Simultaneous image fusion and denoising with adaptive sparse representation
In this study, a novel adaptive sparse representation (ASR) model is presented for simultaneous image fusion and denoising. As a powerful signal modelling technique, sparse representation (SR) has been successfully employed in many image processing applications such as denoising and fusion. In tradi...
Saved in:
Published in | IET image processing Vol. 9; no. 5; pp. 347 - 357 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
01.05.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-9659 1751-9667 |
DOI | 10.1049/iet-ipr.2014.0311 |
Cover
Abstract | In this study, a novel adaptive sparse representation (ASR) model is presented for simultaneous image fusion and denoising. As a powerful signal modelling technique, sparse representation (SR) has been successfully employed in many image processing applications such as denoising and fusion. In traditional SR-based applications, a highly redundant dictionary is always needed to satisfy signal reconstruction requirement since the structures vary significantly across different image patches. However, it may result in potential visual artefacts as well as high computational cost. In the proposed ASR model, instead of learning a single redundant dictionary, a set of more compact sub-dictionaries are learned from numerous high-quality image patches which have been pre-classified into several corresponding categories based on their gradient information. At the fusion and denoising processes, one of the sub-dictionaries is adaptively selected for a given set of source image patches. Experimental results on multi-focus and multi-modal image sets demonstrate that the ASR-based fusion method can outperform the conventional SR-based method in terms of both visual quality and objective assessment. |
---|---|
AbstractList | In this study, a novel adaptive sparse representation (ASR) model is presented for simultaneous image fusion and denoising. As a powerful signal modelling technique, sparse representation (SR) has been successfully employed in many image processing applications such as denoising and fusion. In traditional SR-based applications, a highly redundant dictionary is always needed to satisfy signal reconstruction requirement since the structures vary significantly across different image patches. However, it may result in potential visual artefacts as well as high computational cost. In the proposed ASR model, instead of learning a single redundant dictionary, a set of more compact sub-dictionaries are learned from numerous high-quality image patches which have been pre-classified into several corresponding categories based on their gradient information. At the fusion and denoising processes, one of the sub-dictionaries is adaptively selected for a given set of source image patches. Experimental results on multi-focus and multi-modal image sets demonstrate that the ASR-based fusion method can outperform the conventional SR-based method in terms of both visual quality and objective assessment. |
Author | Wang, Zengfu Liu, Yu |
Author_xml | – sequence: 1 givenname: Yu surname: Liu fullname: Liu, Yu email: liuyu1@mail.ustc.edu.cn organization: 1Department of Automation, University of Science and Technology of China, Hefei 230026, People's Republic of China – sequence: 2 givenname: Zengfu surname: Wang fullname: Wang, Zengfu organization: 2Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China |
BookMark | eNqNkUlPxCAYQIkZE8flB3jrUQ8dgbLVm05cJk6icTkTpoUR06EVWo3_XpoaY4zLnCDkvQ_I2wYjVzsNwD6CEwRJfmR1m9rGTzBEZAIzhDbAGHGK0pwxPvrc03wLbIfwBCHNoaBjcHVnV13VKqfrLiR2pZY6MV2wtUuUK5NSu9oG65bJq20fE1WqprUvOgmN8kEnXjdeB-1a1UZjF2waVQW997HugIfzs_vpZTq_vphNT-ZpQTnDKTd5tsCCYQFZPCBCiYwZaBAskTCEG2IYJ1yQkmixoKgsKTSFoBFHDEGe7YCDYW7j6-dOh1aubCh0VQ2_kIjnGaY8x2hdVIh8TZQJTNZECcnWnIopxDCiaEALX4fgtZGNj0H8m0RQ9pFljCxjZNlHln3k6PBvTmGHGK1XtvrTPB7MV1vpt_-vkrObW3x6DjGjOMqHg9xjT3XnXewtZ2f3PfXFaUoT2fQH9veHvQNzeNwu |
CitedBy_id | crossref_primary_10_3389_fnins_2020_615435 crossref_primary_10_1016_j_inffus_2024_102230 crossref_primary_10_1016_j_bspc_2022_104030 crossref_primary_10_1109_TCSVT_2023_3296745 crossref_primary_10_1016_j_patcog_2018_02_005 crossref_primary_10_1016_j_dsp_2022_103875 crossref_primary_10_1155_2019_4179397 crossref_primary_10_1016_j_knosys_2021_107087 crossref_primary_10_1016_j_patrec_2020_01_020 crossref_primary_10_1016_j_bspc_2021_102488 crossref_primary_10_1016_j_bspc_2021_103214 crossref_primary_10_1007_s41870_022_01002_y crossref_primary_10_1109_ACCESS_2020_2973269 crossref_primary_10_1142_S0219691320500617 crossref_primary_10_1007_s10462_021_09961_7 crossref_primary_10_1155_2021_7000991 crossref_primary_10_1016_j_inffus_2018_02_004 crossref_primary_10_1016_j_ins_2020_03_009 crossref_primary_10_1371_journal_pone_0182165 crossref_primary_10_1016_j_inffus_2022_07_016 crossref_primary_10_32604_cmc_2021_013457 crossref_primary_10_3390_s22072457 crossref_primary_10_1109_TIM_2023_3326252 crossref_primary_10_1016_j_ijleo_2022_168817 crossref_primary_10_3390_s23062888 crossref_primary_10_1016_j_image_2021_116400 crossref_primary_10_1016_j_image_2021_116521 crossref_primary_10_1016_j_optlastec_2018_07_045 crossref_primary_10_1016_j_sigpro_2020_107921 crossref_primary_10_1155_2020_3290136 crossref_primary_10_1007_s13369_021_06380_2 crossref_primary_10_1142_S0129065720500501 crossref_primary_10_1007_s12652_022_03822_z crossref_primary_10_1109_ACCESS_2021_3068770 crossref_primary_10_1109_TIP_2020_2976190 crossref_primary_10_1016_j_patcog_2018_06_003 crossref_primary_10_1002_cpe_6155 crossref_primary_10_3390_app9173612 crossref_primary_10_1007_s11042_021_11379_w crossref_primary_10_3233_JIFS_211434 crossref_primary_10_1117_1_JEI_31_4_043044 crossref_primary_10_1142_S0218001422570014 crossref_primary_10_1007_s11042_023_15972_z crossref_primary_10_1109_JSEN_2024_3411588 crossref_primary_10_3389_fnbot_2022_1050981 crossref_primary_10_3390_e22010118 crossref_primary_10_1016_j_ijleo_2019_163900 crossref_primary_10_1007_s10489_022_03375_w crossref_primary_10_3788_LOP232443 crossref_primary_10_3233_JIFS_200554 crossref_primary_10_3390_e23070827 crossref_primary_10_1007_s00371_022_02633_9 crossref_primary_10_1016_j_sigpro_2018_08_002 crossref_primary_10_1016_j_cviu_2020_103016 crossref_primary_10_1007_s11263_023_01948_x crossref_primary_10_1016_j_cmpb_2023_107506 crossref_primary_10_1007_s11042_023_16785_w crossref_primary_10_1016_j_bspc_2022_104353 crossref_primary_10_1109_JSTARS_2021_3090958 crossref_primary_10_1016_j_neucom_2018_08_024 crossref_primary_10_3390_e23050591 crossref_primary_10_1016_j_dsp_2024_104806 crossref_primary_10_1016_j_engappai_2022_105084 crossref_primary_10_1016_j_eswa_2023_120301 crossref_primary_10_1109_TIM_2020_3046911 crossref_primary_10_1109_TIP_2019_2922097 crossref_primary_10_1016_j_sigpro_2020_107681 crossref_primary_10_1155_2022_4326638 crossref_primary_10_1007_s00779_019_01317_x crossref_primary_10_1016_j_infrared_2022_104178 crossref_primary_10_1016_j_ins_2021_11_033 crossref_primary_10_1016_j_sigpro_2025_109889 crossref_primary_10_1364_AO_56_007969 crossref_primary_10_3390_rs14194867 crossref_primary_10_1016_j_inffus_2021_04_005 crossref_primary_10_1109_ACCESS_2019_2957165 crossref_primary_10_1007_s11042_022_13323_y crossref_primary_10_1007_s11042_019_08233_5 crossref_primary_10_1016_j_ins_2021_06_083 crossref_primary_10_1109_LSP_2022_3198594 crossref_primary_10_3390_e24020294 crossref_primary_10_1002_ima_22395 crossref_primary_10_1016_j_compbiomed_2021_104239 crossref_primary_10_1016_j_eswa_2022_118283 crossref_primary_10_1109_ACCESS_2019_2933646 crossref_primary_10_1007_s10462_023_10529_w crossref_primary_10_1007_s11042_023_16071_9 crossref_primary_10_1051_jnwpu_20203840904 crossref_primary_10_1109_ACCESS_2019_2910656 crossref_primary_10_1007_s11042_023_15576_7 crossref_primary_10_1109_TPAMI_2024_3367905 crossref_primary_10_1016_j_sigpro_2019_107252 crossref_primary_10_1049_iet_ipr_2017_0104 crossref_primary_10_1016_j_procs_2018_04_214 crossref_primary_10_1049_ipr2_12668 crossref_primary_10_1007_s00371_024_03637_3 crossref_primary_10_12677_AIRR_2022_112009 crossref_primary_10_1007_s13198_019_00887_6 crossref_primary_10_1109_MIM_2021_9400960 crossref_primary_10_1016_j_bspc_2022_104382 crossref_primary_10_3390_rs15020344 crossref_primary_10_1016_j_infrared_2019_03_030 crossref_primary_10_1016_j_bspc_2022_104265 crossref_primary_10_1016_j_eswa_2022_118272 crossref_primary_10_1117_1_JEI_28_1_013043 crossref_primary_10_1002_ima_22268 crossref_primary_10_1016_j_inffus_2016_12_001 crossref_primary_10_1016_j_infrared_2020_103621 crossref_primary_10_1109_ACCESS_2019_2898111 crossref_primary_10_1016_j_infrared_2021_103916 crossref_primary_10_1016_j_sigpro_2022_108590 crossref_primary_10_1109_TCSVT_2018_2821177 crossref_primary_10_3390_jimaging8090240 crossref_primary_10_1016_j_optlaseng_2024_108159 crossref_primary_10_1016_j_inffus_2017_10_007 crossref_primary_10_1007_s10489_022_04406_2 crossref_primary_10_3390_e25070985 crossref_primary_10_1016_j_infrared_2023_104701 crossref_primary_10_1109_TIP_2023_3276330 crossref_primary_10_1016_j_image_2022_116632 crossref_primary_10_3390_e21060570 crossref_primary_10_1007_s11042_017_5562_4 crossref_primary_10_3390_e24060843 crossref_primary_10_3390_e21121135 crossref_primary_10_1109_JSEN_2019_2921803 crossref_primary_10_1088_1742_6596_1856_1_012058 crossref_primary_10_1049_el_2016_2270 crossref_primary_10_3233_JIFS_201494 crossref_primary_10_1007_s11263_023_01952_1 crossref_primary_10_1109_LSENS_2022_3170744 crossref_primary_10_1109_ACCESS_2019_2924033 crossref_primary_10_1117_1_OE_55_12_123104 crossref_primary_10_1109_TIM_2023_3328710 crossref_primary_10_1109_TIP_2024_3374072 crossref_primary_10_1016_j_infrared_2023_105009 crossref_primary_10_1016_j_inffus_2017_10_010 crossref_primary_10_1016_j_bspc_2025_107653 crossref_primary_10_1109_TIM_2022_3184360 crossref_primary_10_1109_LSP_2019_2895749 crossref_primary_10_1364_JOSAA_388447 crossref_primary_10_1117_1_JEI_31_6_063045 crossref_primary_10_1109_TIP_2017_2779274 crossref_primary_10_1109_LSP_2016_2618776 crossref_primary_10_1155_2022_5691099 crossref_primary_10_1016_j_ijleo_2021_166726 crossref_primary_10_1016_j_sigpro_2020_107793 crossref_primary_10_1109_TIP_2016_2524212 crossref_primary_10_1016_j_ins_2020_09_006 crossref_primary_10_3390_s23146616 crossref_primary_10_1016_j_infrared_2022_104205 crossref_primary_10_3390_app10031171 crossref_primary_10_1016_j_compbiomed_2021_105005 crossref_primary_10_1007_s42235_021_00100_0 crossref_primary_10_1109_TIP_2020_2977573 crossref_primary_10_1007_s11042_024_19470_8 crossref_primary_10_1088_1742_6596_2025_1_012065 crossref_primary_10_1109_TETCI_2022_3231657 crossref_primary_10_1016_j_neucom_2024_127353 crossref_primary_10_1109_ACCESS_2020_3010542 crossref_primary_10_1109_TIM_2023_3244817 crossref_primary_10_1137_20M1334103 crossref_primary_10_1007_s11042_024_18141_y crossref_primary_10_1109_ACCESS_2020_2990539 crossref_primary_10_1049_ipr2_12363 crossref_primary_10_1016_j_compeleceng_2023_108736 crossref_primary_10_1016_j_sigpro_2021_108254 crossref_primary_10_1007_s11042_022_12225_3 crossref_primary_10_1016_j_bspc_2023_105699 crossref_primary_10_1016_j_eswa_2022_118631 crossref_primary_10_1016_j_sigpro_2020_107546 crossref_primary_10_1109_ACCESS_2019_2934523 crossref_primary_10_1364_AO_55_002230 crossref_primary_10_1109_JBHI_2022_3196710 crossref_primary_10_1109_TCSVT_2023_3342808 crossref_primary_10_1109_TIM_2019_2962849 crossref_primary_10_1007_s00500_020_05448_9 crossref_primary_10_1109_TIP_2024_3512365 crossref_primary_10_3390_rs14040939 crossref_primary_10_1049_iet_ipr_2017_1067 crossref_primary_10_1109_MCI_2022_3223487 crossref_primary_10_1109_TRPMS_2023_3239520 crossref_primary_10_1016_j_image_2021_116554 crossref_primary_10_1109_TCI_2020_3039564 crossref_primary_10_1007_s10044_020_00919_z crossref_primary_10_3390_computers10100129 crossref_primary_10_1007_s11042_022_13218_y crossref_primary_10_1007_s12559_021_09958_y crossref_primary_10_1016_j_rio_2020_100038 crossref_primary_10_1016_j_bspc_2022_103534 crossref_primary_10_3390_electronics12122659 crossref_primary_10_1016_j_patcog_2020_107325 crossref_primary_10_1088_1742_6596_1634_1_012113 crossref_primary_10_3390_s20082169 crossref_primary_10_1007_s11760_019_01597_z crossref_primary_10_1016_j_eswa_2024_125665 crossref_primary_10_1364_AO_55_010352 crossref_primary_10_1002_cpe_5632 crossref_primary_10_1016_j_knosys_2020_106182 crossref_primary_10_1049_ipr2_12383 crossref_primary_10_1016_j_ndteint_2021_102535 crossref_primary_10_1016_j_jvcir_2025_104427 crossref_primary_10_1016_j_infrared_2020_103362 crossref_primary_10_1109_JBHI_2021_3083752 crossref_primary_10_1109_ACCESS_2019_2897320 crossref_primary_10_1016_j_inffus_2020_06_013 crossref_primary_10_1109_JSTARS_2020_3035633 crossref_primary_10_1016_j_sigpro_2019_107327 crossref_primary_10_1088_1742_6596_2173_1_012037 crossref_primary_10_1109_ACCESS_2019_2955382 crossref_primary_10_1016_j_infrared_2018_08_013 crossref_primary_10_1109_TNNLS_2023_3238511 crossref_primary_10_1364_JOSAA_34_000432 crossref_primary_10_1016_j_micpro_2023_104781 crossref_primary_10_1155_2022_9245014 crossref_primary_10_1007_s11263_021_01501_8 crossref_primary_10_1109_TIM_2018_2865046 crossref_primary_10_1016_j_inffus_2025_102974 crossref_primary_10_3390_app8091543 crossref_primary_10_1109_TMM_2021_3096088 crossref_primary_10_3390_e21030267 crossref_primary_10_1002_ima_22310 crossref_primary_10_1088_1757_899X_1070_1_012080 crossref_primary_10_1109_TMM_2021_3129609 crossref_primary_10_1016_j_compbiomed_2022_106339 crossref_primary_10_1016_j_infrared_2024_105375 crossref_primary_10_1109_TIM_2022_3169571 crossref_primary_10_1016_j_compbiomed_2020_103823 crossref_primary_10_1016_j_ijleo_2022_170223 crossref_primary_10_1080_15472450_2019_1643725 crossref_primary_10_1016_j_neucom_2022_09_157 crossref_primary_10_3390_rs15112784 crossref_primary_10_1016_j_ndteint_2024_103051 crossref_primary_10_1016_j_patrec_2020_11_014 crossref_primary_10_1109_ACCESS_2019_2929303 crossref_primary_10_1109_TCI_2018_2889959 crossref_primary_10_1155_2021_1544955 crossref_primary_10_1016_j_bspc_2017_02_005 crossref_primary_10_1109_ACCESS_2020_2993607 crossref_primary_10_1109_JSEN_2023_3330871 crossref_primary_10_1016_j_bspc_2024_107050 crossref_primary_10_1007_s11042_017_4583_3 crossref_primary_10_1016_j_inffus_2017_05_006 crossref_primary_10_2139_ssrn_4003392 crossref_primary_10_1049_iet_ipr_2018_5720 crossref_primary_10_3390_electronics8040447 crossref_primary_10_1007_s10489_022_03160_9 crossref_primary_10_3390_electronics11010034 crossref_primary_10_1109_TPAMI_2021_3078906 crossref_primary_10_1007_s11042_022_12046_4 crossref_primary_10_1109_TIM_2019_2912239 crossref_primary_10_1109_ACCESS_2019_2908978 |
Cites_doi | 10.1016/j.inffus.2006.02.001 10.1023/B:VISI.0000029664.99615.94 10.1109/TIP.2002.1014998 10.1016/j.inffus.2005.09.006 10.1016/j.sigpro.2009.01.012 10.1016/j.eswa.2010.06.011 10.1049/iet-ipr.2012.0122 10.1006/gmip.1995.1022 10.1109/TIP.2007.911828 10.1016/j.inffus.2010.03.002 10.1016/j.patrec.2006.09.005 10.1109/TIP.2004.823821 10.1016/j.imavis.2007.12.002 10.1109/78.258082 10.1049/el:20000267 10.1109/TIP.2010.2050625 10.1109/TIP.2006.881969 10.1109/TPAMI.2011.109 10.1049/el:20020212 10.1016/j.inffus.2006.09.001 10.1049/iet-ipr.2013.0429 10.1016/0167-8655(89)90004-4 10.1109/TIM.2009.2026612 10.1038/381607a0 10.1016/S1566-2535(03)00046-0 10.1049/el:20081754 10.1016/j.inffus.2006.04.001 10.1016/j.patcog.2012.09.012 10.1109/ICIG.2013.123 10.1109/TIP.2006.877507 10.1016/j.inffus.2010.04.001 10.1109/TSP.2006.881199 10.1049/iet-ipr.2012.0558 10.1016/j.inffus.2012.01.008 10.1109/TIP.2003.819861 10.1016/S1566-2535(01)00038-0 10.1109/JSTSP.2011.2112332 10.1016/j.imavis.2007.10.012 10.1109/TIT.2009.2027565 10.1109/TIP.2011.2108306 |
ContentType | Journal Article |
Copyright | The Institution of Engineering and Technology 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1049/iet-ipr.2014.0311 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database CrossRef Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1751-9667 |
EndPage | 357 |
ExternalDocumentID | 10_1049_iet_ipr_2014_0311 IPR2BF02652 |
Genre | article |
GrantInformation_xml | – fundername: National Science and Technology funderid: 2012GB102007 |
GroupedDBID | 0R 24P 29I 4.4 5GY 6IK 8FE 8FG 8VB AAJGR ABJCF ABPTK ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BFFAM BGLVJ CS3 DU5 EBS EJD ESX HCIFZ HZ IFIPE IPLJI JAVBF L6V LAI M43 M7S MS O9- OCL P2P P62 PTHSS QWB RIE RNS RUI S0W UNR ZL0 .DC 0R~ 1OC AAHHS AAHJG ABQXS ACCFJ ACCMX ACESK ACXQS ADZOD AEEZP AEQDE AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO ITC K1G MCNEO MS~ OK1 ROL AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c5762-7f93b286280657648a836f0f10d18f47f4f674784d4e8b51dd50fc85806161073 |
IEDL.DBID | 24P |
ISSN | 1751-9659 |
IngestDate | Thu Sep 04 20:21:30 EDT 2025 Wed Jul 30 11:14:01 EDT 2025 Thu Sep 04 18:12:45 EDT 2025 Fri Sep 05 11:11:14 EDT 2025 Tue Aug 05 11:34:54 EDT 2025 Tue Aug 05 12:04:47 EDT 2025 Thu Apr 24 22:55:02 EDT 2025 Wed Jan 22 16:32:34 EST 2025 Thu May 09 18:28:39 EDT 2019 Tue Jan 05 21:53:18 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | image processing multifocus image sets image classification image fusion gradient information ASR model single redundant dictionary learning simultaneous image fusion adaptive sparse representation objective assessment image reconstruction visual quality potential visual artefacts image denoising high computational cost source image patches compact sub-dictionaries high-quality image patches multimodal image sets signal modelling technique image representation learning (artificial intelligence) signal reconstruction requirement |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5762-7f93b286280657648a836f0f10d18f47f4f674784d4e8b51dd50fc85806161073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ipr.2014.0311 |
PQID | 1793225020 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1793257889 proquest_miscellaneous_1793225020 proquest_miscellaneous_1793256824 crossref_primary_10_1049_iet_ipr_2014_0311 iet_journals_10_1049_iet_ipr_2014_0311 wiley_primary_10_1049_iet_ipr_2014_0311_IPR2BF02652 proquest_miscellaneous_1793254439 crossref_citationtrail_10_1049_iet_ipr_2014_0311 proquest_miscellaneous_1793257921 |
ProviderPackageCode | RUI |
PublicationCentury | 2000 |
PublicationDate | May 2015 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: May 2015 |
PublicationDecade | 2010 |
PublicationTitle | IET image processing |
PublicationYear | 2015 |
Publisher | The Institution of Engineering and Technology |
Publisher_xml | – name: The Institution of Engineering and Technology |
References | Huang, W.; Jing, Z. (C6) 2007; 28 Aharon, M.; Elad, M.; Bruckstein, A. (C29) 2006; 54 Li, S.; Kwok, J.; Wang, Y. (C3) 2001; 2 Yin, H.; Li, S.; Fang, L. (C23) 2013; 14 Aslantas, V.; Kurban, R. (C4) 2010; 37 Li, S.; Yang, B.; Hu, J. (C32) 2011; 12 Qu, G.; Zhang, D.; Yan, P. (C37) 2002; 38 Li, S.; Yang, B. (C5) 2008; 26 Starck, J.; Candès, E.; Donoho, D. (C33) 2002; 11 Lewis, J.J.; O'Callaghan, R.J.; Nikolov, S.G. (C11) 2007; 8 Nencini, F.; Garzelli, A.; Baronti, S. (C12) 2007; 8 Dong, W.; Zhang, L.; Shi, G. (C19) 2011; 20 Li, H.; Manjunath, B.S.; Mitra, S.K. (C10) 1995; 57 Iqbal, M.; Chen, J. (C24) 2012; 6 da Cunha, A.L.; Zhou, J.; Do, M.N. (C34) 2006; 15 Yang, C.; Zhang, J.; Wang, X. (C39) 2008; 9 Elad, M.; Aharon, M. (C17) 2006; 15 Olshausen, B.; Field, J. (C27) 1996; 381 Yu, N.; Qiu, T.; Bi, F. (C22) 2011; 5 Xydeas, C.; Petrović, V. (C38) 2000; 36 Wang, Z.; Bovik, A.; Sheikh, H. (C40) 2004; 13 Yang, B.; Li, S. (C20) 2010; 59 Yang, B.; Li, S. (C21) 2012; 13 Lowe, D. (C31) 2004; 60 Zhang, Q.; Guo, B. (C13) 2009; 89 Gao, G.; Xu, L.; Feng, D. (C14) 2013; 7 Jiang, Y.; Wang, M. (C15) 2014; 8 Piella, G. (C7) 2003; 4 Zhao, H.; Shang, Z.; Tang, Y. (C16) 2013; 46 Hossny, M.; Nahavandi, S.; Creighton, D. (C36) 2008; 44 Mallat, S.; Zhang, Z. (C28) 1993; 41 Goshtasby, A.A.; Nikolov, S. (C1) 2007; 8 Yang, J.; Wright, J.; Huang, T. (C18) 2010; 19 Toet, A. (C8) 1989; 9 Mairal, J.; Elad, M.; Sapiro, G. (C30) 2008; 17 Chen, Y.; Blum, R. (C41) 2009; 27 Elad, M.; Yavneh, I. (C26) 2009; 55 Liu, Z.; Blasch, E.; Xue, Z. (C35) 2012; 34 Petrović, V.S.; Xydeas, C.S. (C9) 2004; 13 2009; 89 2002; 38 2010; 37 2010; 59 2004; 60 2010; 19 2013; 46 2006; 54 1995; 57 1989; 9 2006; 15 1993; 41 2008; 17 2002; 11 2008; 9 2008 1996; 381 2011; 12 2013; 7 2012; 13 2012; 34 2011; 5 2009; 27 2007; 28 2009; 55 2013; 14 2000; 36 2004; 13 July 2013 2007; 8 2011; 20 2008; 26 2003; 4 2001; 2 2008; 44 2012; 6 2014; 8 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 Stathaki T. (e_1_2_8_3_1) 2008 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 2 start-page: 169 issue: 3 year: 2001 end-page: 176 ident: C3 article-title: Combination of images with diverse focuses using the spatial frequency publication-title: Inf. Fusion – volume: 28 start-page: 493 issue: 4 year: 2007 end-page: 500 ident: C6 article-title: Evaluation of focus measures in multi-focus image fusion publication-title: Pattern Recognit. Lett. – volume: 60 start-page: 91 issue: 2 year: 2004 end-page: 110 ident: C31 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. – volume: 54 start-page: 4311 issue: 11 year: 2006 end-page: 4322 ident: C29 article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 ident: C40 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 41 start-page: 3397 issue: 12 year: 1993 end-page: 3415 ident: C28 article-title: Matching pursuits with time-frequency dictionaries publication-title: IEEE Trans. Signal Process. – volume: 14 start-page: 229 issue: 3 year: 2013 end-page: 240 ident: C23 article-title: Simultaneous image fusion and super-resolution using sparse representation publication-title: Inf. Fusion – volume: 7 start-page: 633 issue: 6 year: 2013 end-page: 639 ident: C14 article-title: Multi-focus image fusion based on non-subsampled shearlet transform publication-title: IET Image Process. – volume: 59 start-page: 884 issue: 4 year: 2010 end-page: 892 ident: C20 article-title: Multifocus image fusion and restoration with sparse representation publication-title: IEEE Trans. Instrum. Meas. – volume: 15 start-page: 3089 issue: 10 year: 2006 end-page: 3101 ident: C34 article-title: The nonsubsampled contourlet transform: theory, design, and applications publication-title: IEEE Trans. Image Process. – volume: 8 start-page: 143 issue: 2 year: 2007 end-page: 156 ident: C12 article-title: Remote sensing image fusion using the curvelet transform publication-title: Inf. Fusion – volume: 34 start-page: 94 issue: 1 year: 2012 end-page: 109 ident: C35 article-title: Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 17 start-page: 53 issue: 1 year: 2008 end-page: 69 ident: C30 article-title: Sparse representation for color image restoration publication-title: IEEE Trans. Image Process. – volume: 57 start-page: 235 issue: 3 year: 1995 end-page: 245 ident: C10 article-title: Multisensor image fusion using the wavelet transform publication-title: Graph. Models Image Process. – volume: 5 start-page: 1074 issue: 5 year: 2011 end-page: 1082 ident: C22 article-title: Image features extraction and fusion based on joint sparse representation publication-title: IEEE J. Sel. Top. Signal Process. – volume: 9 start-page: 156 issue: 2 year: 2008 end-page: 160 ident: C39 article-title: A novel similarity based quality metric for image fusion publication-title: Inf. Fusion – volume: 8 start-page: 119 issue: 2 year: 2007 end-page: 130 ident: C11 article-title: Pixel- and region-based image fusion with complex wavelets publication-title: Inf. Fusion – volume: 37 start-page: 8861 issue: 12 year: 2010 end-page: 8870 ident: C4 article-title: Fusion of multi-focus images using differential evolution algorithm publication-title: Expert Syst. Appl. – volume: 46 start-page: 1002 issue: 3 year: 2013 end-page: 1011 ident: C16 article-title: Multi-focus image fusion based on the neighbor distance publication-title: Pattern Recognit. – volume: 6 start-page: 1299 issue: 9 year: 2012 end-page: 1310 ident: C24 article-title: Unification of image fusion and super-resolution using jointly trained dictionaries and local information contents publication-title: IET Image Process. – volume: 26 start-page: 971 issue: 7 year: 2008 end-page: 979 ident: C5 article-title: Multifocus image fusion using region segmentation and spatial frequency publication-title: Image vis. Comput. – volume: 12 start-page: 74 issue: 2 year: 2011 end-page: 84 ident: C32 article-title: Performance comparison of different multi-resolution transforms for image fusion publication-title: Inf. Fusion – volume: 44 start-page: 1066 issue: 18 year: 2008 end-page: 1067 ident: C36 article-title: Comments on ‘information measure for performance of image fusion publication-title: Electron. Lett. – volume: 8 start-page: 183 issue: 3 year: 2014 end-page: 190 ident: C15 article-title: Image fusion using multiscale edge-preserving decomposition based on weighted least squares filter publication-title: IET Image Process. – volume: 20 start-page: 1838 issue: 7 year: 2011 end-page: 1857 ident: C19 article-title: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization publication-title: IEEE Trans. Image Process. – volume: 381 start-page: 607 issue: 6583 year: 1996 end-page: 609 ident: C27 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature – volume: 8 start-page: 114 issue: 2 year: 2007 end-page: 118 ident: C1 article-title: Image fusion: advances in the state of the art publication-title: Inf. Fusion – volume: 89 start-page: 1334 issue: 7 year: 2009 end-page: 1346 ident: C13 article-title: Multifocus image fusion using the nonsubsampled contourlet transform publication-title: Signal Process. – volume: 4 start-page: 259 issue: 4 year: 2003 end-page: 280 ident: C7 article-title: A general framework for multiresolution image fusion: from pixels to regions publication-title: Inf. Fusion – volume: 38 start-page: 313 issue: 7 year: 2002 end-page: 315 ident: C37 article-title: Information measure for performance of image fusion publication-title: Electron. Lett. – volume: 19 start-page: 2861 issue: 11 year: 2010 end-page: 2873 ident: C18 article-title: Image super-resolution via sparse representation publication-title: IEEE Trans. Image Process. – volume: 27 start-page: 1421 issue: 10 year: 2009 end-page: 1432 ident: C41 article-title: A new automated quality assessment algorithm for image fusion publication-title: Image Vis. Comput. – volume: 15 start-page: 3736 issue: 2 year: 2006 end-page: 3745 ident: C17 article-title: Image denoising via sparse and redundant representations over learned dictionaries publication-title: IEEE Trans. Image Process. – volume: 13 start-page: 228 issue: 2 year: 2004 end-page: 237 ident: C9 article-title: Gradient-based multiresolution image fusion publication-title: IEEE Trans. Image Process. – volume: 11 start-page: 670 issue: 6 year: 2002 end-page: 684 ident: C33 article-title: The curvelet transform for image denoising publication-title: IEEE Trans. Image Process. – volume: 55 start-page: 4701 issue: 10 year: 2009 end-page: 4714 ident: C26 article-title: A plurality of sparse representations is better than the sparsest one alone publication-title: IEEE Trans. Inf. Theory – volume: 9 start-page: 255 issue: 4 year: 1989 end-page: 261 ident: C8 article-title: A morphological pyramidal image decomposition publication-title: Pattern Recognit. Lett. – volume: 36 start-page: 308 issue: 4 year: 2000 end-page: 309 ident: C38 article-title: Objective image fusion performance measure publication-title: Electron. Lett. – volume: 13 start-page: 10 issue: 1 year: 2012 end-page: 19 ident: C21 article-title: Pixel-level image fusion with simultaneous orthogonal matching pursuit publication-title: Inf. Fusion – volume: 8 start-page: 114 issue: 2 year: 2007 end-page: 118 article-title: Image fusion: advances in the state of the art publication-title: Inf. Fusion – volume: 38 start-page: 313 issue: 7 year: 2002 end-page: 315 article-title: Information measure for performance of image fusion publication-title: Electron. Lett. – volume: 28 start-page: 493 issue: 4 year: 2007 end-page: 500 article-title: Evaluation of focus measures in multi‐focus image fusion publication-title: Pattern Recognit. Lett. – volume: 13 start-page: 228 issue: 2 year: 2004 end-page: 237 article-title: Gradient‐based multiresolution image fusion publication-title: IEEE Trans. Image Process. – volume: 89 start-page: 1334 issue: 7 year: 2009 end-page: 1346 article-title: Multifocus image fusion using the nonsubsampled contourlet transform publication-title: Signal Process. – volume: 8 start-page: 119 issue: 2 year: 2007 end-page: 130 article-title: Pixel‐ and region‐based image fusion with complex wavelets publication-title: Inf. Fusion – volume: 19 start-page: 2861 issue: 11 year: 2010 end-page: 2873 article-title: Image super‐resolution via sparse representation publication-title: IEEE Trans. Image Process. – volume: 15 start-page: 3736 issue: 2 year: 2006 end-page: 3745 article-title: Image denoising via sparse and redundant representations over learned dictionaries publication-title: IEEE Trans. Image Process. – volume: 57 start-page: 235 issue: 3 year: 1995 end-page: 245 article-title: Multisensor image fusion using the wavelet transform publication-title: Graph. Models Image Process. – volume: 54 start-page: 4311 issue: 11 year: 2006 end-page: 4322 article-title: K‐SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. – start-page: 591 year: July 2013 end-page: 596 – volume: 12 start-page: 74 issue: 2 year: 2011 end-page: 84 article-title: Performance comparison of different multi‐resolution transforms for image fusion publication-title: Inf. Fusion – volume: 7 start-page: 633 issue: 6 year: 2013 end-page: 639 article-title: Multi‐focus image fusion based on non‐subsampled shearlet transform publication-title: IET Image Process. – volume: 26 start-page: 971 issue: 7 year: 2008 end-page: 979 article-title: Multifocus image fusion using region segmentation and spatial frequency publication-title: Image vis. Comput. – volume: 9 start-page: 255 issue: 4 year: 1989 end-page: 261 article-title: A morphological pyramidal image decomposition publication-title: Pattern Recognit. Lett. – volume: 6 start-page: 1299 issue: 9 year: 2012 end-page: 1310 article-title: Unification of image fusion and super‐resolution using jointly trained dictionaries and local information contents publication-title: IET Image Process. – volume: 27 start-page: 1421 issue: 10 year: 2009 end-page: 1432 article-title: A new automated quality assessment algorithm for image fusion publication-title: Image Vis. Comput. – volume: 9 start-page: 156 issue: 2 year: 2008 end-page: 160 article-title: A novel similarity based quality metric for image fusion publication-title: Inf. Fusion – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 20 start-page: 1838 issue: 7 year: 2011 end-page: 1857 article-title: Image deblurring and super‐resolution by adaptive sparse domain selection and adaptive regularization publication-title: IEEE Trans. Image Process. – volume: 381 start-page: 607 issue: 6583 year: 1996 end-page: 609 article-title: Emergence of simple‐cell receptive field properties by learning a sparse code for natural images publication-title: Nature – volume: 17 start-page: 53 issue: 1 year: 2008 end-page: 69 article-title: Sparse representation for color image restoration publication-title: IEEE Trans. Image Process. – volume: 8 start-page: 143 issue: 2 year: 2007 end-page: 156 article-title: Remote sensing image fusion using the curvelet transform publication-title: Inf. Fusion – volume: 14 start-page: 229 issue: 3 year: 2013 end-page: 240 article-title: Simultaneous image fusion and super‐resolution using sparse representation publication-title: Inf. Fusion – volume: 2 start-page: 169 issue: 3 year: 2001 end-page: 176 article-title: Combination of images with diverse focuses using the spatial frequency publication-title: Inf. Fusion – volume: 37 start-page: 8861 issue: 12 year: 2010 end-page: 8870 article-title: Fusion of multi‐focus images using differential evolution algorithm publication-title: Expert Syst. Appl. – volume: 44 start-page: 1066 issue: 18 year: 2008 end-page: 1067 article-title: Comments on ‘information measure for performance of image fusion publication-title: Electron. Lett. – volume: 46 start-page: 1002 issue: 3 year: 2013 end-page: 1011 article-title: Multi‐focus image fusion based on the neighbor distance publication-title: Pattern Recognit. – volume: 13 start-page: 10 issue: 1 year: 2012 end-page: 19 article-title: Pixel‐level image fusion with simultaneous orthogonal matching pursuit publication-title: Inf. Fusion – year: 2008 – volume: 4 start-page: 259 issue: 4 year: 2003 end-page: 280 article-title: A general framework for multiresolution image fusion: from pixels to regions publication-title: Inf. Fusion – volume: 60 start-page: 91 issue: 2 year: 2004 end-page: 110 article-title: Distinctive image features from scale‐invariant keypoints publication-title: Int. J. Comput. Vis. – volume: 11 start-page: 670 issue: 6 year: 2002 end-page: 684 article-title: The curvelet transform for image denoising publication-title: IEEE Trans. Image Process. – volume: 34 start-page: 94 issue: 1 year: 2012 end-page: 109 article-title: Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 5 start-page: 1074 issue: 5 year: 2011 end-page: 1082 article-title: Image features extraction and fusion based on joint sparse representation publication-title: IEEE J. Sel. Top. Signal Process. – volume: 8 start-page: 183 issue: 3 year: 2014 end-page: 190 article-title: Image fusion using multiscale edge‐preserving decomposition based on weighted least squares filter publication-title: IET Image Process. – volume: 55 start-page: 4701 issue: 10 year: 2009 end-page: 4714 article-title: A plurality of sparse representations is better than the sparsest one alone publication-title: IEEE Trans. Inf. Theory – volume: 15 start-page: 3089 issue: 10 year: 2006 end-page: 3101 article-title: The nonsubsampled contourlet transform: theory, design, and applications publication-title: IEEE Trans. Image Process. – volume: 59 start-page: 884 issue: 4 year: 2010 end-page: 892 article-title: Multifocus image fusion and restoration with sparse representation publication-title: IEEE Trans. Instrum. Meas. – volume: 41 start-page: 3397 issue: 12 year: 1993 end-page: 3415 article-title: Matching pursuits with time‐frequency dictionaries publication-title: IEEE Trans. Signal Process. – volume: 36 start-page: 308 issue: 4 year: 2000 end-page: 309 article-title: Objective image fusion performance measure publication-title: Electron. Lett. – volume-title: Image fusion: algorithms and applications year: 2008 ident: e_1_2_8_3_1 – ident: e_1_2_8_13_1 doi: 10.1016/j.inffus.2006.02.001 – ident: e_1_2_8_32_1 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: e_1_2_8_34_1 doi: 10.1109/TIP.2002.1014998 – ident: e_1_2_8_12_1 doi: 10.1016/j.inffus.2005.09.006 – ident: e_1_2_8_14_1 doi: 10.1016/j.sigpro.2009.01.012 – ident: e_1_2_8_5_1 doi: 10.1016/j.eswa.2010.06.011 – ident: e_1_2_8_25_1 doi: 10.1049/iet-ipr.2012.0122 – ident: e_1_2_8_11_1 doi: 10.1006/gmip.1995.1022 – ident: e_1_2_8_31_1 doi: 10.1109/TIP.2007.911828 – ident: e_1_2_8_33_1 doi: 10.1016/j.inffus.2010.03.002 – ident: e_1_2_8_7_1 doi: 10.1016/j.patrec.2006.09.005 – ident: e_1_2_8_10_1 doi: 10.1109/TIP.2004.823821 – ident: e_1_2_8_42_1 doi: 10.1016/j.imavis.2007.12.002 – ident: e_1_2_8_29_1 doi: 10.1109/78.258082 – ident: e_1_2_8_39_1 doi: 10.1049/el:20000267 – ident: e_1_2_8_19_1 doi: 10.1109/TIP.2010.2050625 – ident: e_1_2_8_18_1 doi: 10.1109/TIP.2006.881969 – ident: e_1_2_8_36_1 doi: 10.1109/TPAMI.2011.109 – ident: e_1_2_8_38_1 doi: 10.1049/el:20020212 – ident: e_1_2_8_40_1 doi: 10.1016/j.inffus.2006.09.001 – ident: e_1_2_8_16_1 doi: 10.1049/iet-ipr.2013.0429 – ident: e_1_2_8_9_1 doi: 10.1016/0167-8655(89)90004-4 – ident: e_1_2_8_21_1 doi: 10.1109/TIM.2009.2026612 – ident: e_1_2_8_28_1 doi: 10.1038/381607a0 – ident: e_1_2_8_8_1 doi: 10.1016/S1566-2535(03)00046-0 – ident: e_1_2_8_37_1 doi: 10.1049/el:20081754 – ident: e_1_2_8_2_1 doi: 10.1016/j.inffus.2006.04.001 – ident: e_1_2_8_17_1 doi: 10.1016/j.patcog.2012.09.012 – ident: e_1_2_8_26_1 doi: 10.1109/ICIG.2013.123 – ident: e_1_2_8_35_1 doi: 10.1109/TIP.2006.877507 – ident: e_1_2_8_22_1 doi: 10.1016/j.inffus.2010.04.001 – ident: e_1_2_8_30_1 doi: 10.1109/TSP.2006.881199 – ident: e_1_2_8_15_1 doi: 10.1049/iet-ipr.2012.0558 – ident: e_1_2_8_24_1 doi: 10.1016/j.inffus.2012.01.008 – ident: e_1_2_8_41_1 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_8_4_1 doi: 10.1016/S1566-2535(01)00038-0 – ident: e_1_2_8_23_1 doi: 10.1109/JSTSP.2011.2112332 – ident: e_1_2_8_6_1 doi: 10.1016/j.imavis.2007.10.012 – ident: e_1_2_8_27_1 doi: 10.1109/TIT.2009.2027565 – ident: e_1_2_8_20_1 doi: 10.1109/TIP.2011.2108306 |
SSID | ssj0059085 |
Score | 2.4888852 |
Snippet | In this study, a novel adaptive sparse representation (ASR) model is presented for simultaneous image fusion and denoising. As a powerful signal modelling... |
SourceID | proquest crossref wiley iet |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 347 |
SubjectTerms | adaptive sparse representation ASR model compact sub‐dictionaries Computer vision gradient information high computational cost high‐quality image patches image classification image denoising image fusion Image processing image reconstruction image representation learning (artificial intelligence) multifocus image sets multimodal image sets Noise reduction objective assessment potential visual artefacts Redundant Representations signal modelling technique signal reconstruction requirement simultaneous image fusion single redundant dictionary learning source image patches Strontium Visual visual quality |
SummonAdditionalLinks | – databaseName: IET Digital Library Open Access dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXLiwI8omgxAHpEAWO3aOrKKAEGKRuFlObKNIkFYt_D8zWVoqIcKtal8q5U08eTNjzxBykGhpQChHnnUCApQ0c16CRV6hpbMm4o6n5S7f-_j6hd288tfJ8WiTv-GsDK_JuGG23FYnD3DrNvjhk5rjaiAJ6NsTAHj5AHt7BuwYnlGIheZCIXzZIXO9izsMsSrPjOO9eXlAEkfLxzwZVzl_-ZOp99Qs_DwlQX8K2fJNdLVEFmoJSU8rmy-TGVuskMVaTtJ6sY5Wye1TjtsFdWEhuqf5B3gO6r4wO0Z1YSg4nH6OmQKKuViqjR6g66PgYoYjS8tul83JpGKNvFxdPp9fe_XsBC-DCAJEs0uiNAQrYOFUxExqGcXOd4FvAumYcMzF2DqfGWZlygNjuO8yyQEOGhDW_TrpFP3CbhAqbCh8Z3iYWcZ0lEqZ-HHqdGAjcAmOd4nfMKWyurE4zrd4V2WBmyUK2FNArkJyFZLbJUfjSwZVV42_wIf4XWP3v4D7U8De5bPqPTxOAGpgXJfsNWZUsJKwPFLZQaGrAu8G-rkFgy0DkzZMLEPWhhFAZSsmCeHGovJ5a-cK7zc8w14hPNz8L29bZB4-82ob5zbpfA6_7A5Irc90t15B33RWIuE priority: 102 providerName: Institution of Engineering and Technology |
Title | Simultaneous image fusion and denoising with adaptive sparse representation |
URI | http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2014.0311 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2014.0311 https://www.proquest.com/docview/1793225020 https://www.proquest.com/docview/1793254439 https://www.proquest.com/docview/1793256824 https://www.proquest.com/docview/1793257889 https://www.proquest.com/docview/1793257921 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ-rKX9bax9BLUUfow8OaLZEuPadqSdKUNWzPKXoRsSWDY3JDL_-85vqQLhRr6ZJA_G3zk8-mTjnQOIadSCwNCOfKsS2CCkmbOkxjkTbRw1kTc8bTc5Xsbj6bs-oE_dMiwOQtT5YdYL7ihZ5R8jQ6u06oKCYha6MTcLr18hik9A_YNfk2YAm3hEVus3xCySUPHWNObl6cisZ58zOU6tCm_v3jFxuD0Dm5v6M7_1Ws5_FztkA-1bqSDqqN3SccWe2S71pC09tDFPvnxK8c9grqwMKWn-T-gC-pWuCRGdWEosMxjjssDFBdgqTZ6hnxHgVfmC0vLFJfNcaTiI5leXd4PR15dMMHLYNoAStnJKA3B9BgtTWImtIhi57vAN4FwLHHMxZgvnxlmRcoDY7jvMsEBDsIPnP0T6RaPhf1MaGLDxHeGh5llTEepENKPU6cDGwEPON4jfmMpldXZxLGoxV9VRrWZVGA9BcZVaFyFxu2Rr-tHZlUqjdfAZ9hWO9TiNeCXDeD48l6NJz-fAWpmXI-cNN2owH0wJlL1g0J-AkoD0dyCwTyBsg0Ti5C1YRIwZStGhvBhUfm_tdsKvzc8xwQhPDx401OH5D2082oj5xHpLucrewxia5n2S2fqk63B7-mfKVzHFzd3gyeOJSQ8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UAvfUHF9kHdquoBKSUPO7GPQEG7hSJEdxHiYjmxLUVqw4pd_n9n8lhYIRGp1-RLpIw9X76ZsccAX5WRFoVyEjifYYCSFz5QVOTNjPTOJsKLvF7le5aOpvznlbhagx_dXpimP8Qy4UaeUfM1OTglpJuAk1OTzNItgnJGPT0j_h3nJsZA66Ru4gGs719Or6cdI9Ox3qLeGElHyqdCLaubau_RS1b-T8_w9or0fChg6z_Q8St40UpHtt-M9WtYc9UbeNnKSNY66XwTTn6XtEzQVA6jelb-RcZg_o6yYsxUliHR3JSUIWCUg2XGmhlRHkNquZ07Vne57HYkVVswPT6aHI6C9syEoMDIAcWyV0keo_WpYJqlXBqZpD70UWgj6XnmuU-pZT633MlcRNaK0BdSIBy1H_r7WxhUN5XbBpa5OAu9FXHhODdJLqUK09ybyCVIBV4MIewspYu2oTida_FH14VtrjRaT6NxNRlXk3GHsLt8ZNZ003gK_I2utT41fwr4ZQU4Ppro8fnFPUDPrB_C524YNXoQlUWacdBEUchqqJt7MNQqUPVhUhnzPkyGpuzFqBg_LKnnW7-t6HvjA-oRIuJ3__XUJ9gYTX6d6tPx2cl7eI4Y0azr_ACDxe2d-4jaa5HvtK71D5NMJis |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA4eIL54i-sZRXwQqj2SNnn0WlwVWTzAt5A2CRS0Lu76_53psboIFnxtvxQ6yXyZySRfCDmUWhgIlCPPugQSlDRznsQib6KFsybijqflLt_7-PqZ3bzwlyly0ZyFqfQhxgtu6BklX6ODD4yr8k2GGpm5HXn5ACU9A3YCQxNSoFks-qF3hqzf0DHe6c3LU5F4n3zM5bi0KU9_fWJicpqG1xNx58_otZx-uktkoY4b6VnV0ctkyhYrZLGOIWntocNVcvuY4x5BXVhI6Wn-BnRB3ScuiVFdGAos857j8gDFBViqjR4g31HglY-hpaXEZXMcqVgjz92rp4trr74wwcsgbYBI2ckoDcH0WC1NYia0iGLnu8A3gXAscczFqJfPDLMi5YEx3HeZ4ACHwA-cfZ3MFO-F3SA0sWHiO8PDzDKmo1QI6cep04GNgAcc7xC_sZTKajVxvNTiVZVVbSYVWE-BcRUaV6FxO-R43GRQSWn8BT7CZ7VDDf8CHkwAe1dPqtd_-AYoGDYdst90owL3wZpI1Q8K-QkoDYLmFgzqBMo2TCxC1oZJwJStGBnCj0XleGu3Ff5veI4CITzc_FerPTLXv-yqu9797RaZBwiv9nRuk5nRx6fdgbhrlO6WfvUFGp8jjg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+image+fusion+and+denoising+with+adaptive+sparse+representation&rft.jtitle=IET+image+processing&rft.au=Liu%2C+Yu&rft.au=Wang%2C+Zengfu&rft.date=2015-05-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=9&rft.issue=9&rft.spage=347&rft.epage=357&rft_id=info:doi/10.1049%2Fiet-ipr.2014.0311&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |