Coronary Risk Estimation Based on Clinical Data in Electronic Health Records

AbstractBackgroundClinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility. ObjectivesThe purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 yea...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American College of Cardiology Vol. 79; no. 12; pp. 1155 - 1166
Main Authors Petrazzini, Ben O., BS, Chaudhary, Kumardeep, PhD, Márquez-Luna, Carla, PhD, Forrest, Iain S., BS, Rocheleau, Ghislain, PhD, Cho, Judy, MD, Narula, Jagat, MD, PhD, Nadkarni, Girish, MD, Do, Ron, PhD
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 29.03.2022
Subjects
Online AccessGet full text
ISSN0735-1097
1558-3597
1558-3597
DOI10.1016/j.jacc.2022.01.021

Cover

Abstract AbstractBackgroundClinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility. ObjectivesThe purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 year before diagnosis, beyond conventional clinical guidelines as determined by the pooled cohort equations (PCE) and a polygenic risk score for CAD. MethodsWe applied a machine learning framework using clinical features from the EHR in a multiethnic, clinical care cohort (Bio Me) comprising 555 CAD cases and 6,349 control subjects and in a population-based cohort (UK Biobank) comprising 3,130 CAD cases and 378,344 control subjects for external validation. ResultsCompared with the PCE, the EHR score improved CAD prediction by 12% in the Bio Me Biobank and by 9% in the UK Biobank. The EHR score reclassified 25.8% and 15.2% individuals in each cohort respectively, compared with the PCE score. We observed larger improvements in the EHR score over the PCE in a subgroup of individuals with low CAD risk, with 20% increased discrimination and 34.4% increased reclassification. In all models, the polygenic risk score for CAD did not improve CAD prediction, compared with the PCE or EHR score. ConclusionsThe EHR score resulted in increased prediction and reclassification for CAD, demonstrating its potential use for population health monitoring of short-term CAD risk in large health systems.
AbstractList AbstractBackgroundClinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility. ObjectivesThe purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 year before diagnosis, beyond conventional clinical guidelines as determined by the pooled cohort equations (PCE) and a polygenic risk score for CAD. MethodsWe applied a machine learning framework using clinical features from the EHR in a multiethnic, clinical care cohort (Bio Me) comprising 555 CAD cases and 6,349 control subjects and in a population-based cohort (UK Biobank) comprising 3,130 CAD cases and 378,344 control subjects for external validation. ResultsCompared with the PCE, the EHR score improved CAD prediction by 12% in the Bio Me Biobank and by 9% in the UK Biobank. The EHR score reclassified 25.8% and 15.2% individuals in each cohort respectively, compared with the PCE score. We observed larger improvements in the EHR score over the PCE in a subgroup of individuals with low CAD risk, with 20% increased discrimination and 34.4% increased reclassification. In all models, the polygenic risk score for CAD did not improve CAD prediction, compared with the PCE or EHR score. ConclusionsThe EHR score resulted in increased prediction and reclassification for CAD, demonstrating its potential use for population health monitoring of short-term CAD risk in large health systems.
Clinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility.BACKGROUNDClinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility.The purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 year before diagnosis, beyond conventional clinical guidelines as determined by the pooled cohort equations (PCE) and a polygenic risk score for CAD.OBJECTIVESThe purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 year before diagnosis, beyond conventional clinical guidelines as determined by the pooled cohort equations (PCE) and a polygenic risk score for CAD.We applied a machine learning framework using clinical features from the EHR in a multiethnic, clinical care cohort (BioMe) comprising 555 CAD cases and 6,349 control subjects and in a population-based cohort (UK Biobank) comprising 3,130 CAD cases and 378,344 control subjects for external validation.METHODSWe applied a machine learning framework using clinical features from the EHR in a multiethnic, clinical care cohort (BioMe) comprising 555 CAD cases and 6,349 control subjects and in a population-based cohort (UK Biobank) comprising 3,130 CAD cases and 378,344 control subjects for external validation.Compared with the PCE, the EHR score improved CAD prediction by 12% in the BioMe Biobank and by 9% in the UK Biobank. The EHR score reclassified 25.8% and 15.2% individuals in each cohort respectively, compared with the PCE score. We observed larger improvements in the EHR score over the PCE in a subgroup of individuals with low CAD risk, with 20% increased discrimination and 34.4% increased reclassification. In all models, the polygenic risk score for CAD did not improve CAD prediction, compared with the PCE or EHR score.RESULTSCompared with the PCE, the EHR score improved CAD prediction by 12% in the BioMe Biobank and by 9% in the UK Biobank. The EHR score reclassified 25.8% and 15.2% individuals in each cohort respectively, compared with the PCE score. We observed larger improvements in the EHR score over the PCE in a subgroup of individuals with low CAD risk, with 20% increased discrimination and 34.4% increased reclassification. In all models, the polygenic risk score for CAD did not improve CAD prediction, compared with the PCE or EHR score.The EHR score resulted in increased prediction and reclassification for CAD, demonstrating its potential use for population health monitoring of short-term CAD risk in large health systems.CONCLUSIONSThe EHR score resulted in increased prediction and reclassification for CAD, demonstrating its potential use for population health monitoring of short-term CAD risk in large health systems.
Clinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility. The purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 year before diagnosis, beyond conventional clinical guidelines as determined by the pooled cohort equations (PCE) and a polygenic risk score for CAD. We applied a machine learning framework using clinical features from the EHR in a multiethnic, clinical care cohort (BioMe) comprising 555 CAD cases and 6,349 control subjects and in a population-based cohort (UK Biobank) comprising 3,130 CAD cases and 378,344 control subjects for external validation. Compared with the PCE, the EHR score improved CAD prediction by 12% in the BioMe Biobank and by 9% in the UK Biobank. The EHR score reclassified 25.8% and 15.2% individuals in each cohort respectively, compared with the PCE score. We observed larger improvements in the EHR score over the PCE in a subgroup of individuals with low CAD risk, with 20% increased discrimination and 34.4% increased reclassification. In all models, the polygenic risk score for CAD did not improve CAD prediction, compared with the PCE or EHR score. The EHR score resulted in increased prediction and reclassification for CAD, demonstrating its potential use for population health monitoring of short-term CAD risk in large health systems.
Clinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility. The purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 year before diagnosis, beyond conventional clinical guidelines as determined by the pooled cohort equations (PCE) and a polygenic risk score for CAD. We applied a machine learning framework using clinical features from the EHR in a multiethnic, clinical care cohort (BioMe) comprising 555 CAD cases and 6,349 control subjects and in a population-based cohort (UK Biobank) comprising 3,130 CAD cases and 378,344 control subjects for external validation. Compared with the PCE, the EHR score improved CAD prediction by 12% in the BioMe Biobank and by 9% in the UK Biobank. The EHR score reclassified 25.8% and 15.2% individuals in each cohort respectively, compared with the PCE score. We observed larger improvements in the EHR score over the PCE in a subgroup of individuals with low CAD risk, with 20% increased discrimination and 34.4% increased reclassification. In all models, the polygenic risk score for CAD did not improve CAD prediction, compared with the PCE or EHR score. The EHR score resulted in increased prediction and reclassification for CAD, demonstrating its potential use for population health monitoring of short-term CAD risk in large health systems. [Display omitted]
Author Petrazzini, Ben O., BS
Forrest, Iain S., BS
Rocheleau, Ghislain, PhD
Cho, Judy, MD
Chaudhary, Kumardeep, PhD
Márquez-Luna, Carla, PhD
Narula, Jagat, MD, PhD
Do, Ron, PhD
Nadkarni, Girish, MD
AuthorAffiliation c Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
a The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
d Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
b Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
e The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA
AuthorAffiliation_xml – name: b Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
– name: c Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
– name: d Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
– name: a The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
– name: e The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Author_xml – sequence: 1
  fullname: Petrazzini, Ben O., BS
– sequence: 2
  fullname: Chaudhary, Kumardeep, PhD
– sequence: 3
  fullname: Márquez-Luna, Carla, PhD
– sequence: 4
  fullname: Forrest, Iain S., BS
– sequence: 5
  fullname: Rocheleau, Ghislain, PhD
– sequence: 6
  fullname: Cho, Judy, MD
– sequence: 7
  fullname: Narula, Jagat, MD, PhD
– sequence: 8
  fullname: Nadkarni, Girish, MD
– sequence: 9
  fullname: Do, Ron, PhD
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35331410$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFv1DAQhS1URLeFP8AB5cglwePEsSOhSnRZKNJKSAXOlteeUKdZu9jZSvvvcdgtgh56sqWZ773RvDkjJz54JOQ10AootO-GatDGVIwyVlGoKINnZAGcy7LmnTghCypqXgLtxCk5S2mglLYSuhfktOZ1DQ3QBVkvQwxex31x7dJtsUqT2-rJBV9c6oS2yJ_l6Lwzeiw-6kkXzherEc2UKWeKK9TjdFNcownRppfkea_HhK-O7zn58Wn1fXlVrr9-_rL8sC4NF-1UWt5zXmOHCKLh0AgE2XSGbYTdCKlRtK210DCdy71EaIWl2vaW0r4VvK_rc3Jx0L3bbbZoDfop6lHdxTx73Kugnfq_4t2N-hnulex4KylkgbdHgRh-7TBNauuSwXHUHsMuKdY2Dc3uTObWN_96_TV5WGFukIcGE0NKEXtl3PRnhdnajQqomtNSg5rTUnNaioLKaWWUPUIf1J-E3h8gzBu-dxhVMg69QetizkXZ4J7GLx7h5pjvLe4xDWEXfc5OgUqZUd_mG5pPiDFKQQpe_waMIMJ0
CitedBy_id crossref_primary_10_1016_j_jacadv_2024_101297
crossref_primary_10_1016_j_ahjo_2022_100232
crossref_primary_10_1016_j_atherosclerosis_2024_119103
crossref_primary_10_1016_j_medp_2023_100001
crossref_primary_10_1016_S0140_6736_23_01059_0
crossref_primary_10_1016_j_jacadv_2024_101296
crossref_primary_10_1007_s42979_024_02946_7
crossref_primary_10_1016_S0140_6736_22_02079_7
crossref_primary_10_3389_fimmu_2023_1112181
crossref_primary_10_1016_S0140_6736_22_02584_3
crossref_primary_10_1016_S0140_6736_23_01062_0
crossref_primary_10_1007_s12170_023_00731_4
crossref_primary_10_1038_s41440_023_01469_7
crossref_primary_10_1093_ehjdh_ztae080
crossref_primary_10_1136_heartjnl_2022_321063
crossref_primary_10_15212_CVIA_2023_0011
crossref_primary_10_1007_s11883_023_01106_1
crossref_primary_10_1038_s41588_024_01791_x
crossref_primary_10_1161_JAHA_124_036946
crossref_primary_10_3389_fdgth_2024_1485508
crossref_primary_10_1016_j_jacc_2022_01_020
Cites_doi 10.1056/NEJMra1814259
10.1038/s41588-019-0379-x
10.1038/s41591-020-1037-7
10.1016/j.patter.2021.100364
10.1016/S0140-6736(13)62388-0
10.1016/j.jacc.2020.04.027
10.1038/s41746-020-0254-2
10.1016/j.jacc.2015.11.009
10.1161/CIRCULATIONAHA.115.016846
10.1056/NEJMc2104626
10.1016/j.jacc.2013.11.005
10.1001/jama.2019.21782
10.1016/j.ajhg.2020.04.002
10.1001/jama.2014.2630
10.1093/bioinformatics/btr597
10.1001/jama.2014.2632
10.1186/1471-2105-12-77
10.1001/jama.2019.22241
10.1038/s41746-020-00331-1
10.1016/j.amjcard.2021.02.032
10.1371/journal.pone.0213653
10.1038/s41598-018-36745-x
10.1093/jamia/ocy052
10.1016/j.jacc.2013.11.002
10.1016/j.jacc.2016.02.055
10.1371/journal.pone.0135834
10.1038/s41588-018-0183-z
10.1038/s41591-018-0300-7
10.1016/j.jacc.2020.04.054
10.1136/bmjopen-2015-009952
ContentType Journal Article
Copyright American College of Cardiology Foundation
2022 American College of Cardiology Foundation
Copyright © 2022 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: American College of Cardiology Foundation
– notice: 2022 American College of Cardiology Foundation
– notice: Copyright © 2022 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jacc.2022.01.021
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1558-3597
EndPage 1166
ExternalDocumentID PMC8956801
35331410
10_1016_j_jacc_2022_01_021
S0735109722001875
1_s2_0_S0735109722001875
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL139865
– fundername: NIH HHS
  grantid: S10 OD030463
– fundername: NIH HHS
  grantid: S10 OD026880
– fundername: NIDDK NIH HHS
  grantid: K23 DK107908
– fundername: NIGMS NIH HHS
  grantid: T32 GM007280
– fundername: NIDDK NIH HHS
  grantid: R01 DK108803
– fundername: NIDDK NIH HHS
  grantid: U01 DK116100
– fundername: NHLBI NIH HHS
  grantid: T32 HL007824
– fundername: NHLBI NIH HHS
  grantid: R01 HL155915
– fundername: NIGMS NIH HHS
  grantid: R35 GM124836
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
0SF
18M
1B1
1CY
1P~
1~.
1~5
29L
2WC
3O-
3V.
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
6PF
7-5
71M
7RV
8P~
AABNK
AABVL
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKUH
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AAXUO
AAYOK
ABBQC
ABFNM
ABFRF
ABLJU
ABMAC
ABMZM
ABOCM
ABVKL
ABWVN
ABXDB
ACGFO
ACGFS
ACIUM
ACJTP
ACPRK
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADVLN
AEFWE
AEKER
AENEX
AEVXI
AEXQZ
AFCTW
AFETI
AFFNX
AFRAH
AFRHN
AFTJW
AGHFR
AGYEJ
AHMBA
AITUG
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BENPR
BLXMC
BPHCQ
CS3
DIK
DU5
E3Z
EBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FNPLU
G-Q
GBLVA
GX1
H13
HVGLF
HX~
HZ~
IHE
IXB
J1W
J5H
K-O
KQ8
L7B
MO0
N4W
N9A
NCXOZ
O-L
O9-
OA.
OAUVE
OK1
OL~
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
QTD
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SSZ
T5K
TR2
UNMZH
UV1
W8F
WH7
WOQ
WOW
X7M
XPP
YYM
YYP
YZZ
Z5R
ZGI
ZXP
AAIAV
ABJNI
LCYCR
NAHTW
ZA5
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKBMS
AKYEP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
~HD
5PM
ID FETCH-LOGICAL-c576t-d5f553e9ee1745147e1849c2b7db78ae766dd142a174f8e167d0adfd00f675f33
IEDL.DBID .~1
ISSN 0735-1097
1558-3597
IngestDate Thu Aug 21 18:38:17 EDT 2025
Sat Sep 27 18:44:51 EDT 2025
Mon May 05 07:04:11 EDT 2025
Tue Jul 01 03:22:29 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Fri Feb 23 02:37:20 EST 2024
Sun Feb 23 10:18:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords coronary artery disease
NRI
ASCVD
CAD
net reclassification improvement
AUROC
atherosclerotic cardiovascular disease
machine learning
EHR
PRS
pooled cohort equations
PCE
area under the receiver-operating characteristic curve
biobank
electronic health record
polygenic risk score
prevention
ML
Language English
License This article is made available under the Elsevier license.
Copyright © 2022 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-d5f553e9ee1745147e1849c2b7db78ae766dd142a174f8e167d0adfd00f675f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0735109722001875
PMID 35331410
PQID 2644017428
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8956801
proquest_miscellaneous_2644017428
pubmed_primary_35331410
crossref_citationtrail_10_1016_j_jacc_2022_01_021
crossref_primary_10_1016_j_jacc_2022_01_021
elsevier_sciencedirect_doi_10_1016_j_jacc_2022_01_021
elsevier_clinicalkeyesjournals_1_s2_0_S0735109722001875
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-29
PublicationDateYYYYMMDD 2022-03-29
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American College of Cardiology
PublicationTitleAlternate J Am Coll Cardiol
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ward, Sarraju, Chung (bib18) 2020; 3
Cutillo, Sharma, Foschini (bib32) 2020; 3
McCormick, Bhole, Lacaille, Avina-Zubieta (bib37) 2015; 10
Zamorano, del Val (bib1) 2016; 67
Topol (bib17) 2019; 25
DeFilippis, Young, McEvoy (bib8) 2016; 38
Finlayson, Subbaswamy, Singh (bib35) 2021; 385
Kavousi, Leening, Nanchen (bib5) 2014; 311
Yeboah, Polonsky, Young (bib6) 2015; 132
Stekhoven, Bühlmann (bib22) 2012; 28
Cruz Rivera, Chan (bib34) 2020; 26
Kuhn (bib28) 2008; 28
Ridker, Cook (bib4) 2013; 382
Elliott, Bodinier, Bond (bib12) 2020; 323
Rajkomar, Dean, Kohane (bib24) 2019; 380
Aragam, Dobbyn, Judy (bib14) 2020; 75
Mosley, Gupta, Tan (bib13) 2020; 323
Robin, Turck, Hainard (bib30) 2011; 12
Muntner, Colantonio, Cushman (bib7) 2014; 311
Kursa, Rudnicki (bib23) 2010; 36
Khokhar, Jette, Metcalfe (bib36) 2016; 6
Karatzoglou, Smola, Hornik, Zeileis (bib27) 2004; 11
Chen, Guestrin (bib26) 2016
Rana, Tabada, Solomon (bib9) 2016; 67
Veinot, Mitchell, Ancker (bib33) 2018; 25
Agrawal, Klarqvist, Emdin (bib21) 2021; 2
Martin, Kanai, Kamatani, Okada, Neale, Daly (bib38) 2019; 51
Liaw, Wiener (bib25) 2002; 2
Dikilitas, Schaid, Kosel (bib15) 2020; 106
Weale, Riveros-Mckay, Selzam (bib11) 2021; 148
Inoue (bib31) 2018
Goff, Lloyd-Jones, Bennett (bib2) 2014; 63
Khera, Chaffin, Aragam (bib10) 2018; 50
Rotter, Lin (bib16) 2020; 75
(bib29) 2019
Zhao, Feng, Wu (bib20) 2019; 9
Stone, Robinson, Lichtenstein (bib3) 2014; 63
Alaa, Bolton, Di Angelantonio, Rudd, van der Schaar (bib19) 2019; 14
DeFilippis (10.1016/j.jacc.2022.01.021_bib8) 2016; 38
(10.1016/j.jacc.2022.01.021_bib29) 2019
Muntner (10.1016/j.jacc.2022.01.021_bib7) 2014; 311
Elliott (10.1016/j.jacc.2022.01.021_bib12) 2020; 323
Rotter (10.1016/j.jacc.2022.01.021_bib16) 2020; 75
Agrawal (10.1016/j.jacc.2022.01.021_bib21) 2021; 2
Chen (10.1016/j.jacc.2022.01.021_bib26) 2016
Ridker (10.1016/j.jacc.2022.01.021_bib4) 2013; 382
Aragam (10.1016/j.jacc.2022.01.021_bib14) 2020; 75
Veinot (10.1016/j.jacc.2022.01.021_bib33) 2018; 25
Stone (10.1016/j.jacc.2022.01.021_bib3) 2014; 63
Cutillo (10.1016/j.jacc.2022.01.021_bib32) 2020; 3
Cruz Rivera (10.1016/j.jacc.2022.01.021_bib34) 2020; 26
Martin (10.1016/j.jacc.2022.01.021_bib38) 2019; 51
Liaw (10.1016/j.jacc.2022.01.021_bib25) 2002; 2
Kavousi (10.1016/j.jacc.2022.01.021_bib5) 2014; 311
Robin (10.1016/j.jacc.2022.01.021_bib30) 2011; 12
Finlayson (10.1016/j.jacc.2022.01.021_bib35) 2021; 385
Kursa (10.1016/j.jacc.2022.01.021_bib23) 2010; 36
Dikilitas (10.1016/j.jacc.2022.01.021_bib15) 2020; 106
Alaa (10.1016/j.jacc.2022.01.021_bib19) 2019; 14
Karatzoglou (10.1016/j.jacc.2022.01.021_bib27) 2004; 11
Rana (10.1016/j.jacc.2022.01.021_bib9) 2016; 67
Ward (10.1016/j.jacc.2022.01.021_bib18) 2020; 3
Zhao (10.1016/j.jacc.2022.01.021_bib20) 2019; 9
Stekhoven (10.1016/j.jacc.2022.01.021_bib22) 2012; 28
Khokhar (10.1016/j.jacc.2022.01.021_bib36) 2016; 6
McCormick (10.1016/j.jacc.2022.01.021_bib37) 2015; 10
Kuhn (10.1016/j.jacc.2022.01.021_bib28) 2008; 28
Mosley (10.1016/j.jacc.2022.01.021_bib13) 2020; 323
Goff (10.1016/j.jacc.2022.01.021_bib2) 2014; 63
Topol (10.1016/j.jacc.2022.01.021_bib17) 2019; 25
Zamorano (10.1016/j.jacc.2022.01.021_bib1) 2016; 67
Yeboah (10.1016/j.jacc.2022.01.021_bib6) 2015; 132
Rajkomar (10.1016/j.jacc.2022.01.021_bib24) 2019; 380
Inoue (10.1016/j.jacc.2022.01.021_bib31) 2018
Khera (10.1016/j.jacc.2022.01.021_bib10) 2018; 50
Weale (10.1016/j.jacc.2022.01.021_bib11) 2021; 148
35331411 - J Am Coll Cardiol. 2022 Mar 29;79(12):1167-1169. doi: 10.1016/j.jacc.2022.01.020
References_xml – volume: 132
  start-page: 916
  year: 2015
  end-page: 922
  ident: bib6
  article-title: Utility of nontraditional risk markers in individuals ineligible for statin therapy according to the 2013 American College of Cardiology/American Heart Association Cholesterol Guidelines
  publication-title: Circulation
– volume: 311
  start-page: 1406
  year: 2014
  end-page: 1415
  ident: bib7
  article-title: Validation of the atherosclerotic cardiovascular disease pooled cohort risk equations
  publication-title: JAMA
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib25
  article-title: Classification and Regression by randomForest
  publication-title: R News
– volume: 25
  start-page: 1080
  year: 2018
  end-page: 1088
  ident: bib33
  article-title: Good intentions are not enough: how informatics interventions can worsen inequality
  publication-title: J Am Med Inform Assoc
– volume: 9
  start-page: 717
  year: 2019
  ident: bib20
  article-title: Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction
  publication-title: Sci Rep
– volume: 63
  start-page: 2889
  year: 2014
  end-page: 2934
  ident: bib3
  article-title: 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
  publication-title: J Am Coll Cardiol
– volume: 63
  start-page: 2935
  year: 2014
  end-page: 2959
  ident: bib2
  article-title: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
  publication-title: J Am Coll Cardiol
– volume: 26
  start-page: 1351
  year: 2020
  end-page: 1363
  ident: bib34
  article-title: Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension
  publication-title: Nat Med
– year: 2019
  ident: bib29
  article-title: R: A language and environment for statistical computing
– volume: 148
  start-page: 157
  year: 2021
  end-page: 164
  ident: bib11
  article-title: Validation of an integrated risk tool, including polygenic risk score, for atherosclerotic cardiovascular disease in multiple ethnicities and ancestries
  publication-title: Am J Cardiol
– volume: 28
  start-page: 112
  year: 2012
  end-page: 118
  ident: bib22
  article-title: MissForest—non-parametric missing value imputation for mixed-type data
  publication-title: Bioinformatics
– volume: 50
  start-page: 1219
  year: 2018
  end-page: 1224
  ident: bib10
  article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations
  publication-title: Nat Genet
– volume: 36
  start-page: 1
  year: 2010
  end-page: 13
  ident: bib23
  article-title: Feature selection with the Boruta package
  publication-title: J Stat Soft
– volume: 106
  start-page: 707
  year: 2020
  end-page: 716
  ident: bib15
  article-title: Predictive utility of polygenic risk scores for coronary heart disease in three major racial and ethnic groups
  publication-title: Am J Hum Genet
– volume: 25
  start-page: 44
  year: 2019
  end-page: 56
  ident: bib17
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med
– volume: 10
  year: 2015
  ident: bib37
  article-title: Validity of diagnostic codes for acute stroke in administrative databases: a systematic review
  publication-title: PLoS One
– volume: 67
  start-page: 148
  year: 2016
  end-page: 150
  ident: bib1
  article-title: Predictive models of atherosclerotic cardiovascular disease: in search of the philosopher’s stone of cardiology
  publication-title: J Am Coll Cardiol
– year: 2018
  ident: bib31
  article-title: nricens: NRI for risk prediction models with time to event and binary response data
– volume: 75
  start-page: 2769
  year: 2020
  end-page: 2780
  ident: bib14
  article-title: Limitations of contemporary guidelines for managing patients at high genetic risk of coronary artery disease
  publication-title: J Am Coll Cardiol
– volume: 380
  start-page: 1347
  year: 2019
  end-page: 1358
  ident: bib24
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
– volume: 6
  year: 2016
  ident: bib36
  article-title: Systematic review of validated case definitions for diabetes in ICD-9-coded and ICD-10-coded data in adult populations
  publication-title: BMJ Open
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib26
  article-title: XGBoost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 3
  start-page: 47
  year: 2020
  ident: bib32
  article-title: Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency
  publication-title: NPJ Digital Medicine
– volume: 323
  start-page: 627
  year: 2020
  end-page: 635
  ident: bib13
  article-title: Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease
  publication-title: JAMA
– volume: 382
  start-page: 1762
  year: 2013
  end-page: 1765
  ident: bib4
  article-title: Statins: new American guidelines for prevention of cardiovascular disease
  publication-title: Lancet
– volume: 385
  start-page: 283
  year: 2021
  end-page: 286
  ident: bib35
  article-title: The clinician and dataset shift in artificial intelligence
  publication-title: N Engl J Med
– volume: 11
  start-page: 1
  year: 2004
  end-page: 20
  ident: bib27
  article-title: kernlab—an S4 package for kernel methods in R
  publication-title: J Stat Soft
– volume: 323
  start-page: 636
  year: 2020
  end-page: 645
  ident: bib12
  article-title: Predictive accuracy of a polygenic risk score–enhanced prediction model vs a clinical risk score for coronary artery disease
  publication-title: JAMA
– volume: 2
  start-page: 100364
  year: 2021
  ident: bib21
  article-title: Selection of 51 predictors from 13,782 candidate multimodal features using machine learning improves coronary artery disease prediction
  publication-title: Patterns (N Y)
– volume: 38
  start-page: 598
  year: 2016
  end-page: 608
  ident: bib8
  article-title: Risk score overestimation: the impact of individual cardiovascular risk factors and preventive therapies on the performance of the American Heart Association-American College of Cardiology-Atherosclerotic Cardiovascular Disease risk score in a modern multi-ethnic cohort
  publication-title: Eur Heart J
– volume: 51
  start-page: 584
  year: 2019
  end-page: 591
  ident: bib38
  article-title: Clinical use of current polygenic risk scores may exacerbate health disparities
  publication-title: Nat Genet
– volume: 14
  year: 2019
  ident: bib19
  article-title: Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants
  publication-title: PLoS One
– volume: 311
  start-page: 1416
  year: 2014
  end-page: 1423
  ident: bib5
  article-title: Comparison of application of the ACC/AHA Guidelines, Adult Treatment Panel III Guidelines, and European Society of Cardiology Guidelines for Cardiovascular Disease Prevention in a European cohort
  publication-title: JAMA
– volume: 12
  start-page: 77
  year: 2011
  ident: bib30
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
– volume: 75
  start-page: 2781
  year: 2020
  end-page: 2784
  ident: bib16
  article-title: An outbreak of polygenic scores for coronary artery disease
  publication-title: J Am Coll Cardiol
– volume: 28
  year: 2008
  ident: bib28
  article-title: Building predictive models in R using the caret package
  publication-title: J Stat Soft
– volume: 3
  start-page: 125
  year: 2020
  ident: bib18
  article-title: Machine learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population
  publication-title: NPJ Digit Med
– volume: 67
  start-page: 2118
  year: 2016
  end-page: 2130
  ident: bib9
  article-title: Accuracy of the atherosclerotic cardiovascular risk equation in a large contemporary, multiethnic population
  publication-title: J Am Coll Cardiol
– volume: 380
  start-page: 1347
  year: 2019
  ident: 10.1016/j.jacc.2022.01.021_bib24
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1814259
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.jacc.2022.01.021_bib25
  article-title: Classification and Regression by randomForest
  publication-title: R News
– volume: 51
  start-page: 584
  year: 2019
  ident: 10.1016/j.jacc.2022.01.021_bib38
  article-title: Clinical use of current polygenic risk scores may exacerbate health disparities
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0379-x
– volume: 26
  start-page: 1351
  year: 2020
  ident: 10.1016/j.jacc.2022.01.021_bib34
  article-title: Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension
  publication-title: Nat Med
  doi: 10.1038/s41591-020-1037-7
– volume: 2
  start-page: 100364
  issue: 12
  year: 2021
  ident: 10.1016/j.jacc.2022.01.021_bib21
  article-title: Selection of 51 predictors from 13,782 candidate multimodal features using machine learning improves coronary artery disease prediction
  publication-title: Patterns (N Y)
  doi: 10.1016/j.patter.2021.100364
– volume: 382
  start-page: 1762
  year: 2013
  ident: 10.1016/j.jacc.2022.01.021_bib4
  article-title: Statins: new American guidelines for prevention of cardiovascular disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)62388-0
– volume: 75
  start-page: 2769
  year: 2020
  ident: 10.1016/j.jacc.2022.01.021_bib14
  article-title: Limitations of contemporary guidelines for managing patients at high genetic risk of coronary artery disease
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2020.04.027
– volume: 3
  start-page: 47
  year: 2020
  ident: 10.1016/j.jacc.2022.01.021_bib32
  article-title: Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency
  publication-title: NPJ Digital Medicine
  doi: 10.1038/s41746-020-0254-2
– volume: 67
  start-page: 148
  year: 2016
  ident: 10.1016/j.jacc.2022.01.021_bib1
  article-title: Predictive models of atherosclerotic cardiovascular disease: in search of the philosopher’s stone of cardiology
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2015.11.009
– volume: 132
  start-page: 916
  year: 2015
  ident: 10.1016/j.jacc.2022.01.021_bib6
  article-title: Utility of nontraditional risk markers in individuals ineligible for statin therapy according to the 2013 American College of Cardiology/American Heart Association Cholesterol Guidelines
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.016846
– start-page: 785
  year: 2016
  ident: 10.1016/j.jacc.2022.01.021_bib26
  article-title: XGBoost: a scalable tree boosting system
– volume: 385
  start-page: 283
  year: 2021
  ident: 10.1016/j.jacc.2022.01.021_bib35
  article-title: The clinician and dataset shift in artificial intelligence
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2104626
– volume: 63
  start-page: 2935
  issue: 25 Pt B
  year: 2014
  ident: 10.1016/j.jacc.2022.01.021_bib2
  article-title: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2013.11.005
– volume: 323
  start-page: 627
  year: 2020
  ident: 10.1016/j.jacc.2022.01.021_bib13
  article-title: Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease
  publication-title: JAMA
  doi: 10.1001/jama.2019.21782
– volume: 106
  start-page: 707
  year: 2020
  ident: 10.1016/j.jacc.2022.01.021_bib15
  article-title: Predictive utility of polygenic risk scores for coronary heart disease in three major racial and ethnic groups
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2020.04.002
– volume: 311
  start-page: 1406
  year: 2014
  ident: 10.1016/j.jacc.2022.01.021_bib7
  article-title: Validation of the atherosclerotic cardiovascular disease pooled cohort risk equations
  publication-title: JAMA
  doi: 10.1001/jama.2014.2630
– volume: 28
  start-page: 112
  year: 2012
  ident: 10.1016/j.jacc.2022.01.021_bib22
  article-title: MissForest—non-parametric missing value imputation for mixed-type data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
– volume: 311
  start-page: 1416
  year: 2014
  ident: 10.1016/j.jacc.2022.01.021_bib5
  article-title: Comparison of application of the ACC/AHA Guidelines, Adult Treatment Panel III Guidelines, and European Society of Cardiology Guidelines for Cardiovascular Disease Prevention in a European cohort
  publication-title: JAMA
  doi: 10.1001/jama.2014.2632
– volume: 12
  start-page: 77
  year: 2011
  ident: 10.1016/j.jacc.2022.01.021_bib30
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-77
– volume: 323
  start-page: 636
  year: 2020
  ident: 10.1016/j.jacc.2022.01.021_bib12
  article-title: Predictive accuracy of a polygenic risk score–enhanced prediction model vs a clinical risk score for coronary artery disease
  publication-title: JAMA
  doi: 10.1001/jama.2019.22241
– volume: 11
  start-page: 1
  year: 2004
  ident: 10.1016/j.jacc.2022.01.021_bib27
  article-title: kernlab—an S4 package for kernel methods in R
  publication-title: J Stat Soft
– volume: 3
  start-page: 125
  year: 2020
  ident: 10.1016/j.jacc.2022.01.021_bib18
  article-title: Machine learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-020-00331-1
– volume: 148
  start-page: 157
  year: 2021
  ident: 10.1016/j.jacc.2022.01.021_bib11
  article-title: Validation of an integrated risk tool, including polygenic risk score, for atherosclerotic cardiovascular disease in multiple ethnicities and ancestries
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2021.02.032
– year: 2019
  ident: 10.1016/j.jacc.2022.01.021_bib29
– year: 2018
  ident: 10.1016/j.jacc.2022.01.021_bib31
– volume: 14
  year: 2019
  ident: 10.1016/j.jacc.2022.01.021_bib19
  article-title: Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0213653
– volume: 9
  start-page: 717
  year: 2019
  ident: 10.1016/j.jacc.2022.01.021_bib20
  article-title: Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-36745-x
– volume: 25
  start-page: 1080
  year: 2018
  ident: 10.1016/j.jacc.2022.01.021_bib33
  article-title: Good intentions are not enough: how informatics interventions can worsen inequality
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocy052
– volume: 63
  start-page: 2889
  issue: 25 Pt B
  year: 2014
  ident: 10.1016/j.jacc.2022.01.021_bib3
  article-title: 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2013.11.002
– volume: 36
  start-page: 1
  year: 2010
  ident: 10.1016/j.jacc.2022.01.021_bib23
  article-title: Feature selection with the Boruta package
  publication-title: J Stat Soft
– volume: 67
  start-page: 2118
  year: 2016
  ident: 10.1016/j.jacc.2022.01.021_bib9
  article-title: Accuracy of the atherosclerotic cardiovascular risk equation in a large contemporary, multiethnic population
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.02.055
– volume: 10
  year: 2015
  ident: 10.1016/j.jacc.2022.01.021_bib37
  article-title: Validity of diagnostic codes for acute stroke in administrative databases: a systematic review
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0135834
– volume: 50
  start-page: 1219
  year: 2018
  ident: 10.1016/j.jacc.2022.01.021_bib10
  article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0183-z
– volume: 28
  year: 2008
  ident: 10.1016/j.jacc.2022.01.021_bib28
  article-title: Building predictive models in R using the caret package
  publication-title: J Stat Soft
– volume: 25
  start-page: 44
  year: 2019
  ident: 10.1016/j.jacc.2022.01.021_bib17
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0300-7
– volume: 75
  start-page: 2781
  year: 2020
  ident: 10.1016/j.jacc.2022.01.021_bib16
  article-title: An outbreak of polygenic scores for coronary artery disease
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2020.04.054
– volume: 6
  issue: 8
  year: 2016
  ident: 10.1016/j.jacc.2022.01.021_bib36
  article-title: Systematic review of validated case definitions for diabetes in ICD-9-coded and ICD-10-coded data in adult populations
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2015-009952
– volume: 38
  start-page: 598
  year: 2016
  ident: 10.1016/j.jacc.2022.01.021_bib8
  publication-title: Eur Heart J
– reference: 35331411 - J Am Coll Cardiol. 2022 Mar 29;79(12):1167-1169. doi: 10.1016/j.jacc.2022.01.020
SSID ssj0006819
Score 2.5096388
Snippet AbstractBackgroundClinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD)...
Clinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility. The...
Clinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD)...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1155
SubjectTerms biobank
Cardiovascular
Cohort Studies
coronary artery disease
Coronary Artery Disease - diagnosis
Coronary Artery Disease - epidemiology
electronic health record
Electronic Health Records
Genome-Wide Association Study
Humans
machine learning
polygenic risk score
pooled cohort equations
prevention
Risk Assessment - methods
Risk Factors
Title Coronary Risk Estimation Based on Clinical Data in Electronic Health Records
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0735109722001875
https://dx.doi.org/10.1016/j.jacc.2022.01.021
https://www.ncbi.nlm.nih.gov/pubmed/35331410
https://www.proquest.com/docview/2644017428
https://pubmed.ncbi.nlm.nih.gov/PMC8956801
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27TuQw0EIUiObEHXAscMhIdCi3edhxUsKyCBBQwCFtZzm2IwIoILIU1_DtzMROYEFQ0ERJPFac8TzleRCyA0qstFFYgFvCWYAtCoMMFGvAmQ5Volmo29Pzs_P06IqdTPhkjoy6XBgMq_Sy38n0Vlr7N0OPzeFDVQ0vgTg5np_GcdtZDhPNGRNI63-fX8M80qxt7oHAAUL7xBkX43WjNJYxjGNXujP6TDl9ND7fx1C-UUqHS-SHtybpnlvwTzJn619k4cyfly-T0xEWKFCP_-lF1dzSMfCzS1Wk-6C9DIUbXxj0jh6oqaJVTcd9YxzqcpSoc1GbFXJ1OP43Ogp8_4RAgxcxDQwvOU9sbi24HWAYCQvuXK7jQphCZMqKNDUmYrGC4TKzUSpMqExpwrAEN6JMklUyX9_Xdo1QlRjOdQa-o9KMW5GnGVNFXghugIFtOiBRhzipfXFx7HFxJ7soshuJyJaIbBlGEpA9ILv9nAdXWuNLaNHth-ySRkHM2cbzXCMj2QCw_EAXA8L7mTOkJUFrfPnF7W7bJfAcHqSo2t4_NRKNSJBk4LkNyG9HBv0fJGA_Y-wsrHeGQHoArOc9O1JX121d7wxTN8No_Zvr3SCL-IQBcnG-Seanj0_2D1hM02KrZQm4Hk_2XwDDUhKg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtwwcARUgl4qaIFuC9SVekNh83Iex7Is2sIuhwISN8uxHRGKAiLLoZd-e2diJ3SLyqG3KB4rzniemhfAF1RipQn8At0SHns0otDLULF6PFa-jFTsqzZ6PjtLJpfxyRW_WoJRVwtDaZVO9luZ3kpr92bosDm8r6rhORInp_hpGLaT5fgyvIqJopCoD3495XkkWTvdg6A9AneVMzbJ60Yq6mMYhrZ3Z_Av7fTc-vw7ifIPrXS8Dm-cOcm-2hNvwJKp38LqzAXM38F0RB0K5MNP9r1qfrAxMrStVWSHqL40wwfXGfSWHcm5ZFXNxv1kHGaLlJj1UZtNuDweX4wmnhug4Cl0I-ae5iXnkcmNQb8DLaPUoD-Xq7BIdZFm0qRJonUQhxKXy8wESap9qUvt-yX6EWUUbcFKfVeb98BkpDlXGTqPUsXcpHmSxbLIi5Rr5GCTDCDoECeU6y5OQy5uRZdGdiMI2YKQLfxAILIHsN_vube9NV6ETrv7EF3VKMo50zima0QgGgQWzwhjALzfuUBbAtXGi1_83F27QKajSIqszd1jI8iKRFGGrtsAti0Z9H8QoQFNybN43gUC6QGooffiSl1dt429M6rd9IMP_3neT7A2uZhNxfTb2elHeE0rlC0X5juwMn94NLtoPs2LvZY9fgMVDhS7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coronary+Risk+Estimation+Based+on+Clinical+Data+in+Electronic+Health+Records&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Petrazzini%2C+Ben+O&rft.au=Chaudhary%2C+Kumardeep&rft.au=M%C3%A1rquez-Luna%2C+Carla&rft.au=rest%2C+Iain+S&rft.date=2022-03-29&rft.issn=1558-3597&rft.eissn=1558-3597&rft.volume=79&rft.issue=12&rft.spage=1155&rft_id=info:doi/10.1016%2Fj.jacc.2022.01.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F07351097%2FS0735109721X00629%2Fcov150h.gif