Sensitivity of the MAR Regional Climate Model Snowpack to the Parameterization of the Assimilation of Satellite-Derived Wet-Snow Masks on the Antarctic Peninsula
Both regional climate models (RCMs) and remote sensing (RS) data are essential tools in understanding the response of polar regions to climate change. RCMs can simulate how certain climate variables, such as surface melt, runoff and snowfall, are likely to change in response to different climate sce...
Saved in:
| Published in | The cryosphere Vol. 17; no. 10; pp. 4267 - 4288 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Goddard Space Flight Center
European Geosciences Union
06.10.2023
Copernicus GmbH Copernicus Publications |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1994-0424 1994-0416 1994-0424 1994-0416 |
| DOI | 10.5194/tc-17-4267-2023 |
Cover
| Abstract | Both regional climate models (RCMs) and remote sensing (RS) data are essential tools in understanding the response of polar regions to climate change. RCMs can simulate how certain climate variables, such as surface melt, runoff and snowfall, are likely to change in response to different climate scenarios but are subject to biases and errors. RS data can assist in reducing and quantifying model uncertainties by providing indirect observations of the modeled variables on the present climate. In this work, we improve on an existing scheme to assimilate RS wet snow occurrence data with the “Modèle Atmosphérique Régional” (MAR) RCM and investigate the sensitivity of the RCM to the parameters of the scheme. The assimilation is performed by nudging the MAR snowpack temperature to match the presence of liquid water observed by satellites. The sensitivity of the assimilation method is tested by modifying parameters such as the depth to which the MAR snowpack is warmed or cooled, the quantity of water required to qualify a MAR pixel as “wet” (0.1 % or 0.2 % of the snowpack mass being water), and assimilating different RS datasets. Data assimilation is carried out on the Antarctic Peninsula for the 2019–2021 period. The results show an increase in meltwater production (+66.7 % on average, or +95 Gt), along with a small decrease in surface mass balance (SMB) (−4.5 % on average, or −20 Gt) for the 2019–2020 melt season after assimilation. The model is sensitive to the tested parameters, albeit with varying orders of magnitude. The prescribed warming depth has a larger impact on the resulting surface melt production than the liquid water content (LWC) threshold due to strong refreezing occurring within the top layers of the snowpack. The values tested for the LWC threshold are lower than the LWC for typical melt days (approximately 1.2 %) and impact results mainly at the beginning and end of the melting period. The assimilation method will allow for the estimation of uncertainty in MAR meltwater production and will enable the identification of potential issues in modeling near-surface snowpack processes, paving the way for more accurate simulations of snow processes in model projections. |
|---|---|
| AbstractList | Both regional climate models (RCMs) and remote sensing (RS) data are essential tools in understanding the response of polar regions to climate change. RCMs can simulate how certain climate variables, such as surface melt, runoff and snowfall, are likely to change in response to different climate scenarios but are subject to biases and errors. RS data can assist in reducing and quantifying model uncertainties by providing indirect observations of the modeled variables on the present climate. In this work, we improve on an existing scheme to assimilate RS wet snow occurrence data with the “Modèle Atmosphérique Régional” (MAR) RCM and investigate the sensitivity of the RCM to the parameters of the scheme. The assimilation is performed by nudging the MAR snowpack temperature to match the presence of liquid water observed by satellites. The sensitivity of the assimilation method is tested by modifying parameters such as the depth to which the MAR snowpack is warmed or cooled, the quantity of water required to qualify a MAR pixel as “wet” (0.1 % or 0.2 % of the snowpack mass being water), and assimilating different RS datasets. Data assimilation is carried out on the Antarctic Peninsula for the 2019–2021 period. The results show an increase in meltwater production (+66.7 % on average, or +95 Gt), along with a small decrease in surface mass balance (SMB) (-4.5 % on average, or -20 Gt) for the 2019–2020 melt season after assimilation. The model is sensitive to the tested parameters, albeit with varying orders of magnitude. The prescribed warming depth has a larger impact on the resulting surface melt production than the liquid water content (LWC) threshold due to strong refreezing occurring within the top layers of the snowpack. The values tested for the LWC threshold are lower than the LWC for typical melt days (approximately 1.2 %) and impact results mainly at the beginning and end of the melting period. The assimilation method will allow for the estimation of uncertainty in MAR meltwater production and will enable the identification of potential issues in modeling near-surface snowpack processes, paving the way for more accurate simulations of snow processes in model projections. Both regional climate models (RCMs) and remote sensing (RS) data are essential tools in understanding the response of polar regions to climate change. RCMs can simulate how certain climate variables, such as surface melt, runoff and snowfall, are likely to change in response to different climate scenarios but are subject to biases and errors. RS data can assist in reducing and quantifying model uncertainties by providing indirect observations of the modeled variables on the present climate. In this work, we improve on an existing scheme to assimilate RS wet snow occurrence data with the “Modèle Atmosphérique Régional” (MAR) RCM and investigate the sensitivity of the RCM to the parameters of the scheme. The assimilation is performed by nudging the MAR snowpack temperature to match the presence of liquid water observed by satellites. The sensitivity of the assimilation method is tested by modifying parameters such as the depth to which the MAR snowpack is warmed or cooled, the quantity of water required to qualify a MAR pixel as “wet” (0.1 % or 0.2 % of the snowpack mass being water), and assimilating different RS datasets. Data assimilation is carried out on the Antarctic Peninsula for the 2019–2021 period. The results show an increase in meltwater production (+66.7 % on average, or +95 Gt), along with a small decrease in surface mass balance (SMB) (−4.5 % on average, or −20 Gt) for the 2019–2020 melt season after assimilation. The model is sensitive to the tested parameters, albeit with varying orders of magnitude. The prescribed warming depth has a larger impact on the resulting surface melt production than the liquid water content (LWC) threshold due to strong refreezing occurring within the top layers of the snowpack. The values tested for the LWC threshold are lower than the LWC for typical melt days (approximately 1.2 %) and impact results mainly at the beginning and end of the melting period. The assimilation method will allow for the estimation of uncertainty in MAR meltwater production and will enable the identification of potential issues in modeling near-surface snowpack processes, paving the way for more accurate simulations of snow processes in model projections. |
| Audience | PUBLIC Academic |
| Author | Dethinne, Thomas Glaude, Quentin Kittel, Christoph Orban, Anne Alexander, Patrick Fettweis, Xavier Picard, Ghislain |
| Author_xml | – sequence: 1 givenname: Thomas orcidid: 0000-0003-3114-5248 surname: Dethinne fullname: Dethinne, Thomas organization: University of Liège – sequence: 2 givenname: Quentin orcidid: 0000-0002-1719-3270 surname: Glaude fullname: Glaude, Quentin organization: University of Liège – sequence: 3 givenname: Ghislain orcidid: 0000-0003-1475-5853 surname: Picard fullname: Picard, Ghislain organization: Grenoble Alpes University – sequence: 4 givenname: Christoph orcidid: 0000-0001-6586-9784 surname: Kittel fullname: Kittel, Christoph organization: University of Liège – sequence: 5 givenname: Patrick surname: Alexander fullname: Alexander, Patrick organization: Lamont-Doherty Earth Observatory – sequence: 6 givenname: Anne surname: Orban fullname: Orban, Anne organization: University of Liège – sequence: 7 givenname: Xavier orcidid: 0000-0002-4140-3813 surname: Fettweis fullname: Fettweis, Xavier organization: University of Liège |
| BackLink | https://hal.science/hal-04837519$$DView record in HAL |
| BookMark | eNqNksFv0zAUxiM0JLbBmQuHSJx2yGY7TpwcqzFYpU5MLYij5TgvnTs3LrHbUf4b_lNeEhgUIYR8sPXp933v2c8n0VHrWoiil5ScZ7TkF0EnVCSc5SJhhKVPomNaljwhnPGj387PohPvV4TkrCT8OPq2gNabYHYm7GPXxOEO4pvJPJ7D0rhW2fjSmrUKKLoabLxo3cNG6fs4uAG9VZ1aQ4DOfFUBDT8jJt6btbGP2gIjrDUBkjfI7qCOP0FI-rT4Rvl7HyM2-NqgOh2Mjm-hNa3fWvU8etoo6-HFj_00-vj26sPldTJ7_256OZklOhN5SNK04oUSdU1qUdKC8bThUFY6yyueF0SDanhTEUJLAbyAJiuEqCitNOLAK5qeRtMxt3ZqJTcdXrvbS6eMHATXLaXqsDMLsmpyNDLWiFRwndMCagzWCitpLTTBLDJmbduN2j8oax8DKZH9uGTQkgrZj0v240JLOlqsgSVgucrIHRvqD-etxfpaViAZywuZEpGVfdNno-tO2YOerycz2WuEF6nAgruefT2ym8593oIPcuW2Hc7YS1aIlGYkJfkvaqnwpqZtXOiUXhuv5UTkoiwEFz11_hcKVw1ro_FjNgb1A8PZgQGZAF_CUm29l9PF_JC9GFndOe87aP7j8bI_HNqE4fNhW8b-w_dq9LXKK4mwH3QcJu9f9zvijAps |
| CitedBy_id | crossref_primary_10_5194_tc_17_4629_2023 crossref_primary_10_1038_s41612_023_00529_6 |
| Cites_doi | 10.3189/S0022143000009552 10.1006/rwos.2001.0336 10.1002/2013GL058138 10.1029/2020GL091733 10.1175/1520-0450(1998)037<1470:LSIRCC>2.0.CO;2 10.5194/tc-16-5061-2022 10.5194/tc-7-375-2013 10.3390/rs13101954 10.5194/tc-15-909-2021 10.3189/S0022143000012338 10.1175/1520-0493(2002)130<0257:AOTEMC>2.0.CO;2 10.1038/ncomms10266 10.1029/2018GL080845 10.1029/2007GL031199 10.5194/tc-15-1215-2021 10.1017/jog.2020.67 10.1109/36.581975 10.5194/tc-15-2623-2021 10.1017/jog.2020.6 10.1073/pnas.1812883116 10.1038/s41586-020-2627-8 10.25518/0770-7576.6616 10.1080/02757258709532086 10.1109/JSTARS.2022.3216953 10.5194/tc-12-2901-2018 10.1080/01431160500534465 10.5194/tc-15-571-2021 10.5194/tc-5-359-2011 10.1038/s43247-022-00422-9 10.1029/2012JF002559 10.1038/s41561-020-0616-z 10.1038/s41586-018-0179-y 10.1109/TGRS.2015.2503762 10.1038/s41558-018-0326-3 10.5194/tc-15-3013-2021 10.1038/ngeo2563 10.1175/1520-0493(1994)122<0671:DOATDM>2.0.CO;2 10.1016/j.rse.2020.112044 10.5194/tc-15-3751-2021 10.3390/rs8040348 10.1017/jog.2021.112 10.1016/j.rse.2021.112318 10.1109/MGRS.2013.2248301 10.1002/2015GL064195 10.1109/JSTARS.2020.3008497 10.1002/joc.7795 10.5194/tc-16-1349-2022 10.1029/2020GL090550 10.1016/j.envsoft.2021.105015 10.1029/2018GL077899 10.1007/978-3-642-03711-5 10.1029/2018GL078448 10.3189/172756402781817798 10.1126/science.aaa0940 10.5194/tc-14-957-2020 10.1002/0471783390.ch2 10.1002/qj.3803 10.1109/36.842004 10.1016/j.rse.2006.05.010 10.1016/j.rse.2017.06.031 10.3189/1998AoG26-1-64-68 10.1038/ncomms14730 10.1038/s41467-021-26229-4 10.1029/AR079p0079 |
| ContentType | Journal Article |
| Contributor | SPHERES - ULiège |
| Contributor_xml | – sequence: 1 fullname: SPHERES - ULiège |
| Copyright | Copyright Determination: GOV_PERMITTED COPYRIGHT 2023 Copernicus GmbH 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
| Copyright_xml | – notice: Copyright Determination: GOV_PERMITTED – notice: COPYRIGHT 2023 Copernicus GmbH – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
| DBID | CYE CYI AAYXX CITATION ISR 7QH 7TG 7TN 7UA ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H95 H96 HCIFZ KL. L.G PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PYCSY 1XC VOOES JLOSS Q33 ADTOC UNPAY DOA |
| DOI | 10.5194/tc-17-4267-2023 |
| DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only) Université de Liège - Open Repository and Bibliography (ORBI) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Continental Europe Database Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Meteorology & Climatology Environmental Sciences |
| EISSN | 1994-0424 1994-0416 |
| EndPage | 4288 |
| ExternalDocumentID | oai_doaj_org_article_bf61bc22f7374c618ed001cab46cc7c0 10.5194/tc-17-4267-2023 oai_orbi_ulg_ac_be_2268_307591 oai:HAL:hal-04837519v1 A767987476 10_5194_tc_17_4267_2023 20230014591 |
| GeographicLocations | Antarctic Peninsula Antarctica |
| GeographicLocations_xml | – name: Antarctic Peninsula – name: Antarctica |
| GrantInformation | 4000128611/19/I- DT 1117545 2.5020.11 80NSSC20M0282 |
| GroupedDBID | 29F 2WC 5GY 5VS 7XC 8CJ 8FE 8FH 8R4 8R5 AAFWJ ABDBF ABUWG ACUHS ADBBV AENEX AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BFMQW BHPHI BKSAR BPHCQ CCPQU CYE CYI D1J D1K E3Z ESX GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS ISR ITC K6- KQ8 LK5 M7R MM- M~E OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PYCSY Q2X RKB RNS TR2 TUS ZBA ~02 AAYXX CITATION PUEGO 7QH 7TG 7TN 7UA AZQEC C1K DWQXO F1W GNUQQ H95 H96 KL. L.G PKEHL PQEST PQUKI 1XC VOOES JLOSS Q33 ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c576t-33b48a7dd0d7918243f4e9bc56b4680ceaf4fb00197e48ef5877b11bcd79e4b13 |
| IEDL.DBID | DOA |
| ISSN | 1994-0424 1994-0416 |
| IngestDate | Tue Oct 14 19:04:49 EDT 2025 Sun Oct 26 04:09:33 EDT 2025 Sat Oct 18 19:11:24 EDT 2025 Sat Oct 25 06:46:59 EDT 2025 Mon Jun 30 14:14:17 EDT 2025 Mon Oct 20 22:17:14 EDT 2025 Mon Oct 20 17:21:24 EDT 2025 Thu Oct 16 16:18:11 EDT 2025 Wed Oct 01 03:50:43 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Sat Oct 18 19:11:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Polar Regions Surface Melt Remote Sensing Wet Snow Occurrence Data Climate Change Runoff Modèle Atmosphérique Régional Remote Sensing Snowfall Regional Climate Models |
| Language | English |
| License | Creative Commons License: CCBY https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c576t-33b48a7dd0d7918243f4e9bc56b4680ceaf4fb00197e48ef5877b11bcd79e4b13 |
| Notes | GSFC Goddard Space Flight Center ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 scopus-id:2-s2.0-85177789452 |
| ORCID | 0000-0003-1475-5853 0000-0002-1719-3270 0000-0002-4140-3813 0000-0003-3114-5248 0000-0001-6586-9784 0009-0001-3238-5078 |
| OpenAccessLink | https://doaj.org/article/bf61bc22f7374c618ed001cab46cc7c0 |
| PQID | 2873150306 |
| PQPubID | 105732 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bf61bc22f7374c618ed001cab46cc7c0 unpaywall_primary_10_5194_tc_17_4267_2023 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_307591 hal_primary_oai_HAL_hal_04837519v1 proquest_journals_2873150306 gale_infotracmisc_A767987476 gale_infotracacademiconefile_A767987476 gale_incontextgauss_ISR_A767987476 crossref_primary_10_5194_tc_17_4267_2023 crossref_citationtrail_10_5194_tc_17_4267_2023 nasa_ntrs_20230014591 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-06 |
| PublicationDateYYYYMMDD | 2023-10-06 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | Goddard Space Flight Center |
| PublicationPlace_xml | – name: Goddard Space Flight Center – name: Katlenburg-Lindau |
| PublicationTitle | The cryosphere |
| PublicationYear | 2023 |
| Publisher | European Geosciences Union Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: European Geosciences Union – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref7 doi: 10.3189/S0022143000009552 – ident: ref61 doi: 10.1006/rwos.2001.0336 – ident: ref71 doi: 10.1002/2013GL058138 – ident: ref30 doi: 10.1029/2020GL091733 – ident: ref64 doi: 10.1175/1520-0450(1998)037<1470:LSIRCC>2.0.CO;2 – ident: ref20 – ident: ref63 doi: 10.5194/tc-16-5061-2022 – ident: ref26 doi: 10.5194/tc-7-375-2013 – ident: ref54 doi: 10.3390/rs13101954 – ident: ref4 doi: 10.5194/tc-15-909-2021 – ident: ref75 doi: 10.3189/S0022143000012338 – ident: ref51 doi: 10.1175/1520-0493(2002)130<0257:AOTEMC>2.0.CO;2 – ident: ref36 – ident: ref73 doi: 10.1038/ncomms10266 – ident: ref2 – ident: ref13 doi: 10.1029/2018GL080845 – ident: ref69 doi: 10.1029/2007GL031199 – ident: ref40 doi: 10.5194/tc-15-1215-2021 – ident: ref68 doi: 10.1017/jog.2020.67 – ident: ref42 doi: 10.1109/36.581975 – ident: ref11 doi: 10.5194/tc-15-2623-2021 – ident: ref35 doi: 10.1017/jog.2020.6 – ident: ref65 doi: 10.1073/pnas.1812883116 – ident: ref44 doi: 10.1038/s41586-020-2627-8 – ident: ref41 doi: 10.25518/0770-7576.6616 – ident: ref55 doi: 10.1080/02757258709532086 – ident: ref34 doi: 10.1109/JSTARS.2022.3216953 – ident: ref12 doi: 10.5194/tc-12-2901-2018 – ident: ref3 doi: 10.1080/01431160500534465 – ident: ref16 doi: 10.5194/tc-15-571-2021 – ident: ref24 doi: 10.5194/tc-5-359-2011 – ident: ref74 doi: 10.1038/s43247-022-00422-9 – ident: ref39 – ident: ref5 doi: 10.1029/2012JF002559 – ident: ref1 doi: 10.1038/s41561-020-0616-z – ident: ref70 doi: 10.1038/s41586-018-0179-y – ident: ref47 doi: 10.1109/TGRS.2015.2503762 – ident: ref6 doi: 10.1038/s41558-018-0326-3 – ident: ref29 – ident: ref25 doi: 10.5194/tc-15-3013-2021 – ident: ref48 – ident: ref72 doi: 10.1038/ngeo2563 – ident: ref28 doi: 10.1175/1520-0493(1994)122<0671:DOATDM>2.0.CO;2 – ident: ref37 doi: 10.1016/j.rse.2020.112044 – ident: ref53 doi: 10.5194/tc-15-3751-2021 – ident: ref19 – ident: ref57 doi: 10.3390/rs8040348 – ident: ref38 doi: 10.1017/jog.2021.112 – ident: ref46 doi: 10.1016/j.rse.2021.112318 – ident: ref52 doi: 10.1109/MGRS.2013.2248301 – ident: ref15 – ident: ref23 doi: 10.1002/2015GL064195 – ident: ref31 doi: 10.1109/JSTARS.2020.3008497 – ident: ref45 doi: 10.1002/joc.7795 – ident: ref9 doi: 10.5194/tc-16-1349-2022 – ident: ref27 doi: 10.1029/2020GL090550 – ident: ref50 doi: 10.1016/j.envsoft.2021.105015 – ident: ref43 doi: 10.1029/2018GL077899 – ident: ref21 doi: 10.1007/978-3-642-03711-5 – ident: ref58 doi: 10.1029/2018GL078448 – ident: ref22 doi: 10.3189/172756402781817798 – ident: ref60 doi: 10.1126/science.aaa0940 – ident: ref14 doi: 10.5194/tc-14-957-2020 – ident: ref17 doi: 10.1002/0471783390.ch2 – ident: ref33 doi: 10.1002/qj.3803 – ident: ref49 – ident: ref56 doi: 10.1109/36.842004 – ident: ref62 doi: 10.1016/j.rse.2006.05.010 – ident: ref32 doi: 10.1016/j.rse.2017.06.031 – ident: ref8 – ident: ref10 doi: 10.3189/1998AoG26-1-64-68 – ident: ref18 – ident: ref59 doi: 10.1038/ncomms14730 – ident: ref67 doi: 10.1038/s41467-021-26229-4 – ident: ref66 doi: 10.1029/AR079p0079 |
| SSID | ssj0062904 |
| Score | 2.3699815 |
| Snippet | Both regional climate models (RCMs) and remote sensing (RS) data are essential tools in understanding the response of polar regions to climate change. RCMs can... |
| SourceID | doaj unpaywall liege hal proquest gale crossref nasa |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4267 |
| SubjectTerms | Analysis Climate change Climate models Climatic changes Data assimilation Data collection Datasets Earth Resources and Remote Sensing Earth sciences & physical geography Earth-Surface Processes Environmental Sciences Flow velocity Ice sheets Ice shelves Liquid water content Mass balance Meltwater Meteorology and Climatology Modelling Moisture content Parameter modification Parameter sensitivity Parameterization Parameters Physical, chemical, mathematical & earth Sciences Physique, chimie, mathématiques & sciences de la terre Polar environments Polar regions Regional climate models Regional climates Remote sensing Runoff Satellite observation Satellites Sciences de la terre & géographie physique Sensitivity Sensors Snow Snowfall Snowpack Surface runoff Topography Uncertainty Water content Water Science and Technology |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELe29WG8IBhDZBRkTYgPibAmceLkAaFu2lQQraaOSXuzbMfZqqVJadJW-3P4T7lzk4o-AG-t84vlj_P5d_H5jpA3knuhxKtbIC_SZSZUrkqU54ZenAUaKKyM8KLwcBQNrtm3m_Bmh4zauzDoVtnqRKuo01LjN_ITYPYBkBdguF9mP13MGoWnq20KDdmkVkg_2xBju6TjY2SsPdI5PR9djlvdHPlJb33OjAFxmc_WwX6AxbCTWrugsGHD4i6mFN_ap2w4_43S3r1Dn8lOjqfaUFjISm7x0_1FMZMPK5nnf2xVF0_I44Zj0v5aKJ6SHVMckP0m3fndwwFxhkCVy7n9ok7f0rN8ArzV_ntGfl2hS_s6pwQtMwoEkQ77Y4oZHJC1U23RhtocOrQqyhWY3fe0Li0UQ4lP0cWmud_ZVgEcfTKd5JuyStpQoLVxU8AuTUpXpnaxNjqV1X1FAYbv9YsaliJ0hF6awjrOy0NyfXH-42zgNnkcXA3WTO0GgWKx5GnaS3kC9gwLMmYSpcNIsSjuaSMzliF7S7hhscnCmHPleUoD3DDlBc9hkMvCvCBUpqBDekngmYyz1DAZBJFJ0ijTXsBZ4jvkUztrQjdBzjHXRi7A2MFpFrUWHhc4zQKn2SHvNy_M1vE9_g49RTHYwDAwty0o57eiWedCZRE03PczDu3RkRebFDqmJfRUa657DjlGIRIYeqNA355buagq8fVqLPocT8TAvIsc8q4BZSW0XsvmqgSMAUbr2kJ2t5CgG_TW42OQ1a0WD_rfBZbZVALQzaXnkI9WlKEfaiKWvoXZ34scOqaFMgJIeixgOwgTgB-ixAsY18qOC1rZtrzbLgHR6EF4vlm1DvmwWRb_G-mjf1f1kjxClHWpjLpkr54vzCughrV63az3315hXv0 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe29WG88DGGCBRkTYgPiXRN48TJY6mYCqLTtFFpPFm247CqaVo1aavx3_CfcuekFZmEEOKpifOz5bPv7Lv6fEfIK8m9QOLVLeAX6TITKFfFynMDL0p9DSqsDPGi8Og8HI7Z5-vgeo8MtndhSt3B2xjLfKJXRRUnuHYQO_X4KWwnHM11H3AuLK_47uJ7Z5Gk-6QVBqCQH5DW-Pyi_82eJ2PgW2YToNbPPVYF-AHNhd1tpbE32RD-u4V6_wb9JFsZnmRDYS4L2dBJD1f5Qt5uZJb9tj2dPSDJlrDKK2XaWZWqo3_cifn4n5Q_JPdr9ZX2qzqPyJ7Jj8hhnUn95vaIOCPQwudL-2c9fU0H2QRUYvv2mPy8Qm_5Kl0FnacUdE866l9STA6BBgHVFm2oTc9Di3y-AYt-Ssu5hWKU8hl679RXR7dNgPo_mU2yXVkhbZTR0rgJYNcmoRtTutgancliWlCAYb1-XoKUAyH0wuTWJ18ek_HZx6-DoVuniHA1GEql6_uKRZInSTfhMZhKzE-ZiZUOQsXCqKuNTFmKimHMDYtMGkScK89TGuCGKc9_AnM5z81TQmUCy1M39j2TcpYYJn0_NHESptrzOYt7DulsmUPoOn46pvHIBNhRyE2i1MLjAmdG4Mw45O2uwqIKHfJn6Afkth0MY37bAmADUbOBUGkIHe_1Ug790aEXmQQI0xIo1ZrrrkNOkFcFRvXI0W3ou1wVhfh0dSn6HA_bwHIMHfKmBqVz6L2W9S0MGAMMBNZAthtIWHZ04_MJiESjx8P-F4FlNksBkLn2HPLeSgzQoSZi3bMw-7zKgDAtlBGg_0cCdpogBvgxCpaAcS3suKABb8vbW0kT9RIL3yPugzUDJq9D3u2k728j_ewfsM_JPfyxrpthmxyUy5V5ASpoqV7WS8wv1ox8rQ priority: 102 providerName: Unpaywall |
| Title | Sensitivity of the MAR Regional Climate Model Snowpack to the Parameterization of the Assimilation of Satellite-Derived Wet-Snow Masks on the Antarctic Peninsula |
| URI | https://ntrs.nasa.gov/citations/20230014591 https://www.proquest.com/docview/2873150306 https://hal.science/hal-04837519 http://orbi.ulg.ac.be/handle/2268/307591 https://tc.copernicus.org/articles/17/4267/2023/tc-17-4267-2023.pdf https://doaj.org/article/bf61bc22f7374c618ed001cab46cc7c0 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1994-0424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1994-0424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1994-0424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: ABDBF dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1994-0424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1994-0424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1994-0424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: BFMQW dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1994-0424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062904 issn: 1994-0424 databaseCode: BENPR dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELeAPYwXBGOIQJmsCfFHIqxpnDh5zKaNgWhVdVQqT5btOFu1NJmWtNU-Dt-UOyetlge0F16q9nKx4rvL-Xf1-Y6Q95J7gcSjW2Av0mUmUK6KlecGXpT5GiCsDPGg8HAUnk_Zj1kwu9fqC3PCmvLAjeCOVBZ6Sg8GGfc506EXmRQ8q5aKhVpzbaP1fhRvgqnGB4eDuN_sJ2PhW8AcTVEfQCvsqNYuOGZYmLiLrcM765Et2791zo-vMDdyJ8fdayAWspIdHLq7LG7k3Vrm-b0l6ew5edZiSZo0c3hBHplij-y2bc2v7vaIMwRIXN7af87pB3qSzwGf2l8vyZ8LTF1vekfQMqMABOkwmVDs1IDonGrLbajtlUOrolxDeH1N69KyYsnwBabStOc4N0MAFp8v5vmWVklb8rM2bgq8K5PStaldHI0uZHVdUWDD-5KihlcOJkLHprAJ8nKfTM9Of52cu22_BldD1FK7vq9YJHma9lMeQ9zC_IyZWOkgBGVFfW1kxjJEaTE3LDJZEHGuPNAusBumPP8VCLkszGtCZQq-oh_7nsk4Sw2Tvh-aOA0z7YEZxAOHfN1oTei2mDn21MgFBDWoZlFr4XGBahaoZod82t5w09Tx-DfrMZrBlg0LcFsCmKVozVI8ZJYOOUQjElhio8Acnku5rCrx_WIiEo47XxDGhQ752DJlJTy9lu2RCJABVuXqcPY6nOADdOfyIdhq54nPk58CabZlAExz5TnkizVlmIeai9XAstnvyxwmpoUyAsB4JMDtBzGw76PFC5BrZeWC0bSl9zavgGj9HVyPuA-hBcSfDvm8fS0ekvSb_yHpt-QpjmUTLMMeeVLfLs07AIq1OiA7x6ej8eTA-gb4_DbzgDYdjZPffwFMimX4 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swELdgPLCXaWNMy8Y2C-2vtIwmceLkAU2FgcqgCPFH4s3YjgMVIemalIqPsy-yz7Y7N6nWh21PvLXOxbJ957vfxec7Qt5K7oUSr26BvEiXmVC5KlGeG3pxFmiAsDLCi8L9w6h3xr6fh-cL5Fd7FwbDKludaBV1Wmr8Rr4ByD4A8AII9-vwh4tVo_B0tS2hIZvSCummTTHWXOzYN3cTcOGqzb1vwO93vr-7c7rdc5sqA64GrF27QaBYLHmadlKeANpmQcZMonQYKRbFHW1kxjLEFgk3LDZZGHOuPE9pIDdMeQH0u0iWWMAScP6WtnYOj45bWxD5SWd6ro0JeJnPpsmFADWxjVq7YCDAQHIXS5jP2UVbPmBmJBavMEZzKcdTdGgsZCXn8PDyuBjKu4nM8z9M4-5j8qjBtLQ7FcInZMEUK2S5Ka9-dbdCnD5A83Jkv-DT93Q7HwBOtv-ekp8nGEI_rWFBy4wCIKX97jHFihHoJVBtqQ21NXtoVZQTcPOvaV1aUkxdfoMhPc190rYL8AkGN4N81lZJm3q0Nm4KtLcmpRNTu9gbvZHVdUWBDN_rFjXwFCZCj0xhA_XlKjm7F44-g0UuC_OcUJmCzuokgWcyzlLDZBBEJkmjTHsBZ4nvkC8t14RukqpjbY9cgHOFbBa1Fh4XyGaBbHbIx9kLw2k-kb-TbqEYzMgwEbhtKEeXotErQmURDNz3Mw7j0ZEXmxQmpiXMVGuuOw5ZRyESmOqjwFiiSzmuKrF3ciy6HE_gwJ2MHPKhIcpKGL2WzdUMWAPMDjZHuTZHCbpIzz1eB1mdG3GveyCwzZYugGneeg75bEUZ5qEG4ta3ZPb3OIeJaaGMAKcgFmB-wgTIV1HiBaxrZdcFvXrbvtZuAdHoXXg-0xIO-TTbFv9b6Rf_7uoNWe6d9g_Ewd7h_kvyEN-w4ZzRGnlQj8bmFcDSWr1u9j4lF_etbn4DDEicQQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQw0OpDAi48ShGBAlbFUyLtJnFeB4S2LauWdqvSUtGbsR2nXTVNlibbVfkbfoNf4WeYcZIViwSceuC264wtz2TGMxPPg5CnInR8galbwC_CZtqXtoylY_tOlHoKTFgRYKJwfzfYPGTvj_yjGfK9zYXBsMr2TDQHdVIo_Ea-Cpa9B8YLWLiraRMWsbfRezv8YmMHKbxpbdtp1CyyrS_H4L6Vb7Y24F0_c93eu4_rm3bTYcBWYGdXtudJFokwSTpJGIOlzbyU6VgqP5AsiDpKi5SlaFfEoWaRTv0oDKXjSAXgmknHg3VnyXyERdDmyPxar__hU6sHAjfu1HfaWHyXuawuLAQWE1utlA3KAZRjaGP78imdaFoHTBTE7AnGZ85neIMOg7koxZQtfH2UD8XlWGTZL2qxd4v8aAlaR8OcrowquaK-_lZr8v-k-G1ys7HWabcWrztkRucL5HrTOP7kcoFYfXA6inNzN0Gf0_VsAB6A-XeXfDvA5IC6OwctUgqmNu139yn2wkD_hyoDranpRkTLvBgPhTqlVWFAsSj7GQYrNZmy7RLg7QzOBtlkrBSmqGql7QRgL3RCx7qycTV6JsrTkgIYzuvmFdAPEKF7OjcpCGKRHF4J9e4BCxW5vk-oSOA07sSeo9OQJZoJzwt0nASpcryQxa5FVlqe5KopF49dSzIObiMyMa8Ud0KOTMyRiS3ycjJhWFdK-TPoGjL5BAxLnJuB4vyYNycml2kAG3fdNIT9qMCJdAKIKQGYKhWqjkWWUUQ4FjHJkTmPxags-dbBPu-GeLcIjnJgkRcNUFrA7pVokk6ABlj3bApyaQoSTlk19XgZJHFqx5vdHY5jpikDoHnhWOS1EVTAQw74hWvAzO9RBogpLjUHdyfioFj9GMAXUZ450LU0dMHvFWZ8qRVI3mgUeD6RRou8mgj9vyj94O9LPSHXQKT5ztbu9kNyAyeYONVgicxV5yP9COztSj5uDjZKPl-1ZP8EScni7w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe29WG88DGGCBRkTYgPiXRN48TJY6mYCqLTtFFpPFm247CqaVo1aavx3_CfcuekFZmEEOKpifOz5bPv7Lv6fEfIK8m9QOLVLeAX6TITKFfFynMDL0p9DSqsDPGi8Og8HI7Z5-vgeo8MtndhSt3B2xjLfKJXRRUnuHYQO_X4KWwnHM11H3AuLK_47uJ7Z5Gk-6QVBqCQH5DW-Pyi_82eJ2PgW2YToNbPPVYF-AHNhd1tpbE32RD-u4V6_wb9JFsZnmRDYS4L2dBJD1f5Qt5uZJb9tj2dPSDJlrDKK2XaWZWqo3_cifn4n5Q_JPdr9ZX2qzqPyJ7Jj8hhnUn95vaIOCPQwudL-2c9fU0H2QRUYvv2mPy8Qm_5Kl0FnacUdE866l9STA6BBgHVFm2oTc9Di3y-AYt-Ssu5hWKU8hl679RXR7dNgPo_mU2yXVkhbZTR0rgJYNcmoRtTutgancliWlCAYb1-XoKUAyH0wuTWJ18ek_HZx6-DoVuniHA1GEql6_uKRZInSTfhMZhKzE-ZiZUOQsXCqKuNTFmKimHMDYtMGkScK89TGuCGKc9_AnM5z81TQmUCy1M39j2TcpYYJn0_NHESptrzOYt7DulsmUPoOn46pvHIBNhRyE2i1MLjAmdG4Mw45O2uwqIKHfJn6Afkth0MY37bAmADUbOBUGkIHe_1Ug790aEXmQQI0xIo1ZrrrkNOkFcFRvXI0W3ou1wVhfh0dSn6HA_bwHIMHfKmBqVz6L2W9S0MGAMMBNZAthtIWHZ04_MJiESjx8P-F4FlNksBkLn2HPLeSgzQoSZi3bMw-7zKgDAtlBGg_0cCdpogBvgxCpaAcS3suKABb8vbW0kT9RIL3yPugzUDJq9D3u2k728j_ewfsM_JPfyxrpthmxyUy5V5ASpoqV7WS8wv1ox8rQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+of+the+MAR+regional+climate+model+snowpack+to+the+parameterization+of+the+assimilation+of+satellite-derived+wet-snow+masks+on+the+Antarctic+Peninsula&rft.jtitle=The+cryosphere&rft.au=T.+Dethinne&rft.au=T.+Dethinne&rft.au=Q.+Glaude&rft.au=Q.+Glaude&rft.date=2023-10-06&rft.pub=Copernicus+Publications&rft.issn=1994-0416&rft.eissn=1994-0424&rft.volume=17&rft.spage=4267&rft.epage=4288&rft_id=info:doi/10.5194%2Ftc-17-4267-2023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf61bc22f7374c618ed001cab46cc7c0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-0424&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-0424&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-0424&client=summon |