Can deep learning identify humans by automatically constructing a database with dental panoramic radiographs?

The aim of this study was to propose a novel method to identify individuals by recognizing dentition change, along with human identification process using deep learning. Recent and past images of adults aged 20–49 years with more than two dental panoramic radiographs (DPRs) were assumed as postmorte...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 10; p. e0312537
Main Authors Choi, Hye-Ran, Siadari, Thomhert Suprapto, Ko, Dong-Yub, Kim, Jo-Eun, Huh, Kyung-Hoe, Yi, Won-Jin, Lee, Sam-Sun, Heo, Min-Suk
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 24.10.2024
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0312537

Cover

Abstract The aim of this study was to propose a novel method to identify individuals by recognizing dentition change, along with human identification process using deep learning. Recent and past images of adults aged 20–49 years with more than two dental panoramic radiographs (DPRs) were assumed as postmortem (PM) and antemortem (AM) images, respectively. The dataset contained 1,029 paired PM-AM DPRs from 2000 to 2020. After constructing a database of AM dentition, the degree of similarity was calculated and sorted in descending order. The matched rank of AM identical to an unknown PM was measured by extracting candidate groups (CGs). The percentage of rank was calculated as the success rate, and similarity scores were compared based on imaging time intervals. The matched AM images were ranked in the CG with success rates of 83.2%, 72.1%, and 59.4% in the imaging time interval for extracting the top 20.0%, 10.0%, and 5.0%, respectively. The success rates depended on sex, and were higher for women than for men: the success rates for the extraction of the top 20.0%, 10.0%, and 5.0% were 97.2%, 81.1%, and 66.5%, respectively, for women and 71.3%, 64.0%, and 52.0%, respectively, for men. The similarity score differed significantly between groups based on the imaging time interval of 17.7 years. This study showed outstanding performance of convolutional neural network using dental panoramic radiographs in effectively reducing the size of AM CG in identifying humans.
AbstractList The aim of this study was to propose a novel method to identify individuals by recognizing dentition change, along with human identification process using deep learning. Recent and past images of adults aged 20–49 years with more than two dental panoramic radiographs (DPRs) were assumed as postmortem (PM) and antemortem (AM) images, respectively. The dataset contained 1,029 paired PM-AM DPRs from 2000 to 2020. After constructing a database of AM dentition, the degree of similarity was calculated and sorted in descending order. The matched rank of AM identical to an unknown PM was measured by extracting candidate groups (CGs). The percentage of rank was calculated as the success rate, and similarity scores were compared based on imaging time intervals. The matched AM images were ranked in the CG with success rates of 83.2%, 72.1%, and 59.4% in the imaging time interval for extracting the top 20.0%, 10.0%, and 5.0%, respectively. The success rates depended on sex, and were higher for women than for men: the success rates for the extraction of the top 20.0%, 10.0%, and 5.0% were 97.2%, 81.1%, and 66.5%, respectively, for women and 71.3%, 64.0%, and 52.0%, respectively, for men. The similarity score differed significantly between groups based on the imaging time interval of 17.7 years. This study showed outstanding performance of convolutional neural network using dental panoramic radiographs in effectively reducing the size of AM CG in identifying humans.
The aim of this study was to propose a novel method to identify individuals by recognizing dentition change, along with human identification process using deep learning. Recent and past images of adults aged 20-49 years with more than two dental panoramic radiographs (DPRs) were assumed as postmortem (PM) and antemortem (AM) images, respectively. The dataset contained 1,029 paired PM-AM DPRs from 2000 to 2020. After constructing a database of AM dentition, the degree of similarity was calculated and sorted in descending order. The matched rank of AM identical to an unknown PM was measured by extracting candidate groups (CGs). The percentage of rank was calculated as the success rate, and similarity scores were compared based on imaging time intervals. The matched AM images were ranked in the CG with success rates of 83.2%, 72.1%, and 59.4% in the imaging time interval for extracting the top 20.0%, 10.0%, and 5.0%, respectively. The success rates depended on sex, and were higher for women than for men: the success rates for the extraction of the top 20.0%, 10.0%, and 5.0% were 97.2%, 81.1%, and 66.5%, respectively, for women and 71.3%, 64.0%, and 52.0%, respectively, for men. The similarity score differed significantly between groups based on the imaging time interval of 17.7 years. This study showed outstanding performance of convolutional neural network using dental panoramic radiographs in effectively reducing the size of AM CG in identifying humans.The aim of this study was to propose a novel method to identify individuals by recognizing dentition change, along with human identification process using deep learning. Recent and past images of adults aged 20-49 years with more than two dental panoramic radiographs (DPRs) were assumed as postmortem (PM) and antemortem (AM) images, respectively. The dataset contained 1,029 paired PM-AM DPRs from 2000 to 2020. After constructing a database of AM dentition, the degree of similarity was calculated and sorted in descending order. The matched rank of AM identical to an unknown PM was measured by extracting candidate groups (CGs). The percentage of rank was calculated as the success rate, and similarity scores were compared based on imaging time intervals. The matched AM images were ranked in the CG with success rates of 83.2%, 72.1%, and 59.4% in the imaging time interval for extracting the top 20.0%, 10.0%, and 5.0%, respectively. The success rates depended on sex, and were higher for women than for men: the success rates for the extraction of the top 20.0%, 10.0%, and 5.0% were 97.2%, 81.1%, and 66.5%, respectively, for women and 71.3%, 64.0%, and 52.0%, respectively, for men. The similarity score differed significantly between groups based on the imaging time interval of 17.7 years. This study showed outstanding performance of convolutional neural network using dental panoramic radiographs in effectively reducing the size of AM CG in identifying humans.
Audience Academic
Author Yi, Won-Jin
Choi, Hye-Ran
Lee, Sam-Sun
Huh, Kyung-Hoe
Ko, Dong-Yub
Heo, Min-Suk
Siadari, Thomhert Suprapto
Kim, Jo-Eun
AuthorAffiliation 3 Department of Oral and Maxillofacial Radiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
2 Artificial Intelligence Research Center, Digital Dental Hub Incorporation, Seoul, Korea
Ajman University, UNITED ARAB EMIRATES
1 Department of Advanced General Dentistry, Inje University Sanggye Paik Hospital, Seoul, Korea
AuthorAffiliation_xml – name: 2 Artificial Intelligence Research Center, Digital Dental Hub Incorporation, Seoul, Korea
– name: 3 Department of Oral and Maxillofacial Radiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
– name: Ajman University, UNITED ARAB EMIRATES
– name: 1 Department of Advanced General Dentistry, Inje University Sanggye Paik Hospital, Seoul, Korea
Author_xml – sequence: 1
  givenname: Hye-Ran
  surname: Choi
  fullname: Choi, Hye-Ran
– sequence: 2
  givenname: Thomhert Suprapto
  surname: Siadari
  fullname: Siadari, Thomhert Suprapto
– sequence: 3
  givenname: Dong-Yub
  surname: Ko
  fullname: Ko, Dong-Yub
– sequence: 4
  givenname: Jo-Eun
  surname: Kim
  fullname: Kim, Jo-Eun
– sequence: 5
  givenname: Kyung-Hoe
  surname: Huh
  fullname: Huh, Kyung-Hoe
– sequence: 6
  givenname: Won-Jin
  surname: Yi
  fullname: Yi, Won-Jin
– sequence: 7
  givenname: Sam-Sun
  surname: Lee
  fullname: Lee, Sam-Sun
– sequence: 8
  givenname: Min-Suk
  orcidid: 0000-0003-3406-0645
  surname: Heo
  fullname: Heo, Min-Suk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39446777$$D View this record in MEDLINE/PubMed
BookMark eNqNkltr3DAQhU1JaS7tPyitoFDah91KliXbTyEsvQQCgd5exawkrxVkyZHktvvvq2WdkC15KHqQGH1zZjic0-LIeaeL4iXBS0Jr8uHGT8GBXY65vMSUlIzWT4oT0tJywUtMjx68j4vTGG8wZrTh_FlxTNuq4nVdnxTDChxSWo_IagjOuA0ySrtkui3qpwFcROstgin5AZKRYO0WSe9iCpNMOxqQggRriBr9NqlHu2awaATnAwxGogDK-E2AsY_nz4unHdioX8z3WfHj08fvqy-Lq-vPl6uLq4VkNU-LliiKCZGqKTlhqqmAaa1Zp2RZE9oAb1tFcMNIB23D-FqxijSc4ZKveYc7Ts-K13vd0fooZqeiyCbhqq0YbTNxPhPTetBK5q0DWDEGM0DYCg9GHP4404uN_yUIYRg3Lc4K72aF4G8nHZMYTJTaWnDaT_thrK1oU2b0zT_o4yvN1AasFsZ1Pg-WO1Fx0RBaNbimVaaWj1D5KJ3dzlnoTK4fNLw_aMhM0n_SBqYYxeW3r__PXv88ZN8-YHsNNvXR2ymZHI9D8NVDq-89vgthBqo9IIOPMejuHiFY7LJ-Z5fYZV3MWad_Ac-b8N0
Cites_doi 10.1016/j.compbiomed.2023.106668
10.5624/isd.2020.50.3.193
10.1016/j.compbiomed.2022.105829
10.1007/s12551-018-0449-9
10.1007/s11220-020-00326-y
10.1109/TMI.2020.3041452
10.1080/20961790.2022.2034714
10.1007/s12663-016-0896-4
10.1016/j.artmed.2015.04.007
10.1016/j.forsciint.2019.04.012
10.1007/BF01245479
10.5624/isd.2019.49.1.1
10.3390/app10165624
10.1177/0022034520915714
10.1038/s41598-020-75887-9
10.1016/j.jds.2022.10.021
10.5624/isd.20210287
10.1259/dmfr.20210246
10.1038/s41598-021-81202-x
10.1111/adj.12812
10.1259/dmfr.20180051
10.1016/j.media.2021.102062
10.1038/sj.bdj.4800972
10.1038/s41598-019-40414-y
10.1259/dmfr.20210383
10.1186/s12880-022-00793-7
10.1038/s41598-020-70474-4
10.1016/j.jdent.2023.104607
10.1111/1556-4029.14673
10.5624/isd.2020.50.2.169
ContentType Journal Article
Copyright Copyright: © 2024 Choi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Choi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Choi et al 2024 Choi et al
2024 Choi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Choi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Choi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Choi et al 2024 Choi et al
– notice: 2024 Choi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOI 10.1371/journal.pone.0312537
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (subscription)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database (NC LIVE)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (subscripiton)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (subscription)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Agricultural Science Database


CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Deep learning-based human identification
EISSN 1932-6203
ExternalDocumentID 3120494539
PMC11500890
A813480734
39446777
10_1371_journal_pone_0312537
Genre Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c576t-91d3011cd82615d84a5eee5fdc27138a699d10851fa9856bd541865026b6f0f63
IEDL.DBID 8FG
ISSN 1932-6203
IngestDate Wed Aug 13 01:19:57 EDT 2025
Thu Aug 21 18:30:57 EDT 2025
Fri Sep 05 12:44:17 EDT 2025
Fri Jul 25 11:25:13 EDT 2025
Tue Jun 17 22:03:27 EDT 2025
Tue Jun 10 21:00:44 EDT 2025
Fri Jun 27 05:26:36 EDT 2025
Fri Jun 27 05:27:06 EDT 2025
Thu May 22 21:24:32 EDT 2025
Mon Jul 21 06:05:37 EDT 2025
Tue Jul 01 01:56:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Copyright: © 2024 Choi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-91d3011cd82615d84a5eee5fdc27138a699d10851fa9856bd541865026b6f0f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
TSS and D-YK are contributed equally to this work as second authors.
ORCID 0000-0003-3406-0645
OpenAccessLink https://www.proquest.com/docview/3120494539?pq-origsite=%requestingapplication%
PMID 39446777
PQID 3120494539
PQPubID 1436336
PageCount e0312537
ParticipantIDs plos_journals_3120494539
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11500890
proquest_miscellaneous_3120594382
proquest_journals_3120494539
gale_infotracmisc_A813480734
gale_infotracacademiconefile_A813480734
gale_incontextgauss_ISR_A813480734
gale_incontextgauss_IOV_A813480734
gale_healthsolutions_A813480734
pubmed_primary_39446777
crossref_primary_10_1371_journal_pone_0312537
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-24
PublicationDateYYYYMMDD 2024-10-24
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Publisher_xml – name: Public Library of Science
References HR Choi (pone.0312537.ref021) 2022; 7
M Xu (pone.0312537.ref031) 2023; 136
L Andersen (pone.0312537.ref004) 1995; 107
A Enomoto (pone.0312537.ref034) 2023; 18
G Chandrashekar (pone.0312537.ref032) 2022; 148
P Sun (pone.0312537.ref011) 2021
HE Kim (pone.0312537.ref015) 2022; 22
FP Mahdi (pone.0312537.ref026) 2020; 10
A Jain (pone.0312537.ref039) 2020
T Takahashi (pone.0312537.ref028) 2021; 11
SL Fischman (pone.0312537.ref001) 1985; 35
C Lee (pone.0312537.ref037) 2019; 299
J Sur (pone.0312537.ref006) 2020; 50
YH Kim (pone.0312537.ref024) 2022; 51
F Schwendicke (pone.0312537.ref041) 2020; 99
F Pethani (pone.0312537.ref040) 2021; 66
M Shaha (pone.0312537.ref014) 2018
HJ Lee (pone.0312537.ref038) 2024
J Dumanèiæ (pone.0312537.ref002) 2001; 42
HS Kim (pone.0312537.ref008) 2022; 52
B Thanathornwong (pone.0312537.ref029) 2020; 50
SR Dutta (pone.0312537.ref003) 2016; 15
S Budd (pone.0312537.ref017) 2021; 71
JH Lee (pone.0312537.ref025) 2017; 281
Q Wu (pone.0312537.ref035) 2021; 22
JJ Hwang (pone.0312537.ref007) 2019; 49
IA Pretty (pone.0312537.ref005) 2001; 190
JA Nichols (pone.0312537.ref009) 2019; 11
Y Lai (pone.0312537.ref036) 2021; 40
CG Kim (pone.0312537.ref023) 2020; 10
M Xu (pone.0312537.ref013) 2021
H Chen (pone.0312537.ref020) 2019; 9
T Dhar (pone.0312537.ref019) 2023
S Nazir (pone.0312537.ref018) 2023; 156
C Görürgöz (pone.0312537.ref022) 2022; 51
R Kavuluru (pone.0312537.ref010) 2015; 65
DV Tuzoff (pone.0312537.ref030) 2019; 48
J Wang (pone.0312537.ref012) 2021
S Matsuda (pone.0312537.ref027) 2020; 10
CA Brust (pone.0312537.ref016) 2018
H Du (pone.0312537.ref033) 2021; 66
References_xml – volume: 156
  start-page: 106668
  year: 2023
  ident: pone.0312537.ref018
  article-title: Survey of explainable artificial intelligence techniques for biomedical imaging with deep neural networks
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2023.106668
– start-page: 68
  volume-title: In: IEEE Transactions on Technology and Society; Jan 4, 2023; New York, USA.
  year: 2023
  ident: pone.0312537.ref019
– volume: 50
  start-page: 193
  year: 2020
  ident: pone.0312537.ref006
  article-title: Knowledge, attitudes, and perceptions regarding the future of artificial intelligence in oral radiology in India: A survey
  publication-title: Imaging Sci Dent
  doi: 10.5624/isd.2020.50.3.193
– year: 2020
  ident: pone.0312537.ref039
  article-title: Gender-Associated Oral and Periodontal Health Based on Retrospective Panoramic Radiographic Analysis of Alveolar Bone Loss.
  publication-title: Clinical Concepts and Practical Management Techniques in Dentistry
– volume: 148
  start-page: 105829
  year: 2022
  ident: pone.0312537.ref032
  article-title: Collaborative deep learning model for tooth segmentation and identification using panoramic radiographs
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105829
– volume: 11
  start-page: 111
  year: 2019
  ident: pone.0312537.ref009
  article-title: Machine learning: Applications of artificial intelligence to imaging and diagnosis
  publication-title: Biophys Rev
  doi: 10.1007/s12551-018-0449-9
– volume: 22
  start-page: 4
  year: 2021
  ident: pone.0312537.ref035
  article-title: Human identification with dental panoramic images based on deep learning.
  publication-title: Sens Imaging
  doi: 10.1007/s11220-020-00326-y
– volume: 40
  start-page: 905
  year: 2021
  ident: pone.0312537.ref036
  article-title: LCAnet: Learnable connected attention network for human identification using dental images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3041452
– start-page: 9934
  volume-title: In: Proceedings of the 38th international conference on machine learning.
  year: 2021
  ident: pone.0312537.ref011
– volume: 7
  start-page: 456
  year: 2022
  ident: pone.0312537.ref021
  article-title: Automatic detection of teeth and dental treatment patterns on dental panoramic radiographs using deep neural networks.
  publication-title: Forensic Sci Res
  doi: 10.1080/20961790.2022.2034714
– volume: 15
  start-page: 442
  year: 2016
  ident: pone.0312537.ref003
  article-title: The role of dentistry in disaster management and victim identification: an overview of challenges in Indo-Nepal scenario.
  publication-title: J Maxillofac Oral Surg
  doi: 10.1007/s12663-016-0896-4
– volume: 65
  start-page: 155
  year: 2015
  ident: pone.0312537.ref010
  article-title: An empirical evaluation of supervised learning approaches in assigning diagnosis codes to electronic medical records
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2015.04.007
– volume: 299
  start-page: 229
  year: 2019
  ident: pone.0312537.ref037
  article-title: Performance of dental pattern analysis system with treatment chronology on panoramic radiography.
  publication-title: Forensic Sci Int
  doi: 10.1016/j.forsciint.2019.04.012
– volume: 107
  start-page: 229
  year: 1995
  ident: pone.0312537.ref004
  article-title: Odontological identification of fire victims—Potentialities and limitations
  publication-title: Int J Legal Med
  doi: 10.1007/BF01245479
– volume: 49
  start-page: 1
  year: 2019
  ident: pone.0312537.ref007
  article-title: An overview of deep learning in the field of dentistry.
  publication-title: Imaging Sci Dent
  doi: 10.5624/isd.2019.49.1.1
– start-page: 656
  volume-title: In: Proceedings of the second international conference on electronics, communication and aerospace technology; March 29–31, 2018; Coimbatore.
  year: 2018
  ident: pone.0312537.ref014
– volume: 10
  start-page: 5624
  year: 2020
  ident: pone.0312537.ref023
  article-title: Automatic tooth detection and numbering using a combination of a CNN and heuristic algorithm.
  publication-title: Appl Sci
  doi: 10.3390/app10165624
– volume: 99
  start-page: 769
  year: 2020
  ident: pone.0312537.ref041
  article-title: Artificial intelligence in dentistry: Chances and challenges
  publication-title: J Dent Res
  doi: 10.1177/0022034520915714
– volume: 10
  start-page: 19261
  year: 2020
  ident: pone.0312537.ref026
  article-title: Optimization technique combined with deep learning method for teeth recognition in dental panoramic radiographs.
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-75887-9
– volume: 18
  start-page: 696
  year: 2023
  ident: pone.0312537.ref034
  article-title: Automatic identification of individuals using deep learning method on panoramic radiographs.
  publication-title: J Dent Sci
  doi: 10.1016/j.jds.2022.10.021
– volume: 281
  start-page: 186
  year: 2017
  ident: pone.0312537.ref025
  article-title: Morphological analysis of the lower second premolar for age estimation of Korean adults.
  publication-title: Forensic Sci Int
– volume: 52
  start-page: 219
  year: 2022
  ident: pone.0312537.ref008
  article-title: Transfer learning in a deep convolutional neural network for implant fixture classification: A pilot study.
  publication-title: Imaging Sci Dent
  doi: 10.5624/isd.20210287
– volume: 51
  start-page: 20210246
  year: 2022
  ident: pone.0312537.ref022
  article-title: Performance of a convolutional neural network algorithm for tooth detection and numbering on periapical radiographs.
  publication-title: Dentomaxillofac Radiol.
  doi: 10.1259/dmfr.20210246
– volume: 11
  start-page: 1960
  year: 2021
  ident: pone.0312537.ref028
  article-title: Deep learning-based detection of dental prostheses and restorations.
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-81202-x
– start-page: 511
  volume-title: Sex/Gender-Specific Medicine in Clinical Areas
  year: 2024
  ident: pone.0312537.ref038
– volume: 66
  start-page: 124
  year: 2021
  ident: pone.0312537.ref040
  article-title: Promises and perils of artificial intelligence in dentistry.
  publication-title: Aust Dent J
  doi: 10.1111/adj.12812
– volume: 42
  start-page: 657
  year: 2001
  ident: pone.0312537.ref002
  article-title: Dental identification after two mass disasters in Croatia.
  publication-title: Croat Med J
– volume-title: Active learning for deep object detection
  year: 2018
  ident: pone.0312537.ref016
– volume: 48
  start-page: 20180051
  year: 2019
  ident: pone.0312537.ref030
  article-title: Tooth detection and numbering in panoramic radiographs using convolutional neural networks.
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20180051
– volume: 71
  start-page: 102062
  year: 2021
  ident: pone.0312537.ref017
  article-title: A survey on active learning and human-in-the-loop deep learning for medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102062
– volume: 190
  start-page: 359
  year: 2001
  ident: pone.0312537.ref005
  article-title: A look at forensic dentistry—Part 1: The role of teeth in the determination of human identity.
  publication-title: Br Dent J.
  doi: 10.1038/sj.bdj.4800972
– volume: 9
  start-page: 3840
  year: 2019
  ident: pone.0312537.ref020
  article-title: A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films.
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-40414-y
– volume: 51
  start-page: 20210383
  year: 2022
  ident: pone.0312537.ref024
  article-title: A fully automated method of human identification based on dental panoramic radiographs using a convolutional neural network.
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20210383
– year: 2021
  ident: pone.0312537.ref013
  article-title: End-to-end semi-supervised object detection with soft teacher
  publication-title: In: Proceedings of the IEEE/CVF international conference on computer vision
– volume: 22
  start-page: 69
  year: 2022
  ident: pone.0312537.ref015
  article-title: Transfer learning for medical image classification: a literature review.
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-022-00793-7
– volume: 10
  start-page: 13559
  year: 2020
  ident: pone.0312537.ref027
  article-title: Personal identification with orthopantomography using simple convolutional neural networks: A preliminary study.
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-70474-4
– volume: 136
  start-page: 104607
  year: 2023
  ident: pone.0312537.ref031
  article-title: Robust automated teeth identification from dental radiographs using deep learning.
  publication-title: J Dent
  doi: 10.1016/j.jdent.2023.104607
– volume: 66
  start-page: 910
  year: 2021
  ident: pone.0312537.ref033
  article-title: Specific oral and maxillofacial identifiers in panoramic radiographs used for human identification
  publication-title: J Forensic Sci
  doi: 10.1111/1556-4029.14673
– volume: 35
  start-page: 301
  year: 1985
  ident: pone.0312537.ref001
  article-title: The use of medical and dental radiographs in identification.
  publication-title: Int Dent J.
– start-page: 15844
  volume-title: In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; June 20–25, 2021.
  year: 2021
  ident: pone.0312537.ref012
– volume: 50
  start-page: 169
  year: 2020
  ident: pone.0312537.ref029
  article-title: Automatic detection of periodontal compromised teeth in digital panoramic radiographs using faster regional convolutional neural networks.
  publication-title: Imaging Sci Dent
  doi: 10.5624/isd.2020.50.2.169
SSID ssj0053866
Score 2.4644766
Snippet The aim of this study was to propose a novel method to identify individuals by recognizing dentition change, along with human identification process using deep...
SourceID plos
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0312537
SubjectTerms Adult
Artificial neural networks
Automation
Biology and Life Sciences
Computer and Information Sciences
Databases, Factual
Datasets
Deep Learning
Dentition
Engineering and Technology
Female
Forensic Dentistry - methods
Human beings
Humans
Identification
Identification and classification
Identification methods
Imaging
Male
Man
Medical research
Medicine and Health Sciences
Medicine, Experimental
Men
Methods
Middle Aged
Neural networks
Prostheses
Radiographs
Radiography
Radiography, Panoramic - methods
Research and Analysis Methods
Similarity
Social networks
Teeth
Women
Young Adult
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_G8cILYnztYEBAiI-HnvqRpOkDmqaJaSANJODQ3qo0ScdJt7Zb76Tdfz87TSuKDsRz3Chx7Niu458JeW2SpLRMmYCVmgfMFiooVBYGyjJtDY-Fdj_0T7-Ikzn7fMbPdkifaPcMbLeGdthPan61nF1fbg5A4T-4rg1p1H80a-rKzkBIY56kb5rLAFtLYQrW99m4RW6DuYpR9E_ZkGoAhRfC19T9bbKRzfI396RZ1u02t_TP15W_mavje-Su9zPpYScYu2THVvfJrtfklr7zcNPvH5CLI1VRY21DfQeJc7pw1bvlhroOfi0tNlStV7VDd1XL5YbqugeeBWpF8ZkpmkOKf3WpcRWWFK4ZEK-LhaZXyiw6ZOz24CGZH3_8cXQS-CYMgYZQZAWXocE7QBuIQyJuJFPcWstLo2OIb6USWWawgiEqVSa5KAxnkQS3LxaFKMNSJI_IpAJe7hFq01gWMFVkhWQyKbLMqogV4JGFSayZnZKgZ3PedFgbuUu4pRCjdGzL8VhyfyxT8gLPIu8qRgdVzQ9llGClfMKm5JWjQKCLCl_SnKt12-afvv78D6Lv30ZEbz1RWcOpauWrF2A5CKA1otwfUYK66tHwHkpOv6E2h70gRg9PMviyl6btwy-HYZwUX8dVtl53NDzDlO6UPO6Eb2AgFj6LNAVmyZFYDgSILz4eqRa_HM44BguhzMIn_17XU3InBk8PDXrM9skExM8-A09tVTx3mnYDpXpAsw
  priority: 102
  providerName: Scholars Portal
Title Can deep learning identify humans by automatically constructing a database with dental panoramic radiographs?
URI https://www.ncbi.nlm.nih.gov/pubmed/39446777
https://www.proquest.com/docview/3120494539
https://www.proquest.com/docview/3120594382
https://pubmed.ncbi.nlm.nih.gov/PMC11500890
http://dx.doi.org/10.1371/journal.pone.0312537
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdY98ILYnytMIpBSMBDtnzYjvM0jWplIG2gwVDfIsd2RqUu6Zb2of89d45TFjQhXvLia5Tel8_nu98R8tYkSWmZMgErNQ-YLVRQqCwMlGXaGh4L7RL6p2fi5IJ9mfKpT7g1vqyy84nOUZtaY478IIlihDLhSXa4uA5wahTervoRGltkO4pBk7BTfPKp88Rgy0L4drkkjQ68dPYXdWX3QZljjtPPb21H3ikPFvO6uSvi_Ltw8tZONHlIHvgQkh61Mt8h92z1iOx4I23oe48k_eExuRqrihprF9QPh7ikM9eYW66pG87X0GJN1WpZO-BWNZ-vqa47TFmgVhQrSHGno5iwpcY1T1LwIKA5VzNNb5SZtaDXzeETcjE5_jE-Cfx8hUDDKWMJfs6geWsDR4yIG8kUt9by0ugYjq5SiSwz2JwQlSqTXBSGs0hCRBeLQpRhKZKnZFABL3cJtWksC3hVZIVkMimyzKqIFRBshUmsmR2SoGNzvmhhNHJ3l5bC8aNlW45iyb1YhuQVyiJvm0E3VpgfySjBJviEDckbR4EYFhUWyVyqVdPkn7_-_A-i7-c9oneeqKxBqlr5xgT4HMTG6lHu9SjBEnVveRc1p_tDTf5HZ-GXnTbdvfx6s4wvxcK3ytarloZneFs7JM9a5dswEHuaRZoCs2RPLTcECB3eX6lmvxyEOJ4DQpmFz__9XS_I_RiCONyrY7ZHBqB-9iUEYctiRLbSaQpPOY5GzupGZPvj8dm385FLa8DzlMnfZo04cA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeYAXtPG1ssEMAgEP2RLHdpIHNE2DqWUfSLBNfQuO7YxKXVJIK9R_ir-Ru8QpC5oQL3v21Urvy3f23e8IeWnCMLdcGY_nWnjcZsrLVOJ7ynJtjWBS1xf6xydycMY_jsRohfxqe2GwrLL1ibWjNqXGO_KdMGAIZSLCZHf63cOpUfi62o7QaNTi0C5-QspWvRu-B_m-Yuzgw-n-wHNTBTwNsfUMrNugUmsDgXUgTMyVsNaK3GgGCVusZJIYLMkPcpXEQmZG8CCGOIbJTOZ-LkPY9xa5zUOfI1Z_NFomeOA7pHTteWEU7Dht2J6Whd0G42ECp61fOf7cIdCbTsrqugj370LNKyffwSq550JWutfo2BpZscV9suacQkXfOOTqtw_I5b4qqLF2St0wigs6rhuB8wWthwFWNFtQNZ-VNVCsmkwWVJcthi1QK4oVq3iyUrwgpqZu1qTgsUBTL8ea_lBm3IBsV7sPydmNcP4R6RXAy3VCbcTiDLYKrIx5HGZJYlXAMwju_JBpbvvEa9mcThvYjrR-u4sg3WnYlqJYUieWPtlCWaRN8-nS6tO9OAix6T7kffKipkDMjAKLci7UvKrS4afz_yD68rlD9NoR5SVIVSvXCAGfg1hcHcrNDiVYvu4sr6PmtH-oSv_YCPyy1abrl58vl3FTLLQrbDlvaESCr8N98rhRviUDsYdaRhEwK-6o5ZIAocq7K8X4Ww1ZjnmHHyf-k39_1xa5Mzg9PkqPhieHG-QugwAS4wTGN0kPVNE-hQBwlj2rrY6Srzdt5r8BQXpumw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wmAGgYCHrI2_kjygadqoNgYDAUN9C47tjEpdUkgr1H-Nv467xCkLmhAve_bVSu9-d76z74OQp5bz3AltA5EbGQiX6SDTyTDQThhnJVOmvtB_d6wOTsSbsRyvkV9tLQymVbY2sTbUtjR4Rz7gIcNWJpIng9ynRXzYH-3Mvgc4QQpfWttxGg1EjtzyJ4Rv1avDfZD1M8ZGrz_vHQR-wkBgwM-eg6ZbBLix4GSH0sZCS-eczK1hELzFWiWJxfT8MNdJLFVmpQhj8GmYylQ-zBWHfa-QqxEXHNPJovEq2AM7opQv1eNROPDI2J6VhdsGRWISJ6-fOwr9gdCbTcvqIm_376TNc6fg6Ca54d1XutvgbZ2sueIWWfcGoqIvfBfrl7fJ2Z4uqHVuRv1gilM6qYuC8yWtBwNWNFtSvZiXddNYPZ0uqSnbfrZArSlmr-IpS_GymNq6cJOC9QLUnk0M_aHtpGm4Xe3cISeXwvm7pFcALzcIdRGLM9gqdCoWMc-SxOlQZODoDTkzwvVJ0LI5nTUtPNL6HS-C0KdhW4piSb1Y-mQLZZE2hagrC5DuxiHHAnwu-uRJTYH9MwpE4qleVFV6-P7LfxB9-tgheu6J8hKkarQvioDPwb5cHcrNDiVYAdNZ3kDktH-oSv_oC_yyRdPFy49Xy7gpJt0Vrlw0NDLBl-I-udeAb8VArKdWUQTMijuwXBFg2_LuSjH5VrcvxxhkGCfD-__-ri1yDRQ8fXt4fPSAXGfgS6LLwMQm6QES3UPwBefZo1rpKPl62Vr-G3dOctY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+deep+learning+identify+humans+by+automatically+constructing+a+database+with+dental+panoramic+radiographs%3F&rft.jtitle=PloS+one&rft.au=Choi%2C+Hye-Ran&rft.au=Thomhert+Suprapto+Siadari+Dong-Yub+Ko+Jo-Eun+Kim&rft.au=Kyung-Hoe+Huh&rft.au=Won-Jin%2C+Yi&rft.date=2024-10-24&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=19&rft.issue=10&rft.spage=e0312537&rft_id=info:doi/10.1371%2Fjournal.pone.0312537&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon