MR Imaging Enables Measurement of Therapeutic Nanoparticle Uptake in Rat N1-S1 Liver Tumors after Nanoablation

To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation. SPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats d...

Full description

Saved in:
Bibliographic Details
Published inJournal of vascular and interventional radiology Vol. 25; no. 8; pp. 1288 - 1294
Main Authors McDevitt, Joseph L., Mouli, Samdeep K., Tyler, Patrick D., Li, Weiguo, Nicolai, Jodi, Procissi, Daniele, Ragin, Ann B., Wang, Y. Andrew, Lewandowski, Robert J., Salem, Riad, Larson, Andrew C., Omary, Reed A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2014
Subjects
Online AccessGet full text
ISSN1051-0443
1535-7732
1535-7732
DOI10.1016/j.jvir.2014.03.033

Cover

Abstract To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation. SPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats distributed into three dosage groups. Baseline tumor R2* values (the reciprocal of T2*) were determined using 7-tesla (T) MR imaging. After intravenous injection of SPIO nanoparticles, reversible electroporation (1,300 V/cm, 8 pulses, 100-μs pulse duration) was applied. Imaging of rats was performed to determine tumor R2* values after the procedure, and change in R2* (ΔR2*) was calculated. Inductively coupled plasma mass spectrometry was used to determine intratumoral iron (Fe) concentration after the procedure, which served as a proxy for SPIO nanoparticle uptake. Mean tumor Fe concentration [Fe] and ΔR2* for each subject were assessed for correlation with linear regression, and mean [Fe] for each dosage group was compared with analysis of variance. ΔR2* significantly correlated with tumor SPIO nanoparticle uptake after nanoablation (r = 0.50, P = .039). On average, each 0.1-ms−1 increase in R2* corresponded to a 0.1394-mM increase in [Fe]. There was no significant difference in mean SPIO nanoparticle uptake among dosage groups (P = .57). Intratumoral SPIO nanoparticle uptake after nanoablation can be successfully quantified noninvasively with 7-T MR imaging. Imaging can be used as a method to estimate localized drug delivery after nanoablation.
AbstractList Abstract Purpose To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation. Materials and Methods SPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats distributed into three dosage groups. Baseline tumor R2* values (the reciprocal of T2*) were determined using 7-tesla (T) MR imaging. After intravenous injection of SPIO nanoparticles, reversible electroporation (1,300 V/cm, 8 pulses, 100-μs pulse duration) was applied. Imaging of rats was performed to determine tumor R2* values after the procedure, and change in R2* (ΔR2*) was calculated. Inductively coupled plasma mass spectrometry was used to determine intratumoral iron (Fe) concentration after the procedure, which served as a proxy for SPIO nanoparticle uptake. Mean tumor Fe concentration [Fe] and ΔR2* for each subject were assessed for correlation with linear regression, and mean [Fe] for each dosage group was compared with analysis of variance. Results ΔR2* significantly correlated with tumor SPIO nanoparticle uptake after nanoablation ( r = 0.50, P = .039). On average, each 0.1-ms−1 increase in R2* corresponded to a 0.1394-mM increase in [Fe]. There was no significant difference in mean SPIO nanoparticle uptake among dosage groups ( P = .57). Conclusions Intratumoral SPIO nanoparticle uptake after nanoablation can be successfully quantified noninvasively with 7-T MR imaging. Imaging can be used as a method to estimate localized drug delivery after nanoablation.
To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation. SPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats distributed into three dosage groups. Baseline tumor R2* values (the reciprocal of T2*) were determined using 7-tesla (T) MR imaging. After intravenous injection of SPIO nanoparticles, reversible electroporation (1,300 V/cm, 8 pulses, 100-μs pulse duration) was applied. Imaging of rats was performed to determine tumor R2* values after the procedure, and change in R2* (ΔR2*) was calculated. Inductively coupled plasma mass spectrometry was used to determine intratumoral iron (Fe) concentration after the procedure, which served as a proxy for SPIO nanoparticle uptake. Mean tumor Fe concentration [Fe] and ΔR2* for each subject were assessed for correlation with linear regression, and mean [Fe] for each dosage group was compared with analysis of variance. ΔR2* significantly correlated with tumor SPIO nanoparticle uptake after nanoablation (r = 0.50, P = .039). On average, each 0.1-ms(-1) increase in R2* corresponded to a 0.1394-mM increase in [Fe]. There was no significant difference in mean SPIO nanoparticle uptake among dosage groups (P = .57). Intratumoral SPIO nanoparticle uptake after nanoablation can be successfully quantified noninvasively with 7-T MR imaging. Imaging can be used as a method to estimate localized drug delivery after nanoablation.
To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation. SPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats distributed into three dosage groups. Baseline tumor R2* values (the reciprocal of T2*) were determined using 7-tesla (T) MR imaging. After intravenous injection of SPIO nanoparticles, reversible electroporation (1,300 V/cm, 8 pulses, 100-μs pulse duration) was applied. Imaging of rats was performed to determine tumor R2* values after the procedure, and change in R2* (ΔR2*) was calculated. Inductively coupled plasma mass spectrometry was used to determine intratumoral iron (Fe) concentration after the procedure, which served as a proxy for SPIO nanoparticle uptake. Mean tumor Fe concentration [Fe] and ΔR2* for each subject were assessed for correlation with linear regression, and mean [Fe] for each dosage group was compared with analysis of variance. ΔR2* significantly correlated with tumor SPIO nanoparticle uptake after nanoablation (r = 0.50, P = .039). On average, each 0.1-ms−1 increase in R2* corresponded to a 0.1394-mM increase in [Fe]. There was no significant difference in mean SPIO nanoparticle uptake among dosage groups (P = .57). Intratumoral SPIO nanoparticle uptake after nanoablation can be successfully quantified noninvasively with 7-T MR imaging. Imaging can be used as a method to estimate localized drug delivery after nanoablation.
To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation.PURPOSETo test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation.SPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats distributed into three dosage groups. Baseline tumor R2* values (the reciprocal of T2*) were determined using 7-tesla (T) MR imaging. After intravenous injection of SPIO nanoparticles, reversible electroporation (1,300 V/cm, 8 pulses, 100-μs pulse duration) was applied. Imaging of rats was performed to determine tumor R2* values after the procedure, and change in R2* (ΔR2*) was calculated. Inductively coupled plasma mass spectrometry was used to determine intratumoral iron (Fe) concentration after the procedure, which served as a proxy for SPIO nanoparticle uptake. Mean tumor Fe concentration [Fe] and ΔR2* for each subject were assessed for correlation with linear regression, and mean [Fe] for each dosage group was compared with analysis of variance.MATERIALS AND METHODSSPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats distributed into three dosage groups. Baseline tumor R2* values (the reciprocal of T2*) were determined using 7-tesla (T) MR imaging. After intravenous injection of SPIO nanoparticles, reversible electroporation (1,300 V/cm, 8 pulses, 100-μs pulse duration) was applied. Imaging of rats was performed to determine tumor R2* values after the procedure, and change in R2* (ΔR2*) was calculated. Inductively coupled plasma mass spectrometry was used to determine intratumoral iron (Fe) concentration after the procedure, which served as a proxy for SPIO nanoparticle uptake. Mean tumor Fe concentration [Fe] and ΔR2* for each subject were assessed for correlation with linear regression, and mean [Fe] for each dosage group was compared with analysis of variance.ΔR2* significantly correlated with tumor SPIO nanoparticle uptake after nanoablation (r = 0.50, P = .039). On average, each 0.1-ms(-1) increase in R2* corresponded to a 0.1394-mM increase in [Fe]. There was no significant difference in mean SPIO nanoparticle uptake among dosage groups (P = .57).RESULTSΔR2* significantly correlated with tumor SPIO nanoparticle uptake after nanoablation (r = 0.50, P = .039). On average, each 0.1-ms(-1) increase in R2* corresponded to a 0.1394-mM increase in [Fe]. There was no significant difference in mean SPIO nanoparticle uptake among dosage groups (P = .57).Intratumoral SPIO nanoparticle uptake after nanoablation can be successfully quantified noninvasively with 7-T MR imaging. Imaging can be used as a method to estimate localized drug delivery after nanoablation.CONCLUSIONSIntratumoral SPIO nanoparticle uptake after nanoablation can be successfully quantified noninvasively with 7-T MR imaging. Imaging can be used as a method to estimate localized drug delivery after nanoablation.
Author McDevitt, Joseph L.
Salem, Riad
Procissi, Daniele
Ragin, Ann B.
Li, Weiguo
Nicolai, Jodi
Tyler, Patrick D.
Mouli, Samdeep K.
Omary, Reed A.
Lewandowski, Robert J.
Wang, Y. Andrew
Larson, Andrew C.
Author_xml – sequence: 1
  givenname: Joseph L.
  surname: McDevitt
  fullname: McDevitt, Joseph L.
  organization: Department of Radiology, Northwestern University, Chicago, Illinois
– sequence: 2
  givenname: Samdeep K.
  surname: Mouli
  fullname: Mouli, Samdeep K.
  organization: Department of Radiology, Northwestern University, Chicago, Illinois
– sequence: 3
  givenname: Patrick D.
  surname: Tyler
  fullname: Tyler, Patrick D.
  organization: Department of Radiology, Northwestern University, Chicago, Illinois
– sequence: 4
  givenname: Weiguo
  surname: Li
  fullname: Li, Weiguo
  organization: Department of Radiology, Northwestern University, Chicago, Illinois
– sequence: 5
  givenname: Jodi
  surname: Nicolai
  fullname: Nicolai, Jodi
  organization: Department of Radiology, Northwestern University, Chicago, Illinois
– sequence: 6
  givenname: Daniele
  surname: Procissi
  fullname: Procissi, Daniele
  organization: Department of Radiology, Northwestern University, Chicago, Illinois
– sequence: 7
  givenname: Ann B.
  surname: Ragin
  fullname: Ragin, Ann B.
  organization: Department of Radiology, Northwestern University, Chicago, Illinois
– sequence: 8
  givenname: Y. Andrew
  surname: Wang
  fullname: Wang, Y. Andrew
  organization: Ocean Nanotech LLC, Springdale, Arizona
– sequence: 9
  givenname: Robert J.
  surname: Lewandowski
  fullname: Lewandowski, Robert J.
  organization: Department of Radiology, Northwestern University, Chicago, Illinois
– sequence: 10
  givenname: Riad
  surname: Salem
  fullname: Salem, Riad
  organization: Department of Radiology, Northwestern University, Chicago, Illinois
– sequence: 11
  givenname: Andrew C.
  surname: Larson
  fullname: Larson, Andrew C.
  organization: Department of Radiology, Northwestern University, Chicago, Illinois
– sequence: 12
  givenname: Reed A.
  surname: Omary
  fullname: Omary, Reed A.
  email: reed.omary@vanderbilt.edu
  organization: Department of Radiology and Radiological Sciences, Vanderbilt School of Medicine, 1611 21st Avenue South, CCC-1106 MCN, Nashville, TN 37232
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24854392$$D View this record in MEDLINE/PubMed
BookMark eNqNkltv1DAQhSNURC_wB3hAfuQli69JFiEkVBWotC1Su322Zp1JcZo4qe0s2n-PwxYeKlGQR_JYOt_x6NjH2YEbHGbZa0YXjLLiXbtot9YvOGVyQUUq8Sw7YkqovCwFP0g9VSynUorD7DiEllJapfUiO-SyUlIs-VHmLq7IeQ-31t2SMwebDgO5QAiTxx5dJEND1t_Rw4hTtIZcghtG8KntkNyMEe6QWEeuIJJLll8zsrJb9GQ99YMPBJqYDjOTjCHawb3MnjfQBXz1sJ9kN5_P1qdf89W3L-enn1a5UWURc8GVUVUNrFk2QnJTUFoUisKSgyhLs2GmEpUsmoIveVksVVmX2BTlBrgUEpCLk0zsfSc3wu4HdJ0eve3B7zSjek5Pt3pOT8_paSpSiUS93VOjH-4nDFH3NhjsOnA4TEEzpRJaMV4l6ZsH6bTpsf7j_jvZJKj2AuOHEDw22tj4K4PowXZPj8Efof81-4c9hCnWrUWvg7HoDNbWo4m6HuzT-MdHuOmsswa6O9xhaIfJu_RgmunANdXX89eafxaTlEoqVDJ4_3eDf93-E67T23A
CitedBy_id crossref_primary_10_1177_1536012117749726
Cites_doi 10.1039/b409601k
10.1016/j.jvir.2008.06.008
10.1016/S1051-0443(99)70117-X
10.1002/mrm.1910320610
10.2310/7290.2010.00042
10.1097/RLI.0b013e31827994e5
10.1053/j.seminoncol.2010.11.011
10.1016/j.jvir.2012.08.025
10.3747/co.v16i2.368
10.1097/RLI.0b013e3182a7e1b7
10.1002/jmri.20712
10.1016/j.biomaterials.2010.02.068
10.1021/bc050002e
10.1166/jbn.2008.007
10.1097/RLI.0b013e3182174fad
10.1016/j.jvir.2008.01.023
10.1111/j.1432-2277.2010.01109.x
10.1158/1078-0432.CCR-07-1441
10.1016/j.jvir.2009.12.218
10.1016/j.addr.2008.03.018
10.1016/j.ejca.2006.01.026
10.1097/RLI.0b013e3182631e68
10.1021/nn4023119
10.1016/j.jhep.2006.10.020
10.2217/nnm.10.23
10.1208/s12248-012-9339-4
10.1148/radiol.12120609
10.1148/rg.295095034
10.1016/j.addr.2010.04.009
10.1158/0008-5472.CAN-09-3067
10.1148/radiol.10091473
10.1016/S1051-0443(07)61789-8
10.1148/radiol.2261012140
10.1148/radiol.2343031172
10.1016/S0169-409X(98)00066-0
10.1038/nrd2614
10.1021/jp8029083
10.1258/0023677054307051
ContentType Journal Article
Copyright 2014 SIR
SIR
Copyright © 2014 SIR. All rights reserved.
Copyright_xml – notice: 2014 SIR
– notice: SIR
– notice: Copyright © 2014 SIR. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.jvir.2014.03.033
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1535-7732
EndPage 1294
ExternalDocumentID oai:pubmedcentral.nih.gov:4120881
24854392
10_1016_j_jvir_2014_03_033
S1051044314004035
1_s2_0_S1051044314004035
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA159178
– fundername: NCI NIH HHS
  grantid: R25 CA132822
– fundername: NCI NIH HHS
  grantid: P30 CA060553
GroupedDBID ---
--K
.1-
.FO
08G
08P
0R~
1B1
1P~
1RT
354
4.4
457
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
AAEDT
AAEDW
AAKAS
AALRI
AAQQT
AAQXK
AAWTL
AAXUO
AAYWO
ABFRF
ABLJU
ABMAC
ABWVN
ACGFO
ACRPL
ADBBV
ADBIZ
ADMUD
ADNMO
ADZCM
AEFWE
AENEX
AEVXI
AFJKZ
AFRHN
AFTJW
AFTRI
AFUWQ
AGCQF
AGQPQ
AHHHB
AHRYX
AIGII
AITUG
AIZYK
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BELOY
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EX3
F5P
FDB
FEDTE
FGOYB
G-2
GBLVA
H0~
HEI
HEK
HMK
HMO
HVGLF
HZ~
IHE
JF9
JG8
KMI
M28
M41
NTWIH
O9-
OAG
OAH
OI~
OL1
OLY
OLZ
OU0
OVD
OWU
OWV
OWW
OWX
OWY
OWZ
P2P
R2-
ROL
RPZ
SAE
SEL
SES
T8P
TEORI
UNMZH
VVN
WOQ
WOW
WUQ
XH2
XXN
XYM
YQY
Z5R
ZGI
ADPAM
AFCTW
AWKKM
GX1
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c576t-325c58da1f9f342c6006650a92a377cb1c83846f629276957d7ef67ba2434ae23
IEDL.DBID UNPAY
ISSN 1051-0443
1535-7732
IngestDate Tue Aug 19 09:31:02 EDT 2025
Sun Sep 28 02:13:26 EDT 2025
Mon Jul 21 05:54:00 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Wed Oct 01 04:08:18 EDT 2025
Sat Oct 26 15:40:48 EDT 2024
Sun Feb 23 10:18:53 EST 2025
Tue Aug 26 16:37:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords SPIO
IO
ΔR2
HCC
ICP-MS
DOX
Fe
inductively coupled plasma mass spectrometry
change in R2
iron oxide
superparamagnetic iron oxide
iron
doxorubicin hydrochloride
hepatocellular carcinoma
Language English
License Copyright © 2014 SIR. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c576t-325c58da1f9f342c6006650a92a377cb1c83846f629276957d7ef67ba2434ae23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1016/j.jvir.2014.03.033
PMID 24854392
PQID 1551018128
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1016_j_jvir_2014_03_033
proquest_miscellaneous_1551018128
pubmed_primary_24854392
crossref_citationtrail_10_1016_j_jvir_2014_03_033
crossref_primary_10_1016_j_jvir_2014_03_033
elsevier_sciencedirect_doi_10_1016_j_jvir_2014_03_033
elsevier_clinicalkeyesjournals_1_s2_0_S1051044314004035
elsevier_clinicalkey_doi_10_1016_j_jvir_2014_03_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of vascular and interventional radiology
PublicationTitleAlternate J Vasc Interv Radiol
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Duan, Kuang, Wang (bib20) 2008; 112
Sigovan, Kaye, Lancelot (bib31) 2012; 47
Smith, Kim (bib38) 2011; 38
Buijs, Geschwind, Syed (bib40) 2012; 23
Lee, Liapi, Vossen (bib34) 2008; 19
Tyler, McDevitt, Sheu (bib17) 2014; 49
Guo, Klein, Omary, Yang, Larson (bib39) 2011; 3
Faroja, Ahmed, Appelbaum (bib27) 2013; 266
Lewandowski, Tepper, Wang (bib36) 2008; 19
Garin, Denizot, Roux (bib18) 2005; 39
Lencioni, Crocetti, De Simone, Filipponi (bib12) 2010; 23
Bremer, Mustafa, Bogdanov (bib32) 2003; 226
Mir, Orlowski (bib10) 1999; 35
Fang, Nakamura, Maeda (bib7) 2011; 63
Cho, Wang, Nie (bib6) 2008; 14
Nie (bib2) 2010; 5
Yu, Falkner, Yavuz, Colvin (bib19) 2004; 20
Yablonskiy, Haacke (bib16) 1994; 32
Thorek, Weisshaar, Czupryna, Winkelstein, Tsourkas (bib28) 2011; 10
Lutz, Weishaupt, Persohn (bib29) 2005; 234
Cho, Yang, Mohamedali (bib33) 2011; 46
Varela, Real, Burrel (bib37) 2007; 46
Maeng, Lee, Jung (bib22) 2010; 31
Lewandowski, Mulcahy, Kulik (bib23) 2010; 255
Mouli, Tyler, McDevitt (bib8) 2013; 7
Chavhan, Babyn, Thomas, Shroff, Haacke (bib15) 2009; 29
Guo, Zhang, Klein (bib11) 2010; 70
Peng, Quian, Mao (bib3) 2010; 3
Winkelmann, Schaeffter, Weiss, Eggers, Doessel (bib14) 2006; 24
Therasse, Eisenhauer, Verweij (bib26) 2006; 42
Desai (bib5) 2012; 14
Eifler, Lewandowski, Mouli (bib13) 2010; 21
Yang, Cao, Sajja (bib21) 2008; 4
Sun, Lee, Zhang (bib4) 2008; 60
Tsourkas, Shinde-Patil, Kelly (bib30) 2005; 16
Sheu, Zhang, Omary, Larson (bib35) 2013; 48
Davis, Chen, Shin (bib1) 2008; 7
Ramsey, Kernagis, Soulen, Geschwind (bib25) 2002; 13
Sersa, Cemazar, Snoj (bib9) 2009; 16
Solomon, Soulen, Baum (bib24) 1999; 10
Mir (10.1016/j.jvir.2014.03.033_bib10) 1999; 35
Sigovan (10.1016/j.jvir.2014.03.033_bib31) 2012; 47
Yu (10.1016/j.jvir.2014.03.033_bib19) 2004; 20
Duan (10.1016/j.jvir.2014.03.033_bib20) 2008; 112
Therasse (10.1016/j.jvir.2014.03.033_bib26) 2006; 42
Garin (10.1016/j.jvir.2014.03.033_bib18) 2005; 39
Fang (10.1016/j.jvir.2014.03.033_bib7) 2011; 63
Thorek (10.1016/j.jvir.2014.03.033_bib28) 2011; 10
Lutz (10.1016/j.jvir.2014.03.033_bib29) 2005; 234
Eifler (10.1016/j.jvir.2014.03.033_bib13) 2010; 21
Bremer (10.1016/j.jvir.2014.03.033_bib32) 2003; 226
Lewandowski (10.1016/j.jvir.2014.03.033_bib36) 2008; 19
Smith (10.1016/j.jvir.2014.03.033_bib38) 2011; 38
Winkelmann (10.1016/j.jvir.2014.03.033_bib14) 2006; 24
Sheu (10.1016/j.jvir.2014.03.033_bib35) 2013; 48
Sun (10.1016/j.jvir.2014.03.033_bib4) 2008; 60
Cho (10.1016/j.jvir.2014.03.033_bib33) 2011; 46
Ramsey (10.1016/j.jvir.2014.03.033_bib25) 2002; 13
Lencioni (10.1016/j.jvir.2014.03.033_bib12) 2010; 23
Cho (10.1016/j.jvir.2014.03.033_bib6) 2008; 14
Yang (10.1016/j.jvir.2014.03.033_bib21) 2008; 4
Nie (10.1016/j.jvir.2014.03.033_bib2) 2010; 5
Tsourkas (10.1016/j.jvir.2014.03.033_bib30) 2005; 16
Chavhan (10.1016/j.jvir.2014.03.033_bib15) 2009; 29
Tyler (10.1016/j.jvir.2014.03.033_bib17) 2014; 49
Sersa (10.1016/j.jvir.2014.03.033_bib9) 2009; 16
Varela (10.1016/j.jvir.2014.03.033_bib37) 2007; 46
Guo (10.1016/j.jvir.2014.03.033_bib39) 2011; 3
Solomon (10.1016/j.jvir.2014.03.033_bib24) 1999; 10
Buijs (10.1016/j.jvir.2014.03.033_bib40) 2012; 23
Guo (10.1016/j.jvir.2014.03.033_bib11) 2010; 70
Davis (10.1016/j.jvir.2014.03.033_bib1) 2008; 7
Desai (10.1016/j.jvir.2014.03.033_bib5) 2012; 14
Faroja (10.1016/j.jvir.2014.03.033_bib27) 2013; 266
Mouli (10.1016/j.jvir.2014.03.033_bib8) 2013; 7
Maeng (10.1016/j.jvir.2014.03.033_bib22) 2010; 31
Lewandowski (10.1016/j.jvir.2014.03.033_bib23) 2010; 255
Lee (10.1016/j.jvir.2014.03.033_bib34) 2008; 19
Yablonskiy (10.1016/j.jvir.2014.03.033_bib16) 1994; 32
Peng (10.1016/j.jvir.2014.03.033_bib3) 2010; 3
18755602 - J Vasc Interv Radiol. 2008 Oct;19(10):1490-6
23177115 - J Vasc Interv Radiol. 2012 Dec;23(12):1685-91
12511693 - Radiology. 2003 Jan;226(1):214-20
20124486 - Cancer Res. 2010 Feb 15;70(4):1555-63
15898724 - Bioconjug Chem. 2005 May-Jun;16(3):576-81
20347138 - Biomaterials. 2010 Jun;31(18):4995-5006
20441782 - Adv Drug Deliv Rev. 2011 Mar 18;63(3):136-51
16958064 - J Magn Reson Imaging. 2006 Oct;24(4):939-44
18758474 - Nat Rev Drug Discov. 2008 Sep;7(9):771-82
22407288 - AAPS J. 2012 Jun;14(2):282-95
16004691 - Lab Anim. 2005 Jul;39(3):314-20
21512397 - Invest Radiol. 2011 Jul;46(7):441-9
21496449 - Mol Imaging. 2011 Jun;10(3):206-14
21139811 - Am J Transl Res. 2010 Nov 01;3(1):114-20
17239480 - J Hepatol. 2007 Mar;46(3):474-81
12354839 - J Vasc Interv Radiol. 2002 Sep;13(9 Pt 2):S211-21
23249649 - Invest Radiol. 2013 Jun;48(6):492-9
10837692 - Adv Drug Deliv Rev. 1999 Jan 4;35(1):107-118
21362523 - Semin Oncol. 2011 Feb;38(1):151-62
20528447 - Nanomedicine (Lond). 2010 Jun;5(4):523-8
19370177 - Curr Oncol. 2009 Mar;16(2):34-5
10392950 - J Vasc Interv Radiol. 1999 Jun;10(6):793-8
15489993 - Chem Commun (Camb). 2004 Oct 21;(20):2306-7
20501733 - Radiology. 2010 Jun;255(3):955-65
7869897 - Magn Reson Med. 1994 Dec;32(6):749-63
20492618 - Transpl Int. 2010 Jul;23(7):698-703
15665219 - Radiology. 2005 Mar;234(3):765-75
18440458 - J Vasc Interv Radiol. 2008 May;19(5):698-705
23169795 - Radiology. 2013 Feb;266(2):462-70
22864378 - Invest Radiol. 2012 Sep;47(9):546-52
24089022 - Invest Radiol. 2014 Feb;49(2):87-92
16616487 - Eur J Cancer. 2006 May;42(8):1031-9
18990940 - Int J Nanomedicine. 2008;3(3):311-21
25152701 - J Biomed Nanotechnol. 2008 Dec 1;4(4):439-449
18558452 - Adv Drug Deliv Rev. 2008 Aug 17;60(11):1252-65
19755604 - Radiographics. 2009 Sep-Oct;29(5):1433-49
23952712 - ACS Nano. 2013 Sep 24;7(9):7724-33
18316549 - Clin Cancer Res. 2008 Mar 1;14(5):1310-6
References_xml – volume: 3
  start-page: 311
  year: 2010
  end-page: 321
  ident: bib3
  article-title: Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy
  publication-title: Int J Nanomedicine
– volume: 14
  start-page: 282
  year: 2012
  end-page: 295
  ident: bib5
  article-title: Challenges in the development of nanotherapeutics
  publication-title: AAPS J
– volume: 19
  start-page: 698
  year: 2008
  end-page: 705
  ident: bib36
  article-title: MR imaging perfusion mismatch: a technique to verify successful targeting of liver tumors during transcatheter arterial chemoembolization
  publication-title: J Vasc Interv Radiol
– volume: 5
  start-page: 523
  year: 2010
  end-page: 528
  ident: bib2
  article-title: Understanding and overcoming major barriers in cancer nanomedicine
  publication-title: Nanomedicine (Lond)
– volume: 38
  start-page: 151
  year: 2011
  end-page: 162
  ident: bib38
  article-title: Interventional radiology and image-guided medicine
  publication-title: Semin Oncol
– volume: 31
  start-page: 4995
  year: 2010
  end-page: 5006
  ident: bib22
  article-title: Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer
  publication-title: Biomaterials
– volume: 234
  start-page: 765
  year: 2005
  end-page: 775
  ident: bib29
  article-title: Imaging of macrophages in soft-tissue infection in rats: relationship between ultrasmall superparamagnetic iron oxide dose and MR signal characteristics
  publication-title: Radiology
– volume: 48
  start-page: 492
  year: 2013
  end-page: 499
  ident: bib35
  article-title: MRI-monitored transcatheter intra-arterial delivery of SPIO-labeled natural killer cells to hepatocellular carcinoma: preclinical studies in a rodent model
  publication-title: Invest Radiol
– volume: 32
  start-page: 749
  year: 1994
  end-page: 763
  ident: bib16
  article-title: Theory of NMR signal behavior in magnetically inhomogenous tissues: the static dephasing regime
  publication-title: Magn Reson Med
– volume: 70
  start-page: 1555
  year: 2010
  end-page: 1563
  ident: bib11
  article-title: Irreversible electroporation therapy in the liver: longitudinal efficacy studies in a rat model of hepatocellular carcinoma
  publication-title: Cancer Res
– volume: 226
  start-page: 214
  year: 2003
  end-page: 220
  ident: bib32
  article-title: Steady-state blood volume measurements in experimental tumors with different angiogenic burdens—a study in mice
  publication-title: Radiology
– volume: 63
  start-page: 136
  year: 2011
  end-page: 151
  ident: bib7
  article-title: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect
  publication-title: Adv Drug Deliv Rev
– volume: 29
  start-page: 1433
  year: 2009
  end-page: 1449
  ident: bib15
  article-title: Principles, techniques, and applications of T2*-based MR imaging and its special applications
  publication-title: Radiographics
– volume: 60
  start-page: 1252
  year: 2008
  end-page: 1265
  ident: bib4
  article-title: Magnetic nanoparticles in MR imaging and drug delivery
  publication-title: Adv Drug Deliv Rev
– volume: 266
  start-page: 462
  year: 2013
  end-page: 470
  ident: bib27
  article-title: Irreversible electroporation ablation: is all the damage nonthermal?
  publication-title: Radiology
– volume: 255
  start-page: 955
  year: 2010
  end-page: 965
  ident: bib23
  article-title: Chemoembolization for hepatocellular carcinoma: comprehensive imaging and survival analysis in a 172-patient cohort
  publication-title: Radiology
– volume: 7
  start-page: 7724
  year: 2013
  end-page: 7733
  ident: bib8
  article-title: Image-guided local delivery strategies enhance therapeutic nanoparticle uptake in solid tumors
  publication-title: ACS Nano
– volume: 13
  start-page: S211
  year: 2002
  end-page: S221
  ident: bib25
  article-title: Chemoembolization of hepatocellular carcinoma
  publication-title: J Vasc Interv Radiol
– volume: 42
  start-page: 1031
  year: 2006
  end-page: 1039
  ident: bib26
  article-title: RECIST revisited: a review of validation studies on tumour assessment
  publication-title: Eur J Cancer
– volume: 7
  start-page: 771
  year: 2008
  end-page: 782
  ident: bib1
  article-title: Nanoparticle therapeutics: an emerging treatment modality for cancer
  publication-title: Nat Rev Drug Discov
– volume: 47
  start-page: 546
  year: 2012
  end-page: 552
  ident: bib31
  article-title: Anti-inflammatory drug evaluation in ApoE−/− mice by ultrasmall superparamagnetic iron oxide–enhanced magnetic resonance imaging
  publication-title: Invest Radiol
– volume: 10
  start-page: 206
  year: 2011
  end-page: 214
  ident: bib28
  article-title: Superparamagnetic iron oxide-enhanced magnetic resonance imaging of neuroinflammation in a rat model of radicular pain
  publication-title: Mol Imaging
– volume: 46
  start-page: 441
  year: 2011
  end-page: 449
  ident: bib33
  article-title: Sensitive angiogenesis imaging of orthotopic bladder tumors in mice using a selective magnetic resonance imaging contrast agent containing VEGF121/rGel
  publication-title: Invest Radiol
– volume: 23
  start-page: 698
  year: 2010
  end-page: 703
  ident: bib12
  article-title: Loco-regional interventional treatment of hepatocellular carcinoma: techniques, outcomes, and future prospects
  publication-title: Transplant Int
– volume: 19
  start-page: 1490
  year: 2008
  end-page: 1496
  ident: bib34
  article-title: Distribution of iron oxide–containing embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: evaluation with MR imaging and implication for therapy
  publication-title: J Vasc Interv Radiol
– volume: 24
  start-page: 939
  year: 2006
  end-page: 944
  ident: bib14
  article-title: Simultaneous imaging and R2* mapping using a radial multi-gradient-echo (rMGE) sequence
  publication-title: J Magn Reson Imaging
– volume: 39
  start-page: 314
  year: 2005
  end-page: 320
  ident: bib18
  article-title: Description and technical pitfalls of a hepatoma model and of intra-arterial injection of radiolabelled lipiodol in the rat
  publication-title: Lab Anim
– volume: 21
  start-page: S28
  year: 2010
  ident: bib13
  article-title: Abstract No. 70 [Cope]: Image-guided nanoembolization as a novel local therapy for pancreatic cancer: feasibility in an animal model
  publication-title: J Vasc Interv Radiol
– volume: 112
  start-page: 8127
  year: 2008
  end-page: 8131
  ident: bib20
  article-title: Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity
  publication-title: J Phys Chem C
– volume: 4
  start-page: 439
  year: 2008
  end-page: 449
  ident: bib21
  article-title: Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging
  publication-title: J Biomed Nanotechnol
– volume: 14
  start-page: 1310
  year: 2008
  end-page: 1316
  ident: bib6
  article-title: Therapeutic nanoparticles for drug delivery in cancer
  publication-title: Clin Cancer Res
– volume: 20
  start-page: 2306
  year: 2004
  end-page: 2307
  ident: bib19
  article-title: Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts
  publication-title: Chem Commun (Camb)
– volume: 46
  start-page: 474
  year: 2007
  end-page: 481
  ident: bib37
  article-title: Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics
  publication-title: J Hepatol
– volume: 3
  start-page: 114
  year: 2011
  end-page: 120
  ident: bib39
  article-title: Highly malignant intra-hepatic metastatic hepatocellular carcinoma
  publication-title: Am J Transl Res
– volume: 49
  start-page: 87
  year: 2014
  end-page: 92
  ident: bib17
  article-title: Seven-tesla magnetic resonance imaging accurately quantifies intratumoral uptake of therapeutic nanoparticles in the McA rat model of hepatocellular carcinoma: preclinical study in a rodent model
  publication-title: Invest Radiol
– volume: 16
  start-page: 576
  year: 2005
  end-page: 581
  ident: bib30
  article-title: In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe
  publication-title: Bioconjug Chem
– volume: 16
  start-page: 34
  year: 2009
  end-page: 35
  ident: bib9
  article-title: Electrochemotherapy of tumours
  publication-title: Curr Oncol
– volume: 10
  start-page: 793
  year: 1999
  end-page: 798
  ident: bib24
  article-title: Chemoembolization of hepatocellular carcinoma with cisplatin, doxorubicin, mitomycin-C, ethiodol, and polyvinyl alcohol: prospective evaluation of response and survival in a U.S. population
  publication-title: J Vasc Interv Radiol
– volume: 35
  start-page: 107
  year: 1999
  end-page: 118
  ident: bib10
  article-title: Mechanisms of electrochemotherapy
  publication-title: Adv Drug Deliv Rev
– volume: 23
  start-page: 1685
  year: 2012
  end-page: 1691
  ident: bib40
  article-title: Spontaneous tumor regression in a syngeneic rat model of liver cancer: implications for survival studies
  publication-title: J Vasc Interv Radiol
– volume: 20
  start-page: 2306
  year: 2004
  ident: 10.1016/j.jvir.2014.03.033_bib19
  article-title: Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts
  publication-title: Chem Commun (Camb)
  doi: 10.1039/b409601k
– volume: 19
  start-page: 1490
  year: 2008
  ident: 10.1016/j.jvir.2014.03.033_bib34
  article-title: Distribution of iron oxide–containing embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: evaluation with MR imaging and implication for therapy
  publication-title: J Vasc Interv Radiol
  doi: 10.1016/j.jvir.2008.06.008
– volume: 10
  start-page: 793
  year: 1999
  ident: 10.1016/j.jvir.2014.03.033_bib24
  article-title: Chemoembolization of hepatocellular carcinoma with cisplatin, doxorubicin, mitomycin-C, ethiodol, and polyvinyl alcohol: prospective evaluation of response and survival in a U.S. population
  publication-title: J Vasc Interv Radiol
  doi: 10.1016/S1051-0443(99)70117-X
– volume: 32
  start-page: 749
  year: 1994
  ident: 10.1016/j.jvir.2014.03.033_bib16
  article-title: Theory of NMR signal behavior in magnetically inhomogenous tissues: the static dephasing regime
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910320610
– volume: 10
  start-page: 206
  year: 2011
  ident: 10.1016/j.jvir.2014.03.033_bib28
  article-title: Superparamagnetic iron oxide-enhanced magnetic resonance imaging of neuroinflammation in a rat model of radicular pain
  publication-title: Mol Imaging
  doi: 10.2310/7290.2010.00042
– volume: 48
  start-page: 492
  year: 2013
  ident: 10.1016/j.jvir.2014.03.033_bib35
  article-title: MRI-monitored transcatheter intra-arterial delivery of SPIO-labeled natural killer cells to hepatocellular carcinoma: preclinical studies in a rodent model
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0b013e31827994e5
– volume: 3
  start-page: 311
  year: 2010
  ident: 10.1016/j.jvir.2014.03.033_bib3
  article-title: Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy
  publication-title: Int J Nanomedicine
– volume: 38
  start-page: 151
  year: 2011
  ident: 10.1016/j.jvir.2014.03.033_bib38
  article-title: Interventional radiology and image-guided medicine
  publication-title: Semin Oncol
  doi: 10.1053/j.seminoncol.2010.11.011
– volume: 23
  start-page: 1685
  year: 2012
  ident: 10.1016/j.jvir.2014.03.033_bib40
  article-title: Spontaneous tumor regression in a syngeneic rat model of liver cancer: implications for survival studies
  publication-title: J Vasc Interv Radiol
  doi: 10.1016/j.jvir.2012.08.025
– volume: 16
  start-page: 34
  year: 2009
  ident: 10.1016/j.jvir.2014.03.033_bib9
  article-title: Electrochemotherapy of tumours
  publication-title: Curr Oncol
  doi: 10.3747/co.v16i2.368
– volume: 49
  start-page: 87
  year: 2014
  ident: 10.1016/j.jvir.2014.03.033_bib17
  article-title: Seven-tesla magnetic resonance imaging accurately quantifies intratumoral uptake of therapeutic nanoparticles in the McA rat model of hepatocellular carcinoma: preclinical study in a rodent model
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0b013e3182a7e1b7
– volume: 24
  start-page: 939
  year: 2006
  ident: 10.1016/j.jvir.2014.03.033_bib14
  article-title: Simultaneous imaging and R2* mapping using a radial multi-gradient-echo (rMGE) sequence
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20712
– volume: 31
  start-page: 4995
  year: 2010
  ident: 10.1016/j.jvir.2014.03.033_bib22
  article-title: Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.02.068
– volume: 16
  start-page: 576
  year: 2005
  ident: 10.1016/j.jvir.2014.03.033_bib30
  article-title: In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe
  publication-title: Bioconjug Chem
  doi: 10.1021/bc050002e
– volume: 4
  start-page: 439
  year: 2008
  ident: 10.1016/j.jvir.2014.03.033_bib21
  article-title: Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging
  publication-title: J Biomed Nanotechnol
  doi: 10.1166/jbn.2008.007
– volume: 46
  start-page: 441
  year: 2011
  ident: 10.1016/j.jvir.2014.03.033_bib33
  article-title: Sensitive angiogenesis imaging of orthotopic bladder tumors in mice using a selective magnetic resonance imaging contrast agent containing VEGF121/rGel
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0b013e3182174fad
– volume: 19
  start-page: 698
  year: 2008
  ident: 10.1016/j.jvir.2014.03.033_bib36
  article-title: MR imaging perfusion mismatch: a technique to verify successful targeting of liver tumors during transcatheter arterial chemoembolization
  publication-title: J Vasc Interv Radiol
  doi: 10.1016/j.jvir.2008.01.023
– volume: 23
  start-page: 698
  year: 2010
  ident: 10.1016/j.jvir.2014.03.033_bib12
  article-title: Loco-regional interventional treatment of hepatocellular carcinoma: techniques, outcomes, and future prospects
  publication-title: Transplant Int
  doi: 10.1111/j.1432-2277.2010.01109.x
– volume: 14
  start-page: 1310
  year: 2008
  ident: 10.1016/j.jvir.2014.03.033_bib6
  article-title: Therapeutic nanoparticles for drug delivery in cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-1441
– volume: 21
  start-page: S28
  year: 2010
  ident: 10.1016/j.jvir.2014.03.033_bib13
  article-title: Abstract No. 70 [Cope]: Image-guided nanoembolization as a novel local therapy for pancreatic cancer: feasibility in an animal model
  publication-title: J Vasc Interv Radiol
  doi: 10.1016/j.jvir.2009.12.218
– volume: 60
  start-page: 1252
  year: 2008
  ident: 10.1016/j.jvir.2014.03.033_bib4
  article-title: Magnetic nanoparticles in MR imaging and drug delivery
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2008.03.018
– volume: 42
  start-page: 1031
  year: 2006
  ident: 10.1016/j.jvir.2014.03.033_bib26
  article-title: RECIST revisited: a review of validation studies on tumour assessment
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2006.01.026
– volume: 47
  start-page: 546
  year: 2012
  ident: 10.1016/j.jvir.2014.03.033_bib31
  article-title: Anti-inflammatory drug evaluation in ApoE−/− mice by ultrasmall superparamagnetic iron oxide–enhanced magnetic resonance imaging
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0b013e3182631e68
– volume: 7
  start-page: 7724
  year: 2013
  ident: 10.1016/j.jvir.2014.03.033_bib8
  article-title: Image-guided local delivery strategies enhance therapeutic nanoparticle uptake in solid tumors
  publication-title: ACS Nano
  doi: 10.1021/nn4023119
– volume: 46
  start-page: 474
  year: 2007
  ident: 10.1016/j.jvir.2014.03.033_bib37
  article-title: Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2006.10.020
– volume: 5
  start-page: 523
  year: 2010
  ident: 10.1016/j.jvir.2014.03.033_bib2
  article-title: Understanding and overcoming major barriers in cancer nanomedicine
  publication-title: Nanomedicine (Lond)
  doi: 10.2217/nnm.10.23
– volume: 14
  start-page: 282
  year: 2012
  ident: 10.1016/j.jvir.2014.03.033_bib5
  article-title: Challenges in the development of nanotherapeutics
  publication-title: AAPS J
  doi: 10.1208/s12248-012-9339-4
– volume: 266
  start-page: 462
  year: 2013
  ident: 10.1016/j.jvir.2014.03.033_bib27
  article-title: Irreversible electroporation ablation: is all the damage nonthermal?
  publication-title: Radiology
  doi: 10.1148/radiol.12120609
– volume: 29
  start-page: 1433
  year: 2009
  ident: 10.1016/j.jvir.2014.03.033_bib15
  article-title: Principles, techniques, and applications of T2*-based MR imaging and its special applications
  publication-title: Radiographics
  doi: 10.1148/rg.295095034
– volume: 63
  start-page: 136
  year: 2011
  ident: 10.1016/j.jvir.2014.03.033_bib7
  article-title: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2010.04.009
– volume: 70
  start-page: 1555
  year: 2010
  ident: 10.1016/j.jvir.2014.03.033_bib11
  article-title: Irreversible electroporation therapy in the liver: longitudinal efficacy studies in a rat model of hepatocellular carcinoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-3067
– volume: 255
  start-page: 955
  year: 2010
  ident: 10.1016/j.jvir.2014.03.033_bib23
  article-title: Chemoembolization for hepatocellular carcinoma: comprehensive imaging and survival analysis in a 172-patient cohort
  publication-title: Radiology
  doi: 10.1148/radiol.10091473
– volume: 13
  start-page: S211
  year: 2002
  ident: 10.1016/j.jvir.2014.03.033_bib25
  article-title: Chemoembolization of hepatocellular carcinoma
  publication-title: J Vasc Interv Radiol
  doi: 10.1016/S1051-0443(07)61789-8
– volume: 226
  start-page: 214
  year: 2003
  ident: 10.1016/j.jvir.2014.03.033_bib32
  article-title: Steady-state blood volume measurements in experimental tumors with different angiogenic burdens—a study in mice
  publication-title: Radiology
  doi: 10.1148/radiol.2261012140
– volume: 234
  start-page: 765
  year: 2005
  ident: 10.1016/j.jvir.2014.03.033_bib29
  article-title: Imaging of macrophages in soft-tissue infection in rats: relationship between ultrasmall superparamagnetic iron oxide dose and MR signal characteristics
  publication-title: Radiology
  doi: 10.1148/radiol.2343031172
– volume: 35
  start-page: 107
  year: 1999
  ident: 10.1016/j.jvir.2014.03.033_bib10
  article-title: Mechanisms of electrochemotherapy
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(98)00066-0
– volume: 7
  start-page: 771
  year: 2008
  ident: 10.1016/j.jvir.2014.03.033_bib1
  article-title: Nanoparticle therapeutics: an emerging treatment modality for cancer
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2614
– volume: 112
  start-page: 8127
  year: 2008
  ident: 10.1016/j.jvir.2014.03.033_bib20
  article-title: Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity
  publication-title: J Phys Chem C
  doi: 10.1021/jp8029083
– volume: 39
  start-page: 314
  year: 2005
  ident: 10.1016/j.jvir.2014.03.033_bib18
  article-title: Description and technical pitfalls of a hepatoma model and of intra-arterial injection of radiolabelled lipiodol in the rat
  publication-title: Lab Anim
  doi: 10.1258/0023677054307051
– volume: 3
  start-page: 114
  year: 2011
  ident: 10.1016/j.jvir.2014.03.033_bib39
  article-title: Highly malignant intra-hepatic metastatic hepatocellular carcinoma
  publication-title: Am J Transl Res
– reference: 20492618 - Transpl Int. 2010 Jul;23(7):698-703
– reference: 20501733 - Radiology. 2010 Jun;255(3):955-65
– reference: 12354839 - J Vasc Interv Radiol. 2002 Sep;13(9 Pt 2):S211-21
– reference: 15898724 - Bioconjug Chem. 2005 May-Jun;16(3):576-81
– reference: 23249649 - Invest Radiol. 2013 Jun;48(6):492-9
– reference: 20441782 - Adv Drug Deliv Rev. 2011 Mar 18;63(3):136-51
– reference: 18316549 - Clin Cancer Res. 2008 Mar 1;14(5):1310-6
– reference: 18755602 - J Vasc Interv Radiol. 2008 Oct;19(10):1490-6
– reference: 20124486 - Cancer Res. 2010 Feb 15;70(4):1555-63
– reference: 22407288 - AAPS J. 2012 Jun;14(2):282-95
– reference: 10837692 - Adv Drug Deliv Rev. 1999 Jan 4;35(1):107-118
– reference: 18990940 - Int J Nanomedicine. 2008;3(3):311-21
– reference: 20528447 - Nanomedicine (Lond). 2010 Jun;5(4):523-8
– reference: 10392950 - J Vasc Interv Radiol. 1999 Jun;10(6):793-8
– reference: 17239480 - J Hepatol. 2007 Mar;46(3):474-81
– reference: 23952712 - ACS Nano. 2013 Sep 24;7(9):7724-33
– reference: 25152701 - J Biomed Nanotechnol. 2008 Dec 1;4(4):439-449
– reference: 7869897 - Magn Reson Med. 1994 Dec;32(6):749-63
– reference: 19370177 - Curr Oncol. 2009 Mar;16(2):34-5
– reference: 19755604 - Radiographics. 2009 Sep-Oct;29(5):1433-49
– reference: 16616487 - Eur J Cancer. 2006 May;42(8):1031-9
– reference: 21512397 - Invest Radiol. 2011 Jul;46(7):441-9
– reference: 21362523 - Semin Oncol. 2011 Feb;38(1):151-62
– reference: 16004691 - Lab Anim. 2005 Jul;39(3):314-20
– reference: 20347138 - Biomaterials. 2010 Jun;31(18):4995-5006
– reference: 16958064 - J Magn Reson Imaging. 2006 Oct;24(4):939-44
– reference: 12511693 - Radiology. 2003 Jan;226(1):214-20
– reference: 18558452 - Adv Drug Deliv Rev. 2008 Aug 17;60(11):1252-65
– reference: 21139811 - Am J Transl Res. 2010 Nov 01;3(1):114-20
– reference: 18758474 - Nat Rev Drug Discov. 2008 Sep;7(9):771-82
– reference: 15489993 - Chem Commun (Camb). 2004 Oct 21;(20):2306-7
– reference: 21496449 - Mol Imaging. 2011 Jun;10(3):206-14
– reference: 24089022 - Invest Radiol. 2014 Feb;49(2):87-92
– reference: 23177115 - J Vasc Interv Radiol. 2012 Dec;23(12):1685-91
– reference: 15665219 - Radiology. 2005 Mar;234(3):765-75
– reference: 18440458 - J Vasc Interv Radiol. 2008 May;19(5):698-705
– reference: 22864378 - Invest Radiol. 2012 Sep;47(9):546-52
– reference: 23169795 - Radiology. 2013 Feb;266(2):462-70
SSID ssj0008080
Score 2.120339
Snippet To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after...
Abstract Purpose To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1288
SubjectTerms Ablation Techniques
Animals
Antibiotics, Antineoplastic - administration & dosage
Antibiotics, Antineoplastic - chemistry
Antibiotics, Antineoplastic - metabolism
Carcinoma, Hepatocellular - drug therapy
Carcinoma, Hepatocellular - metabolism
Carcinoma, Hepatocellular - pathology
Chemistry, Pharmaceutical
Doxorubicin - administration & dosage
Doxorubicin - chemistry
Doxorubicin - metabolism
Drug Carriers
Electrochemotherapy
Ferrosoferric Oxide - chemistry
Ferrosoferric Oxide - metabolism
Injections, Intravenous
Linear Models
Liver Neoplasms, Experimental - drug therapy
Liver Neoplasms, Experimental - metabolism
Liver Neoplasms, Experimental - pathology
Magnetic Resonance Imaging
Magnetite Nanoparticles
Male
Mass Spectrometry
Nanomedicine - methods
Radiology
Rats, Sprague-Dawley
Time Factors
Title MR Imaging Enables Measurement of Therapeutic Nanoparticle Uptake in Rat N1-S1 Liver Tumors after Nanoablation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1051044314004035
https://www.clinicalkey.es/playcontent/1-s2.0-S1051044314004035
https://dx.doi.org/10.1016/j.jvir.2014.03.033
https://www.ncbi.nlm.nih.gov/pubmed/24854392
https://www.proquest.com/docview/1551018128
http://doi.org/10.1016/j.jvir.2014.03.033
UnpaywallVersion submittedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1535-7732
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008080
  issn: 1535-7732
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1535-7732
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008080
  issn: 1535-7732
  databaseCode: AKRWK
  dateStart: 19901101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BK_HxwOeA8jEZiTfIVNtx3DxWaNNgtEJdK8aTZTuOtK1LqyUBwV_P2Ulb0MYGUl4i-WzZPp9_9p1_B_CGpZlMB9QhckvxgIIYONLGJJFJjMmdldpm_r5jNE72Z_HHI3G0IYv-w30fwrBOvh172k4aBy5Szm9CN_G-pA50Z-PPw6_BmynwSBw3wfTCUzBKztoHMpdX8rdN6CLIvAu362Kpf3zX8_lvG8_e_SZkqwx8hT7e5HSnrsyO_XmRzfH6Pj2Aey38JMNGXx7CDVc8gluj1sH-GIrRhHw4C5mLyG54VlWS0eYakSxyMt282CJom_HQ3VRGZstKnzpyXJCJrsiYRoeUfPJhH2Rany3OSxLykQcZrDhoxBbM9nan7_ejNiVDZPFgUkWcCSsGmaZ5mvOY2SS4bvo6ZZpLaQ21A46IJk9YymSSCplJlyfSaBbzWDvGn0CnWBTuGZBYU4NbodaZNbHgqTE8pVY6NCg8zy3rAV3NkbItX7lPmzFXq8C0E-UHUvmBVH2OH-_B27XMsmHruLI0X029Wr1DRcupcMKulJKXSbmyXfyloqpkqq8OvV56taTeTva56IFYS7b4psEt17b4eqWXChe_9-jowi1qbEm0jGuDHjxtFHbdb89Vh2gTx_HdWoP_YVCe_1_xF3DH_zUhkS-hU53X7hXCtMpsQ3d4MPlysN0u1F_5DTTm
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbxQhECd6Tfx4qF-1XqsGE990mwOW5XhsmjbVeBfT3iX1iQDLJm2ve5fubo3-9Q4se6dpbTXZl00YCDAMP5jhNwi9pzIXckgcIDcJBxTAwIk2JktMZkzhrNA29_cdo3F2OE0_n_CTFVn0H-77EIZ1dnXqaTtJGrhIGbuP1jLvS-qhten46-634M3kcCRO22B67ikYBaPxgczNlfxtE7oOMh-jh0250D--69nst43n4EkbslUFvkIfb3K-09Rmx_68zuZ4d5-eovUIP_Fuqy_P0D1XPkcPRtHB_gKVoyP86SJkLsL74VlVhUera0Q8L_Bk9WILg22GQ3dbGZ4uan3u8GmJj3SNxyQ5JviLD_vAk-ZiflnhkI88yEDFQSM20PRgf7J3mMSUDImFg0mdMMotH-aaFLJgKbVZcN0MtKSaCWENsUMGiKbIqKQik1zkwhWZMJqmLNWOspeoV85L9wrhVBMDW6HWuTUpZ9IYJokVDgwKKwpL-4h0c6Rs5Cv3aTNmqgtMO1N-IJUfSDVg8LE--rCUWbRsHbeWZt3Uq-4dKlhOBRN2q5S4ScpVcfFXiqiKqoE69nrp1ZJ4OzlgvI_4UjLimxa33Nniu04vFSx-79HRpZs30BKPjGvDPtpsFXbZb89VB2gTxvHjUoP_YVC2_q_4Nnrk_9qQyNeoV1827g3AtNq8jQv0F1ngM0M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MR+imaging+enables+measurement+of+therapeutic+nanoparticle+uptake+in+rat+N1-S1+liver+tumors+after+nanoablation&rft.jtitle=Journal+of+vascular+and+interventional+radiology&rft.au=McDevitt%2C+Joseph+L&rft.au=Mouli%2C+Samdeep+K&rft.au=Tyler%2C+Patrick+D&rft.au=Li%2C+Weiguo&rft.date=2014-08-01&rft.eissn=1535-7732&rft.volume=25&rft.issue=8&rft.spage=1288&rft_id=info:doi/10.1016%2Fj.jvir.2014.03.033&rft_id=info%3Apmid%2F24854392&rft.externalDocID=24854392
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10510443%2FS1051044313X0020X%2Fcov150h.gif