Sensitivity of the MAR Regional Climate Model Snowpack to the Parameterization of the Assimilation of Satellite-Derived Wet-Snow Masks on the Antarctic Peninsula

Both regional climate models (RCMs) and remote sensing (RS) data are essential tools in understanding the response of polar regions to climate change. RCMs can simulate how certain climate variables, such as surface melt, runoff and snowfall, are likely to change in response to different climate sce...

Full description

Saved in:
Bibliographic Details
Published inThe cryosphere Vol. 17; no. 10; pp. 4267 - 4288
Main Authors Dethinne, Thomas, Glaude, Quentin, Picard, Ghislain, Kittel, Christoph, Alexander, Patrick, Orban, Anne, Fettweis, Xavier
Format Journal Article
LanguageEnglish
Published Goddard Space Flight Center European Geosciences Union 06.10.2023
Copernicus GmbH
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1994-0424
1994-0416
1994-0424
1994-0416
DOI10.5194/tc-17-4267-2023

Cover

Abstract Both regional climate models (RCMs) and remote sensing (RS) data are essential tools in understanding the response of polar regions to climate change. RCMs can simulate how certain climate variables, such as surface melt, runoff and snowfall, are likely to change in response to different climate scenarios but are subject to biases and errors. RS data can assist in reducing and quantifying model uncertainties by providing indirect observations of the modeled variables on the present climate. In this work, we improve on an existing scheme to assimilate RS wet snow occurrence data with the “Modèle Atmosphérique Régional” (MAR) RCM and investigate the sensitivity of the RCM to the parameters of the scheme. The assimilation is performed by nudging the MAR snowpack temperature to match the presence of liquid water observed by satellites. The sensitivity of the assimilation method is tested by modifying parameters such as the depth to which the MAR snowpack is warmed or cooled, the quantity of water required to qualify a MAR pixel as “wet” (0.1 % or 0.2 % of the snowpack mass being water), and assimilating different RS datasets. Data assimilation is carried out on the Antarctic Peninsula for the 2019–2021 period. The results show an increase in meltwater production (+66.7 % on average, or +95 Gt), along with a small decrease in surface mass balance (SMB) (−4.5 % on average, or −20 Gt) for the 2019–2020 melt season after assimilation. The model is sensitive to the tested parameters, albeit with varying orders of magnitude. The prescribed warming depth has a larger impact on the resulting surface melt production than the liquid water content (LWC) threshold due to strong refreezing occurring within the top layers of the snowpack. The values tested for the LWC threshold are lower than the LWC for typical melt days (approximately 1.2 %) and impact results mainly at the beginning and end of the melting period. The assimilation method will allow for the estimation of uncertainty in MAR meltwater production and will enable the identification of potential issues in modeling near-surface snowpack processes, paving the way for more accurate simulations of snow processes in model projections.
AbstractList Both regional climate models (RCMs) and remote sensing (RS) data are essential tools in understanding the response of polar regions to climate change. RCMs can simulate how certain climate variables, such as surface melt, runoff and snowfall, are likely to change in response to different climate scenarios but are subject to biases and errors. RS data can assist in reducing and quantifying model uncertainties by providing indirect observations of the modeled variables on the present climate. In this work, we improve on an existing scheme to assimilate RS wet snow occurrence data with the “Modèle Atmosphérique Régional” (MAR) RCM and investigate the sensitivity of the RCM to the parameters of the scheme. The assimilation is performed by nudging the MAR snowpack temperature to match the presence of liquid water observed by satellites. The sensitivity of the assimilation method is tested by modifying parameters such as the depth to which the MAR snowpack is warmed or cooled, the quantity of water required to qualify a MAR pixel as “wet” (0.1 % or 0.2 % of the snowpack mass being water), and assimilating different RS datasets. Data assimilation is carried out on the Antarctic Peninsula for the 2019–2021 period. The results show an increase in meltwater production (+66.7 % on average, or +95 Gt), along with a small decrease in surface mass balance (SMB) (-4.5 % on average, or -20 Gt) for the 2019–2020 melt season after assimilation. The model is sensitive to the tested parameters, albeit with varying orders of magnitude. The prescribed warming depth has a larger impact on the resulting surface melt production than the liquid water content (LWC) threshold due to strong refreezing occurring within the top layers of the snowpack. The values tested for the LWC threshold are lower than the LWC for typical melt days (approximately 1.2 %) and impact results mainly at the beginning and end of the melting period. The assimilation method will allow for the estimation of uncertainty in MAR meltwater production and will enable the identification of potential issues in modeling near-surface snowpack processes, paving the way for more accurate simulations of snow processes in model projections.
Both regional climate models (RCMs) and remote sensing (RS) data are essential tools in understanding the response of polar regions to climate change. RCMs can simulate how certain climate variables, such as surface melt, runoff and snowfall, are likely to change in response to different climate scenarios but are subject to biases and errors. RS data can assist in reducing and quantifying model uncertainties by providing indirect observations of the modeled variables on the present climate. In this work, we improve on an existing scheme to assimilate RS wet snow occurrence data with the “Modèle Atmosphérique Régional” (MAR) RCM and investigate the sensitivity of the RCM to the parameters of the scheme. The assimilation is performed by nudging the MAR snowpack temperature to match the presence of liquid water observed by satellites. The sensitivity of the assimilation method is tested by modifying parameters such as the depth to which the MAR snowpack is warmed or cooled, the quantity of water required to qualify a MAR pixel as “wet” (0.1 % or 0.2 % of the snowpack mass being water), and assimilating different RS datasets. Data assimilation is carried out on the Antarctic Peninsula for the 2019–2021 period. The results show an increase in meltwater production (+66.7 % on average, or +95 Gt), along with a small decrease in surface mass balance (SMB) (−4.5 % on average, or −20 Gt) for the 2019–2020 melt season after assimilation. The model is sensitive to the tested parameters, albeit with varying orders of magnitude. The prescribed warming depth has a larger impact on the resulting surface melt production than the liquid water content (LWC) threshold due to strong refreezing occurring within the top layers of the snowpack. The values tested for the LWC threshold are lower than the LWC for typical melt days (approximately 1.2 %) and impact results mainly at the beginning and end of the melting period. The assimilation method will allow for the estimation of uncertainty in MAR meltwater production and will enable the identification of potential issues in modeling near-surface snowpack processes, paving the way for more accurate simulations of snow processes in model projections.
Audience PUBLIC
Academic
Author Dethinne, Thomas
Glaude, Quentin
Kittel, Christoph
Orban, Anne
Alexander, Patrick
Fettweis, Xavier
Picard, Ghislain
Author_xml – sequence: 1
  givenname: Thomas
  orcidid: 0000-0003-3114-5248
  surname: Dethinne
  fullname: Dethinne, Thomas
  organization: University of Liège
– sequence: 2
  givenname: Quentin
  orcidid: 0000-0002-1719-3270
  surname: Glaude
  fullname: Glaude, Quentin
  organization: University of Liège
– sequence: 3
  givenname: Ghislain
  orcidid: 0000-0003-1475-5853
  surname: Picard
  fullname: Picard, Ghislain
  organization: Grenoble Alpes University
– sequence: 4
  givenname: Christoph
  orcidid: 0000-0001-6586-9784
  surname: Kittel
  fullname: Kittel, Christoph
  organization: University of Liège
– sequence: 5
  givenname: Patrick
  surname: Alexander
  fullname: Alexander, Patrick
  organization: Lamont-Doherty Earth Observatory
– sequence: 6
  givenname: Anne
  surname: Orban
  fullname: Orban, Anne
  organization: University of Liège
– sequence: 7
  givenname: Xavier
  orcidid: 0000-0002-4140-3813
  surname: Fettweis
  fullname: Fettweis, Xavier
  organization: University of Liège
BackLink https://hal.science/hal-04837519$$DView record in HAL
BookMark eNqNksFv0zAUxiM0JLbBmQuHSJx2yGY7TpwcqzFYpU5MLYij5TgvnTs3LrHbUf4b_lNeEhgUIYR8sPXp933v2c8n0VHrWoiil5ScZ7TkF0EnVCSc5SJhhKVPomNaljwhnPGj387PohPvV4TkrCT8OPq2gNabYHYm7GPXxOEO4pvJPJ7D0rhW2fjSmrUKKLoabLxo3cNG6fs4uAG9VZ1aQ4DOfFUBDT8jJt6btbGP2gIjrDUBkjfI7qCOP0FI-rT4Rvl7HyM2-NqgOh2Mjm-hNa3fWvU8etoo6-HFj_00-vj26sPldTJ7_256OZklOhN5SNK04oUSdU1qUdKC8bThUFY6yyueF0SDanhTEUJLAbyAJiuEqCitNOLAK5qeRtMxt3ZqJTcdXrvbS6eMHATXLaXqsDMLsmpyNDLWiFRwndMCagzWCitpLTTBLDJmbduN2j8oax8DKZH9uGTQkgrZj0v240JLOlqsgSVgucrIHRvqD-etxfpaViAZywuZEpGVfdNno-tO2YOerycz2WuEF6nAgruefT2ym8593oIPcuW2Hc7YS1aIlGYkJfkvaqnwpqZtXOiUXhuv5UTkoiwEFz11_hcKVw1ro_FjNgb1A8PZgQGZAF_CUm29l9PF_JC9GFndOe87aP7j8bI_HNqE4fNhW8b-w_dq9LXKK4mwH3QcJu9f9zvijAps
CitedBy_id crossref_primary_10_5194_tc_17_4629_2023
crossref_primary_10_1038_s41612_023_00529_6
Cites_doi 10.3189/S0022143000009552
10.1006/rwos.2001.0336
10.1002/2013GL058138
10.1029/2020GL091733
10.1175/1520-0450(1998)037<1470:LSIRCC>2.0.CO;2
10.5194/tc-16-5061-2022
10.5194/tc-7-375-2013
10.3390/rs13101954
10.5194/tc-15-909-2021
10.3189/S0022143000012338
10.1175/1520-0493(2002)130<0257:AOTEMC>2.0.CO;2
10.1038/ncomms10266
10.1029/2018GL080845
10.1029/2007GL031199
10.5194/tc-15-1215-2021
10.1017/jog.2020.67
10.1109/36.581975
10.5194/tc-15-2623-2021
10.1017/jog.2020.6
10.1073/pnas.1812883116
10.1038/s41586-020-2627-8
10.25518/0770-7576.6616
10.1080/02757258709532086
10.1109/JSTARS.2022.3216953
10.5194/tc-12-2901-2018
10.1080/01431160500534465
10.5194/tc-15-571-2021
10.5194/tc-5-359-2011
10.1038/s43247-022-00422-9
10.1029/2012JF002559
10.1038/s41561-020-0616-z
10.1038/s41586-018-0179-y
10.1109/TGRS.2015.2503762
10.1038/s41558-018-0326-3
10.5194/tc-15-3013-2021
10.1038/ngeo2563
10.1175/1520-0493(1994)122<0671:DOATDM>2.0.CO;2
10.1016/j.rse.2020.112044
10.5194/tc-15-3751-2021
10.3390/rs8040348
10.1017/jog.2021.112
10.1016/j.rse.2021.112318
10.1109/MGRS.2013.2248301
10.1002/2015GL064195
10.1109/JSTARS.2020.3008497
10.1002/joc.7795
10.5194/tc-16-1349-2022
10.1029/2020GL090550
10.1016/j.envsoft.2021.105015
10.1029/2018GL077899
10.1007/978-3-642-03711-5
10.1029/2018GL078448
10.3189/172756402781817798
10.1126/science.aaa0940
10.5194/tc-14-957-2020
10.1002/0471783390.ch2
10.1002/qj.3803
10.1109/36.842004
10.1016/j.rse.2006.05.010
10.1016/j.rse.2017.06.031
10.3189/1998AoG26-1-64-68
10.1038/ncomms14730
10.1038/s41467-021-26229-4
10.1029/AR079p0079
ContentType Journal Article
Contributor SPHERES - ULiège
Contributor_xml – sequence: 1
  fullname: SPHERES - ULiège
Copyright Copyright Determination: GOV_PERMITTED
COPYRIGHT 2023 Copernicus GmbH
2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: Copyright Determination: GOV_PERMITTED
– notice: COPYRIGHT 2023 Copernicus GmbH
– notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID CYE
CYI
AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H95
H96
HCIFZ
KL.
L.G
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
1XC
VOOES
JLOSS
Q33
ADTOC
UNPAY
DOA
DOI 10.5194/tc-17-4267-2023
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Continental Europe Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database



CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Meteorology & Climatology
Environmental Sciences
EISSN 1994-0424
1994-0416
EndPage 4288
ExternalDocumentID oai_doaj_org_article_bf61bc22f7374c618ed001cab46cc7c0
10.5194/tc-17-4267-2023
oai_orbi_ulg_ac_be_2268_307591
oai:HAL:hal-04837519v1
A767987476
10_5194_tc_17_4267_2023
20230014591
GeographicLocations Antarctic Peninsula
Antarctica
GeographicLocations_xml – name: Antarctic Peninsula
– name: Antarctica
GrantInformation 4000128611/19/I- DT
1117545
2.5020.11
80NSSC20M0282
GroupedDBID 29F
2WC
5GY
5VS
7XC
8CJ
8FE
8FH
8R4
8R5
AAFWJ
ABDBF
ABUWG
ACUHS
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BFMQW
BHPHI
BKSAR
BPHCQ
CCPQU
CYE
CYI
D1J
D1K
E3Z
ESX
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
ISR
ITC
K6-
KQ8
LK5
M7R
MM-
M~E
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RKB
RNS
TR2
TUS
ZBA
~02
AAYXX
CITATION
PUEGO
7QH
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H95
H96
KL.
L.G
PKEHL
PQEST
PQUKI
1XC
VOOES
JLOSS
Q33
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c576t-33b48a7dd0d7918243f4e9bc56b4680ceaf4fb00197e48ef5877b11bcd79e4b13
IEDL.DBID DOA
ISSN 1994-0424
1994-0416
IngestDate Tue Oct 14 19:04:49 EDT 2025
Sun Oct 26 04:09:33 EDT 2025
Sat Oct 18 19:11:24 EDT 2025
Sat Oct 25 06:46:59 EDT 2025
Mon Jun 30 14:14:17 EDT 2025
Mon Oct 20 22:17:14 EDT 2025
Mon Oct 20 17:21:24 EDT 2025
Thu Oct 16 16:18:11 EDT 2025
Wed Oct 01 03:50:43 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Sat Oct 18 19:11:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Polar Regions
Surface Melt
Remote Sensing Wet Snow Occurrence Data
Climate Change
Runoff
Modèle Atmosphérique Régional
Remote Sensing
Snowfall
Regional Climate Models
Language English
License Creative Commons License: CCBY
https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-33b48a7dd0d7918243f4e9bc56b4680ceaf4fb00197e48ef5877b11bcd79e4b13
Notes GSFC
Goddard Space Flight Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
scopus-id:2-s2.0-85177789452
ORCID 0000-0003-1475-5853
0000-0002-1719-3270
0000-0002-4140-3813
0000-0003-3114-5248
0000-0001-6586-9784
0009-0001-3238-5078
OpenAccessLink https://doaj.org/article/bf61bc22f7374c618ed001cab46cc7c0
PQID 2873150306
PQPubID 105732
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_bf61bc22f7374c618ed001cab46cc7c0
unpaywall_primary_10_5194_tc_17_4267_2023
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_307591
hal_primary_oai_HAL_hal_04837519v1
proquest_journals_2873150306
gale_infotracmisc_A767987476
gale_infotracacademiconefile_A767987476
gale_incontextgauss_ISR_A767987476
crossref_primary_10_5194_tc_17_4267_2023
crossref_citationtrail_10_5194_tc_17_4267_2023
nasa_ntrs_20230014591
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-06
PublicationDateYYYYMMDD 2023-10-06
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-06
  day: 06
PublicationDecade 2020
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
– name: Katlenburg-Lindau
PublicationTitle The cryosphere
PublicationYear 2023
Publisher European Geosciences Union
Copernicus GmbH
Copernicus Publications
Publisher_xml – name: European Geosciences Union
– name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref7
  doi: 10.3189/S0022143000009552
– ident: ref61
  doi: 10.1006/rwos.2001.0336
– ident: ref71
  doi: 10.1002/2013GL058138
– ident: ref30
  doi: 10.1029/2020GL091733
– ident: ref64
  doi: 10.1175/1520-0450(1998)037<1470:LSIRCC>2.0.CO;2
– ident: ref20
– ident: ref63
  doi: 10.5194/tc-16-5061-2022
– ident: ref26
  doi: 10.5194/tc-7-375-2013
– ident: ref54
  doi: 10.3390/rs13101954
– ident: ref4
  doi: 10.5194/tc-15-909-2021
– ident: ref75
  doi: 10.3189/S0022143000012338
– ident: ref51
  doi: 10.1175/1520-0493(2002)130<0257:AOTEMC>2.0.CO;2
– ident: ref36
– ident: ref73
  doi: 10.1038/ncomms10266
– ident: ref2
– ident: ref13
  doi: 10.1029/2018GL080845
– ident: ref69
  doi: 10.1029/2007GL031199
– ident: ref40
  doi: 10.5194/tc-15-1215-2021
– ident: ref68
  doi: 10.1017/jog.2020.67
– ident: ref42
  doi: 10.1109/36.581975
– ident: ref11
  doi: 10.5194/tc-15-2623-2021
– ident: ref35
  doi: 10.1017/jog.2020.6
– ident: ref65
  doi: 10.1073/pnas.1812883116
– ident: ref44
  doi: 10.1038/s41586-020-2627-8
– ident: ref41
  doi: 10.25518/0770-7576.6616
– ident: ref55
  doi: 10.1080/02757258709532086
– ident: ref34
  doi: 10.1109/JSTARS.2022.3216953
– ident: ref12
  doi: 10.5194/tc-12-2901-2018
– ident: ref3
  doi: 10.1080/01431160500534465
– ident: ref16
  doi: 10.5194/tc-15-571-2021
– ident: ref24
  doi: 10.5194/tc-5-359-2011
– ident: ref74
  doi: 10.1038/s43247-022-00422-9
– ident: ref39
– ident: ref5
  doi: 10.1029/2012JF002559
– ident: ref1
  doi: 10.1038/s41561-020-0616-z
– ident: ref70
  doi: 10.1038/s41586-018-0179-y
– ident: ref47
  doi: 10.1109/TGRS.2015.2503762
– ident: ref6
  doi: 10.1038/s41558-018-0326-3
– ident: ref29
– ident: ref25
  doi: 10.5194/tc-15-3013-2021
– ident: ref48
– ident: ref72
  doi: 10.1038/ngeo2563
– ident: ref28
  doi: 10.1175/1520-0493(1994)122<0671:DOATDM>2.0.CO;2
– ident: ref37
  doi: 10.1016/j.rse.2020.112044
– ident: ref53
  doi: 10.5194/tc-15-3751-2021
– ident: ref19
– ident: ref57
  doi: 10.3390/rs8040348
– ident: ref38
  doi: 10.1017/jog.2021.112
– ident: ref46
  doi: 10.1016/j.rse.2021.112318
– ident: ref52
  doi: 10.1109/MGRS.2013.2248301
– ident: ref15
– ident: ref23
  doi: 10.1002/2015GL064195
– ident: ref31
  doi: 10.1109/JSTARS.2020.3008497
– ident: ref45
  doi: 10.1002/joc.7795
– ident: ref9
  doi: 10.5194/tc-16-1349-2022
– ident: ref27
  doi: 10.1029/2020GL090550
– ident: ref50
  doi: 10.1016/j.envsoft.2021.105015
– ident: ref43
  doi: 10.1029/2018GL077899
– ident: ref21
  doi: 10.1007/978-3-642-03711-5
– ident: ref58
  doi: 10.1029/2018GL078448
– ident: ref22
  doi: 10.3189/172756402781817798
– ident: ref60
  doi: 10.1126/science.aaa0940
– ident: ref14
  doi: 10.5194/tc-14-957-2020
– ident: ref17
  doi: 10.1002/0471783390.ch2
– ident: ref33
  doi: 10.1002/qj.3803
– ident: ref49
– ident: ref56
  doi: 10.1109/36.842004
– ident: ref62
  doi: 10.1016/j.rse.2006.05.010
– ident: ref32
  doi: 10.1016/j.rse.2017.06.031
– ident: ref8
– ident: ref10
  doi: 10.3189/1998AoG26-1-64-68
– ident: ref18
– ident: ref59
  doi: 10.1038/ncomms14730
– ident: ref67
  doi: 10.1038/s41467-021-26229-4
– ident: ref66
  doi: 10.1029/AR079p0079
SSID ssj0062904
Score 2.3699815
Snippet Both regional climate models (RCMs) and remote sensing (RS) data are essential tools in understanding the response of polar regions to climate change. RCMs can...
SourceID doaj
unpaywall
liege
hal
proquest
gale
crossref
nasa
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4267
SubjectTerms Analysis
Climate change
Climate models
Climatic changes
Data assimilation
Data collection
Datasets
Earth Resources and Remote Sensing
Earth sciences & physical geography
Earth-Surface Processes
Environmental Sciences
Flow velocity
Ice sheets
Ice shelves
Liquid water content
Mass balance
Meltwater
Meteorology and Climatology
Modelling
Moisture content
Parameter modification
Parameter sensitivity
Parameterization
Parameters
Physical, chemical, mathematical & earth Sciences
Physique, chimie, mathématiques & sciences de la terre
Polar environments
Polar regions
Regional climate models
Regional climates
Remote sensing
Runoff
Satellite observation
Satellites
Sciences de la terre & géographie physique
Sensitivity
Sensors
Snow
Snowfall
Snowpack
Surface runoff
Topography
Uncertainty
Water content
Water Science and Technology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELe29WG8IBhDZBRkTYgPibAmceLkAaFu2lQQraaOSXuzbMfZqqVJadJW-3P4T7lzk4o-AG-t84vlj_P5d_H5jpA3knuhxKtbIC_SZSZUrkqU54ZenAUaKKyM8KLwcBQNrtm3m_Bmh4zauzDoVtnqRKuo01LjN_ITYPYBkBdguF9mP13MGoWnq20KDdmkVkg_2xBju6TjY2SsPdI5PR9djlvdHPlJb33OjAFxmc_WwX6AxbCTWrugsGHD4i6mFN_ap2w4_43S3r1Dn8lOjqfaUFjISm7x0_1FMZMPK5nnf2xVF0_I44Zj0v5aKJ6SHVMckP0m3fndwwFxhkCVy7n9ok7f0rN8ArzV_ntGfl2hS_s6pwQtMwoEkQ77Y4oZHJC1U23RhtocOrQqyhWY3fe0Li0UQ4lP0cWmud_ZVgEcfTKd5JuyStpQoLVxU8AuTUpXpnaxNjqV1X1FAYbv9YsaliJ0hF6awjrOy0NyfXH-42zgNnkcXA3WTO0GgWKx5GnaS3kC9gwLMmYSpcNIsSjuaSMzliF7S7hhscnCmHPleUoD3DDlBc9hkMvCvCBUpqBDekngmYyz1DAZBJFJ0ijTXsBZ4jvkUztrQjdBzjHXRi7A2MFpFrUWHhc4zQKn2SHvNy_M1vE9_g49RTHYwDAwty0o57eiWedCZRE03PczDu3RkRebFDqmJfRUa657DjlGIRIYeqNA355buagq8fVqLPocT8TAvIsc8q4BZSW0XsvmqgSMAUbr2kJ2t5CgG_TW42OQ1a0WD_rfBZbZVALQzaXnkI9WlKEfaiKWvoXZ34scOqaFMgJIeixgOwgTgB-ixAsY18qOC1rZtrzbLgHR6EF4vlm1DvmwWRb_G-mjf1f1kjxClHWpjLpkr54vzCughrV63az3315hXv0
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe29WG88DGGCBRkTYgPiXRN48TJY6mYCqLTtFFpPFm247CqaVo1aavx3_CfcuekFZmEEOKpifOz5bPv7Lv6fEfIK8m9QOLVLeAX6TITKFfFynMDL0p9DSqsDPGi8Og8HI7Z5-vgeo8MtndhSt3B2xjLfKJXRRUnuHYQO_X4KWwnHM11H3AuLK_47uJ7Z5Gk-6QVBqCQH5DW-Pyi_82eJ2PgW2YToNbPPVYF-AHNhd1tpbE32RD-u4V6_wb9JFsZnmRDYS4L2dBJD1f5Qt5uZJb9tj2dPSDJlrDKK2XaWZWqo3_cifn4n5Q_JPdr9ZX2qzqPyJ7Jj8hhnUn95vaIOCPQwudL-2c9fU0H2QRUYvv2mPy8Qm_5Kl0FnacUdE866l9STA6BBgHVFm2oTc9Di3y-AYt-Ssu5hWKU8hl679RXR7dNgPo_mU2yXVkhbZTR0rgJYNcmoRtTutgancliWlCAYb1-XoKUAyH0wuTWJ18ek_HZx6-DoVuniHA1GEql6_uKRZInSTfhMZhKzE-ZiZUOQsXCqKuNTFmKimHMDYtMGkScK89TGuCGKc9_AnM5z81TQmUCy1M39j2TcpYYJn0_NHESptrzOYt7DulsmUPoOn46pvHIBNhRyE2i1MLjAmdG4Mw45O2uwqIKHfJn6Afkth0MY37bAmADUbOBUGkIHe_1Ug790aEXmQQI0xIo1ZrrrkNOkFcFRvXI0W3ou1wVhfh0dSn6HA_bwHIMHfKmBqVz6L2W9S0MGAMMBNZAthtIWHZ04_MJiESjx8P-F4FlNksBkLn2HPLeSgzQoSZi3bMw-7zKgDAtlBGg_0cCdpogBvgxCpaAcS3suKABb8vbW0kT9RIL3yPugzUDJq9D3u2k728j_ewfsM_JPfyxrpthmxyUy5V5ASpoqV7WS8wv1ox8rQ
  priority: 102
  providerName: Unpaywall
Title Sensitivity of the MAR Regional Climate Model Snowpack to the Parameterization of the Assimilation of Satellite-Derived Wet-Snow Masks on the Antarctic Peninsula
URI https://ntrs.nasa.gov/citations/20230014591
https://www.proquest.com/docview/2873150306
https://hal.science/hal-04837519
http://orbi.ulg.ac.be/handle/2268/307591
https://tc.copernicus.org/articles/17/4267/2023/tc-17-4267-2023.pdf
https://doaj.org/article/bf61bc22f7374c618ed001cab46cc7c0
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: ABDBF
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: BFMQW
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1994-0424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062904
  issn: 1994-0424
  databaseCode: BENPR
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELeAPYwXBGOIQJmsCfFHIqxpnDh5zKaNgWhVdVQqT5btOFu1NJmWtNU-Dt-UOyetlge0F16q9nKx4rvL-Xf1-Y6Q95J7gcSjW2Av0mUmUK6KlecGXpT5GiCsDPGg8HAUnk_Zj1kwu9fqC3PCmvLAjeCOVBZ6Sg8GGfc506EXmRQ8q5aKhVpzbaP1fhRvgqnGB4eDuN_sJ2PhW8AcTVEfQCvsqNYuOGZYmLiLrcM765Et2791zo-vMDdyJ8fdayAWspIdHLq7LG7k3Vrm-b0l6ew5edZiSZo0c3hBHplij-y2bc2v7vaIMwRIXN7af87pB3qSzwGf2l8vyZ8LTF1vekfQMqMABOkwmVDs1IDonGrLbajtlUOrolxDeH1N69KyYsnwBabStOc4N0MAFp8v5vmWVklb8rM2bgq8K5PStaldHI0uZHVdUWDD-5KihlcOJkLHprAJ8nKfTM9Of52cu22_BldD1FK7vq9YJHma9lMeQ9zC_IyZWOkgBGVFfW1kxjJEaTE3LDJZEHGuPNAusBumPP8VCLkszGtCZQq-oh_7nsk4Sw2Tvh-aOA0z7YEZxAOHfN1oTei2mDn21MgFBDWoZlFr4XGBahaoZod82t5w09Tx-DfrMZrBlg0LcFsCmKVozVI8ZJYOOUQjElhio8Acnku5rCrx_WIiEo47XxDGhQ752DJlJTy9lu2RCJABVuXqcPY6nOADdOfyIdhq54nPk58CabZlAExz5TnkizVlmIeai9XAstnvyxwmpoUyAsB4JMDtBzGw76PFC5BrZeWC0bSl9zavgGj9HVyPuA-hBcSfDvm8fS0ekvSb_yHpt-QpjmUTLMMeeVLfLs07AIq1OiA7x6ej8eTA-gb4_DbzgDYdjZPffwFMimX4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swELdgPLCXaWNMy8Y2C-2vtIwmceLkAU2FgcqgCPFH4s3YjgMVIemalIqPsy-yz7Y7N6nWh21PvLXOxbJ957vfxec7Qt5K7oUSr26BvEiXmVC5KlGeG3pxFmiAsDLCi8L9w6h3xr6fh-cL5Fd7FwbDKludaBV1Wmr8Rr4ByD4A8AII9-vwh4tVo_B0tS2hIZvSCummTTHWXOzYN3cTcOGqzb1vwO93vr-7c7rdc5sqA64GrF27QaBYLHmadlKeANpmQcZMonQYKRbFHW1kxjLEFgk3LDZZGHOuPE9pIDdMeQH0u0iWWMAScP6WtnYOj45bWxD5SWd6ro0JeJnPpsmFADWxjVq7YCDAQHIXS5jP2UVbPmBmJBavMEZzKcdTdGgsZCXn8PDyuBjKu4nM8z9M4-5j8qjBtLQ7FcInZMEUK2S5Ka9-dbdCnD5A83Jkv-DT93Q7HwBOtv-ekp8nGEI_rWFBy4wCIKX97jHFihHoJVBtqQ21NXtoVZQTcPOvaV1aUkxdfoMhPc190rYL8AkGN4N81lZJm3q0Nm4KtLcmpRNTu9gbvZHVdUWBDN_rFjXwFCZCj0xhA_XlKjm7F44-g0UuC_OcUJmCzuokgWcyzlLDZBBEJkmjTHsBZ4nvkC8t14RukqpjbY9cgHOFbBa1Fh4XyGaBbHbIx9kLw2k-kb-TbqEYzMgwEbhtKEeXotErQmURDNz3Mw7j0ZEXmxQmpiXMVGuuOw5ZRyESmOqjwFiiSzmuKrF3ciy6HE_gwJ2MHPKhIcpKGL2WzdUMWAPMDjZHuTZHCbpIzz1eB1mdG3GveyCwzZYugGneeg75bEUZ5qEG4ta3ZPb3OIeJaaGMAKcgFmB-wgTIV1HiBaxrZdcFvXrbvtZuAdHoXXg-0xIO-TTbFv9b6Rf_7uoNWe6d9g_Ewd7h_kvyEN-w4ZzRGnlQj8bmFcDSWr1u9j4lF_etbn4DDEicQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQw0OpDAi48ShGBAlbFUyLtJnFeB4S2LauWdqvSUtGbsR2nXTVNlibbVfkbfoNf4WeYcZIViwSceuC264wtz2TGMxPPg5CnInR8galbwC_CZtqXtoylY_tOlHoKTFgRYKJwfzfYPGTvj_yjGfK9zYXBsMr2TDQHdVIo_Ea-Cpa9B8YLWLiraRMWsbfRezv8YmMHKbxpbdtp1CyyrS_H4L6Vb7Y24F0_c93eu4_rm3bTYcBWYGdXtudJFokwSTpJGIOlzbyU6VgqP5AsiDpKi5SlaFfEoWaRTv0oDKXjSAXgmknHg3VnyXyERdDmyPxar__hU6sHAjfu1HfaWHyXuawuLAQWE1utlA3KAZRjaGP78imdaFoHTBTE7AnGZ85neIMOg7koxZQtfH2UD8XlWGTZL2qxd4v8aAlaR8OcrowquaK-_lZr8v-k-G1ys7HWabcWrztkRucL5HrTOP7kcoFYfXA6inNzN0Gf0_VsAB6A-XeXfDvA5IC6OwctUgqmNu139yn2wkD_hyoDranpRkTLvBgPhTqlVWFAsSj7GQYrNZmy7RLg7QzOBtlkrBSmqGql7QRgL3RCx7qycTV6JsrTkgIYzuvmFdAPEKF7OjcpCGKRHF4J9e4BCxW5vk-oSOA07sSeo9OQJZoJzwt0nASpcryQxa5FVlqe5KopF49dSzIObiMyMa8Ud0KOTMyRiS3ycjJhWFdK-TPoGjL5BAxLnJuB4vyYNycml2kAG3fdNIT9qMCJdAKIKQGYKhWqjkWWUUQ4FjHJkTmPxags-dbBPu-GeLcIjnJgkRcNUFrA7pVokk6ABlj3bApyaQoSTlk19XgZJHFqx5vdHY5jpikDoHnhWOS1EVTAQw74hWvAzO9RBogpLjUHdyfioFj9GMAXUZ450LU0dMHvFWZ8qRVI3mgUeD6RRou8mgj9vyj94O9LPSHXQKT5ztbu9kNyAyeYONVgicxV5yP9COztSj5uDjZKPl-1ZP8EScni7w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe29WG88DGGCBRkTYgPiXRN48TJY6mYCqLTtFFpPFm247CqaVo1aavx3_CfcuekFZmEEOKpifOz5bPv7Lv6fEfIK8m9QOLVLeAX6TITKFfFynMDL0p9DSqsDPGi8Og8HI7Z5-vgeo8MtndhSt3B2xjLfKJXRRUnuHYQO_X4KWwnHM11H3AuLK_47uJ7Z5Gk-6QVBqCQH5DW-Pyi_82eJ2PgW2YToNbPPVYF-AHNhd1tpbE32RD-u4V6_wb9JFsZnmRDYS4L2dBJD1f5Qt5uZJb9tj2dPSDJlrDKK2XaWZWqo3_cifn4n5Q_JPdr9ZX2qzqPyJ7Jj8hhnUn95vaIOCPQwudL-2c9fU0H2QRUYvv2mPy8Qm_5Kl0FnacUdE866l9STA6BBgHVFm2oTc9Di3y-AYt-Ssu5hWKU8hl679RXR7dNgPo_mU2yXVkhbZTR0rgJYNcmoRtTutgancliWlCAYb1-XoKUAyH0wuTWJ18ek_HZx6-DoVuniHA1GEql6_uKRZInSTfhMZhKzE-ZiZUOQsXCqKuNTFmKimHMDYtMGkScK89TGuCGKc9_AnM5z81TQmUCy1M39j2TcpYYJn0_NHESptrzOYt7DulsmUPoOn46pvHIBNhRyE2i1MLjAmdG4Mw45O2uwqIKHfJn6Afkth0MY37bAmADUbOBUGkIHe_1Ug790aEXmQQI0xIo1ZrrrkNOkFcFRvXI0W3ou1wVhfh0dSn6HA_bwHIMHfKmBqVz6L2W9S0MGAMMBNZAthtIWHZ04_MJiESjx8P-F4FlNksBkLn2HPLeSgzQoSZi3bMw-7zKgDAtlBGg_0cCdpogBvgxCpaAcS3suKABb8vbW0kT9RIL3yPugzUDJq9D3u2k728j_ewfsM_JPfyxrpthmxyUy5V5ASpoqV7WS8wv1ox8rQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+of+the+MAR+regional+climate+model+snowpack+to+the+parameterization+of+the+assimilation+of+satellite-derived+wet-snow+masks+on+the+Antarctic+Peninsula&rft.jtitle=The+cryosphere&rft.au=T.+Dethinne&rft.au=T.+Dethinne&rft.au=Q.+Glaude&rft.au=Q.+Glaude&rft.date=2023-10-06&rft.pub=Copernicus+Publications&rft.issn=1994-0416&rft.eissn=1994-0424&rft.volume=17&rft.spage=4267&rft.epage=4288&rft_id=info:doi/10.5194%2Ftc-17-4267-2023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf61bc22f7374c618ed001cab46cc7c0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-0424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-0424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-0424&client=summon