DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics

Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, a...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 18; no. 1; p. e1009797
Main Authors O’Connor, Owen M., Alnahhas, Razan N., Lugagne, Jean-Baptiste, Dunlop, Mary J.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 18.01.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1009797

Cover

Abstract Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells, and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data.
AbstractList Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells, and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data.
Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells, and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data.Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells, and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data.
Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells, and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data. Time-lapse microscopy can generate large image datasets which track single-cell properties like gene expression or growth rate over time. Deep learning tools are very useful for analyzing these data and can identify the location of cells and track their position. In this work, we introduce a new version of our Deep Learning for Time-lapse Analysis (DeLTA) software, which includes the ability to robustly segment and track bacteria that are growing in two dimensions, such as on agarose pads or within microfluidic environments. This capability is essential for experiments where spatial and positional effects are important, such as conditions with microbial co-cultures, cell-to-cell interactions, or spatial patterning. The software also tracks pole age and can be used to analyze replicative aging. These new features join other improvements, such as the ability to work directly with many common microscopy file formats. DeLTA 2.0 can reliably track hundreds of cells with low error rates, making it an ideal tool for high throughput analysis of microscopy data.
Audience Academic
Author Lugagne, Jean-Baptiste
Alnahhas, Razan N.
Dunlop, Mary J.
O’Connor, Owen M.
AuthorAffiliation 2 Biological Design Center, Boston University, Boston, Massachusetts, United States of America
1 Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
Fudan University, CHINA
AuthorAffiliation_xml – name: 2 Biological Design Center, Boston University, Boston, Massachusetts, United States of America
– name: 1 Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
– name: Fudan University, CHINA
Author_xml – sequence: 1
  givenname: Owen M.
  orcidid: 0000-0002-6276-6269
  surname: O’Connor
  fullname: O’Connor, Owen M.
– sequence: 2
  givenname: Razan N.
  orcidid: 0000-0002-1382-2252
  surname: Alnahhas
  fullname: Alnahhas, Razan N.
– sequence: 3
  givenname: Jean-Baptiste
  orcidid: 0000-0002-8374-6590
  surname: Lugagne
  fullname: Lugagne, Jean-Baptiste
– sequence: 4
  givenname: Mary J.
  orcidid: 0000-0002-9261-8216
  surname: Dunlop
  fullname: Dunlop, Mary J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35041653$$D View this record in MEDLINE/PubMed
BookMark eNqVUl1v0zAUjdAQ2wr_AEEkXuChJY7jj-xhUjW-KlUgwXhE1o1zU1y5dhYnQP89Du2mdZoQKJJjX59zfO899zQ5ct5hkjwl2YxQQV6v_dA5sLNWV2ZGsqwUpXiQnBDG6FRQJo9u7Y-T0xDWWRa3JX-UHFOWFYQzepJ8e4PLy3maz7KzdJ7WiG1qETpn3CptTYvWOEwb36VXA7jeNNvxIsTF4lSjtWlooTdgU3B12uOm9V081FsHG6PD4-RhAzbgk_1_knx99_by4sN0-en94mK-nGomuJgyyIHkTLJCIpVNIQpdlVI2VVVhJgtRixx0XfJaal5RXlKZUWgYshglOqd0kjzf6bbWB7XvTFC54DmRVNARsdghag9r1XZmA91WeTDqT8B3KwVdb7RFpVEzCliVQkBR1JnkAJrnTECFKFkdtdhOa3AtbH-CtTeCJFOjOdcpqNEctTcn8s73WQ7VBmuNru_AHiRzeOPMd7XyP5SM7Dwvo8DLvUDnrwYMvdqYMLoADv0Q643l5lzwkkfoizvQ-7uyR60gFm5c4-O7ehRVc16SghQ8Tskkmd2Dil-N0eQ4lY2J8QPCqwNCxPT4q1_BEIJafPn8H9iPh9hntxt407nrcY6AYgfQnQ-hw-ZfjTm7Q9Omj2PtRxuM_Tv5Nzl0HQE
CitedBy_id crossref_primary_10_1007_s11427_024_2770_x
crossref_primary_10_1038_s41467_024_50602_8
crossref_primary_10_1016_j_biopha_2023_115077
crossref_primary_10_1038_s41467_024_48295_0
crossref_primary_10_1128_msphere_00658_22
crossref_primary_10_1371_journal_pcbi_1011524
crossref_primary_10_1128_mbio_02212_22
crossref_primary_10_1021_acssensors_2c02813
crossref_primary_10_1093_nar_gkae1158
crossref_primary_10_1021_acssynbio_4c00612
crossref_primary_10_1016_j_softx_2024_101638
crossref_primary_10_1038_s41467_023_37627_1
crossref_primary_10_1128_spectrum_00032_24
crossref_primary_10_3390_mi14040826
crossref_primary_10_1089_genbio_2022_0017
crossref_primary_10_1038_s41467_022_33659_1
crossref_primary_10_1038_s41467_023_36670_2
crossref_primary_10_1016_j_xpro_2024_102868
crossref_primary_10_1016_j_compag_2023_107802
crossref_primary_10_1016_j_tibtech_2022_10_010
crossref_primary_10_1128_spectrum_02788_23
crossref_primary_10_1021_acssynbio_4c00388
crossref_primary_10_1111_mmi_15064
crossref_primary_10_1007_s00521_024_10858_z
crossref_primary_10_1103_PRXLife_2_023004
crossref_primary_10_1016_j_crmeth_2023_100557
crossref_primary_10_3389_fbioe_2022_968342
crossref_primary_10_7554_eLife_88463
crossref_primary_10_1002_advs_202206519
crossref_primary_10_1016_j_bpr_2024_100175
crossref_primary_10_1002_advs_202305449
crossref_primary_10_3390_jimaging10120311
crossref_primary_10_7554_eLife_88463_4
crossref_primary_10_1021_acsomega_3c05913
crossref_primary_10_7717_peerj_cs_1364
crossref_primary_10_1016_j_xpro_2023_102436
crossref_primary_10_1038_s41467_024_46361_1
crossref_primary_10_1038_s44303_024_00024_4
crossref_primary_10_1016_j_mimet_2022_106658
crossref_primary_10_1039_D2LC00813K
crossref_primary_10_12688_openreseurope_15255_1
Cites_doi 10.1016/j.molcel.2018.04.012
10.1126/science.aar7981
10.1371/journal.pbio.2005970
10.1111/mmi.13486
10.1371/journal.pcbi.1007673
10.1371/journal.pbio.0030045
10.1098/rstb.2018.0442
10.1038/s41559-019-1080-2
10.1016/j.cels.2018.03.009
10.1126/science.aaf4762
10.1371/journal.pone.0144650
10.1109/ISBI.2011.5872394
10.1038/nprot.2011.432
10.1111/mmi.13264
10.1083/jcb.201004104
10.1038/nmicrobiol.2016.77
10.1016/j.cub.2010.04.045
10.1038/s41467-021-21734-y
10.1038/s41467-021-22649-4
ContentType Journal Article
Copyright COPYRIGHT 2022 Public Library of Science
2022 O’Connor et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 O’Connor et al 2022 O’Connor et al
Copyright_xml – notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 O’Connor et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 O’Connor et al 2022 O’Connor et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pcbi.1009797
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic



CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate DeLTA 2.0 for quantifying single-cell spatial and temporal dynamics
EISSN 1553-7358
ExternalDocumentID 2762183733
oai_doaj_org_article_cec53aeb977a44d086aac6257abee85d
10.1371/journal.pcbi.1009797
PMC8797229
A691414665
35041653
10_1371_journal_pcbi_1009797
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R21 AI153853
– fundername: ;
  grantid: 2032357
– fundername: ;
  grantid: 1804096
– fundername: ;
  grantid: AI153853
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
ID FETCH-LOGICAL-c5767-5a2a1258548e38f474cb988fbbbe0847d72acd96d8c6b3693803af5e5acd1c233
IEDL.DBID DOA
ISSN 1553-7358
1553-734X
IngestDate Sun Oct 01 00:20:29 EDT 2023
Fri Oct 03 12:50:40 EDT 2025
Sun Oct 26 04:03:56 EDT 2025
Tue Sep 30 16:59:50 EDT 2025
Fri Sep 05 07:33:01 EDT 2025
Tue Oct 07 06:43:55 EDT 2025
Mon Oct 20 21:56:52 EDT 2025
Mon Oct 20 16:15:01 EDT 2025
Thu Oct 16 14:44:49 EDT 2025
Thu Oct 16 14:18:34 EDT 2025
Wed Feb 19 02:26:52 EST 2025
Wed Oct 01 04:42:51 EDT 2025
Thu Apr 24 22:58:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5767-5a2a1258548e38f474cb988fbbbe0847d72acd96d8c6b3693803af5e5acd1c233
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0002-8374-6590
0000-0002-9261-8216
0000-0002-1382-2252
0000-0002-6276-6269
OpenAccessLink https://doaj.org/article/cec53aeb977a44d086aac6257abee85d
PMID 35041653
PQID 2762183733
PQPubID 1436340
ParticipantIDs plos_journals_2762183733
doaj_primary_oai_doaj_org_article_cec53aeb977a44d086aac6257abee85d
unpaywall_primary_10_1371_journal_pcbi_1009797
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8797229
proquest_miscellaneous_2621267696
proquest_journals_2762183733
gale_infotracmisc_A691414665
gale_infotracacademiconefile_A691414665
gale_incontextgauss_ISR_A691414665
gale_incontextgauss_ISN_A691414665
pubmed_primary_35041653
crossref_primary_10_1371_journal_pcbi_1009797
crossref_citationtrail_10_1371_journal_pcbi_1009797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220118
PublicationDateYYYYMMDD 2022-01-18
PublicationDate_xml – month: 1
  year: 2022
  text: 20220118
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Paintdakhi (pcbi.1009797.ref020) 2016; 99
E Pedone (pcbi.1009797.ref014) 2021
EJ Stewart (pcbi.1009797.ref018) 2005; 3
YKT Xu (pcbi.1009797.ref013) 2021; 15
CU Rang (pcbi.1009797.ref030) 2012; 158
JW Young (pcbi.1009797.ref019) 2012; 7
NA Rossi (pcbi.1009797.ref015) 2019; 2
R Chait (pcbi.1009797.ref004) 2017
D Salem (pcbi.1009797.ref012) 2021; 11
S Bakshi (pcbi.1009797.ref001) 2021
T Bergmiller (pcbi.1009797.ref007) 2017; 356
I el Meouche (pcbi.1009797.ref008) 2018; 362
J-B Lugagne (pcbi.1009797.ref011) 2020; 16
B Shao (pcbi.1009797.ref016) 2021; 12
T Prangemeier (pcbi.1009797.ref023) 2020
S van Vliet (pcbi.1009797.ref034) 2018; 6
M Linkert (pcbi.1009797.ref028) 2010; 189
A Dal Co (pcbi.1009797.ref005) 2020; 4
J van Gestel (pcbi.1009797.ref025) 2021; 12
S Panigrahi (pcbi.1009797.ref010) 2020
U Łapińska (pcbi.1009797.ref017) 2019; 374
A Ducret (pcbi.1009797.ref027) 2016; 1
P Wang (pcbi.1009797.ref024) 2010; 20
S Stylianidou (pcbi.1009797.ref021) 2016; 102
MW Clark (pcbi.1009797.ref031) 2015; 10
O Ronneberger (pcbi.1009797.ref009) 2015
ZR Fox (pcbi.1009797.ref002) 2021
C McQuin (pcbi.1009797.ref029) 2018; 16
TC Lee (pcbi.1009797.ref032) 1994; 56
pcbi.1009797.ref033
M Rullan (pcbi.1009797.ref003) 2018; 70
DA van Valen (pcbi.1009797.ref022) 2016
S van Vliet (pcbi.1009797.ref006) 2018; 6
X Wen (pcbi.1009797.ref026) 2018; 8
TS Lee (pcbi.1009797.ref035) 2011; 5
References_xml – volume: 70
  start-page: 745
  year: 2018
  ident: pcbi.1009797.ref003
  article-title: An Optogenetic Platform for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2018.04.012
– volume: 362
  start-page: 686
  year: 2018
  ident: pcbi.1009797.ref008
  article-title: Heterogeneity in efflux pump expression predisposes antibiotic-resistant cells to mutation
  publication-title: Science
  doi: 10.1126/science.aar7981
– volume: 16
  start-page: 1
  year: 2018
  ident: pcbi.1009797.ref029
  article-title: CellProfiler 3.0: Next-generation image processing for biology
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.2005970
– volume: 102
  start-page: 690
  year: 2016
  ident: pcbi.1009797.ref021
  article-title: SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells
  publication-title: Molecular Microbiology
  doi: 10.1111/mmi.13486
– volume: 16
  start-page: e1007673
  year: 2020
  ident: pcbi.1009797.ref011
  article-title: DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning.
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1007673
– volume: 3
  start-page: e45
  year: 2005
  ident: pcbi.1009797.ref018
  article-title: Aging and Death in an Organism That Reproduces by Morphologically Symmetric Division. Kirkwood T, editor
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.0030045
– volume: 15
  year: 2021
  ident: pcbi.1009797.ref013
  article-title: Automated in vivo Tracking of Cortical Oligodendrocytes.
  publication-title: Frontiers in Cellular Neuroscience
– volume: 374
  year: 2019
  ident: pcbi.1009797.ref017
  article-title: Bacterial ageing in the absence of external stressors
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2018.0442
– start-page: 1
  year: 2021
  ident: pcbi.1009797.ref002
  article-title: MicroMator: Open and Flexible Software for Reactive Microscopy.
  publication-title: bioRxiv
– volume: 4
  start-page: 366
  year: 2020
  ident: pcbi.1009797.ref005
  article-title: Short-range interactions govern the dynamics and functions of microbial communities
  publication-title: Nature Ecology and Evolution
  doi: 10.1038/s41559-019-1080-2
– volume: 6
  start-page: 496
  year: 2018
  ident: pcbi.1009797.ref034
  article-title: Spatially Correlated Gene Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell Interactions.
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2018.03.009
– volume: 356
  start-page: 311
  year: 2017
  ident: pcbi.1009797.ref007
  article-title: Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity
  publication-title: Science
  doi: 10.1126/science.aaf4762
– volume: 5
  start-page: 15
  year: 2011
  ident: pcbi.1009797.ref035
  article-title: BglBrick vectors and datasheets: A synthetic biology platform for gene expression.
  publication-title: Journal of Biological Engineering
– year: 2016
  ident: pcbi.1009797.ref022
  article-title: Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments.
  publication-title: PLoS Computational Biology
– year: 2020
  ident: pcbi.1009797.ref010
  article-title: MiSiC, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities.
  publication-title: bioRxiv
– start-page: 6
  year: 2021
  ident: pcbi.1009797.ref001
  article-title: Tracking bacterial lineages in complex and dynamic environments with applications for growth control and persistence
  publication-title: Nature Microbiology
– year: 2021
  ident: pcbi.1009797.ref014
  article-title: Cheetah: A Computational Toolkit for Cybergenetic Control.
  publication-title: ACS Synthetic Biology
– volume: 2
  start-page: 1
  year: 2019
  ident: pcbi.1009797.ref015
  article-title: Forecasting cell fate during antibiotic exposure using stochastic gene expression
  publication-title: Communications Biology
– volume: 10
  start-page: 1
  year: 2015
  ident: pcbi.1009797.ref031
  article-title: Periplasmic acid stress increases cell division asymmetry (Polar Aging) of Escherichia coli.
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0144650
– ident: pcbi.1009797.ref033
  doi: 10.1109/ISBI.2011.5872394
– start-page: 1
  year: 2015
  ident: pcbi.1009797.ref009
  article-title: 2015-U-Net.
  publication-title: arXiv
– volume: 158
  start-page: 1553
  year: 2012
  ident: pcbi.1009797.ref030
  article-title: Ageing in Escherichia coli requires damage by an extrinsic agent.
  publication-title: Microbiology (United Kingdom)
– volume: 7
  start-page: 80
  year: 2012
  ident: pcbi.1009797.ref019
  article-title: Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2011.432
– volume: 99
  start-page: 767
  year: 2016
  ident: pcbi.1009797.ref020
  article-title: Oufti: An integrated software package for high-accuracy, high-throughput quantitative microscopy analysis
  publication-title: Molecular Microbiology
  doi: 10.1111/mmi.13264
– volume: 8
  start-page: 1
  year: 2018
  ident: pcbi.1009797.ref026
  article-title: Antibiotic export by efflux pumps affects growth of neighboring bacteria.
  publication-title: Scientific Reports
– volume: 189
  start-page: 777
  year: 2010
  ident: pcbi.1009797.ref028
  article-title: Metadata matters: Access to image data in the real world
  publication-title: Journal of Cell Biology
  doi: 10.1083/jcb.201004104
– start-page: 700
  volume-title: Proceedings—2020 IEEE International Conference on Bioinformatics and Biomedicine
  year: 2020
  ident: pcbi.1009797.ref023
– volume: 1
  start-page: 1
  year: 2016
  ident: pcbi.1009797.ref027
  article-title: MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis
  publication-title: Nature Microbiology
  doi: 10.1038/nmicrobiol.2016.77
– volume: 20
  start-page: 1099
  year: 2010
  ident: pcbi.1009797.ref024
  article-title: Robust growth of escherichia coli
  publication-title: Current Biology
  doi: 10.1016/j.cub.2010.04.045
– volume: 11
  year: 2021
  ident: pcbi.1009797.ref012
  article-title: Yeastnet: Deep-learning-enabled accurate segmentation of budding yeast cells in bright-field microscopy.
  publication-title: Applied Sciences (Switzerland).
– volume: 12
  year: 2021
  ident: pcbi.1009797.ref016
  article-title: Single-cell measurement of plasmid copy number and promoter activity
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-21734-y
– volume: 6
  start-page: 496
  year: 2018
  ident: pcbi.1009797.ref006
  article-title: Spatially Correlated Gene Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell Interactions.
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2018.03.009
– volume: 12
  start-page: 1
  year: 2021
  ident: pcbi.1009797.ref025
  article-title: Short-range quorum sensing controls horizontal gene transfer at micron scale in bacterial communities
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-22649-4
– start-page: 8
  year: 2017
  ident: pcbi.1009797.ref004
  article-title: Shaping bacterial population behavior through computer-interfaced control of individual cells
  publication-title: Nature Communications
– volume: 56
  start-page: 462
  year: 1994
  ident: pcbi.1009797.ref032
  article-title: Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms
  publication-title: CVGIP: Graphical Models and Image Processing
SSID ssj0035896
Score 2.526272
Snippet Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1009797
SubjectTerms Algorithms
Antibiotic resistance
Antibiotics
Artificial neural networks
Automation
Bacteria
Bacteria - cytology
Biology and Life Sciences
Cell cycle
Cell division
Computational Biology
Computer and Information Sciences
Datasets
Deep Learning
E coli
Engineering and Technology
Gene expression
Growth rate
Image acquisition
Image processing
Image Processing, Computer-Assisted
Image segmentation
Information processing
Machine learning
Medicine and Health Sciences
Methods
Microfluidic devices
Microfluidics
Microscopy
Neural networks
Research and Analysis Methods
Run time (computers)
Single-Cell Analysis - methods
Software
Time-Lapse Imaging - methods
Tracking
Workflow
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_qFdEX8bM9rbKK4FOuud1NNhFErtpSRQ-pLfRFwn7lPAhJ2ush_e-dSTaxwfrxcg_Z2Rw7H7szm5nfEPJShzq1lpnAJPAjjGWBypkIYDuW1gptHcdq5M_z-PBEfDyNTjfIvKuFwbTKbk9sNmpbGbwj32VgtaB-kvO39VmAXaPw62rXQkP51gr2TQMxdoNsMkTGGpHNvf35l6Nub-ZR0nTswmY5geTi1BfTcTnd9bKb1EYvMXcglQgEdeWwajD9-517VBfV6jq39PfsylvrslaXP1RRXDm6Du6SO97npLNWSe6RDVfeJzfbLpSXD8i39-7T8YyySfiazqh1rqa-l8SC1ssaC9YdBd-Wnq0VphZhYRTFK4bCBXjvT1eYlQ1_oEpLPdRVQW3b6n71kJwc7B-_Owx814XAQOwhg0gxBV5PAqGM40kupDA6TZJca-1COMusZMrYNLaJiTWPU56EXOWRi-Dp1DDOH5FRWZVum9A4lVo6GVmRGxFZoDBKg38oGYLqaDcmvGNvZjwkOXbGKLLmO5uE0KTlUIZCybxQxiToZ9UtJMc_6PdQcj0tAmo3D6rzRebtMzPORFw5De6wEsJCoKeUgdhQKu1cEtkxeYFyzxAyo8ScnIVar1bZh6_zbBanUwEHThz9kehoQPTKE-UVLNYoXwcBLEMorgHlzoASDN8MhrdRB7s1r7JfJgIzO728fvh5P4wvxTy70lVroAEShlnP8ZhstWrc841HIXjvEcyWAwUfMHY4Ui6_N4jlCYiBsXRMJr0p_JfoHv99HU_IbYbVKOE0mCY7ZHRxvnZPwUe80M-84f8ESspnfw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6VIAQXxLMNFLQgJE6OnH14bSSEwqMqiPYAjZQLsvblEMly3LhRm3_PjO1YWKSCAxcfvLO2PDO7M-OdmY-QVyY0iXPMBjaGi7COBTpjIoDtWDknjPMcq5FPTqPjqfgyk7M9ssVsbRlY7QztEE9quspHV-ebd7Dg39aoDWq8nTQqrVngqX-iEnWD3ARblSCYw4nozhW4jGvELgTLCRQXs7aY7rqn9IxV3dO_27kHZb6sdrmlf2ZX3l4Xpd5c6jz_zXQd3SN3W5-TTholuU_2fPGA3GpQKDcPyY-P_uvZhLJR-IZOqPO-pC2WxJyWixIL1j0F35aerzWmFmFhFMVfDLkP8L8_rTArG16gC0fbVlc5dQ3UffWITI8-nX04DlrUhcBC7KECqZkGryeGUMbzOBNKWJPEcWaM8SHYMqeYti6JXGwjw6OExyHXmfQS7o4t4_wxGRTLwh8QGiXKKK-kE5kV0gGF1Qb8Q8WwqY7xQ8K37E1t25IckTHytD5nUxCaNBxKUShpK5QhCbpZZdOS4y_071FyHS021K5vLFfztF2fqfVWcu0NuMNaCAeBntYWYkOljfexdEPyEuWeYsuMAnNy5npdVenn76fpJErGAgxOJK8l-tYjet0SZUv4WKvbOghgGbbi6lEe9ihh4dve8AHq4Pabq5SBYYMdWnEOM7d6uXv4RTeMD8U8u8Iv10ADJAyznqMh2W_UuOMblyF47xJmq56C9xjbHykWP-uO5TGIgbFkSEbdUvgn0T35H6J7Su4wrFkJx8E4PiSDi9XaPwNP8sI8rzeHXwQtdI4
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQvfMMKAxmExAsJqT_ihLfyMQ3EKgSrVB6myF8ZFSENpBEqfz3nxg0LbGK8VFX8cyqfz-e7-u5nhB6rSKXGEB3oBD6YNiSQOWEBmGNhDFPGUleNfDCJ96fs7YzPttDTTS3MyfN7KkbPvETDSqu5O9FPRSouoO2Yg-c9QNvTyfvxpzUlKqeBoGz2-ztPfKXcWa_p7URrwv7OLA-qYlGf5nP-nTp5qSkrufohi-LEvrR3FR1sRtSmo3wJm6UK9c8_yB7PO-Rr6Ip3UPG41ajraMuWN9DF9srK1U109Mq-OxxjEkbP8RgbayvsL544xtW8ctXtFoMjjL810uUhuSoq7P6PKGzgDglw7VK44QdkabDnxSqwWZXy61zXt9B07_Xhy_3AX9EQaAhURMAlkeAiJRD3WJrkTDCt0iTJlVI2go3PCCK1SWOT6FjROKVJRGXOLYenI00ovY0G5aK0OwjHqVDCCm5Yrhk3gNBSgTMpiGPgUXaI6Ga6Mu35y901GkW2PpQTEMe0Esqc4DIvuCEKul5Vy9_xD_wLpwkd1rFvrx_ADGV-MWfaak6lVeA7S8YMRIVSaggkhVTWJtwM0SOnR5nj1yhdAs-xbOo6e_Nxko3jdMRgd4r5maAPPdATD8oXMFgtfdEEiMzxdvWQuz0kWAnda95xOr0Zc50R2AXBnAtKoedGz09vftg1u5e6pLzSLhrAAIS4FOl4iO60y6KTG-URuPoceovegukJtt9Szj-v6c0TmAZC0iEKu6V1rqm7-78d7qHLxBWzRKNglOyiwfJ7Y--Di7lUD7xl-QVxunna
  priority: 102
  providerName: Unpaywall
Title DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics
URI https://www.ncbi.nlm.nih.gov/pubmed/35041653
https://www.proquest.com/docview/2762183733
https://www.proquest.com/docview/2621267696
https://pubmed.ncbi.nlm.nih.gov/PMC8797229
https://doi.org/10.1371/journal.pcbi.1009797
https://doaj.org/article/cec53aeb977a44d086aac6257abee85d
http://dx.doi.org/10.1371/journal.pcbi.1009797
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: GX1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 8FG
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M48
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegCMEL4nMrjMogJJ6ypf6IHd5atjIQq6axSuUBRf7qqFSlgaxC---5S9KqEUPjgRdXss-tfHe5O6d3vyPkjY1t6j1zkdMwCOdZZGZMRGCOlffC-sCxGvlknBxPxKepnG61-sKcsBoeuGbcgQtOchMsxClGCA8RuDEOgnZlbAhaerS-sU7Xl6naBnOpq85c2BQnUlxMm6I5rvoHjYz2C2fnmCOQKgR82nJKFXb_xkJ3isWyvC78_DOL8t4qL8zVL7NYbLmo0UPyoIkt6aA-0yNyK-SPyd262-TVE_LtMHw-H1C2H7-jA-pDKGjTM-KCFvMCC9MDhRiW_lgZTCHCAiiKrxIWIcL3-7TE7Gv4AZN72kBaLaivW9qXT8lkdHT-_jhquitEDu4YKpKGGYhuNFxZAtczoYSzqdYza22IwWd5xYzzaeK1SyxPUq5jbmYySJjtO8b5M9LJl3nYJTRJlVVBSS9mTkgPFM5YiAMVQ_AcG7qEr9mbuQZ6HDtgLLLq_zQFV5CaQxkKJWuE0iXRZldRQ2_cQD9EyW1oETi7mgB1yhp1ym5Spy55jXLPEBojx9ybC7Mqy-zjl3E2SNK-AMeSyL8SnbWI3jZEsyUc1pmm3gFYhpBbLcq9FiU84K61vIs6uD5zmTFwYGCJFeewc62X1y-_2izjl2I-XR6WK6ABEobZzUmX7NRqvOEblzFE6RJ2q5aCtxjbXsnn3ytkcg1iYCztkv3No_BPonv-P0T3gtxnWJsS96O-3iOdy5-r8BIixkvbI7fVVMGoRx965M5geDgcwefwaHx61qsMB4wnQsPcZHw6-PobX1NyfQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFUFoXJBvBsosCAQJ6fJ7tprIyEUKFVC0xwglXJBZl8JkYLt1o2q_BTfyIztmFqUx6UXH7yztnZeO7M7D0Je6K6OrGXGMyE8hLHMUzMmPFDH0lqhreOYjXw0DgbH4uPUn26RH5tcGAyr3OjEQlHb1OAZ-R4DqQX2k5y_zU487BqFt6ubFholWxy69Tm4bPmb4T7Q9yVjBx8m7wde1VXAM2BbS89XTMGuHoKp7ng4E1IYHYXhTGvtuqCrrWTK2CiwoQk0DyIedrma-c6Htz3D8AAUVP41wUGXgPzIae3gcT8s-oFhKx5PcjGtUvW47O1VnNHJjF5gZEIksczUha2w6BhQ7wutbJnmlxm9v8dubq-STK3P1XJ5YWM8uEVuVhYt7ZcseJtsueQOuV72uFzfJV_23WjSp6zTfU371DqX0apTxZxmiwzT4R0Fy5merBQGLmHaFcUDjKXz8FaB5hjzDT9QiaVVIa0ltetEfV-Y_B45vhLs3yetJE3cDqFBJLV00rdiZoRvAcIoDdanZFiyR7s24Rv0xqYqeI59N5ZxcYsnwfEpMRQjUeKKKG3i1bOysuDHP-DfIeVqWCzXXbxIT-dxJf2xccbnymkwtpUQFtxIpQx4nlJp50LftslzpHuMBTkSjPiZq1Wex8PP47gfRD0B21ng_xHoUwPoVQU0S2GxRlVZFoAyLPTVgNxtQIJaMY3hHeTBzZrz-JcAwswNX14-_Kwexo9iFF_i0hXAAAjDmOqgTR6UbFzjjftd8A18mC0bDN5AbHMkWXwr6qGHQAbGojbp1KLwX6R7-Pd1PCXbg8nRKB4Nx4ePyA2GeS_dntcLd0nr7HTlHoM1eqafFCqAkq9XrXN-Ag9ZnaI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFUFcbwg7gYKLAjEkxNn1_baSAgFQtTQEiFopbwgs5dDpOC4daMqv8bXMeOLWpTjpS958M463pnZOXbnIOSZclVkDNOODuHH04Y5MmGeA-JYGOMpYzlmI3-YBruH3vuZP9siP-pcGAyrrGViIajNSuMZeZ_BrgX2E5z3kyos4uNo_Do7crCDFN601u00ShbZs5tTcN_yV5MR0Po5Y-N3B293narDgKPBzhaOL5kEDR-C2W55mHjC0yoKw0QpZV2Q20YwqU0UmFAHigcRD10uE9_68HSgGR6Ggvi_BB8VYTihmDXOHvfDojcYtuVxBPdmVdoeF4N-xSW9TKsFRilEAktOnVGLRfeARkd0suUqP88A_j2O8-o6zeTmVC6XZ5Tk-Aa5Xlm3dFiy402yZdNb5HLZ73Jzm3wZ2f2DIWU99yUdUmNtRquuFXOaLTJMjbcUrGh6tJYYxIQpWBQPM5bWwRsGmmP8N_yBTA2timotqdmk8vtC53fI4YVg_y7ppKvUbhMaREIJK3zjJdrzDUBoqcASFQzL9yjbJbxGb6yr4ufYg2MZFzd6ApygEkMxEiWuiNIlTjMrK4t__AP-DVKugcXS3cWD1fE8riRBrK32ubQKDG_peQZcSik1eKFCKmtD33TJU6R7jMU5UmTzuVzneTz5PI2HQTTwQLUF_h-BPrWAXlRAyQoWq2WVcQEow6JfLcidFiSIGN0a3kYerNecx782I8ys-fL84SfNML4UI_pSu1oDDIAwjK8OuuReycYN3rjvgp_gw2zRYvAWYtsj6eJbURs9BDIwFnVJr9kK_0W6-39fx2NyBaRNvD-Z7j0g1ximwLgDZxDukM7J8do-BMP0RD0qJAAlXy9a5PwExmKh5Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQvfMMKAxmExAsJqT_ihLfyMQ3EKgSrVB6myF8ZFSENpBEqfz3nxg0LbGK8VFX8cyqfz-e7-u5nhB6rSKXGEB3oBD6YNiSQOWEBmGNhDFPGUleNfDCJ96fs7YzPttDTTS3MyfN7KkbPvETDSqu5O9FPRSouoO2Yg-c9QNvTyfvxpzUlKqeBoGz2-ztPfKXcWa_p7URrwv7OLA-qYlGf5nP-nTp5qSkrufohi-LEvrR3FR1sRtSmo3wJm6UK9c8_yB7PO-Rr6Ip3UPG41ajraMuWN9DF9srK1U109Mq-OxxjEkbP8RgbayvsL544xtW8ctXtFoMjjL810uUhuSoq7P6PKGzgDglw7VK44QdkabDnxSqwWZXy61zXt9B07_Xhy_3AX9EQaAhURMAlkeAiJRD3WJrkTDCt0iTJlVI2go3PCCK1SWOT6FjROKVJRGXOLYenI00ovY0G5aK0OwjHqVDCCm5Yrhk3gNBSgTMpiGPgUXaI6Ga6Mu35y901GkW2PpQTEMe0Esqc4DIvuCEKul5Vy9_xD_wLpwkd1rFvrx_ADGV-MWfaak6lVeA7S8YMRIVSaggkhVTWJtwM0SOnR5nj1yhdAs-xbOo6e_Nxko3jdMRgd4r5maAPPdATD8oXMFgtfdEEiMzxdvWQuz0kWAnda95xOr0Zc50R2AXBnAtKoedGz09vftg1u5e6pLzSLhrAAIS4FOl4iO60y6KTG-URuPoceovegukJtt9Szj-v6c0TmAZC0iEKu6V1rqm7-78d7qHLxBWzRKNglOyiwfJ7Y--Di7lUD7xl-QVxunna
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeLTA+2.0%3A+A+deep+learning+pipeline+for+quantifying+single-cell+spatial+and+temporal+dynamics&rft.jtitle=PLoS+computational+biology&rft.au=Owen+M+O%27Connor&rft.au=Razan+N+Alnahhas&rft.au=Jean-Baptiste+Lugagne&rft.au=Mary+J+Dunlop&rft.date=2022-01-18&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=18&rft.issue=1&rft.spage=e1009797&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009797&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cec53aeb977a44d086aac6257abee85d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon