DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics
Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, a...
Saved in:
| Published in | PLoS computational biology Vol. 18; no. 1; p. e1009797 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
18.01.2022
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1553-7358 1553-734X 1553-7358 |
| DOI | 10.1371/journal.pcbi.1009797 |
Cover
| Abstract | Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells, and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data. |
|---|---|
| AbstractList | Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells, and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data. Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells, and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data.Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells, and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data. Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells, and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data. Time-lapse microscopy can generate large image datasets which track single-cell properties like gene expression or growth rate over time. Deep learning tools are very useful for analyzing these data and can identify the location of cells and track their position. In this work, we introduce a new version of our Deep Learning for Time-lapse Analysis (DeLTA) software, which includes the ability to robustly segment and track bacteria that are growing in two dimensions, such as on agarose pads or within microfluidic environments. This capability is essential for experiments where spatial and positional effects are important, such as conditions with microbial co-cultures, cell-to-cell interactions, or spatial patterning. The software also tracks pole age and can be used to analyze replicative aging. These new features join other improvements, such as the ability to work directly with many common microscopy file formats. DeLTA 2.0 can reliably track hundreds of cells with low error rates, making it an ideal tool for high throughput analysis of microscopy data. |
| Audience | Academic |
| Author | Lugagne, Jean-Baptiste Alnahhas, Razan N. Dunlop, Mary J. O’Connor, Owen M. |
| AuthorAffiliation | 2 Biological Design Center, Boston University, Boston, Massachusetts, United States of America 1 Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America Fudan University, CHINA |
| AuthorAffiliation_xml | – name: 2 Biological Design Center, Boston University, Boston, Massachusetts, United States of America – name: 1 Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America – name: Fudan University, CHINA |
| Author_xml | – sequence: 1 givenname: Owen M. orcidid: 0000-0002-6276-6269 surname: O’Connor fullname: O’Connor, Owen M. – sequence: 2 givenname: Razan N. orcidid: 0000-0002-1382-2252 surname: Alnahhas fullname: Alnahhas, Razan N. – sequence: 3 givenname: Jean-Baptiste orcidid: 0000-0002-8374-6590 surname: Lugagne fullname: Lugagne, Jean-Baptiste – sequence: 4 givenname: Mary J. orcidid: 0000-0002-9261-8216 surname: Dunlop fullname: Dunlop, Mary J. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35041653$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVUl1v0zAUjdAQ2wr_AEEkXuChJY7jj-xhUjW-KlUgwXhE1o1zU1y5dhYnQP89Du2mdZoQKJJjX59zfO899zQ5ct5hkjwl2YxQQV6v_dA5sLNWV2ZGsqwUpXiQnBDG6FRQJo9u7Y-T0xDWWRa3JX-UHFOWFYQzepJ8e4PLy3maz7KzdJ7WiG1qETpn3CptTYvWOEwb36VXA7jeNNvxIsTF4lSjtWlooTdgU3B12uOm9V081FsHG6PD4-RhAzbgk_1_knx99_by4sN0-en94mK-nGomuJgyyIHkTLJCIpVNIQpdlVI2VVVhJgtRixx0XfJaal5RXlKZUWgYshglOqd0kjzf6bbWB7XvTFC54DmRVNARsdghag9r1XZmA91WeTDqT8B3KwVdb7RFpVEzCliVQkBR1JnkAJrnTECFKFkdtdhOa3AtbH-CtTeCJFOjOdcpqNEctTcn8s73WQ7VBmuNru_AHiRzeOPMd7XyP5SM7Dwvo8DLvUDnrwYMvdqYMLoADv0Q643l5lzwkkfoizvQ-7uyR60gFm5c4-O7ehRVc16SghQ8Tskkmd2Dil-N0eQ4lY2J8QPCqwNCxPT4q1_BEIJafPn8H9iPh9hntxt407nrcY6AYgfQnQ-hw-ZfjTm7Q9Omj2PtRxuM_Tv5Nzl0HQE |
| CitedBy_id | crossref_primary_10_1007_s11427_024_2770_x crossref_primary_10_1038_s41467_024_50602_8 crossref_primary_10_1016_j_biopha_2023_115077 crossref_primary_10_1038_s41467_024_48295_0 crossref_primary_10_1128_msphere_00658_22 crossref_primary_10_1371_journal_pcbi_1011524 crossref_primary_10_1128_mbio_02212_22 crossref_primary_10_1021_acssensors_2c02813 crossref_primary_10_1093_nar_gkae1158 crossref_primary_10_1021_acssynbio_4c00612 crossref_primary_10_1016_j_softx_2024_101638 crossref_primary_10_1038_s41467_023_37627_1 crossref_primary_10_1128_spectrum_00032_24 crossref_primary_10_3390_mi14040826 crossref_primary_10_1089_genbio_2022_0017 crossref_primary_10_1038_s41467_022_33659_1 crossref_primary_10_1038_s41467_023_36670_2 crossref_primary_10_1016_j_xpro_2024_102868 crossref_primary_10_1016_j_compag_2023_107802 crossref_primary_10_1016_j_tibtech_2022_10_010 crossref_primary_10_1128_spectrum_02788_23 crossref_primary_10_1021_acssynbio_4c00388 crossref_primary_10_1111_mmi_15064 crossref_primary_10_1007_s00521_024_10858_z crossref_primary_10_1103_PRXLife_2_023004 crossref_primary_10_1016_j_crmeth_2023_100557 crossref_primary_10_3389_fbioe_2022_968342 crossref_primary_10_7554_eLife_88463 crossref_primary_10_1002_advs_202206519 crossref_primary_10_1016_j_bpr_2024_100175 crossref_primary_10_1002_advs_202305449 crossref_primary_10_3390_jimaging10120311 crossref_primary_10_7554_eLife_88463_4 crossref_primary_10_1021_acsomega_3c05913 crossref_primary_10_7717_peerj_cs_1364 crossref_primary_10_1016_j_xpro_2023_102436 crossref_primary_10_1038_s41467_024_46361_1 crossref_primary_10_1038_s44303_024_00024_4 crossref_primary_10_1016_j_mimet_2022_106658 crossref_primary_10_1039_D2LC00813K crossref_primary_10_12688_openreseurope_15255_1 |
| Cites_doi | 10.1016/j.molcel.2018.04.012 10.1126/science.aar7981 10.1371/journal.pbio.2005970 10.1111/mmi.13486 10.1371/journal.pcbi.1007673 10.1371/journal.pbio.0030045 10.1098/rstb.2018.0442 10.1038/s41559-019-1080-2 10.1016/j.cels.2018.03.009 10.1126/science.aaf4762 10.1371/journal.pone.0144650 10.1109/ISBI.2011.5872394 10.1038/nprot.2011.432 10.1111/mmi.13264 10.1083/jcb.201004104 10.1038/nmicrobiol.2016.77 10.1016/j.cub.2010.04.045 10.1038/s41467-021-21734-y 10.1038/s41467-021-22649-4 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Public Library of Science 2022 O’Connor et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 O’Connor et al 2022 O’Connor et al |
| Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 O’Connor et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 O’Connor et al 2022 O’Connor et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pcbi.1009797 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | DeLTA 2.0 for quantifying single-cell spatial and temporal dynamics |
| EISSN | 1553-7358 |
| ExternalDocumentID | 2762183733 oai_doaj_org_article_cec53aeb977a44d086aac6257abee85d 10.1371/journal.pcbi.1009797 PMC8797229 A691414665 35041653 10_1371_journal_pcbi_1009797 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R21 AI153853 – fundername: ; grantid: 2032357 – fundername: ; grantid: 1804096 – fundername: ; grantid: AI153853 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ M0N M~E NPM PGMZT RIG WOQ 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK |
| ID | FETCH-LOGICAL-c5767-5a2a1258548e38f474cb988fbbbe0847d72acd96d8c6b3693803af5e5acd1c233 |
| IEDL.DBID | DOA |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Sun Oct 01 00:20:29 EDT 2023 Fri Oct 03 12:50:40 EDT 2025 Sun Oct 26 04:03:56 EDT 2025 Tue Sep 30 16:59:50 EDT 2025 Fri Sep 05 07:33:01 EDT 2025 Tue Oct 07 06:43:55 EDT 2025 Mon Oct 20 21:56:52 EDT 2025 Mon Oct 20 16:15:01 EDT 2025 Thu Oct 16 14:44:49 EDT 2025 Thu Oct 16 14:18:34 EDT 2025 Wed Feb 19 02:26:52 EST 2025 Wed Oct 01 04:42:51 EDT 2025 Thu Apr 24 22:58:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5767-5a2a1258548e38f474cb988fbbbe0847d72acd96d8c6b3693803af5e5acd1c233 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-8374-6590 0000-0002-9261-8216 0000-0002-1382-2252 0000-0002-6276-6269 |
| OpenAccessLink | https://doaj.org/article/cec53aeb977a44d086aac6257abee85d |
| PMID | 35041653 |
| PQID | 2762183733 |
| PQPubID | 1436340 |
| ParticipantIDs | plos_journals_2762183733 doaj_primary_oai_doaj_org_article_cec53aeb977a44d086aac6257abee85d unpaywall_primary_10_1371_journal_pcbi_1009797 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8797229 proquest_miscellaneous_2621267696 proquest_journals_2762183733 gale_infotracmisc_A691414665 gale_infotracacademiconefile_A691414665 gale_incontextgauss_ISR_A691414665 gale_incontextgauss_ISN_A691414665 pubmed_primary_35041653 crossref_primary_10_1371_journal_pcbi_1009797 crossref_citationtrail_10_1371_journal_pcbi_1009797 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220118 |
| PublicationDateYYYYMMDD | 2022-01-18 |
| PublicationDate_xml | – month: 1 year: 2022 text: 20220118 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2022 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | A Paintdakhi (pcbi.1009797.ref020) 2016; 99 E Pedone (pcbi.1009797.ref014) 2021 EJ Stewart (pcbi.1009797.ref018) 2005; 3 YKT Xu (pcbi.1009797.ref013) 2021; 15 CU Rang (pcbi.1009797.ref030) 2012; 158 JW Young (pcbi.1009797.ref019) 2012; 7 NA Rossi (pcbi.1009797.ref015) 2019; 2 R Chait (pcbi.1009797.ref004) 2017 D Salem (pcbi.1009797.ref012) 2021; 11 S Bakshi (pcbi.1009797.ref001) 2021 T Bergmiller (pcbi.1009797.ref007) 2017; 356 I el Meouche (pcbi.1009797.ref008) 2018; 362 J-B Lugagne (pcbi.1009797.ref011) 2020; 16 B Shao (pcbi.1009797.ref016) 2021; 12 T Prangemeier (pcbi.1009797.ref023) 2020 S van Vliet (pcbi.1009797.ref034) 2018; 6 M Linkert (pcbi.1009797.ref028) 2010; 189 A Dal Co (pcbi.1009797.ref005) 2020; 4 J van Gestel (pcbi.1009797.ref025) 2021; 12 S Panigrahi (pcbi.1009797.ref010) 2020 U Łapińska (pcbi.1009797.ref017) 2019; 374 A Ducret (pcbi.1009797.ref027) 2016; 1 P Wang (pcbi.1009797.ref024) 2010; 20 S Stylianidou (pcbi.1009797.ref021) 2016; 102 MW Clark (pcbi.1009797.ref031) 2015; 10 O Ronneberger (pcbi.1009797.ref009) 2015 ZR Fox (pcbi.1009797.ref002) 2021 C McQuin (pcbi.1009797.ref029) 2018; 16 TC Lee (pcbi.1009797.ref032) 1994; 56 pcbi.1009797.ref033 M Rullan (pcbi.1009797.ref003) 2018; 70 DA van Valen (pcbi.1009797.ref022) 2016 S van Vliet (pcbi.1009797.ref006) 2018; 6 X Wen (pcbi.1009797.ref026) 2018; 8 TS Lee (pcbi.1009797.ref035) 2011; 5 |
| References_xml | – volume: 70 start-page: 745 year: 2018 ident: pcbi.1009797.ref003 article-title: An Optogenetic Platform for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation publication-title: Molecular Cell doi: 10.1016/j.molcel.2018.04.012 – volume: 362 start-page: 686 year: 2018 ident: pcbi.1009797.ref008 article-title: Heterogeneity in efflux pump expression predisposes antibiotic-resistant cells to mutation publication-title: Science doi: 10.1126/science.aar7981 – volume: 16 start-page: 1 year: 2018 ident: pcbi.1009797.ref029 article-title: CellProfiler 3.0: Next-generation image processing for biology publication-title: PLoS Biology doi: 10.1371/journal.pbio.2005970 – volume: 102 start-page: 690 year: 2016 ident: pcbi.1009797.ref021 article-title: SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells publication-title: Molecular Microbiology doi: 10.1111/mmi.13486 – volume: 16 start-page: e1007673 year: 2020 ident: pcbi.1009797.ref011 article-title: DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning. publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1007673 – volume: 3 start-page: e45 year: 2005 ident: pcbi.1009797.ref018 article-title: Aging and Death in an Organism That Reproduces by Morphologically Symmetric Division. Kirkwood T, editor publication-title: PLoS Biology doi: 10.1371/journal.pbio.0030045 – volume: 15 year: 2021 ident: pcbi.1009797.ref013 article-title: Automated in vivo Tracking of Cortical Oligodendrocytes. publication-title: Frontiers in Cellular Neuroscience – volume: 374 year: 2019 ident: pcbi.1009797.ref017 article-title: Bacterial ageing in the absence of external stressors publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2018.0442 – start-page: 1 year: 2021 ident: pcbi.1009797.ref002 article-title: MicroMator: Open and Flexible Software for Reactive Microscopy. publication-title: bioRxiv – volume: 4 start-page: 366 year: 2020 ident: pcbi.1009797.ref005 article-title: Short-range interactions govern the dynamics and functions of microbial communities publication-title: Nature Ecology and Evolution doi: 10.1038/s41559-019-1080-2 – volume: 6 start-page: 496 year: 2018 ident: pcbi.1009797.ref034 article-title: Spatially Correlated Gene Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell Interactions. publication-title: Cell Systems doi: 10.1016/j.cels.2018.03.009 – volume: 356 start-page: 311 year: 2017 ident: pcbi.1009797.ref007 article-title: Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity publication-title: Science doi: 10.1126/science.aaf4762 – volume: 5 start-page: 15 year: 2011 ident: pcbi.1009797.ref035 article-title: BglBrick vectors and datasheets: A synthetic biology platform for gene expression. publication-title: Journal of Biological Engineering – year: 2016 ident: pcbi.1009797.ref022 article-title: Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments. publication-title: PLoS Computational Biology – year: 2020 ident: pcbi.1009797.ref010 article-title: MiSiC, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities. publication-title: bioRxiv – start-page: 6 year: 2021 ident: pcbi.1009797.ref001 article-title: Tracking bacterial lineages in complex and dynamic environments with applications for growth control and persistence publication-title: Nature Microbiology – year: 2021 ident: pcbi.1009797.ref014 article-title: Cheetah: A Computational Toolkit for Cybergenetic Control. publication-title: ACS Synthetic Biology – volume: 2 start-page: 1 year: 2019 ident: pcbi.1009797.ref015 article-title: Forecasting cell fate during antibiotic exposure using stochastic gene expression publication-title: Communications Biology – volume: 10 start-page: 1 year: 2015 ident: pcbi.1009797.ref031 article-title: Periplasmic acid stress increases cell division asymmetry (Polar Aging) of Escherichia coli. publication-title: PLoS ONE. doi: 10.1371/journal.pone.0144650 – ident: pcbi.1009797.ref033 doi: 10.1109/ISBI.2011.5872394 – start-page: 1 year: 2015 ident: pcbi.1009797.ref009 article-title: 2015-U-Net. publication-title: arXiv – volume: 158 start-page: 1553 year: 2012 ident: pcbi.1009797.ref030 article-title: Ageing in Escherichia coli requires damage by an extrinsic agent. publication-title: Microbiology (United Kingdom) – volume: 7 start-page: 80 year: 2012 ident: pcbi.1009797.ref019 article-title: Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy publication-title: Nature Protocols doi: 10.1038/nprot.2011.432 – volume: 99 start-page: 767 year: 2016 ident: pcbi.1009797.ref020 article-title: Oufti: An integrated software package for high-accuracy, high-throughput quantitative microscopy analysis publication-title: Molecular Microbiology doi: 10.1111/mmi.13264 – volume: 8 start-page: 1 year: 2018 ident: pcbi.1009797.ref026 article-title: Antibiotic export by efflux pumps affects growth of neighboring bacteria. publication-title: Scientific Reports – volume: 189 start-page: 777 year: 2010 ident: pcbi.1009797.ref028 article-title: Metadata matters: Access to image data in the real world publication-title: Journal of Cell Biology doi: 10.1083/jcb.201004104 – start-page: 700 volume-title: Proceedings—2020 IEEE International Conference on Bioinformatics and Biomedicine year: 2020 ident: pcbi.1009797.ref023 – volume: 1 start-page: 1 year: 2016 ident: pcbi.1009797.ref027 article-title: MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis publication-title: Nature Microbiology doi: 10.1038/nmicrobiol.2016.77 – volume: 20 start-page: 1099 year: 2010 ident: pcbi.1009797.ref024 article-title: Robust growth of escherichia coli publication-title: Current Biology doi: 10.1016/j.cub.2010.04.045 – volume: 11 year: 2021 ident: pcbi.1009797.ref012 article-title: Yeastnet: Deep-learning-enabled accurate segmentation of budding yeast cells in bright-field microscopy. publication-title: Applied Sciences (Switzerland). – volume: 12 year: 2021 ident: pcbi.1009797.ref016 article-title: Single-cell measurement of plasmid copy number and promoter activity publication-title: Nature Communications doi: 10.1038/s41467-021-21734-y – volume: 6 start-page: 496 year: 2018 ident: pcbi.1009797.ref006 article-title: Spatially Correlated Gene Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell Interactions. publication-title: Cell Systems doi: 10.1016/j.cels.2018.03.009 – volume: 12 start-page: 1 year: 2021 ident: pcbi.1009797.ref025 article-title: Short-range quorum sensing controls horizontal gene transfer at micron scale in bacterial communities publication-title: Nature Communications doi: 10.1038/s41467-021-22649-4 – start-page: 8 year: 2017 ident: pcbi.1009797.ref004 article-title: Shaping bacterial population behavior through computer-interfaced control of individual cells publication-title: Nature Communications – volume: 56 start-page: 462 year: 1994 ident: pcbi.1009797.ref032 article-title: Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms publication-title: CVGIP: Graphical Models and Image Processing |
| SSID | ssj0035896 |
| Score | 2.526272 |
| Snippet | Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1009797 |
| SubjectTerms | Algorithms Antibiotic resistance Antibiotics Artificial neural networks Automation Bacteria Bacteria - cytology Biology and Life Sciences Cell cycle Cell division Computational Biology Computer and Information Sciences Datasets Deep Learning E coli Engineering and Technology Gene expression Growth rate Image acquisition Image processing Image Processing, Computer-Assisted Image segmentation Information processing Machine learning Medicine and Health Sciences Methods Microfluidic devices Microfluidics Microscopy Neural networks Research and Analysis Methods Run time (computers) Single-Cell Analysis - methods Software Time-Lapse Imaging - methods Tracking Workflow |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_qFdEX8bM9rbKK4FOuud1NNhFErtpSRQ-pLfRFwn7lPAhJ2ush_e-dSTaxwfrxcg_Z2Rw7H7szm5nfEPJShzq1lpnAJPAjjGWBypkIYDuW1gptHcdq5M_z-PBEfDyNTjfIvKuFwbTKbk9sNmpbGbwj32VgtaB-kvO39VmAXaPw62rXQkP51gr2TQMxdoNsMkTGGpHNvf35l6Nub-ZR0nTswmY5geTi1BfTcTnd9bKb1EYvMXcglQgEdeWwajD9-517VBfV6jq39PfsylvrslaXP1RRXDm6Du6SO97npLNWSe6RDVfeJzfbLpSXD8i39-7T8YyySfiazqh1rqa-l8SC1ssaC9YdBd-Wnq0VphZhYRTFK4bCBXjvT1eYlQ1_oEpLPdRVQW3b6n71kJwc7B-_Owx814XAQOwhg0gxBV5PAqGM40kupDA6TZJca-1COMusZMrYNLaJiTWPU56EXOWRi-Dp1DDOH5FRWZVum9A4lVo6GVmRGxFZoDBKg38oGYLqaDcmvGNvZjwkOXbGKLLmO5uE0KTlUIZCybxQxiToZ9UtJMc_6PdQcj0tAmo3D6rzRebtMzPORFw5De6wEsJCoKeUgdhQKu1cEtkxeYFyzxAyo8ScnIVar1bZh6_zbBanUwEHThz9kehoQPTKE-UVLNYoXwcBLEMorgHlzoASDN8MhrdRB7s1r7JfJgIzO728fvh5P4wvxTy70lVroAEShlnP8ZhstWrc841HIXjvEcyWAwUfMHY4Ui6_N4jlCYiBsXRMJr0p_JfoHv99HU_IbYbVKOE0mCY7ZHRxvnZPwUe80M-84f8ESspnfw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6VIAQXxLMNFLQgJE6OnH14bSSEwqMqiPYAjZQLsvblEMly3LhRm3_PjO1YWKSCAxcfvLO2PDO7M-OdmY-QVyY0iXPMBjaGi7COBTpjIoDtWDknjPMcq5FPTqPjqfgyk7M9ssVsbRlY7QztEE9quspHV-ebd7Dg39aoDWq8nTQqrVngqX-iEnWD3ARblSCYw4nozhW4jGvELgTLCRQXs7aY7rqn9IxV3dO_27kHZb6sdrmlf2ZX3l4Xpd5c6jz_zXQd3SN3W5-TTholuU_2fPGA3GpQKDcPyY-P_uvZhLJR-IZOqPO-pC2WxJyWixIL1j0F35aerzWmFmFhFMVfDLkP8L8_rTArG16gC0fbVlc5dQ3UffWITI8-nX04DlrUhcBC7KECqZkGryeGUMbzOBNKWJPEcWaM8SHYMqeYti6JXGwjw6OExyHXmfQS7o4t4_wxGRTLwh8QGiXKKK-kE5kV0gGF1Qb8Q8WwqY7xQ8K37E1t25IckTHytD5nUxCaNBxKUShpK5QhCbpZZdOS4y_071FyHS021K5vLFfztF2fqfVWcu0NuMNaCAeBntYWYkOljfexdEPyEuWeYsuMAnNy5npdVenn76fpJErGAgxOJK8l-tYjet0SZUv4WKvbOghgGbbi6lEe9ihh4dve8AHq4Pabq5SBYYMdWnEOM7d6uXv4RTeMD8U8u8Iv10ADJAyznqMh2W_UuOMblyF47xJmq56C9xjbHykWP-uO5TGIgbFkSEbdUvgn0T35H6J7Su4wrFkJx8E4PiSDi9XaPwNP8sI8rzeHXwQtdI4 priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQvfMMKAxmExAsJqT_ihLfyMQ3EKgSrVB6myF8ZFSENpBEqfz3nxg0LbGK8VFX8cyqfz-e7-u5nhB6rSKXGEB3oBD6YNiSQOWEBmGNhDFPGUleNfDCJ96fs7YzPttDTTS3MyfN7KkbPvETDSqu5O9FPRSouoO2Yg-c9QNvTyfvxpzUlKqeBoGz2-ztPfKXcWa_p7URrwv7OLA-qYlGf5nP-nTp5qSkrufohi-LEvrR3FR1sRtSmo3wJm6UK9c8_yB7PO-Rr6Ip3UPG41ajraMuWN9DF9srK1U109Mq-OxxjEkbP8RgbayvsL544xtW8ctXtFoMjjL810uUhuSoq7P6PKGzgDglw7VK44QdkabDnxSqwWZXy61zXt9B07_Xhy_3AX9EQaAhURMAlkeAiJRD3WJrkTDCt0iTJlVI2go3PCCK1SWOT6FjROKVJRGXOLYenI00ovY0G5aK0OwjHqVDCCm5Yrhk3gNBSgTMpiGPgUXaI6Ga6Mu35y901GkW2PpQTEMe0Esqc4DIvuCEKul5Vy9_xD_wLpwkd1rFvrx_ADGV-MWfaak6lVeA7S8YMRIVSaggkhVTWJtwM0SOnR5nj1yhdAs-xbOo6e_Nxko3jdMRgd4r5maAPPdATD8oXMFgtfdEEiMzxdvWQuz0kWAnda95xOr0Zc50R2AXBnAtKoedGz09vftg1u5e6pLzSLhrAAIS4FOl4iO60y6KTG-URuPoceovegukJtt9Szj-v6c0TmAZC0iEKu6V1rqm7-78d7qHLxBWzRKNglOyiwfJ7Y--Di7lUD7xl-QVxunna priority: 102 providerName: Unpaywall |
| Title | DeLTA 2.0: A deep learning pipeline for quantifying single-cell spatial and temporal dynamics |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35041653 https://www.proquest.com/docview/2762183733 https://www.proquest.com/docview/2621267696 https://pubmed.ncbi.nlm.nih.gov/PMC8797229 https://doi.org/10.1371/journal.pcbi.1009797 https://doaj.org/article/cec53aeb977a44d086aac6257abee85d http://dx.doi.org/10.1371/journal.pcbi.1009797 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050601 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: ABDBF dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: GX1 dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 8FG dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1553-7358 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M48 dateStart: 20050601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELegCMEL4nMrjMogJJ6ypf6IHd5atjIQq6axSuUBRf7qqFSlgaxC---5S9KqEUPjgRdXss-tfHe5O6d3vyPkjY1t6j1zkdMwCOdZZGZMRGCOlffC-sCxGvlknBxPxKepnG61-sKcsBoeuGbcgQtOchMsxClGCA8RuDEOgnZlbAhaerS-sU7Xl6naBnOpq85c2BQnUlxMm6I5rvoHjYz2C2fnmCOQKgR82nJKFXb_xkJ3isWyvC78_DOL8t4qL8zVL7NYbLmo0UPyoIkt6aA-0yNyK-SPyd262-TVE_LtMHw-H1C2H7-jA-pDKGjTM-KCFvMCC9MDhRiW_lgZTCHCAiiKrxIWIcL3-7TE7Gv4AZN72kBaLaivW9qXT8lkdHT-_jhquitEDu4YKpKGGYhuNFxZAtczoYSzqdYza22IwWd5xYzzaeK1SyxPUq5jbmYySJjtO8b5M9LJl3nYJTRJlVVBSS9mTkgPFM5YiAMVQ_AcG7qEr9mbuQZ6HDtgLLLq_zQFV5CaQxkKJWuE0iXRZldRQ2_cQD9EyW1oETi7mgB1yhp1ym5Spy55jXLPEBojx9ybC7Mqy-zjl3E2SNK-AMeSyL8SnbWI3jZEsyUc1pmm3gFYhpBbLcq9FiU84K61vIs6uD5zmTFwYGCJFeewc62X1y-_2izjl2I-XR6WK6ABEobZzUmX7NRqvOEblzFE6RJ2q5aCtxjbXsnn3ytkcg1iYCztkv3No_BPonv-P0T3gtxnWJsS96O-3iOdy5-r8BIixkvbI7fVVMGoRx965M5geDgcwefwaHx61qsMB4wnQsPcZHw6-PobX1NyfQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFUFoXJBvBsosCAQJ6fJ7tprIyEUKFVC0xwglXJBZl8JkYLt1o2q_BTfyIztmFqUx6UXH7yztnZeO7M7D0Je6K6OrGXGMyE8hLHMUzMmPFDH0lqhreOYjXw0DgbH4uPUn26RH5tcGAyr3OjEQlHb1OAZ-R4DqQX2k5y_zU487BqFt6ubFholWxy69Tm4bPmb4T7Q9yVjBx8m7wde1VXAM2BbS89XTMGuHoKp7ng4E1IYHYXhTGvtuqCrrWTK2CiwoQk0DyIedrma-c6Htz3D8AAUVP41wUGXgPzIae3gcT8s-oFhKx5PcjGtUvW47O1VnNHJjF5gZEIksczUha2w6BhQ7wutbJnmlxm9v8dubq-STK3P1XJ5YWM8uEVuVhYt7ZcseJtsueQOuV72uFzfJV_23WjSp6zTfU371DqX0apTxZxmiwzT4R0Fy5merBQGLmHaFcUDjKXz8FaB5hjzDT9QiaVVIa0ltetEfV-Y_B45vhLs3yetJE3cDqFBJLV00rdiZoRvAcIoDdanZFiyR7s24Rv0xqYqeI59N5ZxcYsnwfEpMRQjUeKKKG3i1bOysuDHP-DfIeVqWCzXXbxIT-dxJf2xccbnymkwtpUQFtxIpQx4nlJp50LftslzpHuMBTkSjPiZq1Wex8PP47gfRD0B21ng_xHoUwPoVQU0S2GxRlVZFoAyLPTVgNxtQIJaMY3hHeTBzZrz-JcAwswNX14-_Kwexo9iFF_i0hXAAAjDmOqgTR6UbFzjjftd8A18mC0bDN5AbHMkWXwr6qGHQAbGojbp1KLwX6R7-Pd1PCXbg8nRKB4Nx4ePyA2GeS_dntcLd0nr7HTlHoM1eqafFCqAkq9XrXN-Ag9ZnaI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFUFcbwg7gYKLAjEkxNn1_baSAgFQtTQEiFopbwgs5dDpOC4daMqv8bXMeOLWpTjpS958M463pnZOXbnIOSZclVkDNOODuHH04Y5MmGeA-JYGOMpYzlmI3-YBruH3vuZP9siP-pcGAyrrGViIajNSuMZeZ_BrgX2E5z3kyos4uNo_Do7crCDFN601u00ShbZs5tTcN_yV5MR0Po5Y-N3B293narDgKPBzhaOL5kEDR-C2W55mHjC0yoKw0QpZV2Q20YwqU0UmFAHigcRD10uE9_68HSgGR6Ggvi_BB8VYTihmDXOHvfDojcYtuVxBPdmVdoeF4N-xSW9TKsFRilEAktOnVGLRfeARkd0suUqP88A_j2O8-o6zeTmVC6XZ5Tk-Aa5Xlm3dFiy402yZdNb5HLZ73Jzm3wZ2f2DIWU99yUdUmNtRquuFXOaLTJMjbcUrGh6tJYYxIQpWBQPM5bWwRsGmmP8N_yBTA2timotqdmk8vtC53fI4YVg_y7ppKvUbhMaREIJK3zjJdrzDUBoqcASFQzL9yjbJbxGb6yr4ufYg2MZFzd6ApygEkMxEiWuiNIlTjMrK4t__AP-DVKugcXS3cWD1fE8riRBrK32ubQKDG_peQZcSik1eKFCKmtD33TJU6R7jMU5UmTzuVzneTz5PI2HQTTwQLUF_h-BPrWAXlRAyQoWq2WVcQEow6JfLcidFiSIGN0a3kYerNecx782I8ys-fL84SfNML4UI_pSu1oDDIAwjK8OuuReycYN3rjvgp_gw2zRYvAWYtsj6eJbURs9BDIwFnVJr9kK_0W6-39fx2NyBaRNvD-Z7j0g1ximwLgDZxDukM7J8do-BMP0RD0qJAAlXy9a5PwExmKh5Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQvfMMKAxmExAsJqT_ihLfyMQ3EKgSrVB6myF8ZFSENpBEqfz3nxg0LbGK8VFX8cyqfz-e7-u5nhB6rSKXGEB3oBD6YNiSQOWEBmGNhDFPGUleNfDCJ96fs7YzPttDTTS3MyfN7KkbPvETDSqu5O9FPRSouoO2Yg-c9QNvTyfvxpzUlKqeBoGz2-ztPfKXcWa_p7URrwv7OLA-qYlGf5nP-nTp5qSkrufohi-LEvrR3FR1sRtSmo3wJm6UK9c8_yB7PO-Rr6Ip3UPG41ajraMuWN9DF9srK1U109Mq-OxxjEkbP8RgbayvsL544xtW8ctXtFoMjjL810uUhuSoq7P6PKGzgDglw7VK44QdkabDnxSqwWZXy61zXt9B07_Xhy_3AX9EQaAhURMAlkeAiJRD3WJrkTDCt0iTJlVI2go3PCCK1SWOT6FjROKVJRGXOLYenI00ovY0G5aK0OwjHqVDCCm5Yrhk3gNBSgTMpiGPgUXaI6Ga6Mu35y901GkW2PpQTEMe0Esqc4DIvuCEKul5Vy9_xD_wLpwkd1rFvrx_ADGV-MWfaak6lVeA7S8YMRIVSaggkhVTWJtwM0SOnR5nj1yhdAs-xbOo6e_Nxko3jdMRgd4r5maAPPdATD8oXMFgtfdEEiMzxdvWQuz0kWAnda95xOr0Zc50R2AXBnAtKoedGz09vftg1u5e6pLzSLhrAAIS4FOl4iO60y6KTG-URuPoceovegukJtt9Szj-v6c0TmAZC0iEKu6V1rqm7-78d7qHLxBWzRKNglOyiwfJ7Y--Di7lUD7xl-QVxunna |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeLTA+2.0%3A+A+deep+learning+pipeline+for+quantifying+single-cell+spatial+and+temporal+dynamics&rft.jtitle=PLoS+computational+biology&rft.au=Owen+M+O%27Connor&rft.au=Razan+N+Alnahhas&rft.au=Jean-Baptiste+Lugagne&rft.au=Mary+J+Dunlop&rft.date=2022-01-18&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-734X&rft.eissn=1553-7358&rft.volume=18&rft.issue=1&rft.spage=e1009797&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009797&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cec53aeb977a44d086aac6257abee85d |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |