ROAST: rotation gene set tests for complex microarray experiments

Motivation: A gene set test is a differential expression analysis in which a P-value is assigned to a set of genes as a unit. Gene set tests are valuable for increasing statistical power, organizing and interpreting results and for relating expression patterns across different experiments. Existing...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 26; no. 17; pp. 2176 - 2182
Main Authors Wu, Di, Lim, Elgene, Vaillant, François, Asselin-Labat, Marie-Liesse, Visvader, Jane E., Smyth, Gordon K.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.09.2010
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btq401

Cover

Abstract Motivation: A gene set test is a differential expression analysis in which a P-value is assigned to a set of genes as a unit. Gene set tests are valuable for increasing statistical power, organizing and interpreting results and for relating expression patterns across different experiments. Existing methods are based on permutation. Methods that rely on permutation of probes unrealistically assume independence of genes, while those that rely on permutation of sample are suitable only for two-group comparisons with a good number of replicates in each group. Results: We present ROAST, a statistically rigorous gene set test that allows for gene-wise correlation while being applicable to almost any experimental design. Instead of permutation, ROAST uses rotation, a Monte Carlo technology for multivariate regression. Since the number of rotations does not depend on sample size, ROAST gives useful results even for experiments with minimal replication. ROAST allows for any experimental design that can be expressed as a linear model, and can also incorporate array weights and correlated samples. ROAST can be tuned for situations in which only a subset of the genes in the set are actively involved in the molecular pathway. ROAST can test for uni- or bi-direction regulation. Probes can also be weighted to allow for prior importance. The power and size of the ROAST procedure is demonstrated in a simulation study, and compared to that of a representative permutation method. Finally, ROAST is used to test the degree of transcriptional conservation between human and mouse mammary stems. Availability: ROAST is implemented as a function in the Bioconductor package limma available from www.bioconductor.org Contact: smyth@wehi.edu.au Supplementary information: Supplementary data are available at Bioinformatics online.
AbstractList A gene set test is a differential expression analysis in which a P-value is assigned to a set of genes as a unit. Gene set tests are valuable for increasing statistical power, organizing and interpreting results and for relating expression patterns across different experiments. Existing methods are based on permutation. Methods that rely on permutation of probes unrealistically assume independence of genes, while those that rely on permutation of sample are suitable only for two-group comparisons with a good number of replicates in each group. We present ROAST, a statistically rigorous gene set test that allows for gene-wise correlation while being applicable to almost any experimental design. Instead of permutation, ROAST uses rotation, a Monte Carlo technology for multivariate regression. Since the number of rotations does not depend on sample size, ROAST gives useful results even for experiments with minimal replication. ROAST allows for any experimental design that can be expressed as a linear model, and can also incorporate array weights and correlated samples. ROAST can be tuned for situations in which only a subset of the genes in the set are actively involved in the molecular pathway. ROAST can test for uni- or bi-direction regulation. Probes can also be weighted to allow for prior importance. The power and size of the ROAST procedure is demonstrated in a simulation study, and compared to that of a representative permutation method. Finally, ROAST is used to test the degree of transcriptional conservation between human and mouse mammary stems. ROAST is implemented as a function in the Bioconductor package limma available from www.bioconductor.org.
Motivation: A gene set test is a differential expression analysis in which a P-value is assigned to a set of genes as a unit. Gene set tests are valuable for increasing statistical power, organizing and interpreting results and for relating expression patterns across different experiments. Existing methods are based on permutation. Methods that rely on permutation of probes unrealistically assume independence of genes, while those that rely on permutation of sample are suitable only for two-group comparisons with a good number of replicates in each group. Results: We present ROAST, a statistically rigorous gene set test that allows for gene-wise correlation while being applicable to almost any experimental design. Instead of permutation, ROAST uses rotation, a Monte Carlo technology for multivariate regression. Since the number of rotations does not depend on sample size, ROAST gives useful results even for experiments with minimal replication. ROAST allows for any experimental design that can be expressed as a linear model, and can also incorporate array weights and correlated samples. ROAST can be tuned for situations in which only a subset of the genes in the set are actively involved in the molecular pathway. ROAST can test for uni- or bi-direction regulation. Probes can also be weighted to allow for prior importance. The power and size of the ROAST procedure is demonstrated in a simulation study, and compared to that of a representative permutation method. Finally, ROAST is used to test the degree of transcriptional conservation between human and mouse mammary stems. Availability: ROAST is implemented as a function in the Bioconductor package limma available from www.bioconductor.org Contact:  smyth@wehi.edu.au Supplementary information:  Supplementary data are available at Bioinformatics online.
Motivation: A gene set test is a differential expression analysis in which a P-value is assigned to a set of genes as a unit. Gene set tests are valuable for increasing statistical power, organizing and interpreting results and for relating expression patterns across different experiments. Existing methods are based on permutation. Methods that rely on permutation of probes unrealistically assume independence of genes, while those that rely on permutation of sample are suitable only for two-group comparisons with a good number of replicates in each group. Results: We present ROAST, a statistically rigorous gene set test that allows for gene-wise correlation while being applicable to almost any experimental design. Instead of permutation, ROAST uses rotation, a Monte Carlo technology for multivariate regression. Since the number of rotations does not depend on sample size, ROAST gives useful results even for experiments with minimal replication. ROAST allows for any experimental design that can be expressed as a linear model, and can also incorporate array weights and correlated samples. ROAST can be tuned for situations in which only a subset of the genes in the set are actively involved in the molecular pathway. ROAST can test for uni- or bi-direction regulation. Probes can also be weighted to allow for prior importance. The power and size of the ROAST procedure is demonstrated in a simulation study, and compared to that of a representative permutation method. Finally, ROAST is used to test the degree of transcriptional conservation between human and mouse mammary stems. Availability: ROAST is implemented as a function in the Bioconductor package limma available from www.bioconductor.org Contact: smyth@wehi.edu.au Supplementary information: Supplementary data are available at Bioinformatics online.
Motivation: A gene set test is a differential expression analysis in which a P-value is assigned to a set of genes as a unit. Gene set tests are valuable for increasing statistical power, organizing and interpreting results and for relating expression patterns across different experiments. Existing methods are based on permutation. Methods that rely on permutation of probes unrealistically assume independence of genes, while those that rely on permutation of sample are suitable only for two-group comparisons with a good number of replicates in each group.Results: We present ROAST, a statistically rigorous gene set test that allows for gene-wise correlation while being applicable to almost any experimental design. Instead of permutation, ROAST uses rotation, a Monte Carlo technology for multivariate regression. Since the number of rotations does not depend on sample size, ROAST gives useful results even for experiments with minimal replication. ROAST allows for any experimental design that can be expressed as a linear model, and can also incorporate array weights and correlated samples. ROAST can be tuned for situations in which only a subset of the genes in the set are actively involved in the molecular pathway. ROAST can test for uni- or bi-direction regulation. Probes can also be weighted to allow for prior importance. The power and size of the ROAST procedure is demonstrated in a simulation study, and compared to that of a representative permutation method. Finally, ROAST is used to test the degree of transcriptional conservation between human and mouse mammary stems.Availability: ROAST is implemented as a function in the Bioconductor package limma available from www.bioconductor.org
A gene set test is a differential expression analysis in which a P-value is assigned to a set of genes as a unit. Gene set tests are valuable for increasing statistical power, organizing and interpreting results and for relating expression patterns across different experiments. Existing methods are based on permutation. Methods that rely on permutation of probes unrealistically assume independence of genes, while those that rely on permutation of sample are suitable only for two-group comparisons with a good number of replicates in each group.MOTIVATIONA gene set test is a differential expression analysis in which a P-value is assigned to a set of genes as a unit. Gene set tests are valuable for increasing statistical power, organizing and interpreting results and for relating expression patterns across different experiments. Existing methods are based on permutation. Methods that rely on permutation of probes unrealistically assume independence of genes, while those that rely on permutation of sample are suitable only for two-group comparisons with a good number of replicates in each group.We present ROAST, a statistically rigorous gene set test that allows for gene-wise correlation while being applicable to almost any experimental design. Instead of permutation, ROAST uses rotation, a Monte Carlo technology for multivariate regression. Since the number of rotations does not depend on sample size, ROAST gives useful results even for experiments with minimal replication. ROAST allows for any experimental design that can be expressed as a linear model, and can also incorporate array weights and correlated samples. ROAST can be tuned for situations in which only a subset of the genes in the set are actively involved in the molecular pathway. ROAST can test for uni- or bi-direction regulation. Probes can also be weighted to allow for prior importance. The power and size of the ROAST procedure is demonstrated in a simulation study, and compared to that of a representative permutation method. Finally, ROAST is used to test the degree of transcriptional conservation between human and mouse mammary stems.RESULTSWe present ROAST, a statistically rigorous gene set test that allows for gene-wise correlation while being applicable to almost any experimental design. Instead of permutation, ROAST uses rotation, a Monte Carlo technology for multivariate regression. Since the number of rotations does not depend on sample size, ROAST gives useful results even for experiments with minimal replication. ROAST allows for any experimental design that can be expressed as a linear model, and can also incorporate array weights and correlated samples. ROAST can be tuned for situations in which only a subset of the genes in the set are actively involved in the molecular pathway. ROAST can test for uni- or bi-direction regulation. Probes can also be weighted to allow for prior importance. The power and size of the ROAST procedure is demonstrated in a simulation study, and compared to that of a representative permutation method. Finally, ROAST is used to test the degree of transcriptional conservation between human and mouse mammary stems.ROAST is implemented as a function in the Bioconductor package limma available from www.bioconductor.org.AVAILABILITYROAST is implemented as a function in the Bioconductor package limma available from www.bioconductor.org.
Author Visvader, Jane E.
Asselin-Labat, Marie-Liesse
Smyth, Gordon K.
Lim, Elgene
Wu, Di
Vaillant, François
AuthorAffiliation 1 The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052 and 2 The University of Melbourne, Victoria 3010, Australia
AuthorAffiliation_xml – name: 1 The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052 and 2 The University of Melbourne, Victoria 3010, Australia
Author_xml – sequence: 1
  givenname: Di
  surname: Wu
  fullname: Wu, Di
  organization: The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052 and The University of Melbourne, Victoria 3010, Australia
– sequence: 2
  givenname: Elgene
  surname: Lim
  fullname: Lim, Elgene
  organization: The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052 and The University of Melbourne, Victoria 3010, Australia
– sequence: 3
  givenname: François
  surname: Vaillant
  fullname: Vaillant, François
  organization: The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052 and The University of Melbourne, Victoria 3010, Australia
– sequence: 4
  givenname: Marie-Liesse
  surname: Asselin-Labat
  fullname: Asselin-Labat, Marie-Liesse
  organization: The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052 and The University of Melbourne, Victoria 3010, Australia
– sequence: 5
  givenname: Jane E.
  surname: Visvader
  fullname: Visvader, Jane E.
  organization: The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052 and The University of Melbourne, Victoria 3010, Australia
– sequence: 6
  givenname: Gordon K.
  surname: Smyth
  fullname: Smyth, Gordon K.
  organization: The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052 and The University of Melbourne, Victoria 3010, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23146122$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20610611$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEYhYNU7If-BGVuxKux-ZrMRKGwFNuKhYJWWHoT3slkanQmmSZZ3f33jczaWm8sBBLIc04O580-2nHeGYReEvyWYMkOW-ut630YIVkdD9t0wzF5gvYIF7ikuJI7-cxEXfIGs120H-N3jCvCOX-GdikWJC-yhxafLxZfLt8Vwads5F1xbZwpoklFMjHFIr9QaD9Og1kXo9XBQwiwKcx6MsGOxqX4HD3tYYjmxXY_QF9PPlwen5XnF6cfjxfnpa5qkcqulQ0YILTtO2xEJ2hHWqCs4VTKhtcgISeqCOGswx2tO0kp5j02Xd-2ouLsAInZd-Um2PyCYVBTjgBhowhWvztRDztRcydZeDQLp1U7mk7n0AHuxR6senjj7Dd17X8qmiM0UmSDN1uD4G9WuRY12qjNMIAzfhVV3dREMlo9guTZjwgmM_nq71B3af5MJgOvtwBEDUMfwGkb7zmWB00ozVw1c3k2MQbTP7qV9__otJ2_QO7ADv9Vl7PaxmTWd09C-KFEzepKnS2v1KdqyRu6PFFX7BagJdxa
CitedBy_id crossref_primary_10_1007_s00424_021_02582_7
crossref_primary_10_1016_j_cbi_2019_108887
crossref_primary_10_1186_s12885_015_1994_2
crossref_primary_10_3389_fmicb_2019_02303
crossref_primary_10_1038_s41418_020_0541_0
crossref_primary_10_1002_bimj_201100178
crossref_primary_10_1142_S0219720019400109
crossref_primary_10_1038_s41380_023_02403_6
crossref_primary_10_1083_jcb_202404084
crossref_primary_10_1371_journal_ppat_1007290
crossref_primary_10_1515_sagmb_2017_0053
crossref_primary_10_1002_sctm_18_0246
crossref_primary_10_12688_f1000research_8987_1
crossref_primary_10_12688_f1000research_8987_2
crossref_primary_10_3390_e22040427
crossref_primary_10_1038_s41380_022_01609_4
crossref_primary_10_1186_1741_7015_10_43
crossref_primary_10_15252_embr_202051184
crossref_primary_10_1016_j_immuni_2018_03_003
crossref_primary_10_1093_g3journal_jkab365
crossref_primary_10_1016_j_mbs_2015_08_007
crossref_primary_10_1371_journal_pone_0074469
crossref_primary_10_3389_fpain_2022_886042
crossref_primary_10_3390_genes12101523
crossref_primary_10_1038_onc_2012_477
crossref_primary_10_1186_s12989_019_0301_9
crossref_primary_10_1002_hep_29373
crossref_primary_10_1007_s00109_017_1609_2
crossref_primary_10_1128_mbio_00918_22
crossref_primary_10_1038_ncb3471
crossref_primary_10_1038_onc_2015_33
crossref_primary_10_3390_nu7053370
crossref_primary_10_1172_jci_insight_90954
crossref_primary_10_1016_j_cbpb_2018_10_004
crossref_primary_10_1186_s12859_023_05510_x
crossref_primary_10_1186_s12967_023_04174_8
crossref_primary_10_1002_pmic_201500159
crossref_primary_10_1093_bioinformatics_btu374
crossref_primary_10_3389_fmicb_2017_00398
crossref_primary_10_2337_dc18_2585
crossref_primary_10_1186_s12864_016_3384_9
crossref_primary_10_1172_JCI180157
crossref_primary_10_4137_CIN_S40043
crossref_primary_10_1186_s13041_020_00681_7
crossref_primary_10_1016_j_ydbio_2018_09_002
crossref_primary_10_1371_journal_pgen_1005505
crossref_primary_10_3389_fpls_2017_00072
crossref_primary_10_1007_s11250_022_03173_z
crossref_primary_10_29220_CSAM_2019_26_4_411
crossref_primary_10_1016_j_atherosclerosis_2022_10_005
crossref_primary_10_1158_2326_6066_CIR_18_0310
crossref_primary_10_1016_j_omtn_2020_07_020
crossref_primary_10_1038_s41598_023_28259_y
crossref_primary_10_1016_j_mod_2020_103614
crossref_primary_10_1126_sciimmunol_adn1945
crossref_primary_10_1371_journal_pgen_1005211
crossref_primary_10_1038_ncomms13353
crossref_primary_10_1126_scitranslmed_3003515
crossref_primary_10_1038_nm_4118
crossref_primary_10_1093_nar_gkaa332
crossref_primary_10_3945_jn_115_223552
crossref_primary_10_1146_annurev_statistics_010814_020335
crossref_primary_10_1016_j_cmet_2023_05_007
crossref_primary_10_1097_TP_0000000000004896
crossref_primary_10_1038_s41591_018_0078_7
crossref_primary_10_12688_f1000research_149494_1
crossref_primary_10_1177_1358863X20947467
crossref_primary_10_1182_blood_2014_08_594655
crossref_primary_10_1016_j_mce_2015_02_019
crossref_primary_10_1089_omi_2015_0020
crossref_primary_10_1038_s41467_019_12212_7
crossref_primary_10_1089_ten_tec_2019_0309
crossref_primary_10_1016_j_celrep_2021_109195
crossref_primary_10_1093_bioinformatics_btx214
crossref_primary_10_1016_j_ccell_2016_10_006
crossref_primary_10_2337_db21_0574
crossref_primary_10_1371_journal_pcbi_1005601
crossref_primary_10_1038_s41467_023_42521_x
crossref_primary_10_1084_jem_20152003
crossref_primary_10_1093_bioinformatics_bty783
crossref_primary_10_1038_s41598_020_80165_9
crossref_primary_10_1038_s41590_023_01473_6
crossref_primary_10_1073_pnas_1404354111
crossref_primary_10_1016_j_ygeno_2021_04_020
crossref_primary_10_1016_j_immuni_2017_11_021
crossref_primary_10_1016_j_bbi_2020_11_036
crossref_primary_10_1172_jci_insight_124958
crossref_primary_10_1016_j_molmet_2018_09_003
crossref_primary_10_1016_j_ijrobp_2013_11_219
crossref_primary_10_1038_s41598_019_43862_8
crossref_primary_10_1084_jem_20162012
crossref_primary_10_1111_acel_13578
crossref_primary_10_1523_ENEURO_0322_19_2020
crossref_primary_10_1007_s12311_016_0823_8
crossref_primary_10_3233_JAD_210128
crossref_primary_10_1371_journal_pgen_1004453
crossref_primary_10_1142_S021972002050002X
crossref_primary_10_1038_s41467_024_52394_3
crossref_primary_10_1093_bib_bbz158
crossref_primary_10_1101_gad_240416_114
crossref_primary_10_1186_s12859_017_1482_6
crossref_primary_10_1016_j_exphem_2012_02_007
crossref_primary_10_7554_eLife_23361
crossref_primary_10_3389_fgene_2022_925469
crossref_primary_10_1016_j_immuni_2024_11_023
crossref_primary_10_1165_rcmb_2019_0399OC
crossref_primary_10_1126_sciadv_aaz4551
crossref_primary_10_3390_genes15081030
crossref_primary_10_1158_0008_5472_CAN_17_0320
crossref_primary_10_1016_j_celrep_2019_02_081
crossref_primary_10_3233_JAD_160524
crossref_primary_10_1371_journal_pone_0041156
crossref_primary_10_12688_f1000research_3928_2
crossref_primary_10_12688_f1000research_3928_1
crossref_primary_10_3233_JAD_210200
crossref_primary_10_1073_pnas_1209508109
crossref_primary_10_1186_s13073_015_0189_4
crossref_primary_10_1371_journal_pone_0244439
crossref_primary_10_1093_nar_gkab461
crossref_primary_10_1093_bioinformatics_btx104
crossref_primary_10_1186_s12915_023_01777_x
crossref_primary_10_1186_1752_0509_6_56
crossref_primary_10_1016_j_celrep_2022_111182
crossref_primary_10_1093_bioinformatics_btx348
crossref_primary_10_1016_j_stem_2019_07_001
crossref_primary_10_1126_sciadv_aba5933
crossref_primary_10_1002_alz_12223
crossref_primary_10_1038_s43018_022_00402_0
crossref_primary_10_1016_j_biopha_2025_117917
crossref_primary_10_1016_j_immuni_2021_01_017
crossref_primary_10_1021_nn5061783
crossref_primary_10_3390_biom14050541
crossref_primary_10_1016_j_jcmgh_2022_05_003
crossref_primary_10_1371_journal_pone_0221444
crossref_primary_10_1016_j_ajog_2022_07_015
crossref_primary_10_1038_s41467_019_12164_y
crossref_primary_10_1038_s42003_022_03128_y
crossref_primary_10_1016_j_ccell_2021_08_008
crossref_primary_10_1038_ni_3348
crossref_primary_10_1007_s00018_016_2401_0
crossref_primary_10_1002_jat_4149
crossref_primary_10_1104_pp_112_202291
crossref_primary_10_1084_jem_20191206
crossref_primary_10_3389_fgene_2021_625466
crossref_primary_10_1371_journal_pone_0232559
crossref_primary_10_3389_fnins_2022_868008
crossref_primary_10_1080_15476286_2020_1777380
crossref_primary_10_7554_eLife_59654
crossref_primary_10_1242_dev_202617
crossref_primary_10_1016_j_cell_2020_07_038
crossref_primary_10_1007_s12561_017_9193_0
crossref_primary_10_1186_s13045_021_01045_x
crossref_primary_10_1038_ni_2006
crossref_primary_10_1038_s41586_021_03663_4
crossref_primary_10_1016_j_aquaculture_2016_09_008
crossref_primary_10_1038_s41586_022_05402_9
crossref_primary_10_1152_ajpheart_00613_2019
crossref_primary_10_4137_CIN_S17683
crossref_primary_10_1016_j_xcrm_2023_101124
crossref_primary_10_1371_journal_pone_0137027
crossref_primary_10_1038_s41586_019_1835_6
crossref_primary_10_1038_s41590_020_0760_z
crossref_primary_10_1016_j_bbi_2022_01_013
crossref_primary_10_1016_j_neuroscience_2023_08_008
crossref_primary_10_4049_jimmunol_2000973
crossref_primary_10_1093_biostatistics_kxx005
crossref_primary_10_1093_nar_gks461
crossref_primary_10_1016_j_cell_2018_02_019
crossref_primary_10_1016_j_cmet_2023_03_004
crossref_primary_10_1038_leu_2015_27
crossref_primary_10_1093_nargab_lqab028
crossref_primary_10_3389_fgene_2019_00598
crossref_primary_10_1016_j_celrep_2024_114938
crossref_primary_10_1016_j_pvr_2017_10_001
crossref_primary_10_1126_science_aad2035
crossref_primary_10_1182_blood_2017_05_783050
crossref_primary_10_1038_s41598_018_21937_2
crossref_primary_10_1152_ajpheart_00244_2019
crossref_primary_10_1098_rsif_2013_0950
crossref_primary_10_1002_sim_7610
crossref_primary_10_1152_ajpcell_00794_2024
crossref_primary_10_2337_db20_0439
crossref_primary_10_1016_j_dcn_2025_101534
crossref_primary_10_1093_nar_gkac362
crossref_primary_10_3390_e23080945
crossref_primary_10_1038_s41598_020_69164_y
crossref_primary_10_7717_peerj_10764
crossref_primary_10_1039_C7TX00047B
crossref_primary_10_1093_brain_awab328
crossref_primary_10_1093_nar_gkab242
crossref_primary_10_1038_ni_3154
crossref_primary_10_1371_journal_pcbi_1002967
crossref_primary_10_1186_s13059_019_1851_8
crossref_primary_10_1371_journal_pone_0170181
crossref_primary_10_1002_path_4864
crossref_primary_10_1186_s12974_021_02191_2
crossref_primary_10_1038_s41567_018_0046_7
crossref_primary_10_1371_journal_pone_0276010
crossref_primary_10_1155_2019_2497509
crossref_primary_10_1126_sciimmunol_abf7268
crossref_primary_10_1016_j_cmet_2019_05_006
crossref_primary_10_1186_s12859_014_0397_8
crossref_primary_10_1371_journal_pcbi_1010348
crossref_primary_10_1093_aje_kwab049
crossref_primary_10_1186_s12859_015_0571_7
crossref_primary_10_1093_bib_bbv069
crossref_primary_10_3390_ijms24065353
crossref_primary_10_1016_j_celrep_2021_109774
crossref_primary_10_1038_s41467_020_17873_3
crossref_primary_10_1261_rna_063438_117
crossref_primary_10_1038_s41418_022_00982_5
crossref_primary_10_1093_nar_gkv412
crossref_primary_10_1016_j_celrep_2019_03_048
crossref_primary_10_1186_1471_2105_14_7
crossref_primary_10_1128_MCB_00663_19
crossref_primary_10_1038_s41564_019_0569_4
crossref_primary_10_1073_pnas_2019282118
crossref_primary_10_1186_s13058_015_0585_0
crossref_primary_10_1186_s13073_024_01373_w
crossref_primary_10_1186_1471_2164_14_688
crossref_primary_10_1186_s12920_017_0317_7
crossref_primary_10_1016_j_celrep_2024_113754
crossref_primary_10_1371_journal_pcbi_1011868
crossref_primary_10_1038_cddis_2015_134
crossref_primary_10_1165_rcmb_2019_0032OC
crossref_primary_10_15252_embj_2022111494
crossref_primary_10_1186_s12969_015_0047_3
crossref_primary_10_1007_s40484_017_0111_8
crossref_primary_10_1038_s41467_021_26258_z
crossref_primary_10_4049_jimmunol_1600193
crossref_primary_10_1186_s13045_021_01155_6
crossref_primary_10_1093_bioinformatics_btab063
crossref_primary_10_1016_S2213_2600_16_00046_1
crossref_primary_10_1111_febs_13770
crossref_primary_10_26508_lsa_202302203
crossref_primary_10_1002_jrsm_1337
crossref_primary_10_1016_j_celrep_2021_109430
crossref_primary_10_1038_cdd_2017_81
crossref_primary_10_1105_tpc_113_113209
crossref_primary_10_1093_nar_gkv873
crossref_primary_10_1016_j_ijpddr_2023_03_004
crossref_primary_10_1038_tp_2017_87
crossref_primary_10_1371_journal_pone_0227258
crossref_primary_10_1289_EHP8973
crossref_primary_10_1016_j_mcn_2017_07_004
crossref_primary_10_1261_rna_079263_122
crossref_primary_10_1039_D1CB00069A
crossref_primary_10_62347_RIOX7768
crossref_primary_10_1016_j_ajpath_2024_02_014
crossref_primary_10_1016_j_aquatox_2022_106310
crossref_primary_10_1158_2159_8290_CD_23_0402
crossref_primary_10_1038_bjc_2013_452
crossref_primary_10_1186_s13041_021_00792_9
crossref_primary_10_1016_j_bbadis_2024_167651
crossref_primary_10_1016_j_ebiom_2014_10_003
crossref_primary_10_3233_JAD_230522
crossref_primary_10_1186_gb_2014_15_2_r29
crossref_primary_10_1038_s41586_021_04075_0
crossref_primary_10_1038_s43587_023_00431_z
crossref_primary_10_1186_s13059_014_0465_4
crossref_primary_10_1016_j_isci_2020_101454
crossref_primary_10_3390_cells9091966
crossref_primary_10_1016_j_chembiol_2023_06_001
crossref_primary_10_2337_db20_1119
crossref_primary_10_29220_CSAM_2024_31_5_571
crossref_primary_10_1186_s13045_025_01678_2
crossref_primary_10_1038_ijo_2017_180
crossref_primary_10_1038_mt_2014_86
crossref_primary_10_1002_ajmg_b_32328
crossref_primary_10_1002_stem_2095
crossref_primary_10_1093_bib_bbae069
crossref_primary_10_1016_j_gdata_2015_07_006
crossref_primary_10_1016_j_celrep_2012_12_020
crossref_primary_10_1093_nar_gku463
crossref_primary_10_1038_s41467_021_27289_2
crossref_primary_10_3390_cancers11050698
crossref_primary_10_1038_s41419_019_1752_5
crossref_primary_10_1038_ni_3410
crossref_primary_10_29220_CSAM_2022_29_5_591
crossref_primary_10_1016_j_isci_2022_103904
crossref_primary_10_1016_j_celrep_2019_12_078
crossref_primary_10_1038_onc_2015_335
crossref_primary_10_1371_journal_pgen_1011428
crossref_primary_10_3389_fcimb_2018_00326
crossref_primary_10_1084_jem_20231758
crossref_primary_10_1093_bioinformatics_btae270
crossref_primary_10_1371_journal_pone_0277983
crossref_primary_10_1038_s41698_019_0093_2
crossref_primary_10_1242_dev_175042
crossref_primary_10_1038_s41467_019_11348_w
crossref_primary_10_1172_jci_insight_123130
crossref_primary_10_1089_omi_2023_0028
crossref_primary_10_1161_CIRCGENETICS_111_961631
crossref_primary_10_1016_j_ajog_2015_08_028
crossref_primary_10_3390_cells10092494
crossref_primary_10_1210_clinem_dgab552
crossref_primary_10_1371_journal_pgen_1008768
crossref_primary_10_1038_nature14888
crossref_primary_10_1016_j_mex_2024_102788
crossref_primary_10_1093_nar_gkz1208
crossref_primary_10_1016_j_celrep_2022_111980
crossref_primary_10_3233_ADR_200279
crossref_primary_10_1186_s40246_019_0226_2
crossref_primary_10_1038_s41586_019_1884_x
crossref_primary_10_1016_j_fct_2018_12_056
crossref_primary_10_1038_s41467_024_47311_7
crossref_primary_10_1186_s12864_019_5805_z
crossref_primary_10_1007_s00125_020_05179_4
crossref_primary_10_1093_bioinformatics_bts579
crossref_primary_10_1074_jbc_M111_327601
crossref_primary_10_1016_j_tiv_2016_11_014
crossref_primary_10_1161_CIRCEP_114_001632
crossref_primary_10_1371_journal_pntd_0003522
crossref_primary_10_1093_bib_bbac084
crossref_primary_10_1371_journal_pbio_2000731
crossref_primary_10_1002_wsbm_1252
crossref_primary_10_1038_s41598_024_76722_1
crossref_primary_10_1261_rna_078804_121
crossref_primary_10_1111_biom_12372
crossref_primary_10_1093_gbe_evab110
crossref_primary_10_1038_s41418_021_00850_8
crossref_primary_10_1016_j_aquaculture_2015_10_035
crossref_primary_10_12688_f1000research_12544_1
crossref_primary_10_1126_sciadv_abj2164
crossref_primary_10_1093_nar_gkv007
crossref_primary_10_1091_mbc_E17_07_0471
crossref_primary_10_1038_s41467_018_06007_5
crossref_primary_10_1016_j_celrep_2022_111405
crossref_primary_10_1093_nar_gkaf018
crossref_primary_10_1126_scitranslmed_aan5488
crossref_primary_10_4137_BBI_S9954
crossref_primary_10_7554_eLife_54756
crossref_primary_10_3389_fimmu_2020_582358
crossref_primary_10_1126_science_abf7470
crossref_primary_10_1038_s41467_024_47227_2
crossref_primary_10_1093_molbev_msaa186
crossref_primary_10_1186_s12885_020_07100_z
crossref_primary_10_1093_bioinformatics_btw623
crossref_primary_10_12688_f1000research_9005_2
crossref_primary_10_7554_eLife_10809
crossref_primary_10_1158_1535_7163_MCT_20_0319
crossref_primary_10_1093_bib_bbac143
crossref_primary_10_1093_bioinformatics_btt592
crossref_primary_10_1002_cam4_6021
crossref_primary_10_1371_journal_pone_0118198
crossref_primary_10_12688_f1000research_9005_3
crossref_primary_10_7717_peerj_2575
crossref_primary_10_1080_2162402X_2020_1724049
crossref_primary_10_1038_ncomms15932
crossref_primary_10_1177_0962280212460441
crossref_primary_10_1186_s12859_024_05743_4
crossref_primary_10_1007_s00204_023_03444_0
crossref_primary_10_15252_embj_201798518
crossref_primary_10_1186_s12864_018_5409_z
crossref_primary_10_1371_journal_pone_0038365
crossref_primary_10_1038_s43018_023_00712_x
crossref_primary_10_1038_s41467_024_51859_9
crossref_primary_10_1186_s13567_022_01075_4
crossref_primary_10_1016_j_stem_2020_04_012
crossref_primary_10_1371_journal_pcbi_1002276
crossref_primary_10_3389_fimmu_2021_638571
crossref_primary_10_1111_biom_12060
crossref_primary_10_1038_s41467_024_51363_0
crossref_primary_10_1242_dev_199581
crossref_primary_10_3233_JAD_201383
crossref_primary_10_1158_1078_0432_CCR_16_2540
crossref_primary_10_1016_j_csbj_2017_06_002
crossref_primary_10_1158_2159_8290_CD_22_0523
crossref_primary_10_7717_peerj_11298
crossref_primary_10_1186_s12920_023_01512_z
crossref_primary_10_1038_s41467_023_39040_0
crossref_primary_10_1111_febs_14370
crossref_primary_10_1111_nan_12641
crossref_primary_10_1016_j_cels_2018_05_019
crossref_primary_10_1186_s13059_021_02388_x
crossref_primary_10_1111_jcpp_12457
crossref_primary_10_1073_pnas_1504232112
crossref_primary_10_7554_eLife_75873
crossref_primary_10_1007_s12192_015_0583_2
crossref_primary_10_1038_s41592_018_0253_2
crossref_primary_10_1186_s12967_020_02276_1
crossref_primary_10_1242_dmm_049187
crossref_primary_10_1371_journal_pone_0038149
crossref_primary_10_1158_0008_5472_CAN_16_1966
crossref_primary_10_1038_nsmb_3249
crossref_primary_10_1126_sciimmunol_abf4432
crossref_primary_10_1182_bloodadvances_2019001323
Cites_doi 10.1093/bioinformatics/btn465
10.1093/bioinformatics/btg345
10.1093/bioinformatics/btm531
10.1093/bioinformatics/btl599
10.1038/ng1180
10.1093/nar/gkl766
10.1186/1471-2105-8-242
10.1186/1471-2105-10-47
10.1038/nm.2000
10.1186/bcr2560
10.1186/1471-2105-7-261
10.1007/s11222-005-4789-5
10.1186/1471-2105-10-45
10.1214/088342304000000396
10.1214/07-AOAS101
10.1093/bioinformatics/btg382
10.1371/journal.pgen.1000115
10.1093/bioinformatics/btm051
10.1093/bioinformatics/btl424
10.1002/sim.2109
10.1093/bioinformatics/bti270
10.1073/pnas.0506577102
10.1089/cmb.2008.0002
10.1073/pnas.0506580102
10.2202/1544-6115.1027
10.1158/0008-5472.CAN-06-2254
10.1186/1471-2164-7-252
10.2202/1544-6115.1418
ContentType Journal Article
Copyright 2015 INIST-CNRS
The Author(s) 2010. Published by Oxford University Press. 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: The Author(s) 2010. Published by Oxford University Press. 2010
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btq401
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
CrossRef


Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 2182
ExternalDocumentID 10.1093/bioinformatics/btq401
PMC2922896
20610611
23146122
10_1093_bioinformatics_btq401
ark_67375_HXZ_K5X482XF_Z
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -~X
.2P
.I3
482
48X
5GY
AAMVS
ABJNI
ABPTD
ACGFS
ACUFI
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BSCLL
CZ4
EE~
F5P
F9B
H5~
HAR
HW0
IOX
KSI
KSN
NGC
Q5Y
RD5
ROZ
RXO
TLC
TN5
TOX
WH7
~91
---
-E4
.DC
0R~
1TH
23N
2WC
4.4
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EJD
EMOBN
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HVGLF
HZ~
J21
JXSIZ
KAQDR
KOP
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
.-4
.GJ
ABEFU
AFFNX
AI.
AQDSO
ELUNK
IQODW
NTWIH
O~Y
RIG
RNI
RZF
RZO
VH1
ZGI
ABQTQ
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
M49
NPM
ROX
7X8
7QO
8FD
FR3
P64
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c576t-db98aea12bfd0e6d62d1ba2384299847a9a06151143d0d27d92204f0edfbb6543
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Wed Oct 29 12:09:56 EDT 2025
Tue Sep 30 16:53:00 EDT 2025
Tue Oct 07 08:07:12 EDT 2025
Thu Oct 02 09:24:03 EDT 2025
Wed Feb 19 01:55:51 EST 2025
Mon Jul 21 09:13:25 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Tue Jul 01 03:27:02 EDT 2025
Sat Sep 20 11:02:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Gene
Microarray
Test
DNA chip
Language English
License http://creativecommons.org/licenses/by-nc/2.0/uk
CC BY 4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-db98aea12bfd0e6d62d1ba2384299847a9a06151143d0d27d92204f0edfbb6543
Notes Associate Editor: Jonathan Wren
To whom correspondence should be addressed.
ark:/67375/HXZ-K5X482XF-Z
ArticleID:btq401
istex:1C2CF97044E061155A3679D905B7FBF16BC490BF
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/26/17/2176/48853780/bioinformatics_26_17_2176.pdf
PMID 20610611
PQID 748961639
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btq401
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2922896
proquest_miscellaneous_787193256
proquest_miscellaneous_748961639
pubmed_primary_20610611
pascalfrancis_primary_23146122
crossref_primary_10_1093_bioinformatics_btq401
crossref_citationtrail_10_1093_bioinformatics_btq401
istex_primary_ark_67375_HXZ_K5X482XF_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2010
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Barnard (2023012508005690400_B3) 1963; 25
Goeman (2023012508005690400_B10) 2004; 20
Wang (2023012508005690400_B29) 2008; 4
Langsrud (2023012508005690400_B14) 2005; 15
Wright (2023012508005690400_B30) 2003; 19
Efron (2023012508005690400_B7) 2007; 1
Adewale (2023012508005690400_B2) 2008; 15
Murie (2023012508005690400_B20) 2009; 10
Lonnstedt (2023012508005690400_B17) 2002; 12
Ritchie (2023012508005690400_B22) 2006; 7
Lim (2023012508005690400_B15) 2009; 15
Subramanian (2023012508005690400_B26) 2005; 102
Dinu (2023012508005690400_B5) 2007; 8
Visvader (2023012508005690400_B28) 2006; 66
Goeman (2023012508005690400_B9) 2007; 23
Jiang (2023012508005690400_B12) 2007; 23
Mootha (2023012508005690400_B19) 2003; 34
Oron (2023012508005690400_B21) 2008; 24
Smyth (2023012508005690400_B25) 2005; 21
Smyth (2023012508005690400_B24) 2004; 3
Lim (2023012508005690400_B16) 2010; 12
Ernst (2023012508005690400_B8) 2004; 19
Manoli (2023012508005690400_B18) 2006; 22
Ackermann (2023012508005690400_B1) 2009; 10
Saxena (2023012508005690400_B23) 2006; 34
Diboun (2023012508005690400_B4) 2006; 7
Kooperberg (2023012508005690400_B13) 2005; 24
Hummel (2023012508005690400_B11) 2008; 24
Tian (2023012508005690400_B27) 2005; 102
Dørum (2023012508005690400_B6) 2009; 8
19648928 - Nat Med. 2009 Aug;15(8):907-13
18024976 - Bioinformatics. 2008 Jan 1;24(1):78-85
16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
20346151 - Breast Cancer Res. 2010;12(2):R21
18790795 - Bioinformatics. 2008 Nov 15;24(22):2586-91
17303618 - Bioinformatics. 2007 Apr 15;23(8):980-7
17127676 - Bioinformatics. 2007 Feb 1;23(3):306-13
16712727 - BMC Bioinformatics. 2006;7:261
15889452 - Stat Med. 2005 Aug 15;24(15):2281-98
17029630 - BMC Genomics. 2006;7:252
19192265 - BMC Bioinformatics. 2009;10:45
16174746 - Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13544-9
18331198 - J Comput Biol. 2008 Apr;15(3):269-77
14693814 - Bioinformatics. 2004 Jan 1;20(1):93-9
17612399 - BMC Bioinformatics. 2007;8:242
17047038 - Cancer Res. 2006 Oct 15;66(20):9798-801
17130162 - Nucleic Acids Res. 2006;34(22):e151
19192285 - BMC Bioinformatics. 2009;10:47
16895928 - Bioinformatics. 2006 Oct 15;22(20):2500-6
12808457 - Nat Genet. 2003 Jul;34(3):267-73
19645689 - Stat Appl Genet Mol Biol. 2009;8:Article34
14668230 - Bioinformatics. 2003 Dec 12;19(18):2448-55
18852846 - PLoS Genet. 2008 Jul;4(7):e1000115
16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
15657102 - Bioinformatics. 2005 May 1;21(9):2067-75
References_xml – volume: 24
  start-page: 2586
  year: 2008
  ident: 2023012508005690400_B21
  article-title: Gene set enrichment analysis using linear models and diagnostics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn465
– volume: 19
  start-page: 2448
  year: 2003
  ident: 2023012508005690400_B30
  article-title: A random variance model for detection of differential gene expression in small microarray experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg345
– volume: 24
  start-page: 78
  year: 2008
  ident: 2023012508005690400_B11
  article-title: GlobalANCOVA: exploration and assessment of gene group effects
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm531
– volume: 23
  start-page: 306
  year: 2007
  ident: 2023012508005690400_B12
  article-title: Extensions to gene set enrichment
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl599
– volume: 34
  start-page: 267
  year: 2003
  ident: 2023012508005690400_B19
  article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
  publication-title: Nat. Genet.
  doi: 10.1038/ng1180
– volume: 34
  start-page: e151
  year: 2006
  ident: 2023012508005690400_B23
  article-title: Absolute enrichment: gene set enrichment analysis for homeostatic systems
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl766
– volume: 8
  start-page: 242
  year: 2007
  ident: 2023012508005690400_B5
  article-title: Improving gene set analysis of microarray data by SAM-GS
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-242
– volume: 10
  start-page: 47
  year: 2009
  ident: 2023012508005690400_B1
  article-title: A general modular framework for gene set enrichment analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-47
– volume: 15
  start-page: 907
  year: 2009
  ident: 2023012508005690400_B15
  article-title: Aberrant luminal progenitors as the candidate target population for basal tumor development in brca1 mutation carriers
  publication-title: Nat. Med.
  doi: 10.1038/nm.2000
– volume: 12
  start-page: R21
  year: 2010
  ident: 2023012508005690400_B16
  article-title: Transcriptome analyses of mouse and human mammary cell subpopulations reveals multiple conserved genes and pathways
  publication-title: Breast Cancer Res.
  doi: 10.1186/bcr2560
– volume: 7
  start-page: 261
  year: 2006
  ident: 2023012508005690400_B22
  article-title: Empirical array quality weights in the analysis of microarray data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-261
– volume: 12
  start-page: 31
  year: 2002
  ident: 2023012508005690400_B17
  article-title: Replicated microarray data
  publication-title: Stat. Sin.
– volume: 15
  start-page: 53
  year: 2005
  ident: 2023012508005690400_B14
  article-title: Rotation tests
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-005-4789-5
– volume: 10
  start-page: 45
  year: 2009
  ident: 2023012508005690400_B20
  article-title: Comparison of small n statistical tests of differential expression applied to microarrays
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-45
– volume: 19
  start-page: 686
  year: 2004
  ident: 2023012508005690400_B8
  article-title: Permutation methods: a basis for exact inference
  publication-title: Stat. Sci.
  doi: 10.1214/088342304000000396
– volume: 25
  start-page: 294
  year: 1963
  ident: 2023012508005690400_B3
  article-title: Discussion of the spectral analysis of point processes (by MS Bartlett)
  publication-title: J. R. Stat. Soc.
– volume: 1
  start-page: 107
  year: 2007
  ident: 2023012508005690400_B7
  article-title: On testing the significance of sets of genes
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/07-AOAS101
– volume: 20
  start-page: 93
  year: 2004
  ident: 2023012508005690400_B10
  article-title: A global test for groups of genes: testing association with a clinical outcome
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg382
– volume: 4
  start-page: e1000115
  year: 2008
  ident: 2023012508005690400_B29
  article-title: An integrated approach for the analysis of biological pathways using mixed models
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000115
– volume: 23
  start-page: 980
  year: 2007
  ident: 2023012508005690400_B9
  article-title: Analyzing gene expression data in terms of gene sets: methodological issues
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm051
– volume: 22
  start-page: 2500
  year: 2006
  ident: 2023012508005690400_B18
  article-title: Group testing for pathway analysis improves comparability of different microarray datasets
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl424
– volume: 24
  start-page: 2281
  year: 2005
  ident: 2023012508005690400_B13
  article-title: Significance testing for small microarray experiments
  publication-title: Stat. Med.
  doi: 10.1002/sim.2109
– volume: 21
  start-page: 2067
  year: 2005
  ident: 2023012508005690400_B25
  article-title: Use of within-array replicate spots for assessing differential expression in microarray experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti270
– volume: 102
  start-page: 13544
  year: 2005
  ident: 2023012508005690400_B27
  article-title: Discovering statistically significant pathways in expression profiling studies
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506577102
– volume: 15
  start-page: 269
  year: 2008
  ident: 2023012508005690400_B2
  article-title: Pathway analysis of microarray data via regression
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2008.0002
– volume: 102
  start-page: 15545
  year: 2005
  ident: 2023012508005690400_B26
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 3
  year: 2004
  ident: 2023012508005690400_B24
  article-title: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1027
– volume: 66
  start-page: 9798
  year: 2006
  ident: 2023012508005690400_B28
  article-title: Mammary stem cells and mammopoiesis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-2254
– volume: 7
  start-page: 252
  year: 2006
  ident: 2023012508005690400_B4
  article-title: Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-252
– volume: 8
  year: 2009
  ident: 2023012508005690400_B6
  article-title: Rotation testing in gene set enrichment analysis for small direct comparison experiments
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1418
– reference: 18331198 - J Comput Biol. 2008 Apr;15(3):269-77
– reference: 15889452 - Stat Med. 2005 Aug 15;24(15):2281-98
– reference: 17612399 - BMC Bioinformatics. 2007;8:242
– reference: 18024976 - Bioinformatics. 2008 Jan 1;24(1):78-85
– reference: 18852846 - PLoS Genet. 2008 Jul;4(7):e1000115
– reference: 19192285 - BMC Bioinformatics. 2009;10:47
– reference: 16895928 - Bioinformatics. 2006 Oct 15;22(20):2500-6
– reference: 12808457 - Nat Genet. 2003 Jul;34(3):267-73
– reference: 18790795 - Bioinformatics. 2008 Nov 15;24(22):2586-91
– reference: 14693814 - Bioinformatics. 2004 Jan 1;20(1):93-9
– reference: 19648928 - Nat Med. 2009 Aug;15(8):907-13
– reference: 14668230 - Bioinformatics. 2003 Dec 12;19(18):2448-55
– reference: 19192265 - BMC Bioinformatics. 2009;10:45
– reference: 20346151 - Breast Cancer Res. 2010;12(2):R21
– reference: 17127676 - Bioinformatics. 2007 Feb 1;23(3):306-13
– reference: 17303618 - Bioinformatics. 2007 Apr 15;23(8):980-7
– reference: 17029630 - BMC Genomics. 2006;7:252
– reference: 16174746 - Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13544-9
– reference: 15657102 - Bioinformatics. 2005 May 1;21(9):2067-75
– reference: 17047038 - Cancer Res. 2006 Oct 15;66(20):9798-801
– reference: 17130162 - Nucleic Acids Res. 2006;34(22):e151
– reference: 19645689 - Stat Appl Genet Mol Biol. 2009;8:Article34
– reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
– reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
– reference: 16712727 - BMC Bioinformatics. 2006;7:261
SSID ssj0051444
ssj0005056
Score 2.5201395
Snippet Motivation: A gene set test is a differential expression analysis in which a P-value is assigned to a set of genes as a unit. Gene set tests are valuable for...
A gene set test is a differential expression analysis in which a P-value is assigned to a set of genes as a unit. Gene set tests are valuable for increasing...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2176
SubjectTerms Algorithms
Animals
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling - methods
General aspects
Humans
Linear Models
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Mice
Oligonucleotide Array Sequence Analysis - methods
Original Papers
Title ROAST: rotation gene set tests for complex microarray experiments
URI https://api.istex.fr/ark:/67375/HXZ-K5X482XF-Z/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/20610611
https://www.proquest.com/docview/748961639
https://www.proquest.com/docview/787193256
https://pubmed.ncbi.nlm.nih.gov/PMC2922896
https://academic.oup.com/bioinformatics/article-pdf/26/17/2176/48853780/bioinformatics_26_17_2176.pdf
UnpaywallVersion publishedVersion
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB7ttkJw4Q0bHpUPiFuaR-M8uFWIqgJpF0Erhb1YdmxrV1vSbpuKLT-A3804Trq0IB4HpBwiZcaJJl_iz_I3MwAvpPZjHejMVVSYBYqiLsdfglsMNC1UkGpf1gLZ43g8jd7mND8A1ebC8EYV3m9TGsT5vCkhasoWe0083YXUXhh7QeIhp449hCEdJKm_Z87CmAUJMyZ99DiEbkyRsnegOz1-P_xkc7ISN0rrDsrNeRC0mT7ZYP_2orqMmv4x7RzWNa_jymgq-QrDqm0_jF8R1p91lzfX5YJvvvDZ7IdJbXQHvrXhsFqWi_66Ev3i616lyP8er7twu6HFZGjHuQcHqrwPN2yjzM0DGH44GX6cvCLLuVUOEIS9IitVEWTK1Yrg0KQWx6sr8tlIDPlyyTfkun3B6iFMR28mr8du0_zBLXAJVLlSZClXPAiFlr6KZRzKQHAkGGYCxSmVZ7xmY8j3pC_DRGZh6EfaV1ILYRJmH0GnnJfqCIimPBVBhsPSLBIyEzQqhExlqAtVqEw5ELWvkxVNZXTToGPG7A79gO1FyaLAgf7WbWFLg_zJ4WWNla01X14YXV1C2Tg_Ze9oHqVhPmKnDvR2wLR1QDIeISUNHSAtuhj-DsweDy_VfL1ipphQjBw7-40JrpGRtdPYgccWj9fjY0jxwCdNdpC6NTDFyHevlOdndVHyEOOPt3bA22L676Ly5J89nsItq-EwSr9n0KmWa_UcqWElenA4Ocl7zef9HRYSbYs
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4trRBceD_CY-UD4pYmceM8uFWIqgJpQbCVyl4sO7a1qy1pSVOx5QfwuxnHSZcWxOOAlEOkzDjR5Ev8Wf5mBuCZMmFiIpP7mkm7QNHMF_hL8IuhYYWOMhOqRiB7lEym8esZmx2A7nJhRKsKH3QpDfJs0ZYQtWWLgzae_lKZgCZBlAbIqZMAYciGaRbumXOa8Cjl1mSAHlegnzCk7D3oT4_ejT66nKzUj7Omg3J7HkVdpk8-3L-9rD_Hbf-Ybg7r29dxYTWVYoVhNa4fxq8I68-6y2vrcik2X8R8_sOkNr4J37pwOC3L-WBdy0Hxda9S5H-P1y240dJiMnLj3IYDXd6Bq65R5uYujN6_HX04fkGqhVMOEIS9JitdE2TK9Yrg0KQRx-sL8slKDEVViQ25bF-wugfT8avjlxO_bf7gF7gEqn0l80xoEVFpVKgTlVAVSYEEw06gOKWKXDRsDPmeChVNVU5pGJtQKyOlTZi9D71yUeqHQAwTmYxyHJblsVS5ZHEhVaaoKXShc-1B3L1OXrSV0W2Djjl3O_RDvhclhwIPBlu3pSsN8ieH5w1WttaiOre6upTxyeyEv2GzOKOzMT_x4HAHTFsHJOMxUlLqAenQxfF3YPd4RKkX6xW3xYQS5Nj5b0xwjYysnSUePHB4vBwfQ4oHPmm6g9StgS1GvnulPDttipJTjD_e2oNgi-m_i8qjf_Z4DNedhsMq_Z5Ar67W-ilSw1oeth_2d4nZbG8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ROAST%3A+rotation+gene+set+tests+for+complex+microarray+experiments&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Wu%2C+Di&rft.au=Lim%2C+Elgene&rft.au=Vaillant%2C+Fran%C3%A7ois&rft.au=Asselin-Labat%2C+Marie-Liesse&rft.date=2010-09-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=26&rft.issue=17&rft.spage=2176&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtq401&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon