Blockade of STING activation alleviates microglial dysfunction and a broad spectrum of Alzheimer’s disease pathologies

Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia a...

Full description

Saved in:
Bibliographic Details
Published inExperimental & molecular medicine Vol. 56; no. 9; pp. 1936 - 1951
Main Authors Chung, Sunwoo, Jeong, June-Hyun, Park, Jong-Chan, Han, Jong Won, Lee, Yeajina, Kim, Jong-Il, Mook-Jung, Inhee
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2024
Springer Nature B.V
Nature Publishing Group
생화학분자생물학회
Subjects
Online AccessGet full text
ISSN2092-6413
1226-3613
2092-6413
DOI10.1038/s12276-024-01295-y

Cover

Abstract Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in App NL-G-F /hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD. STING inhibition mitigates neurodegeneration in Alzheimer’s disease In illnesses like Alzheimer’s that cause brain deterioration, the brain’s defense cells, known as microglia, overreact due to harmful proteins, causing brain damage and memory loss. This research aimed to understand how microglia change in Alzheimer’s and find ways to stop their damaging effects. Using mice with Alzheimer’s, they checked if blocking specific immune pathway could fix microglia dysfunction and Alzheimer’s disease pathologies. They discovered that blocking STING, a crucial part of this pathway, reduced microglia dysfunction brain inflammation, decreased the buildup of Alzheimer’s-related proteins, and improved memory in mice. By blocking the STING activation, the study showed a decrease in damaging brain inflammation and improvements in memory function, suggesting a promising strategy for treating Alzheimer’s. Researchers conclude that targeting the STING could offer a new way to fight Alzheimer’s by reducing inflammation and protecting brain health. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
AbstractList Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in App NL-G-F /hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD. STING inhibition mitigates neurodegeneration in Alzheimer’s disease In illnesses like Alzheimer’s that cause brain deterioration, the brain’s defense cells, known as microglia, overreact due to harmful proteins, causing brain damage and memory loss. This research aimed to understand how microglia change in Alzheimer’s and find ways to stop their damaging effects. Using mice with Alzheimer’s, they checked if blocking specific immune pathway could fix microglia dysfunction and Alzheimer’s disease pathologies. They discovered that blocking STING, a crucial part of this pathway, reduced microglia dysfunction brain inflammation, decreased the buildup of Alzheimer’s-related proteins, and improved memory in mice. By blocking the STING activation, the study showed a decrease in damaging brain inflammation and improvements in memory function, suggesting a promising strategy for treating Alzheimer’s. Researchers conclude that targeting the STING could offer a new way to fight Alzheimer’s by reducing inflammation and protecting brain health. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
Abstract Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD.
Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD. KCI Citation Count: 15
Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD.STING inhibition mitigates neurodegeneration in Alzheimer’s diseaseIn illnesses like Alzheimer’s that cause brain deterioration, the brain’s defense cells, known as microglia, overreact due to harmful proteins, causing brain damage and memory loss. This research aimed to understand how microglia change in Alzheimer’s and find ways to stop their damaging effects. Using mice with Alzheimer’s, they checked if blocking specific immune pathway could fix microglia dysfunction and Alzheimer’s disease pathologies. They discovered that blocking STING, a crucial part of this pathway, reduced microglia dysfunction brain inflammation, decreased the buildup of Alzheimer’s-related proteins, and improved memory in mice. By blocking the STING activation, the study showed a decrease in damaging brain inflammation and improvements in memory function, suggesting a promising strategy for treating Alzheimer’s. Researchers conclude that targeting the STING could offer a new way to fight Alzheimer’s by reducing inflammation and protecting brain health.This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD. In illnesses like Alzheimer’s that cause brain deterioration, the brain’s defense cells, known as microglia, overreact due to harmful proteins, causing brain damage and memory loss. This research aimed to understand how microglia change in Alzheimer’s and find ways to stop their damaging effects. Using mice with Alzheimer’s, they checked if blocking specific immune pathway could fix microglia dysfunction and Alzheimer’s disease pathologies. They discovered that blocking STING, a crucial part of this pathway, reduced microglia dysfunction brain inflammation, decreased the buildup of Alzheimer’s-related proteins, and improved memory in mice. By blocking the STING activation, the study showed a decrease in damaging brain inflammation and improvements in memory function, suggesting a promising strategy for treating Alzheimer’s. Researchers conclude that targeting the STING could offer a new way to fight Alzheimer’s by reducing inflammation and protecting brain health. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
Abnormal glial activation promotes neurodegeneration in Alzheimer's disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD.Abnormal glial activation promotes neurodegeneration in Alzheimer's disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD.
Abnormal glial activation promotes neurodegeneration in Alzheimer's disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in App /hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD.
Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in App NL-G-F /hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD.
Author Lee, Yeajina
Mook-Jung, Inhee
Kim, Jong-Il
Park, Jong-Chan
Jeong, June-Hyun
Han, Jong Won
Chung, Sunwoo
Author_xml – sequence: 1
  givenname: Sunwoo
  surname: Chung
  fullname: Chung, Sunwoo
  organization: Convergence Dementia Research Center, College of Medicine, Seoul National University, Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University
– sequence: 2
  givenname: June-Hyun
  surname: Jeong
  fullname: Jeong, June-Hyun
  organization: Convergence Dementia Research Center, College of Medicine, Seoul National University, Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University
– sequence: 3
  givenname: Jong-Chan
  surname: Park
  fullname: Park, Jong-Chan
  organization: Department of Biophysics & Institute of Quantum Biophysics, Sungkyunkwan University
– sequence: 4
  givenname: Jong Won
  surname: Han
  fullname: Han, Jong Won
  organization: Convergence Dementia Research Center, College of Medicine, Seoul National University, Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University
– sequence: 5
  givenname: Yeajina
  surname: Lee
  fullname: Lee, Yeajina
  organization: Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Genomic Medicine Institute, Medical Research Center, Seoul National University
– sequence: 6
  givenname: Jong-Il
  orcidid: 0000-0002-7240-3744
  surname: Kim
  fullname: Kim, Jong-Il
  organization: Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Genomic Medicine Institute, Medical Research Center, Seoul National University
– sequence: 7
  givenname: Inhee
  orcidid: 0000-0001-7085-4085
  surname: Mook-Jung
  fullname: Mook-Jung, Inhee
  email: inhee@snu.ac.kr
  organization: Convergence Dementia Research Center, College of Medicine, Seoul National University, Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39218977$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003126391$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqNUsuO0zAUjdAg5gE_wAJFYoOQAn4m8QqVEQyVRiBBWVuO7bRuHbtjJ4Wy4jf4Pb4EtynDzCxGrK5ln3N87j33NDty3uksewrBKwhw_TpChKqyAIgUACJGi-2D7AQBhoqSQHx043ycnca4BABRUpFH2TFmCNasqk6y72-tlyuhdO7b_Mts-vEiF7I3G9Eb73Jhrd4Y0euYd0YGP7dG2FxtYzs4OSKcykXeBC9UHtda9mHodlIT-2OhTafD75-_Yq5M1CLqfC36hbd-bnR8nD1shY36yaGeZV_fv5udfyguP11MzyeXhaRV2RdK1EgS1WJMNZKgIqSiNSyVqkWrcNPQUlKMQEsYKRmEUrBGNxLUTU1rRUCLz7KXo64LLV9Jw70w-zr3fBX45PNsyiEoMYW4TODpCFZeLPk6mE6E7Z6xv_BhzkXojbSaN6jGgKpSVYoR2FYMyRJSRBRqMAUtS1p41BrcWmy_pVFeC0LAdwHyMUCeAuT7APk2sd6MrPXQdFpJ7fog7C0rt1-cWaRWNhzCNBqEQVJ4cVAI_mrQseediVJbK5z2Q-QYMFbTCjCSoM_vQJd-CC7FwTFM3soKsV0jz25auvbyd4kSAI2AtCExBt3-X6P1HZI0_X7rUlvG3k89TDamf9xch3-272H9AYo9_TE
CitedBy_id crossref_primary_10_1186_s13024_025_00815_2
crossref_primary_10_1002_advs_202410910
crossref_primary_10_1016_j_arr_2025_102691
crossref_primary_10_1016_j_neurot_2025_e00536
crossref_primary_10_1038_d41586_025_00303_z
Cites_doi 10.1016/j.immuni.2017.08.008
10.1038/s41577-021-00524-z
10.1073/pnas.2002144117
10.1038/s41589-018-0213-2
10.1038/s41586-023-05788-0
10.1038/s41593-023-01315-6
10.1016/j.celrep.2017.09.039
10.1016/j.cell.2020.09.020
10.1084/jem.20180139
10.1016/j.cell.2017.05.018
10.1016/j.celrep.2022.111880
10.1111/acel.13143
10.1038/nature11729
10.1111/acel.13623
10.1038/s43587-022-00337-2
10.1080/15548627.2023.2181614
10.1016/j.neuron.2018.05.023
10.1126/sciadv.abo4662
10.1016/j.pneurobio.2021.102075
10.1126/science.aad8373
10.1073/pnas.1705499114
10.1038/s41467-021-26851-2
10.1038/s41593-022-01022-8
10.1172/JCI133737
10.1074/jbc.RA119.009487
10.1016/j.celrep.2018.05.004
10.1038/s41586-018-0287-8
10.1016/j.neuron.2022.10.020
10.1038/s41586-020-03151-1
10.1038/s41582-020-00435-y
10.1016/j.cmet.2019.02.014
10.1084/jem.20171749
10.1016/j.cmet.2014.07.024
10.1016/j.cell.2010.05.008
10.1038/ncomms12082
10.1021/ci500004h
10.15252/embj.2020107121
10.1016/j.cell.2017.09.039
10.1073/pnas.2204058119
10.1016/j.cell.2022.05.017
10.1038/s41593-023-01257-z
10.1038/s41580-020-0244-x
10.1016/j.neuron.2018.06.030
10.1038/s41467-020-20440-5
10.1038/s41467-021-22129-9
10.1126/scitranslmed.aay9013
10.1038/ng1567
10.1016/j.neuron.2017.11.032
10.1016/j.celrep.2018.07.072
10.1038/s41586-018-0718-6
10.1016/j.immuni.2020.01.014
10.1016/j.cmet.2019.06.005
10.1126/science.aao6047
10.1016/j.immuni.2022.03.018
10.1038/nature23890
10.1016/j.molcel.2019.02.038
10.1016/j.celrep.2019.11.086
10.1016/j.celrep.2019.03.099
10.1038/s41586-020-2681-2
10.1038/s41586-023-06373-1
10.1016/j.celrep.2021.109977
10.1038/s41590-023-01604-z
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
ACYCR
DOI 10.1038/s12276-024-01295-y
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database

MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2092-6413
EndPage 1951
ExternalDocumentID oai_kci_go_kr_ARTI_10635136
oai_doaj_org_article_b28305d6d7d941f792c61524d2b350f9
10.1038/s12276-024-01295-y
PMC11447230
39218977
10_1038_s12276_024_01295_y
Genre Journal Article
GrantInformation_xml – fundername: Korea Dementia Research Project through the Korea Dementia Research Center (KDRC), funded by the Ministry of Health & Welfare and Ministry of Science and ICT, Republic of Korea (grant number: HU23C1234).
– fundername: Ministry of Health and Welfare (Ministry of Health, Welfare and Family Affairs)
  grantid: HU23C1234
  funderid: https://doi.org/10.13039/501100003625
– fundername: Ministry of Science, ICT and Future Planning (MSIP)
  grantid: HU23C1234
  funderid: https://doi.org/10.13039/501100003621
– fundername: Ministry of Education (Ministry of Education of the Republic of Korea)
  grantid: 2020R1A6A3A13070845
  funderid: https://doi.org/10.13039/501100002701
– fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A3A13070845).
– fundername: Ministry of Education (Ministry of Education of the Republic of Korea)
  grantid: 2020R1A6A3A13070845
– fundername: Ministry of Health and Welfare (Ministry of Health, Welfare and Family Affairs)
  grantid: HU23C1234
– fundername: Ministry of Science, ICT and Future Planning (MSIP)
  grantid: HU23C1234
GroupedDBID ---
0R~
29G
2WC
3V.
5-W
53G
5GY
7X7
87B
88E
8FE
8FH
8FI
8FJ
8JR
9ZL
AAJSJ
ABUWG
ACGFO
ACGFS
ACPRK
ACSMW
ACYCR
ADBBV
AENEX
AFKRA
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
C6C
CCPQU
DIK
DU5
E3Z
EBLON
EBS
EF.
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
LK8
M1P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
TR2
UKHRP
W2D
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c576t-da82c4df335e2c074475816dd8afd3bb56c5320f4946911ca9bebc08b858d40f3
IEDL.DBID 7X7
ISSN 2092-6413
1226-3613
IngestDate Thu Jul 31 03:10:26 EDT 2025
Wed Aug 27 01:25:52 EDT 2025
Sun Sep 07 11:14:16 EDT 2025
Tue Sep 30 17:07:07 EDT 2025
Fri Sep 05 08:40:08 EDT 2025
Wed Aug 13 09:29:16 EDT 2025
Sat Mar 29 01:29:25 EDT 2025
Wed Oct 01 04:50:33 EDT 2025
Thu Apr 24 22:50:31 EDT 2025
Fri Feb 21 02:40:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-da82c4df335e2c074475816dd8afd3bb56c5320f4946911ca9bebc08b858d40f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7085-4085
0000-0002-7240-3744
OpenAccessLink https://www.proquest.com/docview/3112267299?pq-origsite=%requestingapplication%
PMID 39218977
PQID 3112267299
PQPubID 2041975
PageCount 16
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10635136
doaj_primary_oai_doaj_org_article_b28305d6d7d941f792c61524d2b350f9
unpaywall_primary_10_1038_s12276_024_01295_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11447230
proquest_miscellaneous_3099857094
proquest_journals_3112267299
pubmed_primary_39218977
crossref_primary_10_1038_s12276_024_01295_y
crossref_citationtrail_10_1038_s12276_024_01295_y
springer_journals_10_1038_s12276_024_01295_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
– name: Seoul
PublicationTitle Experimental & molecular medicine
PublicationTitleAbbrev Exp Mol Med
PublicationTitleAlternate Exp Mol Med
PublicationYear 2024
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
생화학분자생물학회
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
– name: 생화학분자생물학회
References Eimer (CR10) 2018; 99
Gaidt (CR33) 2017; 171
Leng, Edison (CR1) 2021; 17
Mathys (CR42) 2017; 21
Guo (CR8) 2018; 23
Hong (CR44) 2016; 352
Anastasiou (CR53) 2021; 6
Roy (CR45) 2022; 55
Hopfner, Hornung (CR13) 2020; 21
Baik (CR3) 2019; 30
Paolicelli (CR2) 2022; 110
Marsh (CR25) 2022; 25
De Schepper (CR48) 2023; 26
Li, Chen (CR14) 2018; 215
Hanna, Flamier, Barabino, Bernier (CR7) 2021; 12
Yu (CR17) 2020; 183
Swanson (CR57) 2017; 214
Mossmann (CR9) 2014; 20
Hur (CR37) 2020; 586
Chung (CR22) 2021; 203
Tcw (CR36) 2022; 185
Brelstaff, Tolkovsky, Ghetti, Goedert, Spillantini (CR46) 2018; 24
Welch (CR62) 2022; 8
Spence (CR64) 2019; 15
Li, Jakobs (CR49) 2022; 41
Raefski, O’Neill (CR50) 2005; 37
Park (CR27) 2022; 9
Decout, Katz, Venkatraman, Ablasser (CR58) 2021; 21
Standaert, Childers (CR16) 2022; 119
Liu (CR38) 2014; 54
Andreeva (CR12) 2017; 549
Chen (CR51) 2023; 615
Martins, Sousa, Pereira (CR5) 2020; 19
Zhou (CR59) 2020; 52
Lee (CR6) 2018; 563
Roy (CR30) 2020; 130
Kim (CR35) 2023; 19
Li (CR31) 2016; 7
Lee (CR23) 2010; 141
Simon (CR4) 2019; 29
Yang, Wang, Ren, Chen, Chen (CR29) 2017; 114
Haag (CR39) 2018; 559
Heneka (CR34) 2013; 493
CR55
CR52
Park (CR26) 2021; 12
Mathur (CR15) 2017; 96
Udeochu (CR20) 2023; 26
Saito (CR21) 2019; 294
Krasemann (CR41) 2017; 47
Xie (CR19) 2023; 3
McArthur (CR47) 2018; 359
Aarreberg (CR24) 2019; 74
Readhead (CR11) 2018; 99
Park (CR61) 2021; 40
Donnelly (CR63) 2021; 591
CR28
Li (CR54) 2020; 12
Sharma, Rajendrarao, Shahani, Ramirez-Jarquin, Subramaniam (CR18) 2020; 117
Jung (CR56) 2022; 21
Bode (CR60) 2019; 29
Sala Frigerio (CR43) 2019; 27
Keren-Shaul (CR40) 2017; 169
Jin (CR32) 2021; 12
H Mathys (1295_CR42) 2017; 21
L Andreeva (1295_CR12) 2017; 549
S Chung (1295_CR22) 2021; 203
C Sala Frigerio (1295_CR43) 2019; 27
RC Paolicelli (1295_CR2) 2022; 110
S Krasemann (1295_CR41) 2017; 47
M Sharma (1295_CR18) 2020; 117
JC Park (1295_CR26) 2021; 12
WA Eimer (1295_CR10) 2018; 99
H Liu (1295_CR38) 2014; 54
T Li (1295_CR14) 2018; 215
GM Welch (1295_CR62) 2022; 8
C Guo (1295_CR8) 2018; 23
KP Hopfner (1295_CR13) 2020; 21
JS Spence (1295_CR64) 2019; 15
F Martins (1295_CR5) 2020; 19
JC Udeochu (1295_CR20) 2023; 26
MT Heneka (1295_CR34) 2013; 493
SE Marsh (1295_CR25) 2022; 25
MH Lee (1295_CR6) 2018; 563
X Chen (1295_CR51) 2023; 615
J Tcw (1295_CR36) 2022; 185
M Anastasiou (1295_CR53) 2021; 6
A Decout (1295_CR58) 2021; 21
CH Yu (1295_CR17) 2020; 183
K Bode (1295_CR60) 2019; 29
SH Kim (1295_CR35) 2023; 19
H Keren-Shaul (1295_CR40) 2017; 169
J Brelstaff (1295_CR46) 2018; 24
S De Schepper (1295_CR48) 2023; 26
V Mathur (1295_CR15) 2017; 96
LD Aarreberg (1295_CR24) 2019; 74
K McArthur (1295_CR47) 2018; 359
J Park (1295_CR61) 2021; 40
Y Zhou (1295_CR59) 2020; 52
DG Standaert (1295_CR16) 2022; 119
CR Donnelly (1295_CR63) 2021; 591
ER Roy (1295_CR30) 2020; 130
D Mossmann (1295_CR9) 2014; 20
H Yang (1295_CR29) 2017; 114
1295_CR28
W Li (1295_CR54) 2020; 12
JH Lee (1295_CR23) 2010; 141
JY Hur (1295_CR37) 2020; 586
SH Baik (1295_CR3) 2019; 30
R Hanna (1295_CR7) 2021; 12
M Jin (1295_CR32) 2021; 12
F Leng (1295_CR1) 2021; 17
S Hong (1295_CR44) 2016; 352
X Xie (1295_CR19) 2023; 3
1295_CR52
MM Gaidt (1295_CR33) 2017; 171
T Saito (1295_CR21) 2019; 294
1295_CR55
SM Haag (1295_CR39) 2018; 559
S Li (1295_CR49) 2022; 41
M Simon (1295_CR4) 2019; 29
ER Roy (1295_CR45) 2022; 55
B Readhead (1295_CR11) 2018; 99
ES Jung (1295_CR56) 2022; 21
KV Swanson (1295_CR57) 2017; 214
T Li (1295_CR31) 2016; 7
AS Raefski (1295_CR50) 2005; 37
JC Park (1295_CR27) 2022; 9
References_xml – volume: 47
  start-page: 566
  year: 2017
  end-page: 581.e569
  ident: CR41
  article-title: The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.08.008
– volume: 21
  start-page: 548
  year: 2021
  end-page: 569
  ident: CR58
  article-title: The cGAS-STING pathway as a therapeutic target in inflammatory diseases
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00524-z
– volume: 117
  start-page: 15989
  year: 2020
  end-page: 15999
  ident: CR18
  article-title: Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2002144117
– volume: 15
  start-page: 259
  year: 2019
  end-page: 268
  ident: CR64
  article-title: IFITM3 directly engages and shuttles incoming virus particles to lysosomes
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0213-2
– volume: 615
  start-page: 668
  year: 2023
  end-page: 677
  ident: CR51
  article-title: Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy
  publication-title: Nature
  doi: 10.1038/s41586-023-05788-0
– volume: 26
  start-page: 737
  year: 2023
  end-page: 750
  ident: CR20
  article-title: Tau activation of microglial cGAS-IFN reduces MEF2C-mediated cognitive resilience
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-023-01315-6
– volume: 21
  start-page: 366
  year: 2017
  end-page: 380
  ident: CR42
  article-title: Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.039
– volume: 183
  start-page: 636
  year: 2020
  end-page: 649.e618
  ident: CR17
  article-title: TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.020
– volume: 215
  start-page: 1287
  year: 2018
  end-page: 1299
  ident: CR14
  article-title: The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20180139
– volume: 169
  start-page: 1276
  year: 2017
  end-page: 1290.e1217
  ident: CR40
  article-title: A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.018
– volume: 41
  start-page: 111880
  year: 2022
  ident: CR49
  article-title: Secreted phosphoprotein 1 slows neurodegeneration and rescues visual function in mouse models of aging and glaucoma
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111880
– volume: 19
  start-page: e13143
  year: 2020
  ident: CR5
  article-title: da Cruz ESOAB, Rebelo S. Nuclear envelope dysfunction and its contribution to the aging process
  publication-title: Aging Cell
  doi: 10.1111/acel.13143
– volume: 493
  start-page: 674
  year: 2013
  end-page: 678
  ident: CR34
  article-title: NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice
  publication-title: Nature
  doi: 10.1038/nature11729
– volume: 21
  year: 2022
  ident: CR56
  article-title: Amyloid-beta activates NLRP3 inflammasomes by affecting microglial immunometabolism through the Syk-AMPK pathway
  publication-title: Aging Cell
  doi: 10.1111/acel.13623
– volume: 3
  start-page: 202
  year: 2023
  end-page: 212
  ident: CR19
  article-title: Activation of innate immune cGAS-STING pathway contributes to Alzheimer’s pathogenesis in 5×FAD mice
  publication-title: Nat. Aging
  doi: 10.1038/s43587-022-00337-2
– volume: 19
  start-page: 2318
  year: 2023
  end-page: 2337
  ident: CR35
  article-title: Endolysosomal impairment by binding of amyloid beta or MAPT/Tau to V-ATPase and rescue via the HYAL-CD44 axis in Alzheimer disease
  publication-title: Autophagy
  doi: 10.1080/15548627.2023.2181614
– volume: 99
  start-page: 64
  year: 2018
  end-page: 82.e67
  ident: CR11
  article-title: Multiscale Analysis of Independent Alzheimer’s Cohorts Finds Disruption of Molecular, Genetic, and Clinical Networks by Human Herpesvirus
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.05.023
– volume: 8
  year: 2022
  ident: CR62
  article-title: Neurons burdened by DNA double-strand breaks incite microglia activation through antiviral-like signaling in neurodegeneration
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abo4662
– volume: 203
  year: 2021
  ident: CR22
  article-title: Plexin-A4 mediates amyloid-beta-induced tau pathology in Alzheimer’s disease animal model
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2021.102075
– volume: 352
  start-page: 712
  year: 2016
  end-page: 716
  ident: CR44
  article-title: Complement and microglia mediate early synapse loss in Alzheimer mouse models
  publication-title: Science
  doi: 10.1126/science.aad8373
– volume: 114
  start-page: E4612
  year: 2017
  end-page: E4620
  ident: CR29
  article-title: cGAS is essential for cellular senescence
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1705499114
– volume: 12
  year: 2021
  ident: CR32
  article-title: Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26851-2
– volume: 25
  start-page: 306
  year: 2022
  end-page: 316
  ident: CR25
  article-title: Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-022-01022-8
– volume: 130
  start-page: 1912
  year: 2020
  end-page: 1930
  ident: CR30
  article-title: Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI133737
– volume: 294
  start-page: 12754
  year: 2019
  end-page: 12765
  ident: CR21
  article-title: Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.009487
– volume: 23
  start-page: 2874
  year: 2018
  end-page: 2880
  ident: CR8
  article-title: Tau Activates Transposable Elements in Alzheimer’s Disease
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.05.004
– volume: 559
  start-page: 269
  year: 2018
  end-page: 273
  ident: CR39
  article-title: Targeting STING with covalent small-molecule inhibitors
  publication-title: Nature
  doi: 10.1038/s41586-018-0287-8
– volume: 110
  start-page: 3458
  year: 2022
  end-page: 3483
  ident: CR2
  article-title: Microglia states and nomenclature: A field at its crossroads
  publication-title: Neuron
  doi: 10.1016/j.neuron.2022.10.020
– volume: 591
  start-page: 275
  year: 2021
  end-page: 280
  ident: CR63
  article-title: STING controls nociception via type I interferon signalling in sensory neurons
  publication-title: Nature
  doi: 10.1038/s41586-020-03151-1
– volume: 17
  start-page: 157
  year: 2021
  end-page: 172
  ident: CR1
  article-title: Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/s41582-020-00435-y
– volume: 29
  start-page: 871
  year: 2019
  end-page: 885.e875
  ident: CR4
  article-title: LINE1 Derepression in Aged Wild-Type and SIRT6-Deficient Mice Drives Inflammation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.02.014
– volume: 214
  start-page: 3611
  year: 2017
  end-page: 3626
  ident: CR57
  article-title: A noncanonical function of cGAMP in inflammasome priming and activation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20171749
– volume: 20
  start-page: 662
  year: 2014
  end-page: 669
  ident: CR9
  article-title: Amyloid-beta peptide induces mitochondrial dysfunction by inhibition of preprotein maturation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.07.024
– volume: 141
  start-page: 1146
  year: 2010
  end-page: 1158
  ident: CR23
  article-title: Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.008
– volume: 7
  year: 2016
  ident: CR31
  article-title: The neuritic plaque facilitates pathological conversion of tau in an Alzheimer’s disease mouse model
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12082
– volume: 54
  start-page: 1050
  year: 2014
  end-page: 1060
  ident: CR38
  article-title: AlzPlatform: an Alzheimer’s disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci500004h
– volume: 40
  year: 2021
  ident: CR61
  article-title: Microglial MERTK eliminates phosphatidylserine-displaying inhibitory post-synapses
  publication-title: EMBO J.
  doi: 10.15252/embj.2020107121
– volume: 171
  start-page: 1110
  year: 2017
  end-page: 1124 e1118
  ident: CR33
  article-title: The DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell Death Program Upstream of NLRP3
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.039
– volume: 119
  year: 2022
  ident: CR16
  article-title: Alpha-synuclein-mediated DNA damage, STING activation, and neuroinflammation in Parkinson’s disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2204058119
– volume: 185
  start-page: 2213
  year: 2022
  end-page: 2233.e2225
  ident: CR36
  article-title: Cholesterol and matrisome pathways dysregulated in astrocytes and microglia
  publication-title: Cell
  doi: 10.1016/j.cell.2022.05.017
– volume: 26
  start-page: 406
  year: 2023
  end-page: 415
  ident: CR48
  article-title: Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-023-01257-z
– volume: 6
  start-page: e149346
  year: 2021
  ident: CR53
  article-title: Endothelial STING controls T cell transmigration in an IFNI-dependent manner
  publication-title: JCI Insight
– volume: 21
  start-page: 501
  year: 2020
  end-page: 521
  ident: CR13
  article-title: Molecular mechanisms and cellular functions of cGAS-STING signalling
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0244-x
– volume: 99
  start-page: 56
  year: 2018
  end-page: 63.e53
  ident: CR10
  article-title: Alzheimer’s Disease-Associated beta-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.06.030
– volume: 12
  year: 2021
  ident: CR26
  article-title: A logical network-based drug-screening platform for Alzheimer’s disease representing pathological features of human brain organoids
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20440-5
– volume: 12
  year: 2021
  ident: CR7
  article-title: G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer’s disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22129-9
– volume: 12
  start-page: eaay9013
  year: 2020
  ident: CR54
  article-title: cGAS-STING-mediated DNA sensing maintains CD8(+) T cell stemness and promotes antitumor T cell therapy
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aay9013
– volume: 37
  start-page: 620
  year: 2005
  end-page: 624
  ident: CR50
  article-title: Identification of a cluster of X-linked imprinted genes in mice
  publication-title: Nat. Genet
  doi: 10.1038/ng1567
– volume: 96
  start-page: 1290
  year: 2017
  end-page: 1302.e1296
  ident: CR15
  article-title: Activation of the STING-Dependent Type I Interferon Response Reduces Microglial Reactivity and Neuroinflammation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.11.032
– volume: 24
  start-page: 1939
  year: 2018
  end-page: 1948 e1934
  ident: CR46
  article-title: Living Neurons with Tau Filaments Aberrantly Expose Phosphatidylserine and Are Phagocytosed by Microglia
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.07.072
– volume: 563
  start-page: 639
  year: 2018
  end-page: 645
  ident: CR6
  article-title: Somatic APP gene recombination in Alzheimer’s disease and normal neurons
  publication-title: Nature
  doi: 10.1038/s41586-018-0718-6
– ident: CR52
– volume: 52
  start-page: 357
  year: 2020
  end-page: 373.e359
  ident: CR59
  article-title: Blockade of the Phagocytic Receptor MerTK on Tumor-Associated Macrophages Enhances P2X7R-Dependent STING Activation by Tumor-Derived cGAMP
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.01.014
– volume: 30
  start-page: 493
  year: 2019
  end-page: 507.e496
  ident: CR3
  article-title: A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer’s Disease
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.06.005
– volume: 9
  year: 2022
  ident: CR27
  article-title: Multi-Omics-Based Autophagy-Related Untypical Subtypes in Patients with Cerebral Amyloid Pathology
  publication-title: Adv. Sci. (Weinh.)
– volume: 359
  start-page: eaao6047
  year: 2018
  ident: CR47
  article-title: BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis
  publication-title: Science
  doi: 10.1126/science.aao6047
– volume: 55
  start-page: 879
  year: 2022
  end-page: 894.e876
  ident: CR45
  article-title: Concerted type I interferon signaling in microglia and neural cells promotes memory impairment associated with amyloid beta plaques
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.03.018
– ident: CR55
– volume: 549
  start-page: 394
  year: 2017
  end-page: 398
  ident: CR12
  article-title: cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein-DNA ladders
  publication-title: Nature
  doi: 10.1038/nature23890
– volume: 74
  start-page: 801
  year: 2019
  end-page: 815.e806
  ident: CR24
  article-title: Interleukin-1beta Induces mtDNA Release to Activate Innate Immune Signaling via cGAS-STING
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.038
– volume: 29
  start-page: 4435
  year: 2019
  end-page: 4446.e4439
  ident: CR60
  article-title: Dectin-1 Binding to Annexins on Apoptotic Cells Induces Peripheral Immune Tolerance via NADPH Oxidase-2
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.11.086
– ident: CR28
– volume: 27
  start-page: 1293
  year: 2019
  end-page: 1306.e1296
  ident: CR43
  article-title: The Major Risk Factors for Alzheimer’s Disease: Age, Sex, and Genes Modulate the Microglia Response to Abeta Plaques
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.03.099
– volume: 586
  start-page: 735
  year: 2020
  end-page: 740
  ident: CR37
  article-title: The innate immunity protein IFITM3 modulates gamma-secretase in Alzheimer’s disease
  publication-title: Nature
  doi: 10.1038/s41586-020-2681-2
– volume: 96
  start-page: 1290
  year: 2017
  ident: 1295_CR15
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.11.032
– volume: 54
  start-page: 1050
  year: 2014
  ident: 1295_CR38
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci500004h
– volume: 352
  start-page: 712
  year: 2016
  ident: 1295_CR44
  publication-title: Science
  doi: 10.1126/science.aad8373
– volume: 26
  start-page: 406
  year: 2023
  ident: 1295_CR48
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-023-01257-z
– volume: 12
  year: 2021
  ident: 1295_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22129-9
– volume: 74
  start-page: 801
  year: 2019
  ident: 1295_CR24
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.02.038
– volume: 24
  start-page: 1939
  year: 2018
  ident: 1295_CR46
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.07.072
– volume: 559
  start-page: 269
  year: 2018
  ident: 1295_CR39
  publication-title: Nature
  doi: 10.1038/s41586-018-0287-8
– volume: 586
  start-page: 735
  year: 2020
  ident: 1295_CR37
  publication-title: Nature
  doi: 10.1038/s41586-020-2681-2
– volume: 615
  start-page: 668
  year: 2023
  ident: 1295_CR51
  publication-title: Nature
  doi: 10.1038/s41586-023-05788-0
– volume: 171
  start-page: 1110
  year: 2017
  ident: 1295_CR33
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.039
– volume: 203
  year: 2021
  ident: 1295_CR22
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2021.102075
– volume: 21
  start-page: 366
  year: 2017
  ident: 1295_CR42
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.039
– volume: 21
  start-page: 501
  year: 2020
  ident: 1295_CR13
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0244-x
– volume: 47
  start-page: 566
  year: 2017
  ident: 1295_CR41
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.08.008
– volume: 55
  start-page: 879
  year: 2022
  ident: 1295_CR45
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.03.018
– volume: 41
  start-page: 111880
  year: 2022
  ident: 1295_CR49
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111880
– volume: 117
  start-page: 15989
  year: 2020
  ident: 1295_CR18
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2002144117
– volume: 21
  start-page: 548
  year: 2021
  ident: 1295_CR58
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00524-z
– volume: 12
  start-page: eaay9013
  year: 2020
  ident: 1295_CR54
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aay9013
– volume: 493
  start-page: 674
  year: 2013
  ident: 1295_CR34
  publication-title: Nature
  doi: 10.1038/nature11729
– volume: 29
  start-page: 871
  year: 2019
  ident: 1295_CR4
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.02.014
– volume: 52
  start-page: 357
  year: 2020
  ident: 1295_CR59
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.01.014
– volume: 26
  start-page: 737
  year: 2023
  ident: 1295_CR20
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-023-01315-6
– volume: 9
  year: 2022
  ident: 1295_CR27
  publication-title: Adv. Sci. (Weinh.)
– volume: 591
  start-page: 275
  year: 2021
  ident: 1295_CR63
  publication-title: Nature
  doi: 10.1038/s41586-020-03151-1
– volume: 185
  start-page: 2213
  year: 2022
  ident: 1295_CR36
  publication-title: Cell
  doi: 10.1016/j.cell.2022.05.017
– volume: 183
  start-page: 636
  year: 2020
  ident: 1295_CR17
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.020
– volume: 12
  year: 2021
  ident: 1295_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26851-2
– volume: 99
  start-page: 64
  year: 2018
  ident: 1295_CR11
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.05.023
– volume: 3
  start-page: 202
  year: 2023
  ident: 1295_CR19
  publication-title: Nat. Aging
  doi: 10.1038/s43587-022-00337-2
– volume: 130
  start-page: 1912
  year: 2020
  ident: 1295_CR30
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI133737
– ident: 1295_CR28
  doi: 10.1038/s41586-023-06373-1
– volume: 37
  start-page: 620
  year: 2005
  ident: 1295_CR50
  publication-title: Nat. Genet
  doi: 10.1038/ng1567
– volume: 20
  start-page: 662
  year: 2014
  ident: 1295_CR9
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.07.024
– volume: 119
  year: 2022
  ident: 1295_CR16
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2204058119
– volume: 30
  start-page: 493
  year: 2019
  ident: 1295_CR3
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.06.005
– volume: 215
  start-page: 1287
  year: 2018
  ident: 1295_CR14
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20180139
– volume: 12
  year: 2021
  ident: 1295_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20440-5
– volume: 17
  start-page: 157
  year: 2021
  ident: 1295_CR1
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/s41582-020-00435-y
– volume: 359
  start-page: eaao6047
  year: 2018
  ident: 1295_CR47
  publication-title: Science
  doi: 10.1126/science.aao6047
– volume: 141
  start-page: 1146
  year: 2010
  ident: 1295_CR23
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.008
– volume: 40
  year: 2021
  ident: 1295_CR61
  publication-title: EMBO J.
  doi: 10.15252/embj.2020107121
– volume: 169
  start-page: 1276
  year: 2017
  ident: 1295_CR40
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.018
– volume: 110
  start-page: 3458
  year: 2022
  ident: 1295_CR2
  publication-title: Neuron
  doi: 10.1016/j.neuron.2022.10.020
– volume: 114
  start-page: E4612
  year: 2017
  ident: 1295_CR29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1705499114
– volume: 294
  start-page: 12754
  year: 2019
  ident: 1295_CR21
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.009487
– volume: 99
  start-page: 56
  year: 2018
  ident: 1295_CR10
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.06.030
– volume: 19
  start-page: 2318
  year: 2023
  ident: 1295_CR35
  publication-title: Autophagy
  doi: 10.1080/15548627.2023.2181614
– volume: 27
  start-page: 1293
  year: 2019
  ident: 1295_CR43
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.03.099
– ident: 1295_CR55
  doi: 10.1016/j.celrep.2021.109977
– volume: 549
  start-page: 394
  year: 2017
  ident: 1295_CR12
  publication-title: Nature
  doi: 10.1038/nature23890
– volume: 23
  start-page: 2874
  year: 2018
  ident: 1295_CR8
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.05.004
– volume: 25
  start-page: 306
  year: 2022
  ident: 1295_CR25
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-022-01022-8
– volume: 8
  year: 2022
  ident: 1295_CR62
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abo4662
– volume: 7
  year: 2016
  ident: 1295_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12082
– volume: 214
  start-page: 3611
  year: 2017
  ident: 1295_CR57
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20171749
– ident: 1295_CR52
  doi: 10.1038/s41590-023-01604-z
– volume: 6
  start-page: e149346
  year: 2021
  ident: 1295_CR53
  publication-title: JCI Insight
– volume: 563
  start-page: 639
  year: 2018
  ident: 1295_CR6
  publication-title: Nature
  doi: 10.1038/s41586-018-0718-6
– volume: 19
  start-page: e13143
  year: 2020
  ident: 1295_CR5
  publication-title: Aging Cell
  doi: 10.1111/acel.13143
– volume: 21
  year: 2022
  ident: 1295_CR56
  publication-title: Aging Cell
  doi: 10.1111/acel.13623
– volume: 29
  start-page: 4435
  year: 2019
  ident: 1295_CR60
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.11.086
– volume: 15
  start-page: 259
  year: 2019
  ident: 1295_CR64
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0213-2
SSID ssj0025474
Score 2.4818735
Snippet Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway...
Abnormal glial activation promotes neurodegeneration in Alzheimer's disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway...
Abstract Abnormal glial activation promotes neurodegeneration in Alzheimer’s disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING...
SourceID nrf
doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1936
SubjectTerms 13/100
14/19
45/91
631/378/1689/1283
631/378/371
64/110
82/51
82/80
Alzheimer Disease - etiology
Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Alzheimer's disease
Amyloid beta-Peptides - metabolism
Animals
Apolipoprotein E
Artificial intelligence
Biomedical and Life Sciences
Biomedicine
Brain
Brain injury
Cytoplasm
Dementia disorders
Disease Models, Animal
Gliosis
Humans
Immune response
Immunological memory
Inflammation
Medical Biochemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Memory
Mice
Mice, Transgenic
Microglia
Microglia - metabolism
Microglia - pathology
Mitochondrial DNA
Molecular Medicine
Neurodegeneration
Neurodegenerative diseases
Neuronal-glial interactions
Nucleotidyltransferases - genetics
Nucleotidyltransferases - metabolism
Phosphorylation
Proteins
Risk factors
Signal Transduction
Stem Cells
Synapses
Tau protein
Therapeutic targets
Transcriptomes
β-Amyloid
생화학
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtNAFB2hLngsELQ8DAUNArGhVjMP2-NliigtUruhlbobzcPTRkmcKmlow4rf4Pf4Eu4dO6YRqLBgFckeO_bcY99zPPdByBsvPSa3h9SWQaSgv3yqbGVTJ3NlDBfeK8wdPjjM947lp5Ps5FqrL4wJa8oDNxO3bbFCVeZzX_hSslCU3IET5tJzK7JeiKl74MaWYqqVWpksZJsi0xNqe8Y4LzDYFiMueJmlixU3FKv1g3Opp-FPRPP3eMlu0fQeuTOvz83i0oxG1_zS7gNyvyWUtN_cyENyq6rXyUa_BjE9XtC3NIZ4xm_n6-T2QbuSvkGudsCLDY2v6CTQz0f7hx8ppjg0H2gpNlj5MkAaSscYsXc6AphSv5ihG2xG1J4aaqcT42nM1pzOx3iq_ujrWTUYV9Mf377PaLv8Q7HvcXzLVrNH5Hj3w9H7vbTtwpA60CIXqTeKO-mDEFnFHTAOCRKD5WjE4IW1We6wuUSQJViaMWdKsLXrKasy5WUviMdkrZ7U1VNCHXOuEIx7aa10zABlDgFkce6Dl87KhLClUbRrS5Rjp4yRjkvlQunGkBoMqaMh9SIh77pjzpsCHTeO3kFbdyOxuHbcAJDTLeT03yCXkNeAFD10g3g8_p5O9HCqQYLswz8Dh2MiT8jmEkm6fS_MtAB6y3MQNHCSV91ueKJxmcbU1WQOY4C0Y9uBEubjSQO87nqBzTIFlD0hagWSKze0uqcenMWq4SB8ZQGCMyFbS_T-uq6bZmyrQ_g_TPCz_zHBz8ldHp9VDOXbJGsA4eoFcL8L-zI-5j8B-y1U7A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkXgcELQ8AgUZgbjQiPUjiXPcrigtUnuhlXqz_Ii3q91NqqQLLCf-Bn-PX8LYyQZWVBWcIiW243jGnm8yL4ReW259cLuLde5YDPqXjYUudGx4KpSizFrhY4ePjtODU_7xLDnbQHQVCxOc9kNKy3BMr7zD3jWE0sy7y3qfCZon8fIGuikyRrwb3ygd9UpWwjPeBccMmLii35oACnn6QayUtbsKYv7tKdmbS--i24vyQi2_qNnsD4m0fx_d66AkHraTf4A2inILbQ_hu6r5Er_Bwbkz_DXfQreOOhv6Nvq6B_JrqmyBK4c_nRwef8A-uKH9NYt9aZXPEw9A8dz76o1nwKDYLhsvANsWpcUK67pSFoc4zXox90MNZ9_Oi8m8qH9-_9HgzvCDfcXjcL4WzUN0uv_-ZHQQd_UXYgNayGVslaCGW8dYUlADWIODckFSTz5nmdZJanxZCcdzoDEhRuVAZTMQWiTC8oFjj9BmWZXFE4QNMQaIRS3XmhuiACw7Bwpxap3lRvMIkRVRpOmSk_saGTMZjORMyJaQEggpAyHlMkJv-z4XbWqOa1vveVr3LX1a7XCjqseyYzOpfTq0xKY2szknLsupAcRHuaWaJQOXR-gVcIqcmkno76_jSk5rCcrHIbwZ0BthaYR2VpwkuxOhkQyALU1BlYFBXvaPYS97A40qi2oBbQCu-4IDOazH45bx-vkCjiUCwHqExBpLrn3Q-pNych7yhYPKyzNQNSO0u-Le3_O6bsV2ew7_hwV--n-jP0N3aNiV3l1vB20CsxbPAd9d6hdhQ_8CUbVLrA
  priority: 102
  providerName: Springer Nature
Title Blockade of STING activation alleviates microglial dysfunction and a broad spectrum of Alzheimer’s disease pathologies
URI https://link.springer.com/article/10.1038/s12276-024-01295-y
https://www.ncbi.nlm.nih.gov/pubmed/39218977
https://www.proquest.com/docview/3112267299
https://www.proquest.com/docview/3099857094
https://pubmed.ncbi.nlm.nih.gov/PMC11447230
https://doi.org/10.1038/s12276-024-01295-y
https://doaj.org/article/b28305d6d7d941f792c61524d2b350f9
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003126391
UnpaywallVersion publishedVersion
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental and Molecular Medicine, 2024, 56(0), , pp.1936-1951
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2092-6413
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025474
  issn: 2092-6413
  databaseCode: HH5
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2092-6413
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025474
  issn: 2092-6413
  databaseCode: DOA
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2092-6413
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025474
  issn: 2092-6413
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2092-6413
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025474
  issn: 2092-6413
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVERR
  databaseName: KoreaMed Open Access
  customDbUrl:
  eissn: 2092-6413
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025474
  issn: 2092-6413
  databaseCode: 5-W
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://koreamed.org/journals
  providerName: Korean Association of Medical Journal Editors
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2092-6413
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025474
  issn: 2092-6413
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2092-6413
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025474
  issn: 2092-6413
  databaseCode: NAO
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2092-6413
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025474
  issn: 2092-6413
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2092-6413
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025474
  issn: 2092-6413
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2092-6413
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025474
  issn: 2092-6413
  databaseCode: AAJSJ
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2092-6413
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025474
  issn: 2092-6413
  databaseCode: C6C
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgk_h4QLDxERiVEYgXFq2Jna8n1FYbW6VViG1S36zYjruqbVKaFShP_Bv8e_wl3LlpSgWqeIrkOG3i-9n3O9_5jpA3mms83G5cmRjmgv2l3Vhm0lU8jNPUZ1rHeHb4vBeeXvFuP-hXG25lFVa5WhPtQq0LhXvkRwyIgR8CFUzeTz-7WDUKvatVCY3bZNcDqoKojvprgyvgNgszPugy0FvVoZkmi49KaIww_BZjMPwkcBcbisnm7wd1k8_Mv6jn3xGUtRv1Prk7z6fp4ms6Hv-hqU4ekgcVxaStJSYekVtZvkf2WzmY15MFfUtt0KfdTd8jd84r3_o--dYGvTZKdUYLQy8uz3ofKB56WG7ZUiy58mWIxJROMIZvMAbgUr0oUTEue-SaplTOilRTe35zNp_gT7XG36-z4SSb_frxs6SVQ4hiJWS77mblY3J1cnzZOXWrugyuAuvkxtVp7CuuDWNB5ivgIByMDi9EsRrNpAxCheUmDE9A9p6n0gSkr5qxjINY86ZhT8hOXuTZM0KVp1TEPF9zKbnyUiDRxoChHGqjuZLcId5KKEJVScuxdsZYWOc5i8VSkAIEKawgxcIh7-pnpsuUHVt7t1HWdU9Mt20bitlAVLNXSEyTFuhQRzrhnokSXwET9Ln2JQuaJnHIa0CKGKmhfR6vg0KMZgKMkjP4Z2B1HgsdcrBCkqhWilKsce2QV_VtmOPouEnzrJhDH6DxWIgggfF4ugRe_b7Ab70YSLxD4g1IbnzQ5p18eG3ziIMpzCMwQR1yuELv-r22jdhhjfD_GODn27_6Bbnn21mIYXsHZAfAmb0EnncjG3YyN8huq9W96MK1fdz7-AlaO2GnYfdOfgNWiVQ3
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIlE4IGj5MRRYxM-ltRp71459QCgFSkKbXEil3BbvrjeNktghaSjhxGvwEjwUT8LM2kmIQBGXniLZa2e8Mzvzzc7sDCHPNdd4uN24MjbMBf9Lu5FMpat4GCWJz7SO8OxwsxXWT_mHTtDZID_nZ2EwrXKuE62i1rnCPfIDBsDADwEKxq9Hn13sGoXR1XkLjUIsjtPZBbhsk1eNt8DfF75_9K79pu6WXQVcBdj63NVJ5CuuDWNB6iuwoBwgsxciUUYzKYNQYbMEw2Og3PNUEgPtqhLJKIg0rxgG771CrnJW4Virv9pZOngBt1WfkVCXgZ0sD-lUWHQwgYtVTPfFnA8_DtzZiiG0_QLAvGVj8y-o-3fG5iJse4NsTbNRMrtIBoM_LOPRLXKzhLS0VsjgbbKRZttkp5aBOz-c0ZfUJpna3fttcq1ZxvJ3yNdDsKP9RKc0N_Rju9F6T_GQRbFFTLHFy5ceAmE6xJzB7gAWCtWzCRriYkSmaULlOE80tedFx9Mhvqo2-HaW9obp-Nf3HxNaBqAodl62ej6d3CGnl8Kxu2Qzy7P0PqHKU6rKPF9zKbnyEgDtxoBjHmqjuZLcId6cKUKVRdKxV8dA2GA9i0TBSAGMFJaRYuaQvcUzo6JEyNrRh8jrxUgs720v5OOuKLWFkFiWLdChruqYe6Ya-wqQp8-1L1lQMbFDnoGkiL7q2efxt5uL_liAE9SAfwYU6bHQIbtzSRKlZpqI5TpyyNPFbdApGChKsjSfwhhwG7DxQQzzca8QvAW9gKe9CJwGh0QrIrnyQat3st6ZrVsOrjevgsvrkP259C7pWjdj-wsJ_48JfrD-q5-QrXq7eSJOGq3jh-S6b1ckpgzukk0Q1PQRYMxz-dgubEo-XbYm-Q0JhYxR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhU4IGh5GAos4nGhVmLv-nVAKKWEhtIKiVbKbfHuetMoiR2ShhJO_A3-Cj-HX8LM2kmIQBGXniLZa2fXMzvzzc6LkKeaa0xuN65MDHPB_tJuLDPpKh7GaeozrWPMHT48CvdP-Lt20F4jP2e5MBhWOZOJVlDrQuEZeY0BMPBDgIJJzVRhER_2mq-Gn13sIIWe1lk7jZJFDrLpOZhv45etPaD1M99vvjl-ve9WHQZcBTj7zNVp7CuuDWNB5ivQphzgsxfiBI1mUgahwsYJhiewCs9TaQLrUPVYxkGsed0weO8lcjlinGE4WdReGHsBtxWgcdIuA51ZJezUWVwbw8UIQ38x_sNPAne6pBRt7wBQdfnI_Av2_h29OXfhXiNXJvkwnZ6n_f4fWrJ5g1yv4C1tlPx4k6xl-SbZauRg2g-m9Dm1Aaf2JH-TbBxWfv0t8nUXdGov1RktDP143Dp6SzHhojwuptju5UsXQTEdYPxgpw-bhurpGJVyOSLXNKVyVKSa2tzR0WSAr2r0v51m3UE2-vX9x5hWziiKXZitzM_Gt8jJhVDsNlnPizy7S6jylIqY52suJVdeCgDeGDDSQ200V5I7xJsRRaiqYDr27egL67hnsSgJKYCQwhJSTB3yYv7MsCwXsnL0LtJ6PhJLfdsLxagjKskhJJZoC3SoI51wz0SJrwCF-lz7kgV1kzjkCXCK6KmufR5_O4XojQQYRC34Z0CUHgsdsj3jJFFJqbFY7CmHPJ7fBvmCTqM0z4oJjAETApsgJPA97pSMN58vYGsvBgPCIfESSy4taPlO3j21NczBDOcRmL8O2Zlx72Jeq77YzpzD_-MD31u96kdkA2SIeN86OrhPrvp2Q2L04DZZBz7NHgDcPJMP7b6m5NNFC5Lf5C2QjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blockade+of+STING+activation+alleviates+microglial+dysfunction+and+a+broad+spectrum+of+Alzheimer%E2%80%99s+disease+pathologies&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Chung%2C+Sunwoo&rft.au=Jeong%2C+June-Hyun&rft.au=Park%2C+Jong-Chan&rft.au=Han%2C+Jong+Won&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1226-3613&rft.eissn=2092-6413&rft.volume=56&rft.issue=9&rft.spage=1936&rft.epage=1951&rft_id=info:doi/10.1038%2Fs12276-024-01295-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2092-6413&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2092-6413&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2092-6413&client=summon