Blockade of STING activation alleviates microglial dysfunction and a broad spectrum of Alzheimer’s disease pathologies
Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia a...
Saved in:
Published in | Experimental & molecular medicine Vol. 56; no. 9; pp. 1936 - 1951 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2024
Springer Nature B.V Nature Publishing Group 생화학분자생물학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2092-6413 1226-3613 2092-6413 |
DOI | 10.1038/s12276-024-01295-y |
Cover
Abstract | Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the
APOE
ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in App
NL-G-F
/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD.
STING inhibition mitigates neurodegeneration in Alzheimer’s disease
In illnesses like Alzheimer’s that cause brain deterioration, the brain’s defense cells, known as microglia, overreact due to harmful proteins, causing brain damage and memory loss. This research aimed to understand how microglia change in Alzheimer’s and find ways to stop their damaging effects. Using mice with Alzheimer’s, they checked if blocking specific immune pathway could fix microglia dysfunction and Alzheimer’s disease pathologies. They discovered that blocking STING, a crucial part of this pathway, reduced microglia dysfunction brain inflammation, decreased the buildup of Alzheimer’s-related proteins, and improved memory in mice. By blocking the STING activation, the study showed a decrease in damaging brain inflammation and improvements in memory function, suggesting a promising strategy for treating Alzheimer’s. Researchers conclude that targeting the STING could offer a new way to fight Alzheimer’s by reducing inflammation and protecting brain health.
This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. |
---|---|
AbstractList | Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the
APOE
ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in App
NL-G-F
/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD.
STING inhibition mitigates neurodegeneration in Alzheimer’s disease
In illnesses like Alzheimer’s that cause brain deterioration, the brain’s defense cells, known as microglia, overreact due to harmful proteins, causing brain damage and memory loss. This research aimed to understand how microglia change in Alzheimer’s and find ways to stop their damaging effects. Using mice with Alzheimer’s, they checked if blocking specific immune pathway could fix microglia dysfunction and Alzheimer’s disease pathologies. They discovered that blocking STING, a crucial part of this pathway, reduced microglia dysfunction brain inflammation, decreased the buildup of Alzheimer’s-related proteins, and improved memory in mice. By blocking the STING activation, the study showed a decrease in damaging brain inflammation and improvements in memory function, suggesting a promising strategy for treating Alzheimer’s. Researchers conclude that targeting the STING could offer a new way to fight Alzheimer’s by reducing inflammation and protecting brain health.
This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. Abstract Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD. Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD. KCI Citation Count: 15 Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD.STING inhibition mitigates neurodegeneration in Alzheimer’s diseaseIn illnesses like Alzheimer’s that cause brain deterioration, the brain’s defense cells, known as microglia, overreact due to harmful proteins, causing brain damage and memory loss. This research aimed to understand how microglia change in Alzheimer’s and find ways to stop their damaging effects. Using mice with Alzheimer’s, they checked if blocking specific immune pathway could fix microglia dysfunction and Alzheimer’s disease pathologies. They discovered that blocking STING, a crucial part of this pathway, reduced microglia dysfunction brain inflammation, decreased the buildup of Alzheimer’s-related proteins, and improved memory in mice. By blocking the STING activation, the study showed a decrease in damaging brain inflammation and improvements in memory function, suggesting a promising strategy for treating Alzheimer’s. Researchers conclude that targeting the STING could offer a new way to fight Alzheimer’s by reducing inflammation and protecting brain health.This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD. In illnesses like Alzheimer’s that cause brain deterioration, the brain’s defense cells, known as microglia, overreact due to harmful proteins, causing brain damage and memory loss. This research aimed to understand how microglia change in Alzheimer’s and find ways to stop their damaging effects. Using mice with Alzheimer’s, they checked if blocking specific immune pathway could fix microglia dysfunction and Alzheimer’s disease pathologies. They discovered that blocking STING, a crucial part of this pathway, reduced microglia dysfunction brain inflammation, decreased the buildup of Alzheimer’s-related proteins, and improved memory in mice. By blocking the STING activation, the study showed a decrease in damaging brain inflammation and improvements in memory function, suggesting a promising strategy for treating Alzheimer’s. Researchers conclude that targeting the STING could offer a new way to fight Alzheimer’s by reducing inflammation and protecting brain health. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. Abnormal glial activation promotes neurodegeneration in Alzheimer's disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD.Abnormal glial activation promotes neurodegeneration in Alzheimer's disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD. Abnormal glial activation promotes neurodegeneration in Alzheimer's disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in App /hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD. Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in App NL-G-F /hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD. |
Author | Lee, Yeajina Mook-Jung, Inhee Kim, Jong-Il Park, Jong-Chan Jeong, June-Hyun Han, Jong Won Chung, Sunwoo |
Author_xml | – sequence: 1 givenname: Sunwoo surname: Chung fullname: Chung, Sunwoo organization: Convergence Dementia Research Center, College of Medicine, Seoul National University, Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University – sequence: 2 givenname: June-Hyun surname: Jeong fullname: Jeong, June-Hyun organization: Convergence Dementia Research Center, College of Medicine, Seoul National University, Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University – sequence: 3 givenname: Jong-Chan surname: Park fullname: Park, Jong-Chan organization: Department of Biophysics & Institute of Quantum Biophysics, Sungkyunkwan University – sequence: 4 givenname: Jong Won surname: Han fullname: Han, Jong Won organization: Convergence Dementia Research Center, College of Medicine, Seoul National University, Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University – sequence: 5 givenname: Yeajina surname: Lee fullname: Lee, Yeajina organization: Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Genomic Medicine Institute, Medical Research Center, Seoul National University – sequence: 6 givenname: Jong-Il orcidid: 0000-0002-7240-3744 surname: Kim fullname: Kim, Jong-Il organization: Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Genomic Medicine Institute, Medical Research Center, Seoul National University – sequence: 7 givenname: Inhee orcidid: 0000-0001-7085-4085 surname: Mook-Jung fullname: Mook-Jung, Inhee email: inhee@snu.ac.kr organization: Convergence Dementia Research Center, College of Medicine, Seoul National University, Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39218977$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003126391$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNqNUsuO0zAUjdAg5gE_wAJFYoOQAn4m8QqVEQyVRiBBWVuO7bRuHbtjJ4Wy4jf4Pb4EtynDzCxGrK5ln3N87j33NDty3uksewrBKwhw_TpChKqyAIgUACJGi-2D7AQBhoqSQHx043ycnca4BABRUpFH2TFmCNasqk6y72-tlyuhdO7b_Mts-vEiF7I3G9Eb73Jhrd4Y0euYd0YGP7dG2FxtYzs4OSKcykXeBC9UHtda9mHodlIT-2OhTafD75-_Yq5M1CLqfC36hbd-bnR8nD1shY36yaGeZV_fv5udfyguP11MzyeXhaRV2RdK1EgS1WJMNZKgIqSiNSyVqkWrcNPQUlKMQEsYKRmEUrBGNxLUTU1rRUCLz7KXo64LLV9Jw70w-zr3fBX45PNsyiEoMYW4TODpCFZeLPk6mE6E7Z6xv_BhzkXojbSaN6jGgKpSVYoR2FYMyRJSRBRqMAUtS1p41BrcWmy_pVFeC0LAdwHyMUCeAuT7APk2sd6MrPXQdFpJ7fog7C0rt1-cWaRWNhzCNBqEQVJ4cVAI_mrQseediVJbK5z2Q-QYMFbTCjCSoM_vQJd-CC7FwTFM3soKsV0jz25auvbyd4kSAI2AtCExBt3-X6P1HZI0_X7rUlvG3k89TDamf9xch3-272H9AYo9_TE |
CitedBy_id | crossref_primary_10_1186_s13024_025_00815_2 crossref_primary_10_1002_advs_202410910 crossref_primary_10_1016_j_arr_2025_102691 crossref_primary_10_1016_j_neurot_2025_e00536 crossref_primary_10_1038_d41586_025_00303_z |
Cites_doi | 10.1016/j.immuni.2017.08.008 10.1038/s41577-021-00524-z 10.1073/pnas.2002144117 10.1038/s41589-018-0213-2 10.1038/s41586-023-05788-0 10.1038/s41593-023-01315-6 10.1016/j.celrep.2017.09.039 10.1016/j.cell.2020.09.020 10.1084/jem.20180139 10.1016/j.cell.2017.05.018 10.1016/j.celrep.2022.111880 10.1111/acel.13143 10.1038/nature11729 10.1111/acel.13623 10.1038/s43587-022-00337-2 10.1080/15548627.2023.2181614 10.1016/j.neuron.2018.05.023 10.1126/sciadv.abo4662 10.1016/j.pneurobio.2021.102075 10.1126/science.aad8373 10.1073/pnas.1705499114 10.1038/s41467-021-26851-2 10.1038/s41593-022-01022-8 10.1172/JCI133737 10.1074/jbc.RA119.009487 10.1016/j.celrep.2018.05.004 10.1038/s41586-018-0287-8 10.1016/j.neuron.2022.10.020 10.1038/s41586-020-03151-1 10.1038/s41582-020-00435-y 10.1016/j.cmet.2019.02.014 10.1084/jem.20171749 10.1016/j.cmet.2014.07.024 10.1016/j.cell.2010.05.008 10.1038/ncomms12082 10.1021/ci500004h 10.15252/embj.2020107121 10.1016/j.cell.2017.09.039 10.1073/pnas.2204058119 10.1016/j.cell.2022.05.017 10.1038/s41593-023-01257-z 10.1038/s41580-020-0244-x 10.1016/j.neuron.2018.06.030 10.1038/s41467-020-20440-5 10.1038/s41467-021-22129-9 10.1126/scitranslmed.aay9013 10.1038/ng1567 10.1016/j.neuron.2017.11.032 10.1016/j.celrep.2018.07.072 10.1038/s41586-018-0718-6 10.1016/j.immuni.2020.01.014 10.1016/j.cmet.2019.06.005 10.1126/science.aao6047 10.1016/j.immuni.2022.03.018 10.1038/nature23890 10.1016/j.molcel.2019.02.038 10.1016/j.celrep.2019.11.086 10.1016/j.celrep.2019.03.099 10.1038/s41586-020-2681-2 10.1038/s41586-023-06373-1 10.1016/j.celrep.2021.109977 10.1038/s41590-023-01604-z |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA ACYCR |
DOI | 10.1038/s12276-024-01295-y |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 2092-6413 |
EndPage | 1951 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10635136 oai_doaj_org_article_b28305d6d7d941f792c61524d2b350f9 10.1038/s12276-024-01295-y PMC11447230 39218977 10_1038_s12276_024_01295_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Korea Dementia Research Project through the Korea Dementia Research Center (KDRC), funded by the Ministry of Health & Welfare and Ministry of Science and ICT, Republic of Korea (grant number: HU23C1234). – fundername: Ministry of Health and Welfare (Ministry of Health, Welfare and Family Affairs) grantid: HU23C1234 funderid: https://doi.org/10.13039/501100003625 – fundername: Ministry of Science, ICT and Future Planning (MSIP) grantid: HU23C1234 funderid: https://doi.org/10.13039/501100003621 – fundername: Ministry of Education (Ministry of Education of the Republic of Korea) grantid: 2020R1A6A3A13070845 funderid: https://doi.org/10.13039/501100002701 – fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A3A13070845). – fundername: Ministry of Education (Ministry of Education of the Republic of Korea) grantid: 2020R1A6A3A13070845 – fundername: Ministry of Health and Welfare (Ministry of Health, Welfare and Family Affairs) grantid: HU23C1234 – fundername: Ministry of Science, ICT and Future Planning (MSIP) grantid: HU23C1234 |
GroupedDBID | --- 0R~ 29G 2WC 3V. 5-W 53G 5GY 7X7 87B 88E 8FE 8FH 8FI 8FJ 8JR 9ZL AAJSJ ABUWG ACGFO ACGFS ACPRK ACSMW ACYCR ADBBV AENEX AFKRA AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BENPR BHPHI BPHCQ BVXVI C1A C6C CCPQU DIK DU5 E3Z EBLON EBS EF. EJD EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE LK8 M1P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT TR2 UKHRP W2D XSB AASML AAYXX CITATION OVT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c576t-da82c4df335e2c074475816dd8afd3bb56c5320f4946911ca9bebc08b858d40f3 |
IEDL.DBID | 7X7 |
ISSN | 2092-6413 1226-3613 |
IngestDate | Thu Jul 31 03:10:26 EDT 2025 Wed Aug 27 01:25:52 EDT 2025 Sun Sep 07 11:14:16 EDT 2025 Tue Sep 30 17:07:07 EDT 2025 Fri Sep 05 08:40:08 EDT 2025 Wed Aug 13 09:29:16 EDT 2025 Sat Mar 29 01:29:25 EDT 2025 Wed Oct 01 04:50:33 EDT 2025 Thu Apr 24 22:50:31 EDT 2025 Fri Feb 21 02:40:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c576t-da82c4df335e2c074475816dd8afd3bb56c5320f4946911ca9bebc08b858d40f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7085-4085 0000-0002-7240-3744 |
OpenAccessLink | https://www.proquest.com/docview/3112267299?pq-origsite=%requestingapplication% |
PMID | 39218977 |
PQID | 3112267299 |
PQPubID | 2041975 |
PageCount | 16 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10635136 doaj_primary_oai_doaj_org_article_b28305d6d7d941f792c61524d2b350f9 unpaywall_primary_10_1038_s12276_024_01295_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_11447230 proquest_miscellaneous_3099857094 proquest_journals_3112267299 pubmed_primary_39218977 crossref_primary_10_1038_s12276_024_01295_y crossref_citationtrail_10_1038_s12276_024_01295_y springer_journals_10_1038_s12276_024_01295_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States – name: Seoul |
PublicationTitle | Experimental & molecular medicine |
PublicationTitleAbbrev | Exp Mol Med |
PublicationTitleAlternate | Exp Mol Med |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group 생화학분자생물학회 |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group – name: 생화학분자생물학회 |
References | Eimer (CR10) 2018; 99 Gaidt (CR33) 2017; 171 Leng, Edison (CR1) 2021; 17 Mathys (CR42) 2017; 21 Guo (CR8) 2018; 23 Hong (CR44) 2016; 352 Anastasiou (CR53) 2021; 6 Roy (CR45) 2022; 55 Hopfner, Hornung (CR13) 2020; 21 Baik (CR3) 2019; 30 Paolicelli (CR2) 2022; 110 Marsh (CR25) 2022; 25 De Schepper (CR48) 2023; 26 Li, Chen (CR14) 2018; 215 Hanna, Flamier, Barabino, Bernier (CR7) 2021; 12 Yu (CR17) 2020; 183 Swanson (CR57) 2017; 214 Mossmann (CR9) 2014; 20 Hur (CR37) 2020; 586 Chung (CR22) 2021; 203 Tcw (CR36) 2022; 185 Brelstaff, Tolkovsky, Ghetti, Goedert, Spillantini (CR46) 2018; 24 Welch (CR62) 2022; 8 Spence (CR64) 2019; 15 Li, Jakobs (CR49) 2022; 41 Raefski, O’Neill (CR50) 2005; 37 Park (CR27) 2022; 9 Decout, Katz, Venkatraman, Ablasser (CR58) 2021; 21 Standaert, Childers (CR16) 2022; 119 Liu (CR38) 2014; 54 Andreeva (CR12) 2017; 549 Chen (CR51) 2023; 615 Martins, Sousa, Pereira (CR5) 2020; 19 Zhou (CR59) 2020; 52 Lee (CR6) 2018; 563 Roy (CR30) 2020; 130 Kim (CR35) 2023; 19 Li (CR31) 2016; 7 Lee (CR23) 2010; 141 Simon (CR4) 2019; 29 Yang, Wang, Ren, Chen, Chen (CR29) 2017; 114 Haag (CR39) 2018; 559 Heneka (CR34) 2013; 493 CR55 CR52 Park (CR26) 2021; 12 Mathur (CR15) 2017; 96 Udeochu (CR20) 2023; 26 Saito (CR21) 2019; 294 Krasemann (CR41) 2017; 47 Xie (CR19) 2023; 3 McArthur (CR47) 2018; 359 Aarreberg (CR24) 2019; 74 Readhead (CR11) 2018; 99 Park (CR61) 2021; 40 Donnelly (CR63) 2021; 591 CR28 Li (CR54) 2020; 12 Sharma, Rajendrarao, Shahani, Ramirez-Jarquin, Subramaniam (CR18) 2020; 117 Jung (CR56) 2022; 21 Bode (CR60) 2019; 29 Sala Frigerio (CR43) 2019; 27 Keren-Shaul (CR40) 2017; 169 Jin (CR32) 2021; 12 H Mathys (1295_CR42) 2017; 21 L Andreeva (1295_CR12) 2017; 549 S Chung (1295_CR22) 2021; 203 C Sala Frigerio (1295_CR43) 2019; 27 RC Paolicelli (1295_CR2) 2022; 110 S Krasemann (1295_CR41) 2017; 47 M Sharma (1295_CR18) 2020; 117 JC Park (1295_CR26) 2021; 12 WA Eimer (1295_CR10) 2018; 99 H Liu (1295_CR38) 2014; 54 T Li (1295_CR14) 2018; 215 GM Welch (1295_CR62) 2022; 8 C Guo (1295_CR8) 2018; 23 KP Hopfner (1295_CR13) 2020; 21 JS Spence (1295_CR64) 2019; 15 F Martins (1295_CR5) 2020; 19 JC Udeochu (1295_CR20) 2023; 26 MT Heneka (1295_CR34) 2013; 493 SE Marsh (1295_CR25) 2022; 25 MH Lee (1295_CR6) 2018; 563 X Chen (1295_CR51) 2023; 615 J Tcw (1295_CR36) 2022; 185 M Anastasiou (1295_CR53) 2021; 6 A Decout (1295_CR58) 2021; 21 CH Yu (1295_CR17) 2020; 183 K Bode (1295_CR60) 2019; 29 SH Kim (1295_CR35) 2023; 19 H Keren-Shaul (1295_CR40) 2017; 169 J Brelstaff (1295_CR46) 2018; 24 S De Schepper (1295_CR48) 2023; 26 V Mathur (1295_CR15) 2017; 96 LD Aarreberg (1295_CR24) 2019; 74 K McArthur (1295_CR47) 2018; 359 J Park (1295_CR61) 2021; 40 Y Zhou (1295_CR59) 2020; 52 DG Standaert (1295_CR16) 2022; 119 CR Donnelly (1295_CR63) 2021; 591 ER Roy (1295_CR30) 2020; 130 D Mossmann (1295_CR9) 2014; 20 H Yang (1295_CR29) 2017; 114 1295_CR28 W Li (1295_CR54) 2020; 12 JH Lee (1295_CR23) 2010; 141 JY Hur (1295_CR37) 2020; 586 SH Baik (1295_CR3) 2019; 30 R Hanna (1295_CR7) 2021; 12 M Jin (1295_CR32) 2021; 12 F Leng (1295_CR1) 2021; 17 S Hong (1295_CR44) 2016; 352 X Xie (1295_CR19) 2023; 3 1295_CR52 MM Gaidt (1295_CR33) 2017; 171 T Saito (1295_CR21) 2019; 294 1295_CR55 SM Haag (1295_CR39) 2018; 559 S Li (1295_CR49) 2022; 41 M Simon (1295_CR4) 2019; 29 ER Roy (1295_CR45) 2022; 55 B Readhead (1295_CR11) 2018; 99 ES Jung (1295_CR56) 2022; 21 KV Swanson (1295_CR57) 2017; 214 T Li (1295_CR31) 2016; 7 AS Raefski (1295_CR50) 2005; 37 JC Park (1295_CR27) 2022; 9 |
References_xml | – volume: 47 start-page: 566 year: 2017 end-page: 581.e569 ident: CR41 article-title: The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases publication-title: Immunity doi: 10.1016/j.immuni.2017.08.008 – volume: 21 start-page: 548 year: 2021 end-page: 569 ident: CR58 article-title: The cGAS-STING pathway as a therapeutic target in inflammatory diseases publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00524-z – volume: 117 start-page: 15989 year: 2020 end-page: 15999 ident: CR18 article-title: Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2002144117 – volume: 15 start-page: 259 year: 2019 end-page: 268 ident: CR64 article-title: IFITM3 directly engages and shuttles incoming virus particles to lysosomes publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0213-2 – volume: 615 start-page: 668 year: 2023 end-page: 677 ident: CR51 article-title: Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy publication-title: Nature doi: 10.1038/s41586-023-05788-0 – volume: 26 start-page: 737 year: 2023 end-page: 750 ident: CR20 article-title: Tau activation of microglial cGAS-IFN reduces MEF2C-mediated cognitive resilience publication-title: Nat. Neurosci. doi: 10.1038/s41593-023-01315-6 – volume: 21 start-page: 366 year: 2017 end-page: 380 ident: CR42 article-title: Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.039 – volume: 183 start-page: 636 year: 2020 end-page: 649.e618 ident: CR17 article-title: TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS publication-title: Cell doi: 10.1016/j.cell.2020.09.020 – volume: 215 start-page: 1287 year: 2018 end-page: 1299 ident: CR14 article-title: The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer publication-title: J. Exp. Med doi: 10.1084/jem.20180139 – volume: 169 start-page: 1276 year: 2017 end-page: 1290.e1217 ident: CR40 article-title: A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease publication-title: Cell doi: 10.1016/j.cell.2017.05.018 – volume: 41 start-page: 111880 year: 2022 ident: CR49 article-title: Secreted phosphoprotein 1 slows neurodegeneration and rescues visual function in mouse models of aging and glaucoma publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111880 – volume: 19 start-page: e13143 year: 2020 ident: CR5 article-title: da Cruz ESOAB, Rebelo S. Nuclear envelope dysfunction and its contribution to the aging process publication-title: Aging Cell doi: 10.1111/acel.13143 – volume: 493 start-page: 674 year: 2013 end-page: 678 ident: CR34 article-title: NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice publication-title: Nature doi: 10.1038/nature11729 – volume: 21 year: 2022 ident: CR56 article-title: Amyloid-beta activates NLRP3 inflammasomes by affecting microglial immunometabolism through the Syk-AMPK pathway publication-title: Aging Cell doi: 10.1111/acel.13623 – volume: 3 start-page: 202 year: 2023 end-page: 212 ident: CR19 article-title: Activation of innate immune cGAS-STING pathway contributes to Alzheimer’s pathogenesis in 5×FAD mice publication-title: Nat. Aging doi: 10.1038/s43587-022-00337-2 – volume: 19 start-page: 2318 year: 2023 end-page: 2337 ident: CR35 article-title: Endolysosomal impairment by binding of amyloid beta or MAPT/Tau to V-ATPase and rescue via the HYAL-CD44 axis in Alzheimer disease publication-title: Autophagy doi: 10.1080/15548627.2023.2181614 – volume: 99 start-page: 64 year: 2018 end-page: 82.e67 ident: CR11 article-title: Multiscale Analysis of Independent Alzheimer’s Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus publication-title: Neuron doi: 10.1016/j.neuron.2018.05.023 – volume: 8 year: 2022 ident: CR62 article-title: Neurons burdened by DNA double-strand breaks incite microglia activation through antiviral-like signaling in neurodegeneration publication-title: Sci. Adv. doi: 10.1126/sciadv.abo4662 – volume: 203 year: 2021 ident: CR22 article-title: Plexin-A4 mediates amyloid-beta-induced tau pathology in Alzheimer’s disease animal model publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2021.102075 – volume: 352 start-page: 712 year: 2016 end-page: 716 ident: CR44 article-title: Complement and microglia mediate early synapse loss in Alzheimer mouse models publication-title: Science doi: 10.1126/science.aad8373 – volume: 114 start-page: E4612 year: 2017 end-page: E4620 ident: CR29 article-title: cGAS is essential for cellular senescence publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1705499114 – volume: 12 year: 2021 ident: CR32 article-title: Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation publication-title: Nat. Commun. doi: 10.1038/s41467-021-26851-2 – volume: 25 start-page: 306 year: 2022 end-page: 316 ident: CR25 article-title: Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain publication-title: Nat. Neurosci. doi: 10.1038/s41593-022-01022-8 – volume: 130 start-page: 1912 year: 2020 end-page: 1930 ident: CR30 article-title: Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease publication-title: J. Clin. Invest doi: 10.1172/JCI133737 – volume: 294 start-page: 12754 year: 2019 end-page: 12765 ident: CR21 article-title: Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.009487 – volume: 23 start-page: 2874 year: 2018 end-page: 2880 ident: CR8 article-title: Tau Activates Transposable Elements in Alzheimer’s Disease publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.004 – volume: 559 start-page: 269 year: 2018 end-page: 273 ident: CR39 article-title: Targeting STING with covalent small-molecule inhibitors publication-title: Nature doi: 10.1038/s41586-018-0287-8 – volume: 110 start-page: 3458 year: 2022 end-page: 3483 ident: CR2 article-title: Microglia states and nomenclature: A field at its crossroads publication-title: Neuron doi: 10.1016/j.neuron.2022.10.020 – volume: 591 start-page: 275 year: 2021 end-page: 280 ident: CR63 article-title: STING controls nociception via type I interferon signalling in sensory neurons publication-title: Nature doi: 10.1038/s41586-020-03151-1 – volume: 17 start-page: 157 year: 2021 end-page: 172 ident: CR1 article-title: Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? publication-title: Nat. Rev. Neurol. doi: 10.1038/s41582-020-00435-y – volume: 29 start-page: 871 year: 2019 end-page: 885.e875 ident: CR4 article-title: LINE1 Derepression in Aged Wild-Type and SIRT6-Deficient Mice Drives Inflammation publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.02.014 – volume: 214 start-page: 3611 year: 2017 end-page: 3626 ident: CR57 article-title: A noncanonical function of cGAMP in inflammasome priming and activation publication-title: J. Exp. Med. doi: 10.1084/jem.20171749 – volume: 20 start-page: 662 year: 2014 end-page: 669 ident: CR9 article-title: Amyloid-beta peptide induces mitochondrial dysfunction by inhibition of preprotein maturation publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.07.024 – volume: 141 start-page: 1146 year: 2010 end-page: 1158 ident: CR23 article-title: Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations publication-title: Cell doi: 10.1016/j.cell.2010.05.008 – volume: 7 year: 2016 ident: CR31 article-title: The neuritic plaque facilitates pathological conversion of tau in an Alzheimer’s disease mouse model publication-title: Nat. Commun. doi: 10.1038/ncomms12082 – volume: 54 start-page: 1050 year: 2014 end-page: 1060 ident: CR38 article-title: AlzPlatform: an Alzheimer’s disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research publication-title: J. Chem. Inf. Model doi: 10.1021/ci500004h – volume: 40 year: 2021 ident: CR61 article-title: Microglial MERTK eliminates phosphatidylserine-displaying inhibitory post-synapses publication-title: EMBO J. doi: 10.15252/embj.2020107121 – volume: 171 start-page: 1110 year: 2017 end-page: 1124 e1118 ident: CR33 article-title: The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3 publication-title: Cell doi: 10.1016/j.cell.2017.09.039 – volume: 119 year: 2022 ident: CR16 article-title: Alpha-synuclein-mediated DNA damage, STING activation, and neuroinflammation in Parkinson’s disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2204058119 – volume: 185 start-page: 2213 year: 2022 end-page: 2233.e2225 ident: CR36 article-title: Cholesterol and matrisome pathways dysregulated in astrocytes and microglia publication-title: Cell doi: 10.1016/j.cell.2022.05.017 – volume: 26 start-page: 406 year: 2023 end-page: 415 ident: CR48 article-title: Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease publication-title: Nat. Neurosci. doi: 10.1038/s41593-023-01257-z – volume: 6 start-page: e149346 year: 2021 ident: CR53 article-title: Endothelial STING controls T cell transmigration in an IFNI-dependent manner publication-title: JCI Insight – volume: 21 start-page: 501 year: 2020 end-page: 521 ident: CR13 article-title: Molecular mechanisms and cellular functions of cGAS-STING signalling publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0244-x – volume: 99 start-page: 56 year: 2018 end-page: 63.e53 ident: CR10 article-title: Alzheimer’s Disease-Associated beta-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection publication-title: Neuron doi: 10.1016/j.neuron.2018.06.030 – volume: 12 year: 2021 ident: CR26 article-title: A logical network-based drug-screening platform for Alzheimer’s disease representing pathological features of human brain organoids publication-title: Nat. Commun. doi: 10.1038/s41467-020-20440-5 – volume: 12 year: 2021 ident: CR7 article-title: G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer’s disease publication-title: Nat. Commun. doi: 10.1038/s41467-021-22129-9 – volume: 12 start-page: eaay9013 year: 2020 ident: CR54 article-title: cGAS-STING-mediated DNA sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aay9013 – volume: 37 start-page: 620 year: 2005 end-page: 624 ident: CR50 article-title: Identification of a cluster of X-linked imprinted genes in mice publication-title: Nat. Genet doi: 10.1038/ng1567 – volume: 96 start-page: 1290 year: 2017 end-page: 1302.e1296 ident: CR15 article-title: Activation of the STING-Dependent Type I Interferon Response Reduces Microglial Reactivity and Neuroinflammation publication-title: Neuron doi: 10.1016/j.neuron.2017.11.032 – volume: 24 start-page: 1939 year: 2018 end-page: 1948 e1934 ident: CR46 article-title: Living Neurons with Tau Filaments Aberrantly Expose Phosphatidylserine and Are Phagocytosed by Microglia publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.07.072 – volume: 563 start-page: 639 year: 2018 end-page: 645 ident: CR6 article-title: Somatic APP gene recombination in Alzheimer’s disease and normal neurons publication-title: Nature doi: 10.1038/s41586-018-0718-6 – ident: CR52 – volume: 52 start-page: 357 year: 2020 end-page: 373.e359 ident: CR59 article-title: Blockade of the Phagocytic Receptor MerTK on Tumor-Associated Macrophages Enhances P2X7R-Dependent STING Activation by Tumor-Derived cGAMP publication-title: Immunity doi: 10.1016/j.immuni.2020.01.014 – volume: 30 start-page: 493 year: 2019 end-page: 507.e496 ident: CR3 article-title: A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer’s Disease publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.06.005 – volume: 9 year: 2022 ident: CR27 article-title: Multi-Omics-Based Autophagy-Related Untypical Subtypes in Patients with Cerebral Amyloid Pathology publication-title: Adv. Sci. (Weinh.) – volume: 359 start-page: eaao6047 year: 2018 ident: CR47 article-title: BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis publication-title: Science doi: 10.1126/science.aao6047 – volume: 55 start-page: 879 year: 2022 end-page: 894.e876 ident: CR45 article-title: Concerted type I interferon signaling in microglia and neural cells promotes memory impairment associated with amyloid beta plaques publication-title: Immunity doi: 10.1016/j.immuni.2022.03.018 – ident: CR55 – volume: 549 start-page: 394 year: 2017 end-page: 398 ident: CR12 article-title: cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders publication-title: Nature doi: 10.1038/nature23890 – volume: 74 start-page: 801 year: 2019 end-page: 815.e806 ident: CR24 article-title: Interleukin-1beta Induces mtDNA Release to Activate Innate Immune Signaling via cGAS-STING publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.02.038 – volume: 29 start-page: 4435 year: 2019 end-page: 4446.e4439 ident: CR60 article-title: Dectin-1 Binding to Annexins on Apoptotic Cells Induces Peripheral Immune Tolerance via NADPH Oxidase-2 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.11.086 – ident: CR28 – volume: 27 start-page: 1293 year: 2019 end-page: 1306.e1296 ident: CR43 article-title: The Major Risk Factors for Alzheimer’s Disease: Age, Sex, and Genes Modulate the Microglia Response to Abeta Plaques publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.03.099 – volume: 586 start-page: 735 year: 2020 end-page: 740 ident: CR37 article-title: The innate immunity protein IFITM3 modulates gamma-secretase in Alzheimer’s disease publication-title: Nature doi: 10.1038/s41586-020-2681-2 – volume: 96 start-page: 1290 year: 2017 ident: 1295_CR15 publication-title: Neuron doi: 10.1016/j.neuron.2017.11.032 – volume: 54 start-page: 1050 year: 2014 ident: 1295_CR38 publication-title: J. Chem. Inf. Model doi: 10.1021/ci500004h – volume: 352 start-page: 712 year: 2016 ident: 1295_CR44 publication-title: Science doi: 10.1126/science.aad8373 – volume: 26 start-page: 406 year: 2023 ident: 1295_CR48 publication-title: Nat. Neurosci. doi: 10.1038/s41593-023-01257-z – volume: 12 year: 2021 ident: 1295_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22129-9 – volume: 74 start-page: 801 year: 2019 ident: 1295_CR24 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.02.038 – volume: 24 start-page: 1939 year: 2018 ident: 1295_CR46 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.07.072 – volume: 559 start-page: 269 year: 2018 ident: 1295_CR39 publication-title: Nature doi: 10.1038/s41586-018-0287-8 – volume: 586 start-page: 735 year: 2020 ident: 1295_CR37 publication-title: Nature doi: 10.1038/s41586-020-2681-2 – volume: 615 start-page: 668 year: 2023 ident: 1295_CR51 publication-title: Nature doi: 10.1038/s41586-023-05788-0 – volume: 171 start-page: 1110 year: 2017 ident: 1295_CR33 publication-title: Cell doi: 10.1016/j.cell.2017.09.039 – volume: 203 year: 2021 ident: 1295_CR22 publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2021.102075 – volume: 21 start-page: 366 year: 2017 ident: 1295_CR42 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.039 – volume: 21 start-page: 501 year: 2020 ident: 1295_CR13 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0244-x – volume: 47 start-page: 566 year: 2017 ident: 1295_CR41 publication-title: Immunity doi: 10.1016/j.immuni.2017.08.008 – volume: 55 start-page: 879 year: 2022 ident: 1295_CR45 publication-title: Immunity doi: 10.1016/j.immuni.2022.03.018 – volume: 41 start-page: 111880 year: 2022 ident: 1295_CR49 publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111880 – volume: 117 start-page: 15989 year: 2020 ident: 1295_CR18 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2002144117 – volume: 21 start-page: 548 year: 2021 ident: 1295_CR58 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00524-z – volume: 12 start-page: eaay9013 year: 2020 ident: 1295_CR54 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aay9013 – volume: 493 start-page: 674 year: 2013 ident: 1295_CR34 publication-title: Nature doi: 10.1038/nature11729 – volume: 29 start-page: 871 year: 2019 ident: 1295_CR4 publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.02.014 – volume: 52 start-page: 357 year: 2020 ident: 1295_CR59 publication-title: Immunity doi: 10.1016/j.immuni.2020.01.014 – volume: 26 start-page: 737 year: 2023 ident: 1295_CR20 publication-title: Nat. Neurosci. doi: 10.1038/s41593-023-01315-6 – volume: 9 year: 2022 ident: 1295_CR27 publication-title: Adv. Sci. (Weinh.) – volume: 591 start-page: 275 year: 2021 ident: 1295_CR63 publication-title: Nature doi: 10.1038/s41586-020-03151-1 – volume: 185 start-page: 2213 year: 2022 ident: 1295_CR36 publication-title: Cell doi: 10.1016/j.cell.2022.05.017 – volume: 183 start-page: 636 year: 2020 ident: 1295_CR17 publication-title: Cell doi: 10.1016/j.cell.2020.09.020 – volume: 12 year: 2021 ident: 1295_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26851-2 – volume: 99 start-page: 64 year: 2018 ident: 1295_CR11 publication-title: Neuron doi: 10.1016/j.neuron.2018.05.023 – volume: 3 start-page: 202 year: 2023 ident: 1295_CR19 publication-title: Nat. Aging doi: 10.1038/s43587-022-00337-2 – volume: 130 start-page: 1912 year: 2020 ident: 1295_CR30 publication-title: J. Clin. Invest doi: 10.1172/JCI133737 – ident: 1295_CR28 doi: 10.1038/s41586-023-06373-1 – volume: 37 start-page: 620 year: 2005 ident: 1295_CR50 publication-title: Nat. Genet doi: 10.1038/ng1567 – volume: 20 start-page: 662 year: 2014 ident: 1295_CR9 publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.07.024 – volume: 119 year: 2022 ident: 1295_CR16 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2204058119 – volume: 30 start-page: 493 year: 2019 ident: 1295_CR3 publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.06.005 – volume: 215 start-page: 1287 year: 2018 ident: 1295_CR14 publication-title: J. Exp. Med doi: 10.1084/jem.20180139 – volume: 12 year: 2021 ident: 1295_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20440-5 – volume: 17 start-page: 157 year: 2021 ident: 1295_CR1 publication-title: Nat. Rev. Neurol. doi: 10.1038/s41582-020-00435-y – volume: 359 start-page: eaao6047 year: 2018 ident: 1295_CR47 publication-title: Science doi: 10.1126/science.aao6047 – volume: 141 start-page: 1146 year: 2010 ident: 1295_CR23 publication-title: Cell doi: 10.1016/j.cell.2010.05.008 – volume: 40 year: 2021 ident: 1295_CR61 publication-title: EMBO J. doi: 10.15252/embj.2020107121 – volume: 169 start-page: 1276 year: 2017 ident: 1295_CR40 publication-title: Cell doi: 10.1016/j.cell.2017.05.018 – volume: 110 start-page: 3458 year: 2022 ident: 1295_CR2 publication-title: Neuron doi: 10.1016/j.neuron.2022.10.020 – volume: 114 start-page: E4612 year: 2017 ident: 1295_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1705499114 – volume: 294 start-page: 12754 year: 2019 ident: 1295_CR21 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.009487 – volume: 99 start-page: 56 year: 2018 ident: 1295_CR10 publication-title: Neuron doi: 10.1016/j.neuron.2018.06.030 – volume: 19 start-page: 2318 year: 2023 ident: 1295_CR35 publication-title: Autophagy doi: 10.1080/15548627.2023.2181614 – volume: 27 start-page: 1293 year: 2019 ident: 1295_CR43 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.03.099 – ident: 1295_CR55 doi: 10.1016/j.celrep.2021.109977 – volume: 549 start-page: 394 year: 2017 ident: 1295_CR12 publication-title: Nature doi: 10.1038/nature23890 – volume: 23 start-page: 2874 year: 2018 ident: 1295_CR8 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.004 – volume: 25 start-page: 306 year: 2022 ident: 1295_CR25 publication-title: Nat. Neurosci. doi: 10.1038/s41593-022-01022-8 – volume: 8 year: 2022 ident: 1295_CR62 publication-title: Sci. Adv. doi: 10.1126/sciadv.abo4662 – volume: 7 year: 2016 ident: 1295_CR31 publication-title: Nat. Commun. doi: 10.1038/ncomms12082 – volume: 214 start-page: 3611 year: 2017 ident: 1295_CR57 publication-title: J. Exp. Med. doi: 10.1084/jem.20171749 – ident: 1295_CR52 doi: 10.1038/s41590-023-01604-z – volume: 6 start-page: e149346 year: 2021 ident: 1295_CR53 publication-title: JCI Insight – volume: 563 start-page: 639 year: 2018 ident: 1295_CR6 publication-title: Nature doi: 10.1038/s41586-018-0718-6 – volume: 19 start-page: e13143 year: 2020 ident: 1295_CR5 publication-title: Aging Cell doi: 10.1111/acel.13143 – volume: 21 year: 2022 ident: 1295_CR56 publication-title: Aging Cell doi: 10.1111/acel.13623 – volume: 29 start-page: 4435 year: 2019 ident: 1295_CR60 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.11.086 – volume: 15 start-page: 259 year: 2019 ident: 1295_CR64 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0213-2 |
SSID | ssj0025474 |
Score | 2.4818735 |
Snippet | Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway... Abnormal glial activation promotes neurodegeneration in Alzheimer's disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway... Abstract Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING... |
SourceID | nrf doaj unpaywall pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1936 |
SubjectTerms | 13/100 14/19 45/91 631/378/1689/1283 631/378/371 64/110 82/51 82/80 Alzheimer Disease - etiology Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer's disease Amyloid beta-Peptides - metabolism Animals Apolipoprotein E Artificial intelligence Biomedical and Life Sciences Biomedicine Brain Brain injury Cytoplasm Dementia disorders Disease Models, Animal Gliosis Humans Immune response Immunological memory Inflammation Medical Biochemistry Membrane Proteins - genetics Membrane Proteins - metabolism Memory Mice Mice, Transgenic Microglia Microglia - metabolism Microglia - pathology Mitochondrial DNA Molecular Medicine Neurodegeneration Neurodegenerative diseases Neuronal-glial interactions Nucleotidyltransferases - genetics Nucleotidyltransferases - metabolism Phosphorylation Proteins Risk factors Signal Transduction Stem Cells Synapses Tau protein Therapeutic targets Transcriptomes β-Amyloid 생화학 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtNAFB2hLngsELQ8DAUNArGhVjMP2-NliigtUruhlbobzcPTRkmcKmlow4rf4Pf4Eu4dO6YRqLBgFckeO_bcY99zPPdByBsvPSa3h9SWQaSgv3yqbGVTJ3NlDBfeK8wdPjjM947lp5Ps5FqrL4wJa8oDNxO3bbFCVeZzX_hSslCU3IET5tJzK7JeiKl74MaWYqqVWpksZJsi0xNqe8Y4LzDYFiMueJmlixU3FKv1g3Opp-FPRPP3eMlu0fQeuTOvz83i0oxG1_zS7gNyvyWUtN_cyENyq6rXyUa_BjE9XtC3NIZ4xm_n6-T2QbuSvkGudsCLDY2v6CTQz0f7hx8ppjg0H2gpNlj5MkAaSscYsXc6AphSv5ihG2xG1J4aaqcT42nM1pzOx3iq_ujrWTUYV9Mf377PaLv8Q7HvcXzLVrNH5Hj3w9H7vbTtwpA60CIXqTeKO-mDEFnFHTAOCRKD5WjE4IW1We6wuUSQJViaMWdKsLXrKasy5WUviMdkrZ7U1VNCHXOuEIx7aa10zABlDgFkce6Dl87KhLClUbRrS5Rjp4yRjkvlQunGkBoMqaMh9SIh77pjzpsCHTeO3kFbdyOxuHbcAJDTLeT03yCXkNeAFD10g3g8_p5O9HCqQYLswz8Dh2MiT8jmEkm6fS_MtAB6y3MQNHCSV91ueKJxmcbU1WQOY4C0Y9uBEubjSQO87nqBzTIFlD0hagWSKze0uqcenMWq4SB8ZQGCMyFbS_T-uq6bZmyrQ_g_TPCz_zHBz8ldHp9VDOXbJGsA4eoFcL8L-zI-5j8B-y1U7A priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkXgcELQ8AgUZgbjQiPUjiXPcrigtUnuhlXqz_Ii3q91NqqQLLCf-Bn-PX8LYyQZWVBWcIiW243jGnm8yL4ReW259cLuLde5YDPqXjYUudGx4KpSizFrhY4ePjtODU_7xLDnbQHQVCxOc9kNKy3BMr7zD3jWE0sy7y3qfCZon8fIGuikyRrwb3ygd9UpWwjPeBccMmLii35oACnn6QayUtbsKYv7tKdmbS--i24vyQi2_qNnsD4m0fx_d66AkHraTf4A2inILbQ_hu6r5Er_Bwbkz_DXfQreOOhv6Nvq6B_JrqmyBK4c_nRwef8A-uKH9NYt9aZXPEw9A8dz76o1nwKDYLhsvANsWpcUK67pSFoc4zXox90MNZ9_Oi8m8qH9-_9HgzvCDfcXjcL4WzUN0uv_-ZHQQd_UXYgNayGVslaCGW8dYUlADWIODckFSTz5nmdZJanxZCcdzoDEhRuVAZTMQWiTC8oFjj9BmWZXFE4QNMQaIRS3XmhuiACw7Bwpxap3lRvMIkRVRpOmSk_saGTMZjORMyJaQEggpAyHlMkJv-z4XbWqOa1vveVr3LX1a7XCjqseyYzOpfTq0xKY2szknLsupAcRHuaWaJQOXR-gVcIqcmkno76_jSk5rCcrHIbwZ0BthaYR2VpwkuxOhkQyALU1BlYFBXvaPYS97A40qi2oBbQCu-4IDOazH45bx-vkCjiUCwHqExBpLrn3Q-pNych7yhYPKyzNQNSO0u-Le3_O6bsV2ew7_hwV--n-jP0N3aNiV3l1vB20CsxbPAd9d6hdhQ_8CUbVLrA priority: 102 providerName: Springer Nature |
Title | Blockade of STING activation alleviates microglial dysfunction and a broad spectrum of Alzheimer’s disease pathologies |
URI | https://link.springer.com/article/10.1038/s12276-024-01295-y https://www.ncbi.nlm.nih.gov/pubmed/39218977 https://www.proquest.com/docview/3112267299 https://www.proquest.com/docview/3099857094 https://pubmed.ncbi.nlm.nih.gov/PMC11447230 https://doi.org/10.1038/s12276-024-01295-y https://doaj.org/article/b28305d6d7d941f792c61524d2b350f9 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003126391 |
UnpaywallVersion | publishedVersion |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Experimental and Molecular Medicine, 2024, 56(0), , pp.1936-1951 |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2092-6413 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025474 issn: 2092-6413 databaseCode: HH5 dateStart: 19960101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2092-6413 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025474 issn: 2092-6413 databaseCode: DOA dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2092-6413 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025474 issn: 2092-6413 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2092-6413 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025474 issn: 2092-6413 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVERR databaseName: KoreaMed Open Access customDbUrl: eissn: 2092-6413 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025474 issn: 2092-6413 databaseCode: 5-W dateStart: 19970101 isFulltext: true titleUrlDefault: https://koreamed.org/journals providerName: Korean Association of Medical Journal Editors – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2092-6413 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025474 issn: 2092-6413 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2092-6413 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025474 issn: 2092-6413 databaseCode: NAO dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2092-6413 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025474 issn: 2092-6413 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2092-6413 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025474 issn: 2092-6413 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2092-6413 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025474 issn: 2092-6413 databaseCode: AAJSJ dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2092-6413 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025474 issn: 2092-6413 databaseCode: C6C dateStart: 19960301 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgk_h4QLDxERiVEYgXFq2Jna8n1FYbW6VViG1S36zYjruqbVKaFShP_Bv8e_wl3LlpSgWqeIrkOG3i-9n3O9_5jpA3mms83G5cmRjmgv2l3Vhm0lU8jNPUZ1rHeHb4vBeeXvFuP-hXG25lFVa5WhPtQq0LhXvkRwyIgR8CFUzeTz-7WDUKvatVCY3bZNcDqoKojvprgyvgNgszPugy0FvVoZkmi49KaIww_BZjMPwkcBcbisnm7wd1k8_Mv6jn3xGUtRv1Prk7z6fp4ms6Hv-hqU4ekgcVxaStJSYekVtZvkf2WzmY15MFfUtt0KfdTd8jd84r3_o--dYGvTZKdUYLQy8uz3ofKB56WG7ZUiy58mWIxJROMIZvMAbgUr0oUTEue-SaplTOilRTe35zNp_gT7XG36-z4SSb_frxs6SVQ4hiJWS77mblY3J1cnzZOXWrugyuAuvkxtVp7CuuDWNB5ivgIByMDi9EsRrNpAxCheUmDE9A9p6n0gSkr5qxjINY86ZhT8hOXuTZM0KVp1TEPF9zKbnyUiDRxoChHGqjuZLcId5KKEJVScuxdsZYWOc5i8VSkAIEKawgxcIh7-pnpsuUHVt7t1HWdU9Mt20bitlAVLNXSEyTFuhQRzrhnokSXwET9Ln2JQuaJnHIa0CKGKmhfR6vg0KMZgKMkjP4Z2B1HgsdcrBCkqhWilKsce2QV_VtmOPouEnzrJhDH6DxWIgggfF4ugRe_b7Ab70YSLxD4g1IbnzQ5p18eG3ziIMpzCMwQR1yuELv-r22jdhhjfD_GODn27_6Bbnn21mIYXsHZAfAmb0EnncjG3YyN8huq9W96MK1fdz7-AlaO2GnYfdOfgNWiVQ3 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIlE4IGj5MRRYxM-ltRp71459QCgFSkKbXEil3BbvrjeNktghaSjhxGvwEjwUT8LM2kmIQBGXniLZa2e8Mzvzzc7sDCHPNdd4uN24MjbMBf9Lu5FMpat4GCWJz7SO8OxwsxXWT_mHTtDZID_nZ2EwrXKuE62i1rnCPfIDBsDADwEKxq9Hn13sGoXR1XkLjUIsjtPZBbhsk1eNt8DfF75_9K79pu6WXQVcBdj63NVJ5CuuDWNB6iuwoBwgsxciUUYzKYNQYbMEw2Og3PNUEgPtqhLJKIg0rxgG771CrnJW4Virv9pZOngBt1WfkVCXgZ0sD-lUWHQwgYtVTPfFnA8_DtzZiiG0_QLAvGVj8y-o-3fG5iJse4NsTbNRMrtIBoM_LOPRLXKzhLS0VsjgbbKRZttkp5aBOz-c0ZfUJpna3fttcq1ZxvJ3yNdDsKP9RKc0N_Rju9F6T_GQRbFFTLHFy5ceAmE6xJzB7gAWCtWzCRriYkSmaULlOE80tedFx9Mhvqo2-HaW9obp-Nf3HxNaBqAodl62ej6d3CGnl8Kxu2Qzy7P0PqHKU6rKPF9zKbnyEgDtxoBjHmqjuZLcId6cKUKVRdKxV8dA2GA9i0TBSAGMFJaRYuaQvcUzo6JEyNrRh8jrxUgs720v5OOuKLWFkFiWLdChruqYe6Ya-wqQp8-1L1lQMbFDnoGkiL7q2efxt5uL_liAE9SAfwYU6bHQIbtzSRKlZpqI5TpyyNPFbdApGChKsjSfwhhwG7DxQQzzca8QvAW9gKe9CJwGh0QrIrnyQat3st6ZrVsOrjevgsvrkP259C7pWjdj-wsJ_48JfrD-q5-QrXq7eSJOGq3jh-S6b1ckpgzukk0Q1PQRYMxz-dgubEo-XbYm-Q0JhYxR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhU4IGh5GAos4nGhVmLv-nVAKKWEhtIKiVbKbfHuetMoiR2ShhJO_A3-Cj-HX8LM2kmIQBGXniLZa2fXMzvzzc6LkKeaa0xuN65MDHPB_tJuLDPpKh7GaeozrWPMHT48CvdP-Lt20F4jP2e5MBhWOZOJVlDrQuEZeY0BMPBDgIJJzVRhER_2mq-Gn13sIIWe1lk7jZJFDrLpOZhv45etPaD1M99vvjl-ve9WHQZcBTj7zNVp7CuuDWNB5ivQphzgsxfiBI1mUgahwsYJhiewCs9TaQLrUPVYxkGsed0weO8lcjlinGE4WdReGHsBtxWgcdIuA51ZJezUWVwbw8UIQ38x_sNPAne6pBRt7wBQdfnI_Av2_h29OXfhXiNXJvkwnZ6n_f4fWrJ5g1yv4C1tlPx4k6xl-SbZauRg2g-m9Dm1Aaf2JH-TbBxWfv0t8nUXdGov1RktDP143Dp6SzHhojwuptju5UsXQTEdYPxgpw-bhurpGJVyOSLXNKVyVKSa2tzR0WSAr2r0v51m3UE2-vX9x5hWziiKXZitzM_Gt8jJhVDsNlnPizy7S6jylIqY52suJVdeCgDeGDDSQ200V5I7xJsRRaiqYDr27egL67hnsSgJKYCQwhJSTB3yYv7MsCwXsnL0LtJ6PhJLfdsLxagjKskhJJZoC3SoI51wz0SJrwCF-lz7kgV1kzjkCXCK6KmufR5_O4XojQQYRC34Z0CUHgsdsj3jJFFJqbFY7CmHPJ7fBvmCTqM0z4oJjAETApsgJPA97pSMN58vYGsvBgPCIfESSy4taPlO3j21NczBDOcRmL8O2Zlx72Jeq77YzpzD_-MD31u96kdkA2SIeN86OrhPrvp2Q2L04DZZBz7NHgDcPJMP7b6m5NNFC5Lf5C2QjA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blockade+of+STING+activation+alleviates+microglial+dysfunction+and+a+broad+spectrum+of+Alzheimer%E2%80%99s+disease+pathologies&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Chung%2C+Sunwoo&rft.au=Jeong%2C+June-Hyun&rft.au=Park%2C+Jong-Chan&rft.au=Han%2C+Jong+Won&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1226-3613&rft.eissn=2092-6413&rft.volume=56&rft.issue=9&rft.spage=1936&rft.epage=1951&rft_id=info:doi/10.1038%2Fs12276-024-01295-y&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2092-6413&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2092-6413&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2092-6413&client=summon |