Coronary Risk Estimation Based on Clinical Data in Electronic Health Records
AbstractBackgroundClinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility. ObjectivesThe purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 yea...
Saved in:
Published in | Journal of the American College of Cardiology Vol. 79; no. 12; pp. 1155 - 1166 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
29.03.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0735-1097 1558-3597 1558-3597 |
DOI | 10.1016/j.jacc.2022.01.021 |
Cover
Abstract | AbstractBackgroundClinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility. ObjectivesThe purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 year before diagnosis, beyond conventional clinical guidelines as determined by the pooled cohort equations (PCE) and a polygenic risk score for CAD. MethodsWe applied a machine learning framework using clinical features from the EHR in a multiethnic, clinical care cohort (Bio Me) comprising 555 CAD cases and 6,349 control subjects and in a population-based cohort (UK Biobank) comprising 3,130 CAD cases and 378,344 control subjects for external validation. ResultsCompared with the PCE, the EHR score improved CAD prediction by 12% in the Bio Me Biobank and by 9% in the UK Biobank. The EHR score reclassified 25.8% and 15.2% individuals in each cohort respectively, compared with the PCE score. We observed larger improvements in the EHR score over the PCE in a subgroup of individuals with low CAD risk, with 20% increased discrimination and 34.4% increased reclassification. In all models, the polygenic risk score for CAD did not improve CAD prediction, compared with the PCE or EHR score. ConclusionsThe EHR score resulted in increased prediction and reclassification for CAD, demonstrating its potential use for population health monitoring of short-term CAD risk in large health systems. |
---|---|
AbstractList | AbstractBackgroundClinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility. ObjectivesThe purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 year before diagnosis, beyond conventional clinical guidelines as determined by the pooled cohort equations (PCE) and a polygenic risk score for CAD. MethodsWe applied a machine learning framework using clinical features from the EHR in a multiethnic, clinical care cohort (Bio Me) comprising 555 CAD cases and 6,349 control subjects and in a population-based cohort (UK Biobank) comprising 3,130 CAD cases and 378,344 control subjects for external validation. ResultsCompared with the PCE, the EHR score improved CAD prediction by 12% in the Bio Me Biobank and by 9% in the UK Biobank. The EHR score reclassified 25.8% and 15.2% individuals in each cohort respectively, compared with the PCE score. We observed larger improvements in the EHR score over the PCE in a subgroup of individuals with low CAD risk, with 20% increased discrimination and 34.4% increased reclassification. In all models, the polygenic risk score for CAD did not improve CAD prediction, compared with the PCE or EHR score. ConclusionsThe EHR score resulted in increased prediction and reclassification for CAD, demonstrating its potential use for population health monitoring of short-term CAD risk in large health systems. Clinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility.BACKGROUNDClinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility.The purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 year before diagnosis, beyond conventional clinical guidelines as determined by the pooled cohort equations (PCE) and a polygenic risk score for CAD.OBJECTIVESThe purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 year before diagnosis, beyond conventional clinical guidelines as determined by the pooled cohort equations (PCE) and a polygenic risk score for CAD.We applied a machine learning framework using clinical features from the EHR in a multiethnic, clinical care cohort (BioMe) comprising 555 CAD cases and 6,349 control subjects and in a population-based cohort (UK Biobank) comprising 3,130 CAD cases and 378,344 control subjects for external validation.METHODSWe applied a machine learning framework using clinical features from the EHR in a multiethnic, clinical care cohort (BioMe) comprising 555 CAD cases and 6,349 control subjects and in a population-based cohort (UK Biobank) comprising 3,130 CAD cases and 378,344 control subjects for external validation.Compared with the PCE, the EHR score improved CAD prediction by 12% in the BioMe Biobank and by 9% in the UK Biobank. The EHR score reclassified 25.8% and 15.2% individuals in each cohort respectively, compared with the PCE score. We observed larger improvements in the EHR score over the PCE in a subgroup of individuals with low CAD risk, with 20% increased discrimination and 34.4% increased reclassification. In all models, the polygenic risk score for CAD did not improve CAD prediction, compared with the PCE or EHR score.RESULTSCompared with the PCE, the EHR score improved CAD prediction by 12% in the BioMe Biobank and by 9% in the UK Biobank. The EHR score reclassified 25.8% and 15.2% individuals in each cohort respectively, compared with the PCE score. We observed larger improvements in the EHR score over the PCE in a subgroup of individuals with low CAD risk, with 20% increased discrimination and 34.4% increased reclassification. In all models, the polygenic risk score for CAD did not improve CAD prediction, compared with the PCE or EHR score.The EHR score resulted in increased prediction and reclassification for CAD, demonstrating its potential use for population health monitoring of short-term CAD risk in large health systems.CONCLUSIONSThe EHR score resulted in increased prediction and reclassification for CAD, demonstrating its potential use for population health monitoring of short-term CAD risk in large health systems. Clinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility. The purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 year before diagnosis, beyond conventional clinical guidelines as determined by the pooled cohort equations (PCE) and a polygenic risk score for CAD. We applied a machine learning framework using clinical features from the EHR in a multiethnic, clinical care cohort (BioMe) comprising 555 CAD cases and 6,349 control subjects and in a population-based cohort (UK Biobank) comprising 3,130 CAD cases and 378,344 control subjects for external validation. Compared with the PCE, the EHR score improved CAD prediction by 12% in the BioMe Biobank and by 9% in the UK Biobank. The EHR score reclassified 25.8% and 15.2% individuals in each cohort respectively, compared with the PCE score. We observed larger improvements in the EHR score over the PCE in a subgroup of individuals with low CAD risk, with 20% increased discrimination and 34.4% increased reclassification. In all models, the polygenic risk score for CAD did not improve CAD prediction, compared with the PCE or EHR score. The EHR score resulted in increased prediction and reclassification for CAD, demonstrating its potential use for population health monitoring of short-term CAD risk in large health systems. Clinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility. The purpose of this study was to determine whether an EHR score can improve CAD prediction and reclassification 1 year before diagnosis, beyond conventional clinical guidelines as determined by the pooled cohort equations (PCE) and a polygenic risk score for CAD. We applied a machine learning framework using clinical features from the EHR in a multiethnic, clinical care cohort (BioMe) comprising 555 CAD cases and 6,349 control subjects and in a population-based cohort (UK Biobank) comprising 3,130 CAD cases and 378,344 control subjects for external validation. Compared with the PCE, the EHR score improved CAD prediction by 12% in the BioMe Biobank and by 9% in the UK Biobank. The EHR score reclassified 25.8% and 15.2% individuals in each cohort respectively, compared with the PCE score. We observed larger improvements in the EHR score over the PCE in a subgroup of individuals with low CAD risk, with 20% increased discrimination and 34.4% increased reclassification. In all models, the polygenic risk score for CAD did not improve CAD prediction, compared with the PCE or EHR score. The EHR score resulted in increased prediction and reclassification for CAD, demonstrating its potential use for population health monitoring of short-term CAD risk in large health systems. [Display omitted] |
Author | Petrazzini, Ben O., BS Forrest, Iain S., BS Rocheleau, Ghislain, PhD Cho, Judy, MD Chaudhary, Kumardeep, PhD Márquez-Luna, Carla, PhD Narula, Jagat, MD, PhD Do, Ron, PhD Nadkarni, Girish, MD |
AuthorAffiliation | c Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA a The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA d Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA b Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA e The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA |
AuthorAffiliation_xml | – name: b Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA – name: c Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA – name: d Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA – name: a The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA – name: e The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, New York, USA |
Author_xml | – sequence: 1 fullname: Petrazzini, Ben O., BS – sequence: 2 fullname: Chaudhary, Kumardeep, PhD – sequence: 3 fullname: Márquez-Luna, Carla, PhD – sequence: 4 fullname: Forrest, Iain S., BS – sequence: 5 fullname: Rocheleau, Ghislain, PhD – sequence: 6 fullname: Cho, Judy, MD – sequence: 7 fullname: Narula, Jagat, MD, PhD – sequence: 8 fullname: Nadkarni, Girish, MD – sequence: 9 fullname: Do, Ron, PhD |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35331410$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkFv1DAQhS1URLeFP8AB5cglwePEsSOhSnRZKNJKSAXOlteeUKdZu9jZSvvvcdgtgh56sqWZ773RvDkjJz54JOQ10AootO-GatDGVIwyVlGoKINnZAGcy7LmnTghCypqXgLtxCk5S2mglLYSuhfktOZ1DQ3QBVkvQwxex31x7dJtsUqT2-rJBV9c6oS2yJ_l6Lwzeiw-6kkXzherEc2UKWeKK9TjdFNcownRppfkea_HhK-O7zn58Wn1fXlVrr9-_rL8sC4NF-1UWt5zXmOHCKLh0AgE2XSGbYTdCKlRtK210DCdy71EaIWl2vaW0r4VvK_rc3Jx0L3bbbZoDfop6lHdxTx73Kugnfq_4t2N-hnulex4KylkgbdHgRh-7TBNauuSwXHUHsMuKdY2Dc3uTObWN_96_TV5WGFukIcGE0NKEXtl3PRnhdnajQqomtNSg5rTUnNaioLKaWWUPUIf1J-E3h8gzBu-dxhVMg69QetizkXZ4J7GLx7h5pjvLe4xDWEXfc5OgUqZUd_mG5pPiDFKQQpe_waMIMJ0 |
CitedBy_id | crossref_primary_10_1016_j_jacadv_2024_101297 crossref_primary_10_1016_j_ahjo_2022_100232 crossref_primary_10_1016_j_atherosclerosis_2024_119103 crossref_primary_10_1016_j_medp_2023_100001 crossref_primary_10_1016_S0140_6736_23_01059_0 crossref_primary_10_1016_j_jacadv_2024_101296 crossref_primary_10_1007_s42979_024_02946_7 crossref_primary_10_1016_S0140_6736_22_02079_7 crossref_primary_10_3389_fimmu_2023_1112181 crossref_primary_10_1016_S0140_6736_22_02584_3 crossref_primary_10_1016_S0140_6736_23_01062_0 crossref_primary_10_1007_s12170_023_00731_4 crossref_primary_10_1038_s41440_023_01469_7 crossref_primary_10_1093_ehjdh_ztae080 crossref_primary_10_1136_heartjnl_2022_321063 crossref_primary_10_15212_CVIA_2023_0011 crossref_primary_10_1007_s11883_023_01106_1 crossref_primary_10_1038_s41588_024_01791_x crossref_primary_10_1161_JAHA_124_036946 crossref_primary_10_3389_fdgth_2024_1485508 crossref_primary_10_1016_j_jacc_2022_01_020 |
Cites_doi | 10.1056/NEJMra1814259 10.1038/s41588-019-0379-x 10.1038/s41591-020-1037-7 10.1016/j.patter.2021.100364 10.1016/S0140-6736(13)62388-0 10.1016/j.jacc.2020.04.027 10.1038/s41746-020-0254-2 10.1016/j.jacc.2015.11.009 10.1161/CIRCULATIONAHA.115.016846 10.1056/NEJMc2104626 10.1016/j.jacc.2013.11.005 10.1001/jama.2019.21782 10.1016/j.ajhg.2020.04.002 10.1001/jama.2014.2630 10.1093/bioinformatics/btr597 10.1001/jama.2014.2632 10.1186/1471-2105-12-77 10.1001/jama.2019.22241 10.1038/s41746-020-00331-1 10.1016/j.amjcard.2021.02.032 10.1371/journal.pone.0213653 10.1038/s41598-018-36745-x 10.1093/jamia/ocy052 10.1016/j.jacc.2013.11.002 10.1016/j.jacc.2016.02.055 10.1371/journal.pone.0135834 10.1038/s41588-018-0183-z 10.1038/s41591-018-0300-7 10.1016/j.jacc.2020.04.054 10.1136/bmjopen-2015-009952 |
ContentType | Journal Article |
Copyright | American College of Cardiology Foundation 2022 American College of Cardiology Foundation Copyright © 2022 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: American College of Cardiology Foundation – notice: 2022 American College of Cardiology Foundation – notice: Copyright © 2022 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jacc.2022.01.021 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1558-3597 |
EndPage | 1166 |
ExternalDocumentID | PMC8956801 35331410 10_1016_j_jacc_2022_01_021 S0735109722001875 1_s2_0_S0735109722001875 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL139865 – fundername: NIH HHS grantid: S10 OD030463 – fundername: NIH HHS grantid: S10 OD026880 – fundername: NIDDK NIH HHS grantid: K23 DK107908 – fundername: NIGMS NIH HHS grantid: T32 GM007280 – fundername: NIDDK NIH HHS grantid: R01 DK108803 – fundername: NIDDK NIH HHS grantid: U01 DK116100 – fundername: NHLBI NIH HHS grantid: T32 HL007824 – fundername: NHLBI NIH HHS grantid: R01 HL155915 – fundername: NIGMS NIH HHS grantid: R35 GM124836 |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 0SF 18M 1B1 1CY 1P~ 1~. 1~5 29L 2WC 3O- 3V. 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 6PF 7-5 71M 7RV 8P~ AABNK AABVL AACTN AAEDT AAEDW AAFTH AAIKJ AAKUH AALRI AAOAW AAQFI AAQQT AAQXK AAXUO AAYOK ABBQC ABFNM ABFRF ABLJU ABMAC ABMZM ABOCM ABVKL ABWVN ABXDB ACGFO ACGFS ACIUM ACJTP ACPRK ACRPL ADBBV ADEZE ADMUD ADNMO ADVLN AEFWE AEKER AENEX AEVXI AEXQZ AFCTW AFETI AFFNX AFRAH AFRHN AFTJW AGHFR AGYEJ AHMBA AITUG AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AZFZN BAWUL BENPR BLXMC BPHCQ CS3 DIK DU5 E3Z EBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FNPLU G-Q GBLVA GX1 H13 HVGLF HX~ HZ~ IHE IXB J1W J5H K-O KQ8 L7B MO0 N4W N9A NCXOZ O-L O9- OA. OAUVE OK1 OL~ OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 QTD R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SSZ T5K TR2 UNMZH UV1 W8F WH7 WOQ WOW X7M XPP YYM YYP YZZ Z5R ZGI ZXP AAIAV ABJNI LCYCR NAHTW ZA5 AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AIGII AKBMS AKYEP CITATION CGR CUY CVF ECM EIF NPM 7X8 EFKBS ~HD 5PM |
ID | FETCH-LOGICAL-c576t-d5f553e9ee1745147e1849c2b7db78ae766dd142a174f8e167d0adfd00f675f33 |
IEDL.DBID | .~1 |
ISSN | 0735-1097 1558-3597 |
IngestDate | Thu Aug 21 18:38:17 EDT 2025 Sat Sep 27 18:44:51 EDT 2025 Mon May 05 07:04:11 EDT 2025 Tue Jul 01 03:22:29 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Fri Feb 23 02:37:20 EST 2024 Sun Feb 23 10:18:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | coronary artery disease NRI ASCVD CAD net reclassification improvement AUROC atherosclerotic cardiovascular disease machine learning EHR PRS pooled cohort equations PCE area under the receiver-operating characteristic curve biobank electronic health record polygenic risk score prevention ML |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2022 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c576t-d5f553e9ee1745147e1849c2b7db78ae766dd142a174f8e167d0adfd00f675f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0735109722001875 |
PMID | 35331410 |
PQID | 2644017428 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8956801 proquest_miscellaneous_2644017428 pubmed_primary_35331410 crossref_citationtrail_10_1016_j_jacc_2022_01_021 crossref_primary_10_1016_j_jacc_2022_01_021 elsevier_sciencedirect_doi_10_1016_j_jacc_2022_01_021 elsevier_clinicalkeyesjournals_1_s2_0_S0735109722001875 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-29 |
PublicationDateYYYYMMDD | 2022-03-29 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American College of Cardiology |
PublicationTitleAlternate | J Am Coll Cardiol |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ward, Sarraju, Chung (bib18) 2020; 3 Cutillo, Sharma, Foschini (bib32) 2020; 3 McCormick, Bhole, Lacaille, Avina-Zubieta (bib37) 2015; 10 Zamorano, del Val (bib1) 2016; 67 Topol (bib17) 2019; 25 DeFilippis, Young, McEvoy (bib8) 2016; 38 Finlayson, Subbaswamy, Singh (bib35) 2021; 385 Kavousi, Leening, Nanchen (bib5) 2014; 311 Yeboah, Polonsky, Young (bib6) 2015; 132 Stekhoven, Bühlmann (bib22) 2012; 28 Cruz Rivera, Chan (bib34) 2020; 26 Kuhn (bib28) 2008; 28 Ridker, Cook (bib4) 2013; 382 Elliott, Bodinier, Bond (bib12) 2020; 323 Rajkomar, Dean, Kohane (bib24) 2019; 380 Aragam, Dobbyn, Judy (bib14) 2020; 75 Mosley, Gupta, Tan (bib13) 2020; 323 Robin, Turck, Hainard (bib30) 2011; 12 Muntner, Colantonio, Cushman (bib7) 2014; 311 Kursa, Rudnicki (bib23) 2010; 36 Khokhar, Jette, Metcalfe (bib36) 2016; 6 Karatzoglou, Smola, Hornik, Zeileis (bib27) 2004; 11 Chen, Guestrin (bib26) 2016 Rana, Tabada, Solomon (bib9) 2016; 67 Veinot, Mitchell, Ancker (bib33) 2018; 25 Agrawal, Klarqvist, Emdin (bib21) 2021; 2 Martin, Kanai, Kamatani, Okada, Neale, Daly (bib38) 2019; 51 Liaw, Wiener (bib25) 2002; 2 Dikilitas, Schaid, Kosel (bib15) 2020; 106 Weale, Riveros-Mckay, Selzam (bib11) 2021; 148 Inoue (bib31) 2018 Goff, Lloyd-Jones, Bennett (bib2) 2014; 63 Khera, Chaffin, Aragam (bib10) 2018; 50 Rotter, Lin (bib16) 2020; 75 (bib29) 2019 Zhao, Feng, Wu (bib20) 2019; 9 Stone, Robinson, Lichtenstein (bib3) 2014; 63 Alaa, Bolton, Di Angelantonio, Rudd, van der Schaar (bib19) 2019; 14 DeFilippis (10.1016/j.jacc.2022.01.021_bib8) 2016; 38 (10.1016/j.jacc.2022.01.021_bib29) 2019 Muntner (10.1016/j.jacc.2022.01.021_bib7) 2014; 311 Elliott (10.1016/j.jacc.2022.01.021_bib12) 2020; 323 Rotter (10.1016/j.jacc.2022.01.021_bib16) 2020; 75 Agrawal (10.1016/j.jacc.2022.01.021_bib21) 2021; 2 Chen (10.1016/j.jacc.2022.01.021_bib26) 2016 Ridker (10.1016/j.jacc.2022.01.021_bib4) 2013; 382 Aragam (10.1016/j.jacc.2022.01.021_bib14) 2020; 75 Veinot (10.1016/j.jacc.2022.01.021_bib33) 2018; 25 Stone (10.1016/j.jacc.2022.01.021_bib3) 2014; 63 Cutillo (10.1016/j.jacc.2022.01.021_bib32) 2020; 3 Cruz Rivera (10.1016/j.jacc.2022.01.021_bib34) 2020; 26 Martin (10.1016/j.jacc.2022.01.021_bib38) 2019; 51 Liaw (10.1016/j.jacc.2022.01.021_bib25) 2002; 2 Kavousi (10.1016/j.jacc.2022.01.021_bib5) 2014; 311 Robin (10.1016/j.jacc.2022.01.021_bib30) 2011; 12 Finlayson (10.1016/j.jacc.2022.01.021_bib35) 2021; 385 Kursa (10.1016/j.jacc.2022.01.021_bib23) 2010; 36 Dikilitas (10.1016/j.jacc.2022.01.021_bib15) 2020; 106 Alaa (10.1016/j.jacc.2022.01.021_bib19) 2019; 14 Karatzoglou (10.1016/j.jacc.2022.01.021_bib27) 2004; 11 Rana (10.1016/j.jacc.2022.01.021_bib9) 2016; 67 Ward (10.1016/j.jacc.2022.01.021_bib18) 2020; 3 Zhao (10.1016/j.jacc.2022.01.021_bib20) 2019; 9 Stekhoven (10.1016/j.jacc.2022.01.021_bib22) 2012; 28 Khokhar (10.1016/j.jacc.2022.01.021_bib36) 2016; 6 McCormick (10.1016/j.jacc.2022.01.021_bib37) 2015; 10 Kuhn (10.1016/j.jacc.2022.01.021_bib28) 2008; 28 Mosley (10.1016/j.jacc.2022.01.021_bib13) 2020; 323 Goff (10.1016/j.jacc.2022.01.021_bib2) 2014; 63 Topol (10.1016/j.jacc.2022.01.021_bib17) 2019; 25 Zamorano (10.1016/j.jacc.2022.01.021_bib1) 2016; 67 Yeboah (10.1016/j.jacc.2022.01.021_bib6) 2015; 132 Rajkomar (10.1016/j.jacc.2022.01.021_bib24) 2019; 380 Inoue (10.1016/j.jacc.2022.01.021_bib31) 2018 Khera (10.1016/j.jacc.2022.01.021_bib10) 2018; 50 Weale (10.1016/j.jacc.2022.01.021_bib11) 2021; 148 35331411 - J Am Coll Cardiol. 2022 Mar 29;79(12):1167-1169. doi: 10.1016/j.jacc.2022.01.020 |
References_xml | – volume: 132 start-page: 916 year: 2015 end-page: 922 ident: bib6 article-title: Utility of nontraditional risk markers in individuals ineligible for statin therapy according to the 2013 American College of Cardiology/American Heart Association Cholesterol Guidelines publication-title: Circulation – volume: 311 start-page: 1406 year: 2014 end-page: 1415 ident: bib7 article-title: Validation of the atherosclerotic cardiovascular disease pooled cohort risk equations publication-title: JAMA – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib25 article-title: Classification and Regression by randomForest publication-title: R News – volume: 25 start-page: 1080 year: 2018 end-page: 1088 ident: bib33 article-title: Good intentions are not enough: how informatics interventions can worsen inequality publication-title: J Am Med Inform Assoc – volume: 9 start-page: 717 year: 2019 ident: bib20 article-title: Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction publication-title: Sci Rep – volume: 63 start-page: 2889 year: 2014 end-page: 2934 ident: bib3 article-title: 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines publication-title: J Am Coll Cardiol – volume: 63 start-page: 2935 year: 2014 end-page: 2959 ident: bib2 article-title: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines publication-title: J Am Coll Cardiol – volume: 26 start-page: 1351 year: 2020 end-page: 1363 ident: bib34 article-title: Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension publication-title: Nat Med – year: 2019 ident: bib29 article-title: R: A language and environment for statistical computing – volume: 148 start-page: 157 year: 2021 end-page: 164 ident: bib11 article-title: Validation of an integrated risk tool, including polygenic risk score, for atherosclerotic cardiovascular disease in multiple ethnicities and ancestries publication-title: Am J Cardiol – volume: 28 start-page: 112 year: 2012 end-page: 118 ident: bib22 article-title: MissForest—non-parametric missing value imputation for mixed-type data publication-title: Bioinformatics – volume: 50 start-page: 1219 year: 2018 end-page: 1224 ident: bib10 article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations publication-title: Nat Genet – volume: 36 start-page: 1 year: 2010 end-page: 13 ident: bib23 article-title: Feature selection with the Boruta package publication-title: J Stat Soft – volume: 106 start-page: 707 year: 2020 end-page: 716 ident: bib15 article-title: Predictive utility of polygenic risk scores for coronary heart disease in three major racial and ethnic groups publication-title: Am J Hum Genet – volume: 25 start-page: 44 year: 2019 end-page: 56 ident: bib17 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat Med – volume: 10 year: 2015 ident: bib37 article-title: Validity of diagnostic codes for acute stroke in administrative databases: a systematic review publication-title: PLoS One – volume: 67 start-page: 148 year: 2016 end-page: 150 ident: bib1 article-title: Predictive models of atherosclerotic cardiovascular disease: in search of the philosopher’s stone of cardiology publication-title: J Am Coll Cardiol – year: 2018 ident: bib31 article-title: nricens: NRI for risk prediction models with time to event and binary response data – volume: 75 start-page: 2769 year: 2020 end-page: 2780 ident: bib14 article-title: Limitations of contemporary guidelines for managing patients at high genetic risk of coronary artery disease publication-title: J Am Coll Cardiol – volume: 380 start-page: 1347 year: 2019 end-page: 1358 ident: bib24 article-title: Machine learning in medicine publication-title: N Engl J Med – volume: 6 year: 2016 ident: bib36 article-title: Systematic review of validated case definitions for diabetes in ICD-9-coded and ICD-10-coded data in adult populations publication-title: BMJ Open – start-page: 785 year: 2016 end-page: 794 ident: bib26 article-title: XGBoost: a scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 3 start-page: 47 year: 2020 ident: bib32 article-title: Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency publication-title: NPJ Digital Medicine – volume: 323 start-page: 627 year: 2020 end-page: 635 ident: bib13 article-title: Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease publication-title: JAMA – volume: 382 start-page: 1762 year: 2013 end-page: 1765 ident: bib4 article-title: Statins: new American guidelines for prevention of cardiovascular disease publication-title: Lancet – volume: 385 start-page: 283 year: 2021 end-page: 286 ident: bib35 article-title: The clinician and dataset shift in artificial intelligence publication-title: N Engl J Med – volume: 11 start-page: 1 year: 2004 end-page: 20 ident: bib27 article-title: kernlab—an S4 package for kernel methods in R publication-title: J Stat Soft – volume: 323 start-page: 636 year: 2020 end-page: 645 ident: bib12 article-title: Predictive accuracy of a polygenic risk score–enhanced prediction model vs a clinical risk score for coronary artery disease publication-title: JAMA – volume: 2 start-page: 100364 year: 2021 ident: bib21 article-title: Selection of 51 predictors from 13,782 candidate multimodal features using machine learning improves coronary artery disease prediction publication-title: Patterns (N Y) – volume: 38 start-page: 598 year: 2016 end-page: 608 ident: bib8 article-title: Risk score overestimation: the impact of individual cardiovascular risk factors and preventive therapies on the performance of the American Heart Association-American College of Cardiology-Atherosclerotic Cardiovascular Disease risk score in a modern multi-ethnic cohort publication-title: Eur Heart J – volume: 51 start-page: 584 year: 2019 end-page: 591 ident: bib38 article-title: Clinical use of current polygenic risk scores may exacerbate health disparities publication-title: Nat Genet – volume: 14 year: 2019 ident: bib19 article-title: Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants publication-title: PLoS One – volume: 311 start-page: 1416 year: 2014 end-page: 1423 ident: bib5 article-title: Comparison of application of the ACC/AHA Guidelines, Adult Treatment Panel III Guidelines, and European Society of Cardiology Guidelines for Cardiovascular Disease Prevention in a European cohort publication-title: JAMA – volume: 12 start-page: 77 year: 2011 ident: bib30 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinformatics – volume: 75 start-page: 2781 year: 2020 end-page: 2784 ident: bib16 article-title: An outbreak of polygenic scores for coronary artery disease publication-title: J Am Coll Cardiol – volume: 28 year: 2008 ident: bib28 article-title: Building predictive models in R using the caret package publication-title: J Stat Soft – volume: 3 start-page: 125 year: 2020 ident: bib18 article-title: Machine learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population publication-title: NPJ Digit Med – volume: 67 start-page: 2118 year: 2016 end-page: 2130 ident: bib9 article-title: Accuracy of the atherosclerotic cardiovascular risk equation in a large contemporary, multiethnic population publication-title: J Am Coll Cardiol – volume: 380 start-page: 1347 year: 2019 ident: 10.1016/j.jacc.2022.01.021_bib24 article-title: Machine learning in medicine publication-title: N Engl J Med doi: 10.1056/NEJMra1814259 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.jacc.2022.01.021_bib25 article-title: Classification and Regression by randomForest publication-title: R News – volume: 51 start-page: 584 year: 2019 ident: 10.1016/j.jacc.2022.01.021_bib38 article-title: Clinical use of current polygenic risk scores may exacerbate health disparities publication-title: Nat Genet doi: 10.1038/s41588-019-0379-x – volume: 26 start-page: 1351 year: 2020 ident: 10.1016/j.jacc.2022.01.021_bib34 article-title: Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension publication-title: Nat Med doi: 10.1038/s41591-020-1037-7 – volume: 2 start-page: 100364 issue: 12 year: 2021 ident: 10.1016/j.jacc.2022.01.021_bib21 article-title: Selection of 51 predictors from 13,782 candidate multimodal features using machine learning improves coronary artery disease prediction publication-title: Patterns (N Y) doi: 10.1016/j.patter.2021.100364 – volume: 382 start-page: 1762 year: 2013 ident: 10.1016/j.jacc.2022.01.021_bib4 article-title: Statins: new American guidelines for prevention of cardiovascular disease publication-title: Lancet doi: 10.1016/S0140-6736(13)62388-0 – volume: 75 start-page: 2769 year: 2020 ident: 10.1016/j.jacc.2022.01.021_bib14 article-title: Limitations of contemporary guidelines for managing patients at high genetic risk of coronary artery disease publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2020.04.027 – volume: 3 start-page: 47 year: 2020 ident: 10.1016/j.jacc.2022.01.021_bib32 article-title: Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency publication-title: NPJ Digital Medicine doi: 10.1038/s41746-020-0254-2 – volume: 67 start-page: 148 year: 2016 ident: 10.1016/j.jacc.2022.01.021_bib1 article-title: Predictive models of atherosclerotic cardiovascular disease: in search of the philosopher’s stone of cardiology publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2015.11.009 – volume: 132 start-page: 916 year: 2015 ident: 10.1016/j.jacc.2022.01.021_bib6 article-title: Utility of nontraditional risk markers in individuals ineligible for statin therapy according to the 2013 American College of Cardiology/American Heart Association Cholesterol Guidelines publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.016846 – start-page: 785 year: 2016 ident: 10.1016/j.jacc.2022.01.021_bib26 article-title: XGBoost: a scalable tree boosting system – volume: 385 start-page: 283 year: 2021 ident: 10.1016/j.jacc.2022.01.021_bib35 article-title: The clinician and dataset shift in artificial intelligence publication-title: N Engl J Med doi: 10.1056/NEJMc2104626 – volume: 63 start-page: 2935 issue: 25 Pt B year: 2014 ident: 10.1016/j.jacc.2022.01.021_bib2 article-title: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2013.11.005 – volume: 323 start-page: 627 year: 2020 ident: 10.1016/j.jacc.2022.01.021_bib13 article-title: Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease publication-title: JAMA doi: 10.1001/jama.2019.21782 – volume: 106 start-page: 707 year: 2020 ident: 10.1016/j.jacc.2022.01.021_bib15 article-title: Predictive utility of polygenic risk scores for coronary heart disease in three major racial and ethnic groups publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2020.04.002 – volume: 311 start-page: 1406 year: 2014 ident: 10.1016/j.jacc.2022.01.021_bib7 article-title: Validation of the atherosclerotic cardiovascular disease pooled cohort risk equations publication-title: JAMA doi: 10.1001/jama.2014.2630 – volume: 28 start-page: 112 year: 2012 ident: 10.1016/j.jacc.2022.01.021_bib22 article-title: MissForest—non-parametric missing value imputation for mixed-type data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr597 – volume: 311 start-page: 1416 year: 2014 ident: 10.1016/j.jacc.2022.01.021_bib5 article-title: Comparison of application of the ACC/AHA Guidelines, Adult Treatment Panel III Guidelines, and European Society of Cardiology Guidelines for Cardiovascular Disease Prevention in a European cohort publication-title: JAMA doi: 10.1001/jama.2014.2632 – volume: 12 start-page: 77 year: 2011 ident: 10.1016/j.jacc.2022.01.021_bib30 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-77 – volume: 323 start-page: 636 year: 2020 ident: 10.1016/j.jacc.2022.01.021_bib12 article-title: Predictive accuracy of a polygenic risk score–enhanced prediction model vs a clinical risk score for coronary artery disease publication-title: JAMA doi: 10.1001/jama.2019.22241 – volume: 11 start-page: 1 year: 2004 ident: 10.1016/j.jacc.2022.01.021_bib27 article-title: kernlab—an S4 package for kernel methods in R publication-title: J Stat Soft – volume: 3 start-page: 125 year: 2020 ident: 10.1016/j.jacc.2022.01.021_bib18 article-title: Machine learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population publication-title: NPJ Digit Med doi: 10.1038/s41746-020-00331-1 – volume: 148 start-page: 157 year: 2021 ident: 10.1016/j.jacc.2022.01.021_bib11 article-title: Validation of an integrated risk tool, including polygenic risk score, for atherosclerotic cardiovascular disease in multiple ethnicities and ancestries publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2021.02.032 – year: 2019 ident: 10.1016/j.jacc.2022.01.021_bib29 – year: 2018 ident: 10.1016/j.jacc.2022.01.021_bib31 – volume: 14 year: 2019 ident: 10.1016/j.jacc.2022.01.021_bib19 article-title: Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants publication-title: PLoS One doi: 10.1371/journal.pone.0213653 – volume: 9 start-page: 717 year: 2019 ident: 10.1016/j.jacc.2022.01.021_bib20 article-title: Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction publication-title: Sci Rep doi: 10.1038/s41598-018-36745-x – volume: 25 start-page: 1080 year: 2018 ident: 10.1016/j.jacc.2022.01.021_bib33 article-title: Good intentions are not enough: how informatics interventions can worsen inequality publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocy052 – volume: 63 start-page: 2889 issue: 25 Pt B year: 2014 ident: 10.1016/j.jacc.2022.01.021_bib3 article-title: 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2013.11.002 – volume: 36 start-page: 1 year: 2010 ident: 10.1016/j.jacc.2022.01.021_bib23 article-title: Feature selection with the Boruta package publication-title: J Stat Soft – volume: 67 start-page: 2118 year: 2016 ident: 10.1016/j.jacc.2022.01.021_bib9 article-title: Accuracy of the atherosclerotic cardiovascular risk equation in a large contemporary, multiethnic population publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2016.02.055 – volume: 10 year: 2015 ident: 10.1016/j.jacc.2022.01.021_bib37 article-title: Validity of diagnostic codes for acute stroke in administrative databases: a systematic review publication-title: PLoS One doi: 10.1371/journal.pone.0135834 – volume: 50 start-page: 1219 year: 2018 ident: 10.1016/j.jacc.2022.01.021_bib10 article-title: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations publication-title: Nat Genet doi: 10.1038/s41588-018-0183-z – volume: 28 year: 2008 ident: 10.1016/j.jacc.2022.01.021_bib28 article-title: Building predictive models in R using the caret package publication-title: J Stat Soft – volume: 25 start-page: 44 year: 2019 ident: 10.1016/j.jacc.2022.01.021_bib17 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat Med doi: 10.1038/s41591-018-0300-7 – volume: 75 start-page: 2781 year: 2020 ident: 10.1016/j.jacc.2022.01.021_bib16 article-title: An outbreak of polygenic scores for coronary artery disease publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2020.04.054 – volume: 6 issue: 8 year: 2016 ident: 10.1016/j.jacc.2022.01.021_bib36 article-title: Systematic review of validated case definitions for diabetes in ICD-9-coded and ICD-10-coded data in adult populations publication-title: BMJ Open doi: 10.1136/bmjopen-2015-009952 – volume: 38 start-page: 598 year: 2016 ident: 10.1016/j.jacc.2022.01.021_bib8 publication-title: Eur Heart J – reference: 35331411 - J Am Coll Cardiol. 2022 Mar 29;79(12):1167-1169. doi: 10.1016/j.jacc.2022.01.020 |
SSID | ssj0006819 |
Score | 2.5096388 |
Snippet | AbstractBackgroundClinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD)... Clinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD) susceptibility. The... Clinical features from electronic health records (EHRs) can be used to build a complementary tool to predict coronary artery disease (CAD)... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1155 |
SubjectTerms | biobank Cardiovascular Cohort Studies coronary artery disease Coronary Artery Disease - diagnosis Coronary Artery Disease - epidemiology electronic health record Electronic Health Records Genome-Wide Association Study Humans machine learning polygenic risk score pooled cohort equations prevention Risk Assessment - methods Risk Factors |
Title | Coronary Risk Estimation Based on Clinical Data in Electronic Health Records |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S0735109722001875 https://dx.doi.org/10.1016/j.jacc.2022.01.021 https://www.ncbi.nlm.nih.gov/pubmed/35331410 https://www.proquest.com/docview/2644017428 https://pubmed.ncbi.nlm.nih.gov/PMC8956801 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27TuQw0EIUiObEHXAscMhIdCi3edhxUsKyCBBQwCFtZzm2IwIoILIU1_DtzMROYEFQ0ERJPFac8TzleRCyA0qstFFYgFvCWYAtCoMMFGvAmQ5Volmo29Pzs_P06IqdTPhkjoy6XBgMq_Sy38n0Vlr7N0OPzeFDVQ0vgTg5np_GcdtZDhPNGRNI63-fX8M80qxt7oHAAUL7xBkX43WjNJYxjGNXujP6TDl9ND7fx1C-UUqHS-SHtybpnlvwTzJn619k4cyfly-T0xEWKFCP_-lF1dzSMfCzS1Wk-6C9DIUbXxj0jh6oqaJVTcd9YxzqcpSoc1GbFXJ1OP43Ogp8_4RAgxcxDQwvOU9sbi24HWAYCQvuXK7jQphCZMqKNDUmYrGC4TKzUSpMqExpwrAEN6JMklUyX9_Xdo1QlRjOdQa-o9KMW5GnGVNFXghugIFtOiBRhzipfXFx7HFxJ7soshuJyJaIbBlGEpA9ILv9nAdXWuNLaNHth-ySRkHM2cbzXCMj2QCw_EAXA8L7mTOkJUFrfPnF7W7bJfAcHqSo2t4_NRKNSJBk4LkNyG9HBv0fJGA_Y-wsrHeGQHoArOc9O1JX121d7wxTN8No_Zvr3SCL-IQBcnG-Seanj0_2D1hM02KrZQm4Hk_2XwDDUhKg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTtwwcARUgl4qaIFuC9SVekNh83Iex7Is2sIuhwISN8uxHRGKAiLLoZd-e2diJ3SLyqG3KB4rzniemhfAF1RipQn8At0SHns0otDLULF6PFa-jFTsqzZ6PjtLJpfxyRW_WoJRVwtDaZVO9luZ3kpr92bosDm8r6rhORInp_hpGLaT5fgyvIqJopCoD3495XkkWTvdg6A9AneVMzbJ60Yq6mMYhrZ3Z_Av7fTc-vw7ifIPrXS8Dm-cOcm-2hNvwJKp38LqzAXM38F0RB0K5MNP9r1qfrAxMrStVWSHqL40wwfXGfSWHcm5ZFXNxv1kHGaLlJj1UZtNuDweX4wmnhug4Cl0I-ae5iXnkcmNQb8DLaPUoD-Xq7BIdZFm0qRJonUQhxKXy8wESap9qUvt-yX6EWUUbcFKfVeb98BkpDlXGTqPUsXcpHmSxbLIi5Rr5GCTDCDoECeU6y5OQy5uRZdGdiMI2YKQLfxAILIHsN_vube9NV6ETrv7EF3VKMo50zima0QgGgQWzwhjALzfuUBbAtXGi1_83F27QKajSIqszd1jI8iKRFGGrtsAti0Z9H8QoQFNybN43gUC6QGooffiSl1dt429M6rd9IMP_3neT7A2uZhNxfTb2elHeE0rlC0X5juwMn94NLtoPs2LvZY9fgMVDhS7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coronary+Risk+Estimation+Based+on+Clinical+Data+in+Electronic+Health+Records&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Petrazzini%2C+Ben+O&rft.au=Chaudhary%2C+Kumardeep&rft.au=M%C3%A1rquez-Luna%2C+Carla&rft.au=rest%2C+Iain+S&rft.date=2022-03-29&rft.issn=1558-3597&rft.eissn=1558-3597&rft.volume=79&rft.issue=12&rft.spage=1155&rft_id=info:doi/10.1016%2Fj.jacc.2022.01.021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F07351097%2FS0735109721X00629%2Fcov150h.gif |