin signaling pathway.Glutathione S-transferase omega 2 (GSTO2) lacks any appreciable GST activity, but it exhibits thioltransferase activity. The significance of GSTO2 in lung function has been reported; however, the precise expression and molecular function of GSTO2 in the lungs remain unclear. In the present study, we found that GSTO2 is expressed in airway basal cells, non-ciliated, columnar Clara cells, and type II alveolar cells, which have self-renewal capacity in the lungs. Contrastingly, no GSTO2 expression was observed in 94 lung squamous cell carcinoma (LSCC) samples. When human LSCC cell lines were treated with 5-aza-2'-deoxycytidine, a DNA-methyltransferase inhibitor, GSTO2 transcription was induced, suggesting that aberrant GSTO2 hypermethylation in LSCC is the cause of its downregulation. Forced GSTO2 expression in LSCC cell lines inhibited cell growth and colony formation in vitro. In a subcutaneous xenograft model, GSTO2-transfected cells formed smaller tumors in nude mice than mock-transfected cells. Upon intravenous injection into nude mice, the incidence of liver metastasis was lower in mice injected with GSTO2-transfected cells than in those injected with mock-transfected cells. In addition, GSTO2 induction suppressed the expression of β-catenin and the oxygen consumption rate, but it did not affect the extracellular acidification rate. Furthermore, GSTO2-transfected cells displayed lower mitochondrial membrane potential than mock-transfected cells. When GSTO2-transfected cells were treated with a p38 inhibitor, β-catenin expression and mitochondrial membrane potential were recovered. Our study indicated that the loss of GSTO2 via DNA hypermethylation contributes to the growth and progression of LSCC, probably by modulating cancer metabolism via the p38/β-catenin signaling pathway. |
Author | Terayama, Masayoshi Sekihara, Keigo Hagiwara, Teruki Kawamura, Yuki I. Miyazaki, Hideki Igari, Toru Sumiya, Ryusuke Nagasaka, Satoshi Nakata, Kazuaki Yamada, Kazuhiko |
AuthorAffiliation | 4 Department of Surgery National Center for Global Health and Medicine Tokyo Japan 1 Department of Gastroenterology The Research Center for Hepatitis and Immunology, Research Institute National Center for Global Health and Medicine Chiba Japan 2 Department of Thoracic Surgery National Center for Global Health and Medicine Tokyo Japan 5 Pathology Division of Clinical Laboratory National Center for Global Health and Medicine Tokyo Japan 3 Course of Advanced and Specialized Medicine Juntendo University Graduate School of Medicine Tokyo Japan 6 Present address: Department of Gastroenterological Surgery Gastroenterological Center Cancer Institute Hospital Japanese Foundation for Cancer Research Tokyo Japan |
AuthorAffiliation_xml | – name: 2 Department of Thoracic Surgery National Center for Global Health and Medicine Tokyo Japan – name: 3 Course of Advanced and Specialized Medicine Juntendo University Graduate School of Medicine Tokyo Japan – name: 6 Present address: Department of Gastroenterological Surgery Gastroenterological Center Cancer Institute Hospital Japanese Foundation for Cancer Research Tokyo Japan – name: 5 Pathology Division of Clinical Laboratory National Center for Global Health and Medicine Tokyo Japan – name: 1 Department of Gastroenterology The Research Center for Hepatitis and Immunology, Research Institute National Center for Global Health and Medicine Chiba Japan – name: 4 Department of Surgery National Center for Global Health and Medicine Tokyo Japan |
Author_xml | – sequence: 1 givenname: Ryusuke orcidid: 0000-0002-2464-6717 surname: Sumiya fullname: Sumiya, Ryusuke organization: Juntendo University Graduate School of Medicine – sequence: 2 givenname: Masayoshi surname: Terayama fullname: Terayama, Masayoshi organization: National Center for Global Health and Medicine – sequence: 3 givenname: Teruki surname: Hagiwara fullname: Hagiwara, Teruki organization: National Center for Global Health and Medicine – sequence: 4 givenname: Kazuaki surname: Nakata fullname: Nakata, Kazuaki organization: National Center for Global Health and Medicine – sequence: 5 givenname: Keigo surname: Sekihara fullname: Sekihara, Keigo organization: National Center for Global Health and Medicine – sequence: 6 givenname: Satoshi surname: Nagasaka fullname: Nagasaka, Satoshi organization: National Center for Global Health and Medicine – sequence: 7 givenname: Hideki surname: Miyazaki fullname: Miyazaki, Hideki organization: National Center for Global Health and Medicine – sequence: 8 givenname: Toru surname: Igari fullname: Igari, Toru organization: National Center for Global Health and Medicine – sequence: 9 givenname: Kazuhiko surname: Yamada fullname: Yamada, Kazuhiko organization: National Center for Global Health and Medicine – sequence: 10 givenname: Yuki I. surname: Kawamura fullname: Kawamura, Yuki I. email: kawamura@hospk.ncgm.go.jp organization: National Center for Global Health and Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34726807$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu3CAUhlGVqrm0i75AhdRNU8kJGNvAJlI0atJKI2WRdI0whhkiGyZgMp23L46nt6gtm8PlOz_n_OcYHDjvNABvMTrDeZ0rGc9wjRl_AY4wqXhBEWoOnva04IiUh-A4xnuESFPx6hU4zPdlwxA9At-WPkboDby-vbspofJuDLZNo45w9FDpvoer4LfjGkrXwcGOXq2964KV0CSnRusdfMyHca3hhjAY7crJ3roVtA72Kcf4kOTgU5zFlAzKOj_I1-ClkX3Ub_bxBHy9-nS3-Fwsb66_LC6Xhaop5QVuakyNaZmpmoZoVesOI1xzxbHGLaUNMcRQZAhh2Oiyo5wSqVqmWkQ6whpyAj7Ouslt5G4r-15sgh1k2AmMxGSfyPaJJ_syfDHDm9QOulM6uyF_JXhpxZ8vzq7Fyj8KRitW1igLfNgLBP-QdBzFYOPUuHQ6eyDKmpcE5Rqnv94_Q-99Ctm8TDWYEcoZnah3v1f0s5QfE8zA-QyokCcZtBHKjnKaSy7Q9n9t8vRZxv8M2atvba93_wbF4vJ2zvgOXbnLEA |
CitedBy_id | crossref_primary_10_3390_ijms25189961 crossref_primary_10_1002_rmb2_12504 crossref_primary_10_3389_fmolb_2025_1506961 crossref_primary_10_1007_s10555_022_10077_9 crossref_primary_10_1007_s13167_024_00357_5 crossref_primary_10_3389_fphar_2024_1360352 |
Cites_doi | 10.1007/s00432-019-03079-8 10.1126/science.abd5491 10.1053/j.gastro.2012.05.048 10.1074/jbc.M001706200 10.2353/ajpath.2010.090870 10.5858/arpa.2014-0128-RA 10.1152/ajplung.1998.275.1.L1 10.1016/j.stem.2014.07.012 10.1007/s00428-003-0859-2 10.1016/j.ebiom.2020.103034 10.1038/s41598-018-34160-w 10.4132/jptm.2020.05.04 10.1093/carcin/bgz189 10.1183/09031936.04.00104904 10.1186/1471-2350-8-S1-S8 10.1080/10715760903038440 10.1016/j.stem.2009.04.002 10.21873/anticanres.11330 10.18632/oncotarget.21375 10.1096/fj.201801977R 10.1124/dmd.106.009613 10.1158/1078-0432.CCR-15-0375 10.1158/1940-6207.CAPR-11-0243 10.1158/1940-6207.CAPR-17-0202 10.1038/sj.onc.1205805 10.1016/j.cellimm.2011.04.001 10.1186/1479-5876-11-114 10.1186/s12931-017-0650-6 10.18632/oncotarget.5549 10.1016/j.ccell.2016.09.001 10.1159/000323946 10.1016/S0140-6736(10)62101-0 10.1186/1465-9921-8-48 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
DOI | 10.1111/cas.15189 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | SUMIYA et al |
EISSN | 1349-7006 |
EndPage | 204 |
ExternalDocumentID | 10.1111/cas.15189 PMC8748250 34726807 10_1111_cas_15189 CAS15189 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science funderid: 19K08457; 19K24058 – fundername: National Center for Global Health and Medicine funderid: 19A1021; 20A1017; 20A3002; 29‐1019 – fundername: National Center for Global Health and Medicine grantid: 19A1021 – fundername: National Center for Global Health and Medicine grantid: 29-1019 – fundername: National Center for Global Health and Medicine grantid: 20A3002 – fundername: Japan Society for the Promotion of Science grantid: 19K08457 – fundername: Japan Society for the Promotion of Science grantid: 19K24058 – fundername: National Center for Global Health and Medicine grantid: 20A1017 – fundername: ; grantid: 19K08457; 19K24058 – fundername: ; grantid: 19A1021; 20A1017; 20A3002; 29‐1019 |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 36B 3O- 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABEML ACCFJ ACCMX ACSCC ACXQS ADBBV ADKYN ADPDF ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFEBI AFFNX AFKRA AFPKN AFZJQ AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 DU5 E3Z EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ HCIFZ HF~ HOLLA HYE HZI HZ~ IAO IHR IPNFZ ITC IX1 J0M K.9 K48 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P MK4 N04 N05 N9A O9- OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY PROAC Q11 ROL RPM RX1 SJN SUPJJ SV3 TEORI UB1 W8V WIN WOW WQJ WRC WXI X7M XG1 ZXP ~IA ~WT 7X7 88E 8FI 8FJ AAFWJ AAMMB AAYXX ABUWG AEFGJ AGXDD AIDQK AIDYY CITATION FYUFA HMCUK M1P PHGZM PHGZT PJZUB PPXIY PQGLB PSQYO PUEGO UKHRP CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c5779-16517ffb8f4663ec5ed10159c91e1b7763f3f70f3381fe2d7973acb8cb03d3863 |
IEDL.DBID | DR2 |
ISSN | 1347-9032 1349-7006 |
IngestDate | Sun Sep 07 10:56:49 EDT 2025 Tue Sep 30 16:57:49 EDT 2025 Fri Sep 05 11:04:42 EDT 2025 Wed Aug 13 08:32:08 EDT 2025 Mon Jul 21 06:05:58 EDT 2025 Wed Oct 01 02:17:34 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 Wed Jan 22 16:26:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | cancer metabolism β-catenin GSTO2 LSCC p38 |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. cc-by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5779-16517ffb8f4663ec5ed10159c91e1b7763f3f70f3381fe2d7973acb8cb03d3863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2464-6717 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.15189 |
PMID | 34726807 |
PQID | 2618379879 |
PQPubID | 4378882 |
PageCount | 10 |
ParticipantIDs | unpaywall_primary_10_1111_cas_15189 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8748250 proquest_miscellaneous_2592309739 proquest_journals_2618379879 pubmed_primary_34726807 crossref_citationtrail_10_1111_cas_15189 crossref_primary_10_1111_cas_15189 wiley_primary_10_1111_cas_15189_CAS15189 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Tokyo – name: Hoboken |
PublicationTitle | Cancer science |
PublicationTitleAlternate | Cancer Sci |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2011; 378 2017; 8 2015; 6 2012; 143 2009; 43 2006; 34 2020; 41 2019; 33 2020; 61 2011; 81 2004; 23 2020; 303 2016; 30 2000; 275 2020; 146 2020; 54 1998; 275 2018; 42 2011; 270 2018; 8 2017; 37 2000; 443 2013; 11 2017; 10 2002; 21 2015; 21 2007; 8 2010; 177 2014; 15 2021; 372 2017; 18 2015; 139 2009; 4 2005; 16 2003; 443 2012; 5 e_1_2_7_6_1 Wang L (e_1_2_7_19_1) 2005; 16 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 Xiao W (e_1_2_7_21_1) 2020; 303 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_29_1 Katoh M (e_1_2_7_27_1) 2018; 42 Arsalane K (e_1_2_7_24_1) 2000; 443 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 |
References_xml | – volume: 8 start-page: 48 year: 2007 article-title: Glutathione S‐transferase omega in the lung and sputum supernatants of COPD patients publication-title: Respir Res – volume: 30 start-page: 519 year: 2016 end-page: 532 article-title: SOX2 is the determining oncogenic switch in promoting lung squamous cell carcinoma from different cells of origin publication-title: Cancer Cell – volume: 378 start-page: 1727 year: 2011 end-page: 1740 article-title: Non–small‐cell lung cancer publication-title: Lancet – volume: 23 start-page: 818 year: 2004 end-page: 824 article-title: Genetic polymorphism of epoxide hydrolase and glutathione S‐transferase in COPD publication-title: Eur Respir J – volume: 8 start-page: 84434 year: 2017 end-page: 84448 article-title: DNA hypermethyation and silencing of PITX1 correlated with advanced stage and poor postoperative prognosis of esophageal squamous cell carcinoma publication-title: Oncotarget – volume: 33 start-page: 4236 year: 2019 end-page: 4247 article-title: Activating β‐catenin/Pax6 axis negatively regulates osteoclastogenesis by selectively inhibiting phosphorylation of p38/MAPK publication-title: FASEB J – volume: 54 start-page: 290 year: 2020 end-page: 299 article-title: Peripheral type squamous cell carcinoma of the lung: clinicopathologic characteristics in comparison to the central type publication-title: J Pathol Transl Med – volume: 81 start-page: 89 year: 2011 end-page: 104 article-title: The epithelial cell and lung cancer: the link between chronic obstructive pulmonary disease and lung cancer publication-title: Respiration – volume: 43 start-page: 738 year: 2009 end-page: 743 article-title: Association of glutathione‐S‐transferase omega haplotypes with susceptibility to chronic obstructive pulmonary disease publication-title: Free Radic Res – volume: 270 start-page: 53 year: 2011 end-page: 61 article-title: A redox microenvironment is essential for MAPK‐dependent secretion of pro–inflammatory cytokines: modulation by glutathione (GSH/GSSG) biosynthesis and equilibrium in the alveolar epithelium publication-title: Cell Immunol – volume: 177 start-page: 362 year: 2010 end-page: 376 article-title: Tracheal basal cells: a facultative progenitor cell pool publication-title: Am J Pathol – volume: 8 start-page: S8 year: 2007 article-title: Framingham heart study genome‐wide association: results for pulmonary function measures publication-title: BMC Med Genet – volume: 18 start-page: 167 year: 2017 article-title: WNT signaling ‐ lung cancer is no exception publication-title: Respir Res – volume: 372 start-page: 968 year: 2021 end-page: 972 article-title: Mitochondrial NADP(H) generation is essential for proline biosynthesis publication-title: Science – volume: 275 start-page: 24798 year: 2000 end-page: 24806 article-title: Identification, characterization, and crystal structure of the omega class glutathione transferases publication-title: J Biol Chem – volume: 41 start-page: 875 year: 2020 end-page: 886 article-title: Glutathione S‐transferase omega 2 regulates cell growth and the expression of E‐cadherin via post‐transcriptional down‐regulation of β‐catenin in human esophageal squamous cells publication-title: Carcinogenesis – volume: 37 start-page: 377 year: 2017 end-page: 387 article-title: Immune‐based therapies for non–small cell lung cancer publication-title: Anticancer Res – volume: 16 start-page: 19 year: 2005 end-page: 27 article-title: Cloning, expression and characterization of human glutathione S‐transferase Omega 2 publication-title: Int J Mol Med – volume: 443 start-page: 122 year: 2003 end-page: 132 article-title: Distribution of p63, cytokeratins 5/6 and cytokeratin 14 in 51 normal and 400 neoplastic human tissue samples using TARP‐4 multi‐tumor tissue microarray publication-title: Virchows Arch – volume: 275 start-page: L1 year: 1998 end-page: L13 article-title: Surfactant protein A and surfactant protein D in health and disease publication-title: Am J Physiol – volume: 143 start-page: 754 year: 2012 end-page: 764 article-title: β‐Catenin regulates hepatic mitochondrial function and energy balance in mice publication-title: Gastrienterology – volume: 146 start-page: 43 year: 2020 end-page: 52 article-title: The comparison between adenocarcinoma and squamous cell carcinoma in lung cancer patients publication-title: J Cancer Res Clin Oncol – volume: 42 start-page: 713 year: 2018 end-page: 725 article-title: Multi‐layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β‐catenin signaling activation (Review) publication-title: Int J Mol Med – volume: 5 start-page: 365 year: 2012 end-page: 373 article-title: Genetic variants associated with the risk of chronic obstructive pulmonary disease with and without lung cancer publication-title: Cancer Prev Res (Phila) – volume: 15 start-page: 123 year: 2014 end-page: 138 article-title: Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function publication-title: Cell Stem Cell – volume: 139 start-page: 469 year: 2015 end-page: 480 article-title: Biomarkers in lung adenocarcinoma: a decade of progress publication-title: Arch Pathol Lab Med – volume: 21 start-page: 7289 year: 2002 end-page: 7297 article-title: Molecular detection approaches for smoking associated tumors publication-title: Oncogene – volume: 10 start-page: 491 year: 2017 end-page: 493 article-title: Airway basal cell heterogeneity and lung squamous cell carcinoma publication-title: Cancer Prev Res (Phila) – volume: 4 start-page: 525 year: 2009 end-page: 534 article-title: The role of Scgb1a1+ Clara cells in the long‐term maintenance and repair of lung airway, but not alveolar, epithelium publication-title: Cell Stem Cell – volume: 8 start-page: 15834 year: 2018 article-title: Transcriptomic and functional network features of lung squamous cell carcinoma through integrative analysis of GEO and TCGA data publication-title: Sci Rep – volume: 443 start-page: 122 year: 2000 end-page: 132 article-title: Clara cell specific protein (CC16) expression after acute lung inflammation induced by intratracheal lipopolysaccharide administration publication-title: Am J Respir Crit Care Med – volume: 303 start-page: 359 year: 2020 end-page: 363 article-title: Metabolic responses to reductive stress publication-title: Antioxid Redox Signal – volume: 61 start-page: 103034 year: 2020 article-title: Canonical WNT pathway is activated in the airway epithelium in chronic obstructive pulmonary disease publication-title: EBioMedicine – volume: 11 start-page: 114 year: 2013 article-title: Nuclear β‐catenin accumulation is associated with increased expression of Nanog protein and predicts poor prognosis of non–small cell lung cancer publication-title: J Transl Med – volume: 21 start-page: 5110 year: 2015 end-page: 5120 article-title: Reversal of warburg effect and reactivation of oxidative phosphorylation by differential inhibition of EGFR signaling pathways in non–small cell lung cancer publication-title: Clin Cancer Res – volume: 6 start-page: 34300 year: 2015 end-page: 34308 article-title: Comprehensive investigation of oncogenic driver mutations in Chinese non–small cell lung cancer patients publication-title: Oncotarget – volume: 34 start-page: 1237 year: 2006 end-page: 1246 article-title: Glutathione S‐transferase omega 1 and omega 2 pharmacogenomics publication-title: Drug Metab Dispos – ident: e_1_2_7_2_1 doi: 10.1007/s00432-019-03079-8 – ident: e_1_2_7_35_1 doi: 10.1126/science.abd5491 – ident: e_1_2_7_29_1 doi: 10.1053/j.gastro.2012.05.048 – ident: e_1_2_7_20_1 doi: 10.1074/jbc.M001706200 – ident: e_1_2_7_3_1 doi: 10.2353/ajpath.2010.090870 – ident: e_1_2_7_10_1 doi: 10.5858/arpa.2014-0128-RA – ident: e_1_2_7_25_1 doi: 10.1152/ajplung.1998.275.1.L1 – volume: 443 start-page: 122 year: 2000 ident: e_1_2_7_24_1 article-title: Clara cell specific protein (CC16) expression after acute lung inflammation induced by intratracheal lipopolysaccharide administration publication-title: Am J Respir Crit Care Med – ident: e_1_2_7_5_1 doi: 10.1016/j.stem.2014.07.012 – ident: e_1_2_7_23_1 doi: 10.1007/s00428-003-0859-2 – ident: e_1_2_7_28_1 doi: 10.1016/j.ebiom.2020.103034 – ident: e_1_2_7_11_1 doi: 10.1038/s41598-018-34160-w – ident: e_1_2_7_26_1 doi: 10.4132/jptm.2020.05.04 – ident: e_1_2_7_22_1 doi: 10.1093/carcin/bgz189 – ident: e_1_2_7_14_1 doi: 10.1183/09031936.04.00104904 – ident: e_1_2_7_17_1 doi: 10.1186/1471-2350-8-S1-S8 – ident: e_1_2_7_15_1 doi: 10.1080/10715760903038440 – ident: e_1_2_7_6_1 doi: 10.1016/j.stem.2009.04.002 – ident: e_1_2_7_8_1 doi: 10.21873/anticanres.11330 – ident: e_1_2_7_30_1 doi: 10.18632/oncotarget.21375 – ident: e_1_2_7_34_1 doi: 10.1096/fj.201801977R – ident: e_1_2_7_32_1 doi: 10.1124/dmd.106.009613 – ident: e_1_2_7_38_1 doi: 10.1158/1078-0432.CCR-15-0375 – ident: e_1_2_7_16_1 doi: 10.1158/1940-6207.CAPR-11-0243 – ident: e_1_2_7_4_1 doi: 10.1158/1940-6207.CAPR-17-0202 – ident: e_1_2_7_31_1 doi: 10.1038/sj.onc.1205805 – ident: e_1_2_7_33_1 doi: 10.1016/j.cellimm.2011.04.001 – ident: e_1_2_7_36_1 doi: 10.1186/1479-5876-11-114 – volume: 303 start-page: 359 year: 2020 ident: e_1_2_7_21_1 article-title: Metabolic responses to reductive stress publication-title: Antioxid Redox Signal – volume: 42 start-page: 713 year: 2018 ident: e_1_2_7_27_1 article-title: Multi‐layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β‐catenin signaling activation (Review) publication-title: Int J Mol Med – ident: e_1_2_7_37_1 doi: 10.1186/s12931-017-0650-6 – ident: e_1_2_7_12_1 doi: 10.18632/oncotarget.5549 – ident: e_1_2_7_7_1 doi: 10.1016/j.ccell.2016.09.001 – ident: e_1_2_7_13_1 doi: 10.1159/000323946 – volume: 16 start-page: 19 year: 2005 ident: e_1_2_7_19_1 article-title: Cloning, expression and characterization of human glutathione S‐transferase Omega 2 publication-title: Int J Mol Med – ident: e_1_2_7_9_1 doi: 10.1016/S0140-6736(10)62101-0 – ident: e_1_2_7_18_1 doi: 10.1186/1465-9921-8-48 |
SSID | ssj0036494 |
Score | 2.3974588 |
Snippet | Glutathione S‐transferase omega 2 (GSTO2) lacks any appreciable GST activity, but it exhibits thioltransferase activity. The significance of GSTO2 in lung... Glutathione S-transferase omega 2 (GSTO2) lacks any appreciable GST activity, but it exhibits thioltransferase activity. The significance of GSTO2 in lung... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 195 |
SubjectTerms | Acidification Alveoli Animals Basal cells cancer metabolism Carcinoma, Squamous Cell - genetics Carcinoma, Squamous Cell - pathology Catenin Cell growth Cell Line, Tumor Chronic obstructive pulmonary disease Decitabine - pharmacology Deoxyribonucleic acid DNA DNA Methylation - drug effects DNA methyltransferase Down-Regulation - drug effects Epigenesis, Genetic Gene expression Gene Expression Regulation, Neoplastic - drug effects Glutathione Glutathione Transferase - genetics Glycolysis GSTO2 Humans Intravenous administration Kinases Laboratories Liver Neoplasms - genetics Liver Neoplasms - pathology Liver Neoplasms - secondary LSCC Lung cancer Lung carcinoma Lung Neoplasms - genetics Lung Neoplasms - pathology Male MAP Kinase Signaling System - drug effects Membrane potential Metabolism Metastases Mice Mice, Nude Mitochondria Mutation Neoplasm Transplantation Original Oxidative Phosphorylation Oxygen consumption p38 Respiratory function Signal transduction Squamous cell carcinoma Stem cells Transcription Xenografts β‐catenin |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JT9wwFLYoSG0vFXRNS5G7HLhEjbPZPlUIQRFiOQDS3CLHS0EanKEz05Z_z3uOJ-2IlluWpyx--8vL-wj5bMHkKcFUCq6rTUumBNhBoVNXawMewYgq4Kccn9QHF-XhqBrFgts0tlUubGIw1KbTWCP_ApE-5FKQIcuvk5sUUaPw62qE0HhE1hiEKijVfDQkXEVdyh7UtuSpzIo8ThbCTh4EFANnh-juf_uje0Hm_V7JJ3M_Ube_1Hi8HM8Gh7S_Tp7FSJLu9KzfICvWPyePj-O38hfk9xHcj3aOfjs7P81p6ElHcCs7pbOOYsGefoccfHZJlTf0GjQbLKE3IJAUnR0yjP6EHYgQ6aQQFDs9FP68Tq88HYONoNObucLKQX8xjahEvrtWL8nF_t757kEacRZSXXEuU1ZXjDvXCldC_GF1ZQ0oaiW1ZJa1HCyQKxzPHGSzzNnccMkLpVuh26wwhaiLV2TVd96-IdRx6eCodaWpSm3AEXCZO8G0clq0rk3I9mK1Gx2HkCMWxrhZJCPAmCYwJiEfB9JJP3njX0SbC5Y1UfmmzR9RSciH4TSoDa6G8hYWpoGsD5IveBGged1zeLgLiEtei4wnhC_xfiDAkdzLZ_zVZRjNLXgJKXeWkE-DlDz08NtBfv5P0ezunIWNtw-_5zvyNMffMkJpaJOszn7M7XsIlmbtVtCIO91gFF8 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrQS98KZdKMgFDr2kytv2cVVRKkQLUrtSOUV-0qpb78JmaeHXM3aygVCouCXxJPFjPDOfPZ4BeG1Q5AmWiAhVl4zyRDCUg0xFtlQaNYJmRcifcnBY7o_zdyfFyQpsLc_C_L5_7z1ufOIvVEqM34LV0u8hDWB1fPhx9CkAqZxGPA5JyHyUvYgiC7XRg3rv9nXONUPyuj_knYWbie-XYjLp26xB6ezd-3V0p_E1Od9Z1HJH_fgjkuON7bkPd1uTk4waHnkAK8Y9hNsH7ab6I7h6j5UmU0veHh1_SElwXvdZsMyc1FPiV_bJZwTr9SkRTpMLFAEoMp1GziVeK_qRJd_wBk1JMssY8S4hwp9yJ2eOTFCYkPmXhfBLDM3HlE9f5KYX4jGM994c7-5HbUKGSBWU8igpi4RaK5nN0VAxqjAaZ3TBFU9MIimKKptZGluEvYk1qaacZkJJpmSc6YyV2RMYuKkzG0As5RafGpvrIlcaNQblqWWJElYxaeUQtpdDVqk2WrlPmjGplqgFe7IKPTmElx3prAnR8TeizeW4V-0snVeIHhGfc0axeKsrxvnle0M4gx1TITxElIYNQZr1hk26vyD_pSWL6RBoj4E6Ah-7u1_izk5DDG9Gc8Tm8RBedax2U-W3AxP-m6LaHR2Fi6f_9cFnsJb6YxxhKWkTBvXXhXmOxlUtX7TT6ydp0yC6 priority: 102 providerName: Unpaywall |
Title | Loss of GSTO2 contributes to cell growth and mitochondria function via the p38 signaling in lung squamous cell carcinoma |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.15189 https://www.ncbi.nlm.nih.gov/pubmed/34726807 https://www.proquest.com/docview/2618379879 https://www.proquest.com/docview/2592309739 https://pubmed.ncbi.nlm.nih.gov/PMC8748250 https://doi.org/10.1111/cas.15189 |
UnpaywallVersion | publishedVersion |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1349-7006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036494 issn: 1347-9032 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1349-7006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036494 issn: 1347-9032 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1349-7006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036494 issn: 1347-9032 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1349-7006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036494 issn: 1347-9032 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1349-7006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036494 issn: 1347-9032 databaseCode: 7X7 dateStart: 19880101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1349-7006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036494 issn: 1347-9032 databaseCode: BENPR dateStart: 19880101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1349-7006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036494 issn: 1347-9032 databaseCode: AVUZU dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1347-9032 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1349-7006 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036494 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1349-7006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036494 issn: 1347-9032 databaseCode: 24P dateStart: 20030101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxEB6VIkFfuAuBEpnjoS9brfeyVzyFqqVCNERtIwUJaWV7bVo1dQLZcP16xt5DhAJCvESb9exh7zeXPZ4BeK5R5AlORYCqSwYJFRzlIFeByVSJGqHkqa-fcjjMDsbJ60k6WYMX7V6YOj9EN-HmOMPLa8fgQi5-YnJXEgzVFXeb92ic-iXaoy51VJwleV3QNmFBHsZRk1XIRfF0V67qoksG5uU4yetLOxffvojpdNWW9cpo_ya8b7tRx6Cc7ywruaO-_5Lh8T_7eQtuNEYqGdSoug1r2t6Ba4fNMvxd-PoGu0Nmhrw6PnkbER_u7upm6QWpZsStBZAP6N5Xp0TYklyg0EAha0vEOnF61GGBfMY_aHySecyJCyIRbl88ObNkiuKHLD4uhZuUqG-mXMEjO7sQ92C8v3eyexA0JRwClTKWBzRLKTNGcpOgaaNVqkuUAWmucqqpZCjcTGxYaNBRpkZHJctZLJTkSoZxGfMs3oR1O7P6ARDDcoNntUnKNFEl6hiWR4ZTJYzi0sgebLcfs1BNfnNXZmNatH4OjmThR7IHTzvSeZ3U43dEWy0iioavFwX6m-jR55xh85OuGTnSjYawGgemQIcS_TrsCNLcrwHUPQXRGGU8ZD1gK9DqCFy279UWe3bqs35zlqA3H_bgWQfCv738tsfUnymK3cGxP3j476SPYCNCm87PQKVbsF59WurHaJNVsg9XomSEv2zC-nD15d5wdNT38xt9z5Z4bjwcDd79AHiaOkg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFLZKkSiXip0pBcwm9TJiFs_Yc0CoKpSUJuXQVMpt8HihlVInJQmlf4rfyHueBaJCb70lGWsm47d-9vP7CHltwOVJEcsQQlcVslgK8INChTZXGiKCFpnnTxkc5L0j9nmUjVbIr_YsDJZVtj7RO2o9UbhG_hYyfcBSgJCL99OzEFmjcHe1pdCo1WLfXJwDZJu92_sA8n2TJLsfhzu9sGEVCFXGeRHGeRZzaythGURbozKjQS2zQhWxiSsO9mZTyyML2C22JtG84KlUlVBVlOpU5Cnc9wa5ydKIYa9-PuoAXpqzoibRZTwsojRpOhlh5RASmEFwRTb5v-PfpaT2cm3m2sJN5cW5HI-X82cfAHfvkPUmc6XbtardJSvG3SO3Bs3e_H3ysw_PoxNLPx0OvyTU18AjmZaZ0fmE4gYB_QaYf35MpdP0FDwJeF6nwQAoBldUEPoDvkBGSqepoFhZIvGwPD1xdAw-ic7OFhJXKuqbKWRBcpNT-YAcXYsEHpJVN3HmMaGWFxZ-NZbpjCkNgYcXiRWxklaJylYB2Wpnu1RN03Pk3hiXLfgBwZReMAF52Q2d1p0-_jVosxVZ2Rj7rPyjmgF50V0GM8XZkM7AxJSAMgHswYvAmEe1hLungLokuYh4QPiS7LsB2AJ8-Yo7OfatwAVnAPGjgLzqtOSqP7_l9ef_I8qd7UP_YePq93xO1nrDQb_s7x3sPyG3EzwS4pelNsnq_PvCPIVEbV4989ZBydfrNsff6XtQWw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKkQoXxE6ggNmkXqImcRI7B4SqlqGlC0htpbmljhdaaepMmRlK_xq_jvecBUaF3nqbmVjJxG_97Of3EfLWgMuTIpYhhK4qTGMpwA8KFdpcaYgIWmSeP2V3L988TD8Ps-EC-dWdhcGyys4neketa4Vr5KuQ6QOWAoRcrNq2LOLrxuDD-CxEBincae3oNBoV2TYX5wDfJu-3NkDW75Jk8PFgfTNsGQZClXFehHGexdzaStgUIq9RmdGgolmhitjEFQfbs8zyyAKOi61JNC84k6oSqoqYZiJncN8b5CZnKcNyMj7swR7L06Ih1E15WEQsabsaYRURkplBoEVm-b9j4aUE93Kd5q2ZG8uLczkazefSPhgO7pI7bRZL1xq1u0cWjLtPlnbbffoH5OcOPI_Wln7aP_iSUF8Pj8RaZkKnNcXNAvoN8P_0mEqn6Sl4FfDCToMxUAy0qCz0B3yB7JSOmaBYZSLx4Dw9cXQE_olOzmYSVy2amylkRHL1qXxIDq9FAo_IoqudeUKo5YWFX41NdZYqDUGIF4kVsZJWicpWAVnpZrtUbQN05OEYlR0QAsGUXjABed0PHTddP_41aLkTWdka_qT8o6YBedVfBpPF2ZDOwMSUgDgB-MGLwJjHjYT7p4C6JLmIeED4nOz7AdgOfP6KOzn2bcEFTwHuRwF502vJVX9-xevP_0eU62v7_sPTq9_zJVkCQyx3tva2n5HbCZ4O8StUy2Rx-n1mnkPONq1eeOOg5Oi6rfE3mdlUlg |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrQS98KZdKMgFDr2kytv2cVVRKkQLUrtSOUV-0qpb78JmaeHXM3aygVCouCXxJPFjPDOfPZ4BeG1Q5AmWiAhVl4zyRDCUg0xFtlQaNYJmRcifcnBY7o_zdyfFyQpsLc_C_L5_7z1ufOIvVEqM34LV0u8hDWB1fPhx9CkAqZxGPA5JyHyUvYgiC7XRg3rv9nXONUPyuj_knYWbie-XYjLp26xB6ezd-3V0p_E1Od9Z1HJH_fgjkuON7bkPd1uTk4waHnkAK8Y9hNsH7ab6I7h6j5UmU0veHh1_SElwXvdZsMyc1FPiV_bJZwTr9SkRTpMLFAEoMp1GziVeK_qRJd_wBk1JMssY8S4hwp9yJ2eOTFCYkPmXhfBLDM3HlE9f5KYX4jGM994c7-5HbUKGSBWU8igpi4RaK5nN0VAxqjAaZ3TBFU9MIimKKptZGluEvYk1qaacZkJJpmSc6YyV2RMYuKkzG0As5RafGpvrIlcaNQblqWWJElYxaeUQtpdDVqk2WrlPmjGplqgFe7IKPTmElx3prAnR8TeizeW4V-0snVeIHhGfc0axeKsrxvnle0M4gx1TITxElIYNQZr1hk26vyD_pSWL6RBoj4E6Ah-7u1_izk5DDG9Gc8Tm8RBedax2U-W3AxP-m6LaHR2Fi6f_9cFnsJb6YxxhKWkTBvXXhXmOxlUtX7TT6ydp0yC6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+of+GSTO2+contributes+to+cell+growth+and+mitochondria+function+via+the+p38+signaling+in+lung+squamous+cell+carcinoma&rft.jtitle=Cancer+science&rft.au=Sumiya%2C+Ryusuke&rft.au=Terayama%2C+Masayoshi&rft.au=Hagiwara%2C+Teruki&rft.au=Nakata%2C+Kazuaki&rft.date=2022-01-01&rft.issn=1347-9032&rft.eissn=1349-7006&rft.volume=113&rft.issue=1&rft.spage=195&rft.epage=204&rft_id=info:doi/10.1111%2Fcas.15189&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cas_15189 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon |