MR Imaging Enables Measurement of Therapeutic Nanoparticle Uptake in Rat N1-S1 Liver Tumors after Nanoablation
To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation. SPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats d...
Saved in:
Published in | Journal of vascular and interventional radiology Vol. 25; no. 8; pp. 1288 - 1294 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1051-0443 1535-7732 1535-7732 |
DOI | 10.1016/j.jvir.2014.03.033 |
Cover
Abstract | To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation.
SPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats distributed into three dosage groups. Baseline tumor R2* values (the reciprocal of T2*) were determined using 7-tesla (T) MR imaging. After intravenous injection of SPIO nanoparticles, reversible electroporation (1,300 V/cm, 8 pulses, 100-μs pulse duration) was applied. Imaging of rats was performed to determine tumor R2* values after the procedure, and change in R2* (ΔR2*) was calculated. Inductively coupled plasma mass spectrometry was used to determine intratumoral iron (Fe) concentration after the procedure, which served as a proxy for SPIO nanoparticle uptake. Mean tumor Fe concentration [Fe] and ΔR2* for each subject were assessed for correlation with linear regression, and mean [Fe] for each dosage group was compared with analysis of variance.
ΔR2* significantly correlated with tumor SPIO nanoparticle uptake after nanoablation (r = 0.50, P = .039). On average, each 0.1-ms−1 increase in R2* corresponded to a 0.1394-mM increase in [Fe]. There was no significant difference in mean SPIO nanoparticle uptake among dosage groups (P = .57).
Intratumoral SPIO nanoparticle uptake after nanoablation can be successfully quantified noninvasively with 7-T MR imaging. Imaging can be used as a method to estimate localized drug delivery after nanoablation. |
---|---|
AbstractList | Abstract Purpose To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation. Materials and Methods SPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats distributed into three dosage groups. Baseline tumor R2* values (the reciprocal of T2*) were determined using 7-tesla (T) MR imaging. After intravenous injection of SPIO nanoparticles, reversible electroporation (1,300 V/cm, 8 pulses, 100-μs pulse duration) was applied. Imaging of rats was performed to determine tumor R2* values after the procedure, and change in R2* (ΔR2*) was calculated. Inductively coupled plasma mass spectrometry was used to determine intratumoral iron (Fe) concentration after the procedure, which served as a proxy for SPIO nanoparticle uptake. Mean tumor Fe concentration [Fe] and ΔR2* for each subject were assessed for correlation with linear regression, and mean [Fe] for each dosage group was compared with analysis of variance. Results ΔR2* significantly correlated with tumor SPIO nanoparticle uptake after nanoablation ( r = 0.50, P = .039). On average, each 0.1-ms−1 increase in R2* corresponded to a 0.1394-mM increase in [Fe]. There was no significant difference in mean SPIO nanoparticle uptake among dosage groups ( P = .57). Conclusions Intratumoral SPIO nanoparticle uptake after nanoablation can be successfully quantified noninvasively with 7-T MR imaging. Imaging can be used as a method to estimate localized drug delivery after nanoablation. To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation. SPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats distributed into three dosage groups. Baseline tumor R2* values (the reciprocal of T2*) were determined using 7-tesla (T) MR imaging. After intravenous injection of SPIO nanoparticles, reversible electroporation (1,300 V/cm, 8 pulses, 100-μs pulse duration) was applied. Imaging of rats was performed to determine tumor R2* values after the procedure, and change in R2* (ΔR2*) was calculated. Inductively coupled plasma mass spectrometry was used to determine intratumoral iron (Fe) concentration after the procedure, which served as a proxy for SPIO nanoparticle uptake. Mean tumor Fe concentration [Fe] and ΔR2* for each subject were assessed for correlation with linear regression, and mean [Fe] for each dosage group was compared with analysis of variance. ΔR2* significantly correlated with tumor SPIO nanoparticle uptake after nanoablation (r = 0.50, P = .039). On average, each 0.1-ms(-1) increase in R2* corresponded to a 0.1394-mM increase in [Fe]. There was no significant difference in mean SPIO nanoparticle uptake among dosage groups (P = .57). Intratumoral SPIO nanoparticle uptake after nanoablation can be successfully quantified noninvasively with 7-T MR imaging. Imaging can be used as a method to estimate localized drug delivery after nanoablation. To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation. SPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats distributed into three dosage groups. Baseline tumor R2* values (the reciprocal of T2*) were determined using 7-tesla (T) MR imaging. After intravenous injection of SPIO nanoparticles, reversible electroporation (1,300 V/cm, 8 pulses, 100-μs pulse duration) was applied. Imaging of rats was performed to determine tumor R2* values after the procedure, and change in R2* (ΔR2*) was calculated. Inductively coupled plasma mass spectrometry was used to determine intratumoral iron (Fe) concentration after the procedure, which served as a proxy for SPIO nanoparticle uptake. Mean tumor Fe concentration [Fe] and ΔR2* for each subject were assessed for correlation with linear regression, and mean [Fe] for each dosage group was compared with analysis of variance. ΔR2* significantly correlated with tumor SPIO nanoparticle uptake after nanoablation (r = 0.50, P = .039). On average, each 0.1-ms−1 increase in R2* corresponded to a 0.1394-mM increase in [Fe]. There was no significant difference in mean SPIO nanoparticle uptake among dosage groups (P = .57). Intratumoral SPIO nanoparticle uptake after nanoablation can be successfully quantified noninvasively with 7-T MR imaging. Imaging can be used as a method to estimate localized drug delivery after nanoablation. To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation.PURPOSETo test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after nanoablation.SPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats distributed into three dosage groups. Baseline tumor R2* values (the reciprocal of T2*) were determined using 7-tesla (T) MR imaging. After intravenous injection of SPIO nanoparticles, reversible electroporation (1,300 V/cm, 8 pulses, 100-μs pulse duration) was applied. Imaging of rats was performed to determine tumor R2* values after the procedure, and change in R2* (ΔR2*) was calculated. Inductively coupled plasma mass spectrometry was used to determine intratumoral iron (Fe) concentration after the procedure, which served as a proxy for SPIO nanoparticle uptake. Mean tumor Fe concentration [Fe] and ΔR2* for each subject were assessed for correlation with linear regression, and mean [Fe] for each dosage group was compared with analysis of variance.MATERIALS AND METHODSSPIO nanoparticles functionalized with doxorubicin were synthesized. N1-S1 hepatomas were successfully induced in 17 Sprague-Dawley rats distributed into three dosage groups. Baseline tumor R2* values (the reciprocal of T2*) were determined using 7-tesla (T) MR imaging. After intravenous injection of SPIO nanoparticles, reversible electroporation (1,300 V/cm, 8 pulses, 100-μs pulse duration) was applied. Imaging of rats was performed to determine tumor R2* values after the procedure, and change in R2* (ΔR2*) was calculated. Inductively coupled plasma mass spectrometry was used to determine intratumoral iron (Fe) concentration after the procedure, which served as a proxy for SPIO nanoparticle uptake. Mean tumor Fe concentration [Fe] and ΔR2* for each subject were assessed for correlation with linear regression, and mean [Fe] for each dosage group was compared with analysis of variance.ΔR2* significantly correlated with tumor SPIO nanoparticle uptake after nanoablation (r = 0.50, P = .039). On average, each 0.1-ms(-1) increase in R2* corresponded to a 0.1394-mM increase in [Fe]. There was no significant difference in mean SPIO nanoparticle uptake among dosage groups (P = .57).RESULTSΔR2* significantly correlated with tumor SPIO nanoparticle uptake after nanoablation (r = 0.50, P = .039). On average, each 0.1-ms(-1) increase in R2* corresponded to a 0.1394-mM increase in [Fe]. There was no significant difference in mean SPIO nanoparticle uptake among dosage groups (P = .57).Intratumoral SPIO nanoparticle uptake after nanoablation can be successfully quantified noninvasively with 7-T MR imaging. Imaging can be used as a method to estimate localized drug delivery after nanoablation.CONCLUSIONSIntratumoral SPIO nanoparticle uptake after nanoablation can be successfully quantified noninvasively with 7-T MR imaging. Imaging can be used as a method to estimate localized drug delivery after nanoablation. |
Author | McDevitt, Joseph L. Salem, Riad Procissi, Daniele Ragin, Ann B. Li, Weiguo Nicolai, Jodi Tyler, Patrick D. Mouli, Samdeep K. Omary, Reed A. Lewandowski, Robert J. Wang, Y. Andrew Larson, Andrew C. |
Author_xml | – sequence: 1 givenname: Joseph L. surname: McDevitt fullname: McDevitt, Joseph L. organization: Department of Radiology, Northwestern University, Chicago, Illinois – sequence: 2 givenname: Samdeep K. surname: Mouli fullname: Mouli, Samdeep K. organization: Department of Radiology, Northwestern University, Chicago, Illinois – sequence: 3 givenname: Patrick D. surname: Tyler fullname: Tyler, Patrick D. organization: Department of Radiology, Northwestern University, Chicago, Illinois – sequence: 4 givenname: Weiguo surname: Li fullname: Li, Weiguo organization: Department of Radiology, Northwestern University, Chicago, Illinois – sequence: 5 givenname: Jodi surname: Nicolai fullname: Nicolai, Jodi organization: Department of Radiology, Northwestern University, Chicago, Illinois – sequence: 6 givenname: Daniele surname: Procissi fullname: Procissi, Daniele organization: Department of Radiology, Northwestern University, Chicago, Illinois – sequence: 7 givenname: Ann B. surname: Ragin fullname: Ragin, Ann B. organization: Department of Radiology, Northwestern University, Chicago, Illinois – sequence: 8 givenname: Y. Andrew surname: Wang fullname: Wang, Y. Andrew organization: Ocean Nanotech LLC, Springdale, Arizona – sequence: 9 givenname: Robert J. surname: Lewandowski fullname: Lewandowski, Robert J. organization: Department of Radiology, Northwestern University, Chicago, Illinois – sequence: 10 givenname: Riad surname: Salem fullname: Salem, Riad organization: Department of Radiology, Northwestern University, Chicago, Illinois – sequence: 11 givenname: Andrew C. surname: Larson fullname: Larson, Andrew C. organization: Department of Radiology, Northwestern University, Chicago, Illinois – sequence: 12 givenname: Reed A. surname: Omary fullname: Omary, Reed A. email: reed.omary@vanderbilt.edu organization: Department of Radiology and Radiological Sciences, Vanderbilt School of Medicine, 1611 21st Avenue South, CCC-1106 MCN, Nashville, TN 37232 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24854392$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltv1DAQhSNURC_wB3hAfuQli69JFiEkVBWotC1Su322Zp1JcZo4qe0s2n-PwxYeKlGQR_JYOt_x6NjH2YEbHGbZa0YXjLLiXbtot9YvOGVyQUUq8Sw7YkqovCwFP0g9VSynUorD7DiEllJapfUiO-SyUlIs-VHmLq7IeQ-31t2SMwebDgO5QAiTxx5dJEND1t_Rw4hTtIZcghtG8KntkNyMEe6QWEeuIJJLll8zsrJb9GQ99YMPBJqYDjOTjCHawb3MnjfQBXz1sJ9kN5_P1qdf89W3L-enn1a5UWURc8GVUVUNrFk2QnJTUFoUisKSgyhLs2GmEpUsmoIveVksVVmX2BTlBrgUEpCLk0zsfSc3wu4HdJ0eve3B7zSjek5Pt3pOT8_paSpSiUS93VOjH-4nDFH3NhjsOnA4TEEzpRJaMV4l6ZsH6bTpsf7j_jvZJKj2AuOHEDw22tj4K4PowXZPj8Efof81-4c9hCnWrUWvg7HoDNbWo4m6HuzT-MdHuOmsswa6O9xhaIfJu_RgmunANdXX89eafxaTlEoqVDJ4_3eDf93-E67T23A |
CitedBy_id | crossref_primary_10_1177_1536012117749726 |
Cites_doi | 10.1039/b409601k 10.1016/j.jvir.2008.06.008 10.1016/S1051-0443(99)70117-X 10.1002/mrm.1910320610 10.2310/7290.2010.00042 10.1097/RLI.0b013e31827994e5 10.1053/j.seminoncol.2010.11.011 10.1016/j.jvir.2012.08.025 10.3747/co.v16i2.368 10.1097/RLI.0b013e3182a7e1b7 10.1002/jmri.20712 10.1016/j.biomaterials.2010.02.068 10.1021/bc050002e 10.1166/jbn.2008.007 10.1097/RLI.0b013e3182174fad 10.1016/j.jvir.2008.01.023 10.1111/j.1432-2277.2010.01109.x 10.1158/1078-0432.CCR-07-1441 10.1016/j.jvir.2009.12.218 10.1016/j.addr.2008.03.018 10.1016/j.ejca.2006.01.026 10.1097/RLI.0b013e3182631e68 10.1021/nn4023119 10.1016/j.jhep.2006.10.020 10.2217/nnm.10.23 10.1208/s12248-012-9339-4 10.1148/radiol.12120609 10.1148/rg.295095034 10.1016/j.addr.2010.04.009 10.1158/0008-5472.CAN-09-3067 10.1148/radiol.10091473 10.1016/S1051-0443(07)61789-8 10.1148/radiol.2261012140 10.1148/radiol.2343031172 10.1016/S0169-409X(98)00066-0 10.1038/nrd2614 10.1021/jp8029083 10.1258/0023677054307051 |
ContentType | Journal Article |
Copyright | 2014 SIR SIR Copyright © 2014 SIR. All rights reserved. |
Copyright_xml | – notice: 2014 SIR – notice: SIR – notice: Copyright © 2014 SIR. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
DOI | 10.1016/j.jvir.2014.03.033 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1535-7732 |
EndPage | 1294 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:4120881 24854392 10_1016_j_jvir_2014_03_033 S1051044314004035 1_s2_0_S1051044314004035 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA159178 – fundername: NCI NIH HHS grantid: R25 CA132822 – fundername: NCI NIH HHS grantid: P30 CA060553 |
GroupedDBID | --- --K .1- .FO 08G 08P 0R~ 1B1 1P~ 1RT 354 4.4 457 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF AAEDT AAEDW AAKAS AALRI AAQQT AAQXK AAWTL AAXUO AAYWO ABFRF ABLJU ABMAC ABWVN ACGFO ACRPL ADBBV ADBIZ ADMUD ADNMO ADZCM AEFWE AENEX AEVXI AFJKZ AFRHN AFTJW AFTRI AFUWQ AGCQF AGQPQ AHHHB AHRYX AIGII AITUG AIZYK AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BELOY CS3 DU5 EBS EFJIC EFKBS EJD EX3 F5P FDB FEDTE FGOYB G-2 GBLVA H0~ HEI HEK HMK HMO HVGLF HZ~ IHE JF9 JG8 KMI M28 M41 NTWIH O9- OAG OAH OI~ OL1 OLY OLZ OU0 OVD OWU OWV OWW OWX OWY OWZ P2P R2- ROL RPZ SAE SEL SES T8P TEORI UNMZH VVN WOQ WOW WUQ XH2 XXN XYM YQY Z5R ZGI ADPAM AFCTW AWKKM GX1 RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c576t-325c58da1f9f342c6006650a92a377cb1c83846f629276957d7ef67ba2434ae23 |
IEDL.DBID | UNPAY |
ISSN | 1051-0443 1535-7732 |
IngestDate | Tue Aug 19 09:31:02 EDT 2025 Sun Sep 28 02:13:26 EDT 2025 Mon Jul 21 05:54:00 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Wed Oct 01 04:08:18 EDT 2025 Sat Oct 26 15:40:48 EDT 2024 Sun Feb 23 10:18:53 EST 2025 Tue Aug 26 16:37:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | SPIO IO ΔR2 HCC ICP-MS DOX Fe inductively coupled plasma mass spectrometry change in R2 iron oxide superparamagnetic iron oxide iron doxorubicin hydrochloride hepatocellular carcinoma |
Language | English |
License | Copyright © 2014 SIR. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c576t-325c58da1f9f342c6006650a92a377cb1c83846f629276957d7ef67ba2434ae23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1016/j.jvir.2014.03.033 |
PMID | 24854392 |
PQID | 1551018128 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | unpaywall_primary_10_1016_j_jvir_2014_03_033 proquest_miscellaneous_1551018128 pubmed_primary_24854392 crossref_citationtrail_10_1016_j_jvir_2014_03_033 crossref_primary_10_1016_j_jvir_2014_03_033 elsevier_sciencedirect_doi_10_1016_j_jvir_2014_03_033 elsevier_clinicalkeyesjournals_1_s2_0_S1051044314004035 elsevier_clinicalkey_doi_10_1016_j_jvir_2014_03_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of vascular and interventional radiology |
PublicationTitleAlternate | J Vasc Interv Radiol |
PublicationYear | 2014 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Duan, Kuang, Wang (bib20) 2008; 112 Sigovan, Kaye, Lancelot (bib31) 2012; 47 Smith, Kim (bib38) 2011; 38 Buijs, Geschwind, Syed (bib40) 2012; 23 Lee, Liapi, Vossen (bib34) 2008; 19 Tyler, McDevitt, Sheu (bib17) 2014; 49 Guo, Klein, Omary, Yang, Larson (bib39) 2011; 3 Faroja, Ahmed, Appelbaum (bib27) 2013; 266 Lewandowski, Tepper, Wang (bib36) 2008; 19 Garin, Denizot, Roux (bib18) 2005; 39 Lencioni, Crocetti, De Simone, Filipponi (bib12) 2010; 23 Bremer, Mustafa, Bogdanov (bib32) 2003; 226 Mir, Orlowski (bib10) 1999; 35 Fang, Nakamura, Maeda (bib7) 2011; 63 Cho, Wang, Nie (bib6) 2008; 14 Nie (bib2) 2010; 5 Yu, Falkner, Yavuz, Colvin (bib19) 2004; 20 Yablonskiy, Haacke (bib16) 1994; 32 Thorek, Weisshaar, Czupryna, Winkelstein, Tsourkas (bib28) 2011; 10 Lutz, Weishaupt, Persohn (bib29) 2005; 234 Cho, Yang, Mohamedali (bib33) 2011; 46 Varela, Real, Burrel (bib37) 2007; 46 Maeng, Lee, Jung (bib22) 2010; 31 Lewandowski, Mulcahy, Kulik (bib23) 2010; 255 Mouli, Tyler, McDevitt (bib8) 2013; 7 Chavhan, Babyn, Thomas, Shroff, Haacke (bib15) 2009; 29 Guo, Zhang, Klein (bib11) 2010; 70 Peng, Quian, Mao (bib3) 2010; 3 Winkelmann, Schaeffter, Weiss, Eggers, Doessel (bib14) 2006; 24 Therasse, Eisenhauer, Verweij (bib26) 2006; 42 Desai (bib5) 2012; 14 Eifler, Lewandowski, Mouli (bib13) 2010; 21 Yang, Cao, Sajja (bib21) 2008; 4 Sun, Lee, Zhang (bib4) 2008; 60 Tsourkas, Shinde-Patil, Kelly (bib30) 2005; 16 Sheu, Zhang, Omary, Larson (bib35) 2013; 48 Davis, Chen, Shin (bib1) 2008; 7 Ramsey, Kernagis, Soulen, Geschwind (bib25) 2002; 13 Sersa, Cemazar, Snoj (bib9) 2009; 16 Solomon, Soulen, Baum (bib24) 1999; 10 Mir (10.1016/j.jvir.2014.03.033_bib10) 1999; 35 Sigovan (10.1016/j.jvir.2014.03.033_bib31) 2012; 47 Yu (10.1016/j.jvir.2014.03.033_bib19) 2004; 20 Duan (10.1016/j.jvir.2014.03.033_bib20) 2008; 112 Therasse (10.1016/j.jvir.2014.03.033_bib26) 2006; 42 Garin (10.1016/j.jvir.2014.03.033_bib18) 2005; 39 Fang (10.1016/j.jvir.2014.03.033_bib7) 2011; 63 Thorek (10.1016/j.jvir.2014.03.033_bib28) 2011; 10 Lutz (10.1016/j.jvir.2014.03.033_bib29) 2005; 234 Eifler (10.1016/j.jvir.2014.03.033_bib13) 2010; 21 Bremer (10.1016/j.jvir.2014.03.033_bib32) 2003; 226 Lewandowski (10.1016/j.jvir.2014.03.033_bib36) 2008; 19 Smith (10.1016/j.jvir.2014.03.033_bib38) 2011; 38 Winkelmann (10.1016/j.jvir.2014.03.033_bib14) 2006; 24 Sheu (10.1016/j.jvir.2014.03.033_bib35) 2013; 48 Sun (10.1016/j.jvir.2014.03.033_bib4) 2008; 60 Cho (10.1016/j.jvir.2014.03.033_bib33) 2011; 46 Ramsey (10.1016/j.jvir.2014.03.033_bib25) 2002; 13 Lencioni (10.1016/j.jvir.2014.03.033_bib12) 2010; 23 Cho (10.1016/j.jvir.2014.03.033_bib6) 2008; 14 Yang (10.1016/j.jvir.2014.03.033_bib21) 2008; 4 Nie (10.1016/j.jvir.2014.03.033_bib2) 2010; 5 Tsourkas (10.1016/j.jvir.2014.03.033_bib30) 2005; 16 Chavhan (10.1016/j.jvir.2014.03.033_bib15) 2009; 29 Tyler (10.1016/j.jvir.2014.03.033_bib17) 2014; 49 Sersa (10.1016/j.jvir.2014.03.033_bib9) 2009; 16 Varela (10.1016/j.jvir.2014.03.033_bib37) 2007; 46 Guo (10.1016/j.jvir.2014.03.033_bib39) 2011; 3 Solomon (10.1016/j.jvir.2014.03.033_bib24) 1999; 10 Buijs (10.1016/j.jvir.2014.03.033_bib40) 2012; 23 Guo (10.1016/j.jvir.2014.03.033_bib11) 2010; 70 Davis (10.1016/j.jvir.2014.03.033_bib1) 2008; 7 Desai (10.1016/j.jvir.2014.03.033_bib5) 2012; 14 Faroja (10.1016/j.jvir.2014.03.033_bib27) 2013; 266 Mouli (10.1016/j.jvir.2014.03.033_bib8) 2013; 7 Maeng (10.1016/j.jvir.2014.03.033_bib22) 2010; 31 Lewandowski (10.1016/j.jvir.2014.03.033_bib23) 2010; 255 Lee (10.1016/j.jvir.2014.03.033_bib34) 2008; 19 Yablonskiy (10.1016/j.jvir.2014.03.033_bib16) 1994; 32 Peng (10.1016/j.jvir.2014.03.033_bib3) 2010; 3 18755602 - J Vasc Interv Radiol. 2008 Oct;19(10):1490-6 23177115 - J Vasc Interv Radiol. 2012 Dec;23(12):1685-91 12511693 - Radiology. 2003 Jan;226(1):214-20 20124486 - Cancer Res. 2010 Feb 15;70(4):1555-63 15898724 - Bioconjug Chem. 2005 May-Jun;16(3):576-81 20347138 - Biomaterials. 2010 Jun;31(18):4995-5006 20441782 - Adv Drug Deliv Rev. 2011 Mar 18;63(3):136-51 16958064 - J Magn Reson Imaging. 2006 Oct;24(4):939-44 18758474 - Nat Rev Drug Discov. 2008 Sep;7(9):771-82 22407288 - AAPS J. 2012 Jun;14(2):282-95 16004691 - Lab Anim. 2005 Jul;39(3):314-20 21512397 - Invest Radiol. 2011 Jul;46(7):441-9 21496449 - Mol Imaging. 2011 Jun;10(3):206-14 21139811 - Am J Transl Res. 2010 Nov 01;3(1):114-20 17239480 - J Hepatol. 2007 Mar;46(3):474-81 12354839 - J Vasc Interv Radiol. 2002 Sep;13(9 Pt 2):S211-21 23249649 - Invest Radiol. 2013 Jun;48(6):492-9 10837692 - Adv Drug Deliv Rev. 1999 Jan 4;35(1):107-118 21362523 - Semin Oncol. 2011 Feb;38(1):151-62 20528447 - Nanomedicine (Lond). 2010 Jun;5(4):523-8 19370177 - Curr Oncol. 2009 Mar;16(2):34-5 10392950 - J Vasc Interv Radiol. 1999 Jun;10(6):793-8 15489993 - Chem Commun (Camb). 2004 Oct 21;(20):2306-7 20501733 - Radiology. 2010 Jun;255(3):955-65 7869897 - Magn Reson Med. 1994 Dec;32(6):749-63 20492618 - Transpl Int. 2010 Jul;23(7):698-703 15665219 - Radiology. 2005 Mar;234(3):765-75 18440458 - J Vasc Interv Radiol. 2008 May;19(5):698-705 23169795 - Radiology. 2013 Feb;266(2):462-70 22864378 - Invest Radiol. 2012 Sep;47(9):546-52 24089022 - Invest Radiol. 2014 Feb;49(2):87-92 16616487 - Eur J Cancer. 2006 May;42(8):1031-9 18990940 - Int J Nanomedicine. 2008;3(3):311-21 25152701 - J Biomed Nanotechnol. 2008 Dec 1;4(4):439-449 18558452 - Adv Drug Deliv Rev. 2008 Aug 17;60(11):1252-65 19755604 - Radiographics. 2009 Sep-Oct;29(5):1433-49 23952712 - ACS Nano. 2013 Sep 24;7(9):7724-33 18316549 - Clin Cancer Res. 2008 Mar 1;14(5):1310-6 |
References_xml | – volume: 3 start-page: 311 year: 2010 end-page: 321 ident: bib3 article-title: Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy publication-title: Int J Nanomedicine – volume: 14 start-page: 282 year: 2012 end-page: 295 ident: bib5 article-title: Challenges in the development of nanotherapeutics publication-title: AAPS J – volume: 19 start-page: 698 year: 2008 end-page: 705 ident: bib36 article-title: MR imaging perfusion mismatch: a technique to verify successful targeting of liver tumors during transcatheter arterial chemoembolization publication-title: J Vasc Interv Radiol – volume: 5 start-page: 523 year: 2010 end-page: 528 ident: bib2 article-title: Understanding and overcoming major barriers in cancer nanomedicine publication-title: Nanomedicine (Lond) – volume: 38 start-page: 151 year: 2011 end-page: 162 ident: bib38 article-title: Interventional radiology and image-guided medicine publication-title: Semin Oncol – volume: 31 start-page: 4995 year: 2010 end-page: 5006 ident: bib22 article-title: Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer publication-title: Biomaterials – volume: 234 start-page: 765 year: 2005 end-page: 775 ident: bib29 article-title: Imaging of macrophages in soft-tissue infection in rats: relationship between ultrasmall superparamagnetic iron oxide dose and MR signal characteristics publication-title: Radiology – volume: 48 start-page: 492 year: 2013 end-page: 499 ident: bib35 article-title: MRI-monitored transcatheter intra-arterial delivery of SPIO-labeled natural killer cells to hepatocellular carcinoma: preclinical studies in a rodent model publication-title: Invest Radiol – volume: 32 start-page: 749 year: 1994 end-page: 763 ident: bib16 article-title: Theory of NMR signal behavior in magnetically inhomogenous tissues: the static dephasing regime publication-title: Magn Reson Med – volume: 70 start-page: 1555 year: 2010 end-page: 1563 ident: bib11 article-title: Irreversible electroporation therapy in the liver: longitudinal efficacy studies in a rat model of hepatocellular carcinoma publication-title: Cancer Res – volume: 226 start-page: 214 year: 2003 end-page: 220 ident: bib32 article-title: Steady-state blood volume measurements in experimental tumors with different angiogenic burdens—a study in mice publication-title: Radiology – volume: 63 start-page: 136 year: 2011 end-page: 151 ident: bib7 article-title: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect publication-title: Adv Drug Deliv Rev – volume: 29 start-page: 1433 year: 2009 end-page: 1449 ident: bib15 article-title: Principles, techniques, and applications of T2*-based MR imaging and its special applications publication-title: Radiographics – volume: 60 start-page: 1252 year: 2008 end-page: 1265 ident: bib4 article-title: Magnetic nanoparticles in MR imaging and drug delivery publication-title: Adv Drug Deliv Rev – volume: 266 start-page: 462 year: 2013 end-page: 470 ident: bib27 article-title: Irreversible electroporation ablation: is all the damage nonthermal? publication-title: Radiology – volume: 255 start-page: 955 year: 2010 end-page: 965 ident: bib23 article-title: Chemoembolization for hepatocellular carcinoma: comprehensive imaging and survival analysis in a 172-patient cohort publication-title: Radiology – volume: 7 start-page: 7724 year: 2013 end-page: 7733 ident: bib8 article-title: Image-guided local delivery strategies enhance therapeutic nanoparticle uptake in solid tumors publication-title: ACS Nano – volume: 13 start-page: S211 year: 2002 end-page: S221 ident: bib25 article-title: Chemoembolization of hepatocellular carcinoma publication-title: J Vasc Interv Radiol – volume: 42 start-page: 1031 year: 2006 end-page: 1039 ident: bib26 article-title: RECIST revisited: a review of validation studies on tumour assessment publication-title: Eur J Cancer – volume: 7 start-page: 771 year: 2008 end-page: 782 ident: bib1 article-title: Nanoparticle therapeutics: an emerging treatment modality for cancer publication-title: Nat Rev Drug Discov – volume: 47 start-page: 546 year: 2012 end-page: 552 ident: bib31 article-title: Anti-inflammatory drug evaluation in ApoE−/− mice by ultrasmall superparamagnetic iron oxide–enhanced magnetic resonance imaging publication-title: Invest Radiol – volume: 10 start-page: 206 year: 2011 end-page: 214 ident: bib28 article-title: Superparamagnetic iron oxide-enhanced magnetic resonance imaging of neuroinflammation in a rat model of radicular pain publication-title: Mol Imaging – volume: 46 start-page: 441 year: 2011 end-page: 449 ident: bib33 article-title: Sensitive angiogenesis imaging of orthotopic bladder tumors in mice using a selective magnetic resonance imaging contrast agent containing VEGF121/rGel publication-title: Invest Radiol – volume: 23 start-page: 698 year: 2010 end-page: 703 ident: bib12 article-title: Loco-regional interventional treatment of hepatocellular carcinoma: techniques, outcomes, and future prospects publication-title: Transplant Int – volume: 19 start-page: 1490 year: 2008 end-page: 1496 ident: bib34 article-title: Distribution of iron oxide–containing embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: evaluation with MR imaging and implication for therapy publication-title: J Vasc Interv Radiol – volume: 24 start-page: 939 year: 2006 end-page: 944 ident: bib14 article-title: Simultaneous imaging and R2* mapping using a radial multi-gradient-echo (rMGE) sequence publication-title: J Magn Reson Imaging – volume: 39 start-page: 314 year: 2005 end-page: 320 ident: bib18 article-title: Description and technical pitfalls of a hepatoma model and of intra-arterial injection of radiolabelled lipiodol in the rat publication-title: Lab Anim – volume: 21 start-page: S28 year: 2010 ident: bib13 article-title: Abstract No. 70 [Cope]: Image-guided nanoembolization as a novel local therapy for pancreatic cancer: feasibility in an animal model publication-title: J Vasc Interv Radiol – volume: 112 start-page: 8127 year: 2008 end-page: 8131 ident: bib20 article-title: Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity publication-title: J Phys Chem C – volume: 4 start-page: 439 year: 2008 end-page: 449 ident: bib21 article-title: Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging publication-title: J Biomed Nanotechnol – volume: 14 start-page: 1310 year: 2008 end-page: 1316 ident: bib6 article-title: Therapeutic nanoparticles for drug delivery in cancer publication-title: Clin Cancer Res – volume: 20 start-page: 2306 year: 2004 end-page: 2307 ident: bib19 article-title: Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts publication-title: Chem Commun (Camb) – volume: 46 start-page: 474 year: 2007 end-page: 481 ident: bib37 article-title: Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics publication-title: J Hepatol – volume: 3 start-page: 114 year: 2011 end-page: 120 ident: bib39 article-title: Highly malignant intra-hepatic metastatic hepatocellular carcinoma publication-title: Am J Transl Res – volume: 49 start-page: 87 year: 2014 end-page: 92 ident: bib17 article-title: Seven-tesla magnetic resonance imaging accurately quantifies intratumoral uptake of therapeutic nanoparticles in the McA rat model of hepatocellular carcinoma: preclinical study in a rodent model publication-title: Invest Radiol – volume: 16 start-page: 576 year: 2005 end-page: 581 ident: bib30 article-title: In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe publication-title: Bioconjug Chem – volume: 16 start-page: 34 year: 2009 end-page: 35 ident: bib9 article-title: Electrochemotherapy of tumours publication-title: Curr Oncol – volume: 10 start-page: 793 year: 1999 end-page: 798 ident: bib24 article-title: Chemoembolization of hepatocellular carcinoma with cisplatin, doxorubicin, mitomycin-C, ethiodol, and polyvinyl alcohol: prospective evaluation of response and survival in a U.S. population publication-title: J Vasc Interv Radiol – volume: 35 start-page: 107 year: 1999 end-page: 118 ident: bib10 article-title: Mechanisms of electrochemotherapy publication-title: Adv Drug Deliv Rev – volume: 23 start-page: 1685 year: 2012 end-page: 1691 ident: bib40 article-title: Spontaneous tumor regression in a syngeneic rat model of liver cancer: implications for survival studies publication-title: J Vasc Interv Radiol – volume: 20 start-page: 2306 year: 2004 ident: 10.1016/j.jvir.2014.03.033_bib19 article-title: Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts publication-title: Chem Commun (Camb) doi: 10.1039/b409601k – volume: 19 start-page: 1490 year: 2008 ident: 10.1016/j.jvir.2014.03.033_bib34 article-title: Distribution of iron oxide–containing embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: evaluation with MR imaging and implication for therapy publication-title: J Vasc Interv Radiol doi: 10.1016/j.jvir.2008.06.008 – volume: 10 start-page: 793 year: 1999 ident: 10.1016/j.jvir.2014.03.033_bib24 article-title: Chemoembolization of hepatocellular carcinoma with cisplatin, doxorubicin, mitomycin-C, ethiodol, and polyvinyl alcohol: prospective evaluation of response and survival in a U.S. population publication-title: J Vasc Interv Radiol doi: 10.1016/S1051-0443(99)70117-X – volume: 32 start-page: 749 year: 1994 ident: 10.1016/j.jvir.2014.03.033_bib16 article-title: Theory of NMR signal behavior in magnetically inhomogenous tissues: the static dephasing regime publication-title: Magn Reson Med doi: 10.1002/mrm.1910320610 – volume: 10 start-page: 206 year: 2011 ident: 10.1016/j.jvir.2014.03.033_bib28 article-title: Superparamagnetic iron oxide-enhanced magnetic resonance imaging of neuroinflammation in a rat model of radicular pain publication-title: Mol Imaging doi: 10.2310/7290.2010.00042 – volume: 48 start-page: 492 year: 2013 ident: 10.1016/j.jvir.2014.03.033_bib35 article-title: MRI-monitored transcatheter intra-arterial delivery of SPIO-labeled natural killer cells to hepatocellular carcinoma: preclinical studies in a rodent model publication-title: Invest Radiol doi: 10.1097/RLI.0b013e31827994e5 – volume: 3 start-page: 311 year: 2010 ident: 10.1016/j.jvir.2014.03.033_bib3 article-title: Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy publication-title: Int J Nanomedicine – volume: 38 start-page: 151 year: 2011 ident: 10.1016/j.jvir.2014.03.033_bib38 article-title: Interventional radiology and image-guided medicine publication-title: Semin Oncol doi: 10.1053/j.seminoncol.2010.11.011 – volume: 23 start-page: 1685 year: 2012 ident: 10.1016/j.jvir.2014.03.033_bib40 article-title: Spontaneous tumor regression in a syngeneic rat model of liver cancer: implications for survival studies publication-title: J Vasc Interv Radiol doi: 10.1016/j.jvir.2012.08.025 – volume: 16 start-page: 34 year: 2009 ident: 10.1016/j.jvir.2014.03.033_bib9 article-title: Electrochemotherapy of tumours publication-title: Curr Oncol doi: 10.3747/co.v16i2.368 – volume: 49 start-page: 87 year: 2014 ident: 10.1016/j.jvir.2014.03.033_bib17 article-title: Seven-tesla magnetic resonance imaging accurately quantifies intratumoral uptake of therapeutic nanoparticles in the McA rat model of hepatocellular carcinoma: preclinical study in a rodent model publication-title: Invest Radiol doi: 10.1097/RLI.0b013e3182a7e1b7 – volume: 24 start-page: 939 year: 2006 ident: 10.1016/j.jvir.2014.03.033_bib14 article-title: Simultaneous imaging and R2* mapping using a radial multi-gradient-echo (rMGE) sequence publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20712 – volume: 31 start-page: 4995 year: 2010 ident: 10.1016/j.jvir.2014.03.033_bib22 article-title: Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.02.068 – volume: 16 start-page: 576 year: 2005 ident: 10.1016/j.jvir.2014.03.033_bib30 article-title: In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe publication-title: Bioconjug Chem doi: 10.1021/bc050002e – volume: 4 start-page: 439 year: 2008 ident: 10.1016/j.jvir.2014.03.033_bib21 article-title: Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging publication-title: J Biomed Nanotechnol doi: 10.1166/jbn.2008.007 – volume: 46 start-page: 441 year: 2011 ident: 10.1016/j.jvir.2014.03.033_bib33 article-title: Sensitive angiogenesis imaging of orthotopic bladder tumors in mice using a selective magnetic resonance imaging contrast agent containing VEGF121/rGel publication-title: Invest Radiol doi: 10.1097/RLI.0b013e3182174fad – volume: 19 start-page: 698 year: 2008 ident: 10.1016/j.jvir.2014.03.033_bib36 article-title: MR imaging perfusion mismatch: a technique to verify successful targeting of liver tumors during transcatheter arterial chemoembolization publication-title: J Vasc Interv Radiol doi: 10.1016/j.jvir.2008.01.023 – volume: 23 start-page: 698 year: 2010 ident: 10.1016/j.jvir.2014.03.033_bib12 article-title: Loco-regional interventional treatment of hepatocellular carcinoma: techniques, outcomes, and future prospects publication-title: Transplant Int doi: 10.1111/j.1432-2277.2010.01109.x – volume: 14 start-page: 1310 year: 2008 ident: 10.1016/j.jvir.2014.03.033_bib6 article-title: Therapeutic nanoparticles for drug delivery in cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-1441 – volume: 21 start-page: S28 year: 2010 ident: 10.1016/j.jvir.2014.03.033_bib13 article-title: Abstract No. 70 [Cope]: Image-guided nanoembolization as a novel local therapy for pancreatic cancer: feasibility in an animal model publication-title: J Vasc Interv Radiol doi: 10.1016/j.jvir.2009.12.218 – volume: 60 start-page: 1252 year: 2008 ident: 10.1016/j.jvir.2014.03.033_bib4 article-title: Magnetic nanoparticles in MR imaging and drug delivery publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2008.03.018 – volume: 42 start-page: 1031 year: 2006 ident: 10.1016/j.jvir.2014.03.033_bib26 article-title: RECIST revisited: a review of validation studies on tumour assessment publication-title: Eur J Cancer doi: 10.1016/j.ejca.2006.01.026 – volume: 47 start-page: 546 year: 2012 ident: 10.1016/j.jvir.2014.03.033_bib31 article-title: Anti-inflammatory drug evaluation in ApoE−/− mice by ultrasmall superparamagnetic iron oxide–enhanced magnetic resonance imaging publication-title: Invest Radiol doi: 10.1097/RLI.0b013e3182631e68 – volume: 7 start-page: 7724 year: 2013 ident: 10.1016/j.jvir.2014.03.033_bib8 article-title: Image-guided local delivery strategies enhance therapeutic nanoparticle uptake in solid tumors publication-title: ACS Nano doi: 10.1021/nn4023119 – volume: 46 start-page: 474 year: 2007 ident: 10.1016/j.jvir.2014.03.033_bib37 article-title: Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics publication-title: J Hepatol doi: 10.1016/j.jhep.2006.10.020 – volume: 5 start-page: 523 year: 2010 ident: 10.1016/j.jvir.2014.03.033_bib2 article-title: Understanding and overcoming major barriers in cancer nanomedicine publication-title: Nanomedicine (Lond) doi: 10.2217/nnm.10.23 – volume: 14 start-page: 282 year: 2012 ident: 10.1016/j.jvir.2014.03.033_bib5 article-title: Challenges in the development of nanotherapeutics publication-title: AAPS J doi: 10.1208/s12248-012-9339-4 – volume: 266 start-page: 462 year: 2013 ident: 10.1016/j.jvir.2014.03.033_bib27 article-title: Irreversible electroporation ablation: is all the damage nonthermal? publication-title: Radiology doi: 10.1148/radiol.12120609 – volume: 29 start-page: 1433 year: 2009 ident: 10.1016/j.jvir.2014.03.033_bib15 article-title: Principles, techniques, and applications of T2*-based MR imaging and its special applications publication-title: Radiographics doi: 10.1148/rg.295095034 – volume: 63 start-page: 136 year: 2011 ident: 10.1016/j.jvir.2014.03.033_bib7 article-title: The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2010.04.009 – volume: 70 start-page: 1555 year: 2010 ident: 10.1016/j.jvir.2014.03.033_bib11 article-title: Irreversible electroporation therapy in the liver: longitudinal efficacy studies in a rat model of hepatocellular carcinoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-3067 – volume: 255 start-page: 955 year: 2010 ident: 10.1016/j.jvir.2014.03.033_bib23 article-title: Chemoembolization for hepatocellular carcinoma: comprehensive imaging and survival analysis in a 172-patient cohort publication-title: Radiology doi: 10.1148/radiol.10091473 – volume: 13 start-page: S211 year: 2002 ident: 10.1016/j.jvir.2014.03.033_bib25 article-title: Chemoembolization of hepatocellular carcinoma publication-title: J Vasc Interv Radiol doi: 10.1016/S1051-0443(07)61789-8 – volume: 226 start-page: 214 year: 2003 ident: 10.1016/j.jvir.2014.03.033_bib32 article-title: Steady-state blood volume measurements in experimental tumors with different angiogenic burdens—a study in mice publication-title: Radiology doi: 10.1148/radiol.2261012140 – volume: 234 start-page: 765 year: 2005 ident: 10.1016/j.jvir.2014.03.033_bib29 article-title: Imaging of macrophages in soft-tissue infection in rats: relationship between ultrasmall superparamagnetic iron oxide dose and MR signal characteristics publication-title: Radiology doi: 10.1148/radiol.2343031172 – volume: 35 start-page: 107 year: 1999 ident: 10.1016/j.jvir.2014.03.033_bib10 article-title: Mechanisms of electrochemotherapy publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(98)00066-0 – volume: 7 start-page: 771 year: 2008 ident: 10.1016/j.jvir.2014.03.033_bib1 article-title: Nanoparticle therapeutics: an emerging treatment modality for cancer publication-title: Nat Rev Drug Discov doi: 10.1038/nrd2614 – volume: 112 start-page: 8127 year: 2008 ident: 10.1016/j.jvir.2014.03.033_bib20 article-title: Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity publication-title: J Phys Chem C doi: 10.1021/jp8029083 – volume: 39 start-page: 314 year: 2005 ident: 10.1016/j.jvir.2014.03.033_bib18 article-title: Description and technical pitfalls of a hepatoma model and of intra-arterial injection of radiolabelled lipiodol in the rat publication-title: Lab Anim doi: 10.1258/0023677054307051 – volume: 3 start-page: 114 year: 2011 ident: 10.1016/j.jvir.2014.03.033_bib39 article-title: Highly malignant intra-hepatic metastatic hepatocellular carcinoma publication-title: Am J Transl Res – reference: 20492618 - Transpl Int. 2010 Jul;23(7):698-703 – reference: 20501733 - Radiology. 2010 Jun;255(3):955-65 – reference: 12354839 - J Vasc Interv Radiol. 2002 Sep;13(9 Pt 2):S211-21 – reference: 15898724 - Bioconjug Chem. 2005 May-Jun;16(3):576-81 – reference: 23249649 - Invest Radiol. 2013 Jun;48(6):492-9 – reference: 20441782 - Adv Drug Deliv Rev. 2011 Mar 18;63(3):136-51 – reference: 18316549 - Clin Cancer Res. 2008 Mar 1;14(5):1310-6 – reference: 18755602 - J Vasc Interv Radiol. 2008 Oct;19(10):1490-6 – reference: 20124486 - Cancer Res. 2010 Feb 15;70(4):1555-63 – reference: 22407288 - AAPS J. 2012 Jun;14(2):282-95 – reference: 10837692 - Adv Drug Deliv Rev. 1999 Jan 4;35(1):107-118 – reference: 18990940 - Int J Nanomedicine. 2008;3(3):311-21 – reference: 20528447 - Nanomedicine (Lond). 2010 Jun;5(4):523-8 – reference: 10392950 - J Vasc Interv Radiol. 1999 Jun;10(6):793-8 – reference: 17239480 - J Hepatol. 2007 Mar;46(3):474-81 – reference: 23952712 - ACS Nano. 2013 Sep 24;7(9):7724-33 – reference: 25152701 - J Biomed Nanotechnol. 2008 Dec 1;4(4):439-449 – reference: 7869897 - Magn Reson Med. 1994 Dec;32(6):749-63 – reference: 19370177 - Curr Oncol. 2009 Mar;16(2):34-5 – reference: 19755604 - Radiographics. 2009 Sep-Oct;29(5):1433-49 – reference: 16616487 - Eur J Cancer. 2006 May;42(8):1031-9 – reference: 21512397 - Invest Radiol. 2011 Jul;46(7):441-9 – reference: 21362523 - Semin Oncol. 2011 Feb;38(1):151-62 – reference: 16004691 - Lab Anim. 2005 Jul;39(3):314-20 – reference: 20347138 - Biomaterials. 2010 Jun;31(18):4995-5006 – reference: 16958064 - J Magn Reson Imaging. 2006 Oct;24(4):939-44 – reference: 12511693 - Radiology. 2003 Jan;226(1):214-20 – reference: 18558452 - Adv Drug Deliv Rev. 2008 Aug 17;60(11):1252-65 – reference: 21139811 - Am J Transl Res. 2010 Nov 01;3(1):114-20 – reference: 18758474 - Nat Rev Drug Discov. 2008 Sep;7(9):771-82 – reference: 15489993 - Chem Commun (Camb). 2004 Oct 21;(20):2306-7 – reference: 21496449 - Mol Imaging. 2011 Jun;10(3):206-14 – reference: 24089022 - Invest Radiol. 2014 Feb;49(2):87-92 – reference: 23177115 - J Vasc Interv Radiol. 2012 Dec;23(12):1685-91 – reference: 15665219 - Radiology. 2005 Mar;234(3):765-75 – reference: 18440458 - J Vasc Interv Radiol. 2008 May;19(5):698-705 – reference: 22864378 - Invest Radiol. 2012 Sep;47(9):546-52 – reference: 23169795 - Radiology. 2013 Feb;266(2):462-70 |
SSID | ssj0008080 |
Score | 2.120339 |
Snippet | To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake after... Abstract Purpose To test the hypothesis that magnetic resonance (MR) imaging can quantify intratumoral superparamagnetic iron oxide (SPIO) nanoparticle uptake... |
SourceID | unpaywall proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1288 |
SubjectTerms | Ablation Techniques Animals Antibiotics, Antineoplastic - administration & dosage Antibiotics, Antineoplastic - chemistry Antibiotics, Antineoplastic - metabolism Carcinoma, Hepatocellular - drug therapy Carcinoma, Hepatocellular - metabolism Carcinoma, Hepatocellular - pathology Chemistry, Pharmaceutical Doxorubicin - administration & dosage Doxorubicin - chemistry Doxorubicin - metabolism Drug Carriers Electrochemotherapy Ferrosoferric Oxide - chemistry Ferrosoferric Oxide - metabolism Injections, Intravenous Linear Models Liver Neoplasms, Experimental - drug therapy Liver Neoplasms, Experimental - metabolism Liver Neoplasms, Experimental - pathology Magnetic Resonance Imaging Magnetite Nanoparticles Male Mass Spectrometry Nanomedicine - methods Radiology Rats, Sprague-Dawley Time Factors |
Title | MR Imaging Enables Measurement of Therapeutic Nanoparticle Uptake in Rat N1-S1 Liver Tumors after Nanoablation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1051044314004035 https://www.clinicalkey.es/playcontent/1-s2.0-S1051044314004035 https://dx.doi.org/10.1016/j.jvir.2014.03.033 https://www.ncbi.nlm.nih.gov/pubmed/24854392 https://www.proquest.com/docview/1551018128 http://doi.org/10.1016/j.jvir.2014.03.033 |
UnpaywallVersion | submittedVersion |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1535-7732 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008080 issn: 1535-7732 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1535-7732 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008080 issn: 1535-7732 databaseCode: AKRWK dateStart: 19901101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BK_HxwOeA8jEZiTfIVNtx3DxWaNNgtEJdK8aTZTuOtK1LqyUBwV_P2Ulb0MYGUl4i-WzZPp9_9p1_B_CGpZlMB9QhckvxgIIYONLGJJFJjMmdldpm_r5jNE72Z_HHI3G0IYv-w30fwrBOvh172k4aBy5Szm9CN_G-pA50Z-PPw6_BmynwSBw3wfTCUzBKztoHMpdX8rdN6CLIvAu362Kpf3zX8_lvG8_e_SZkqwx8hT7e5HSnrsyO_XmRzfH6Pj2Aey38JMNGXx7CDVc8gluj1sH-GIrRhHw4C5mLyG54VlWS0eYakSxyMt282CJom_HQ3VRGZstKnzpyXJCJrsiYRoeUfPJhH2Rany3OSxLykQcZrDhoxBbM9nan7_ejNiVDZPFgUkWcCSsGmaZ5mvOY2SS4bvo6ZZpLaQ21A46IJk9YymSSCplJlyfSaBbzWDvGn0CnWBTuGZBYU4NbodaZNbHgqTE8pVY6NCg8zy3rAV3NkbItX7lPmzFXq8C0E-UHUvmBVH2OH-_B27XMsmHruLI0X029Wr1DRcupcMKulJKXSbmyXfyloqpkqq8OvV56taTeTva56IFYS7b4psEt17b4eqWXChe_9-jowi1qbEm0jGuDHjxtFHbdb89Vh2gTx_HdWoP_YVCe_1_xF3DH_zUhkS-hU53X7hXCtMpsQ3d4MPlysN0u1F_5DTTm |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dbxQhECd6Tfx4qF-1XqsGE990mwOW5XhsmjbVeBfT3iX1iQDLJm2ve5fubo3-9Q4se6dpbTXZl00YCDAMP5jhNwi9pzIXckgcIDcJBxTAwIk2JktMZkzhrNA29_cdo3F2OE0_n_CTFVn0H-77EIZ1dnXqaTtJGrhIGbuP1jLvS-qhten46-634M3kcCRO22B67ikYBaPxgczNlfxtE7oOMh-jh0250D--69nst43n4EkbslUFvkIfb3K-09Rmx_68zuZ4d5-eovUIP_Fuqy_P0D1XPkcPRtHB_gKVoyP86SJkLsL74VlVhUera0Q8L_Bk9WILg22GQ3dbGZ4uan3u8GmJj3SNxyQ5JviLD_vAk-ZiflnhkI88yEDFQSM20PRgf7J3mMSUDImFg0mdMMotH-aaFLJgKbVZcN0MtKSaCWENsUMGiKbIqKQik1zkwhWZMJqmLNWOspeoV85L9wrhVBMDW6HWuTUpZ9IYJokVDgwKKwpL-4h0c6Rs5Cv3aTNmqgtMO1N-IJUfSDVg8LE--rCUWbRsHbeWZt3Uq-4dKlhOBRN2q5S4ScpVcfFXiqiKqoE69nrp1ZJ4OzlgvI_4UjLimxa33Nniu04vFSx-79HRpZs30BKPjGvDPtpsFXbZb89VB2gTxvHjUoP_YVC2_q_4Nnrk_9qQyNeoV1827g3AtNq8jQv0F1ngM0M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MR+imaging+enables+measurement+of+therapeutic+nanoparticle+uptake+in+rat+N1-S1+liver+tumors+after+nanoablation&rft.jtitle=Journal+of+vascular+and+interventional+radiology&rft.au=McDevitt%2C+Joseph+L&rft.au=Mouli%2C+Samdeep+K&rft.au=Tyler%2C+Patrick+D&rft.au=Li%2C+Weiguo&rft.date=2014-08-01&rft.eissn=1535-7732&rft.volume=25&rft.issue=8&rft.spage=1288&rft_id=info:doi/10.1016%2Fj.jvir.2014.03.033&rft_id=info%3Apmid%2F24854392&rft.externalDocID=24854392 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F10510443%2FS1051044313X0020X%2Fcov150h.gif |