Simultaneous image fusion and denoising with adaptive sparse representation

In this study, a novel adaptive sparse representation (ASR) model is presented for simultaneous image fusion and denoising. As a powerful signal modelling technique, sparse representation (SR) has been successfully employed in many image processing applications such as denoising and fusion. In tradi...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 9; no. 5; pp. 347 - 357
Main Authors Liu, Yu, Wang, Zengfu
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.05.2015
Subjects
Online AccessGet full text
ISSN1751-9659
1751-9667
DOI10.1049/iet-ipr.2014.0311

Cover

Abstract In this study, a novel adaptive sparse representation (ASR) model is presented for simultaneous image fusion and denoising. As a powerful signal modelling technique, sparse representation (SR) has been successfully employed in many image processing applications such as denoising and fusion. In traditional SR-based applications, a highly redundant dictionary is always needed to satisfy signal reconstruction requirement since the structures vary significantly across different image patches. However, it may result in potential visual artefacts as well as high computational cost. In the proposed ASR model, instead of learning a single redundant dictionary, a set of more compact sub-dictionaries are learned from numerous high-quality image patches which have been pre-classified into several corresponding categories based on their gradient information. At the fusion and denoising processes, one of the sub-dictionaries is adaptively selected for a given set of source image patches. Experimental results on multi-focus and multi-modal image sets demonstrate that the ASR-based fusion method can outperform the conventional SR-based method in terms of both visual quality and objective assessment.
AbstractList In this study, a novel adaptive sparse representation (ASR) model is presented for simultaneous image fusion and denoising. As a powerful signal modelling technique, sparse representation (SR) has been successfully employed in many image processing applications such as denoising and fusion. In traditional SR-based applications, a highly redundant dictionary is always needed to satisfy signal reconstruction requirement since the structures vary significantly across different image patches. However, it may result in potential visual artefacts as well as high computational cost. In the proposed ASR model, instead of learning a single redundant dictionary, a set of more compact sub-dictionaries are learned from numerous high-quality image patches which have been pre-classified into several corresponding categories based on their gradient information. At the fusion and denoising processes, one of the sub-dictionaries is adaptively selected for a given set of source image patches. Experimental results on multi-focus and multi-modal image sets demonstrate that the ASR-based fusion method can outperform the conventional SR-based method in terms of both visual quality and objective assessment.
Author Wang, Zengfu
Liu, Yu
Author_xml – sequence: 1
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
  email: liuyu1@mail.ustc.edu.cn
  organization: 1Department of Automation, University of Science and Technology of China, Hefei 230026, People's Republic of China
– sequence: 2
  givenname: Zengfu
  surname: Wang
  fullname: Wang, Zengfu
  organization: 2Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
BookMark eNqNkUlPxCAYQIkZE8flB3jrUQ8dgbLVm05cJk6icTkTpoUR06EVWo3_XpoaY4zLnCDkvQ_I2wYjVzsNwD6CEwRJfmR1m9rGTzBEZAIzhDbAGHGK0pwxPvrc03wLbIfwBCHNoaBjcHVnV13VKqfrLiR2pZY6MV2wtUuUK5NSu9oG65bJq20fE1WqprUvOgmN8kEnXjdeB-1a1UZjF2waVQW997HugIfzs_vpZTq_vphNT-ZpQTnDKTd5tsCCYQFZPCBCiYwZaBAskTCEG2IYJ1yQkmixoKgsKTSFoBFHDEGe7YCDYW7j6-dOh1aubCh0VQ2_kIjnGaY8x2hdVIh8TZQJTNZECcnWnIopxDCiaEALX4fgtZGNj0H8m0RQ9pFljCxjZNlHln3k6PBvTmGHGK1XtvrTPB7MV1vpt_-vkrObW3x6DjGjOMqHg9xjT3XnXewtZ2f3PfXFaUoT2fQH9veHvQNzeNwu
CitedBy_id crossref_primary_10_3389_fnins_2020_615435
crossref_primary_10_1016_j_inffus_2024_102230
crossref_primary_10_1016_j_bspc_2022_104030
crossref_primary_10_1109_TCSVT_2023_3296745
crossref_primary_10_1016_j_patcog_2018_02_005
crossref_primary_10_1016_j_dsp_2022_103875
crossref_primary_10_1155_2019_4179397
crossref_primary_10_1016_j_knosys_2021_107087
crossref_primary_10_1016_j_patrec_2020_01_020
crossref_primary_10_1016_j_bspc_2021_102488
crossref_primary_10_1016_j_bspc_2021_103214
crossref_primary_10_1007_s41870_022_01002_y
crossref_primary_10_1109_ACCESS_2020_2973269
crossref_primary_10_1142_S0219691320500617
crossref_primary_10_1007_s10462_021_09961_7
crossref_primary_10_1155_2021_7000991
crossref_primary_10_1016_j_inffus_2018_02_004
crossref_primary_10_1016_j_ins_2020_03_009
crossref_primary_10_1371_journal_pone_0182165
crossref_primary_10_1016_j_inffus_2022_07_016
crossref_primary_10_32604_cmc_2021_013457
crossref_primary_10_3390_s22072457
crossref_primary_10_1109_TIM_2023_3326252
crossref_primary_10_1016_j_ijleo_2022_168817
crossref_primary_10_3390_s23062888
crossref_primary_10_1016_j_image_2021_116400
crossref_primary_10_1016_j_image_2021_116521
crossref_primary_10_1016_j_optlastec_2018_07_045
crossref_primary_10_1016_j_sigpro_2020_107921
crossref_primary_10_1155_2020_3290136
crossref_primary_10_1007_s13369_021_06380_2
crossref_primary_10_1142_S0129065720500501
crossref_primary_10_1007_s12652_022_03822_z
crossref_primary_10_1109_ACCESS_2021_3068770
crossref_primary_10_1109_TIP_2020_2976190
crossref_primary_10_1016_j_patcog_2018_06_003
crossref_primary_10_1002_cpe_6155
crossref_primary_10_3390_app9173612
crossref_primary_10_1007_s11042_021_11379_w
crossref_primary_10_3233_JIFS_211434
crossref_primary_10_1117_1_JEI_31_4_043044
crossref_primary_10_1142_S0218001422570014
crossref_primary_10_1007_s11042_023_15972_z
crossref_primary_10_1109_JSEN_2024_3411588
crossref_primary_10_3389_fnbot_2022_1050981
crossref_primary_10_3390_e22010118
crossref_primary_10_1016_j_ijleo_2019_163900
crossref_primary_10_1007_s10489_022_03375_w
crossref_primary_10_3788_LOP232443
crossref_primary_10_3233_JIFS_200554
crossref_primary_10_3390_e23070827
crossref_primary_10_1007_s00371_022_02633_9
crossref_primary_10_1016_j_sigpro_2018_08_002
crossref_primary_10_1016_j_cviu_2020_103016
crossref_primary_10_1007_s11263_023_01948_x
crossref_primary_10_1016_j_cmpb_2023_107506
crossref_primary_10_1007_s11042_023_16785_w
crossref_primary_10_1016_j_bspc_2022_104353
crossref_primary_10_1109_JSTARS_2021_3090958
crossref_primary_10_1016_j_neucom_2018_08_024
crossref_primary_10_3390_e23050591
crossref_primary_10_1016_j_dsp_2024_104806
crossref_primary_10_1016_j_engappai_2022_105084
crossref_primary_10_1016_j_eswa_2023_120301
crossref_primary_10_1109_TIM_2020_3046911
crossref_primary_10_1109_TIP_2019_2922097
crossref_primary_10_1016_j_sigpro_2020_107681
crossref_primary_10_1155_2022_4326638
crossref_primary_10_1007_s00779_019_01317_x
crossref_primary_10_1016_j_infrared_2022_104178
crossref_primary_10_1016_j_ins_2021_11_033
crossref_primary_10_1016_j_sigpro_2025_109889
crossref_primary_10_1364_AO_56_007969
crossref_primary_10_3390_rs14194867
crossref_primary_10_1016_j_inffus_2021_04_005
crossref_primary_10_1109_ACCESS_2019_2957165
crossref_primary_10_1007_s11042_022_13323_y
crossref_primary_10_1007_s11042_019_08233_5
crossref_primary_10_1016_j_ins_2021_06_083
crossref_primary_10_1109_LSP_2022_3198594
crossref_primary_10_3390_e24020294
crossref_primary_10_1002_ima_22395
crossref_primary_10_1016_j_compbiomed_2021_104239
crossref_primary_10_1016_j_eswa_2022_118283
crossref_primary_10_1109_ACCESS_2019_2933646
crossref_primary_10_1007_s10462_023_10529_w
crossref_primary_10_1007_s11042_023_16071_9
crossref_primary_10_1051_jnwpu_20203840904
crossref_primary_10_1109_ACCESS_2019_2910656
crossref_primary_10_1007_s11042_023_15576_7
crossref_primary_10_1109_TPAMI_2024_3367905
crossref_primary_10_1016_j_sigpro_2019_107252
crossref_primary_10_1049_iet_ipr_2017_0104
crossref_primary_10_1016_j_procs_2018_04_214
crossref_primary_10_1049_ipr2_12668
crossref_primary_10_1007_s00371_024_03637_3
crossref_primary_10_12677_AIRR_2022_112009
crossref_primary_10_1007_s13198_019_00887_6
crossref_primary_10_1109_MIM_2021_9400960
crossref_primary_10_1016_j_bspc_2022_104382
crossref_primary_10_3390_rs15020344
crossref_primary_10_1016_j_infrared_2019_03_030
crossref_primary_10_1016_j_bspc_2022_104265
crossref_primary_10_1016_j_eswa_2022_118272
crossref_primary_10_1117_1_JEI_28_1_013043
crossref_primary_10_1002_ima_22268
crossref_primary_10_1016_j_inffus_2016_12_001
crossref_primary_10_1016_j_infrared_2020_103621
crossref_primary_10_1109_ACCESS_2019_2898111
crossref_primary_10_1016_j_infrared_2021_103916
crossref_primary_10_1016_j_sigpro_2022_108590
crossref_primary_10_1109_TCSVT_2018_2821177
crossref_primary_10_3390_jimaging8090240
crossref_primary_10_1016_j_optlaseng_2024_108159
crossref_primary_10_1016_j_inffus_2017_10_007
crossref_primary_10_1007_s10489_022_04406_2
crossref_primary_10_3390_e25070985
crossref_primary_10_1016_j_infrared_2023_104701
crossref_primary_10_1109_TIP_2023_3276330
crossref_primary_10_1016_j_image_2022_116632
crossref_primary_10_3390_e21060570
crossref_primary_10_1007_s11042_017_5562_4
crossref_primary_10_3390_e24060843
crossref_primary_10_3390_e21121135
crossref_primary_10_1109_JSEN_2019_2921803
crossref_primary_10_1088_1742_6596_1856_1_012058
crossref_primary_10_1049_el_2016_2270
crossref_primary_10_3233_JIFS_201494
crossref_primary_10_1007_s11263_023_01952_1
crossref_primary_10_1109_LSENS_2022_3170744
crossref_primary_10_1109_ACCESS_2019_2924033
crossref_primary_10_1117_1_OE_55_12_123104
crossref_primary_10_1109_TIM_2023_3328710
crossref_primary_10_1109_TIP_2024_3374072
crossref_primary_10_1016_j_infrared_2023_105009
crossref_primary_10_1016_j_inffus_2017_10_010
crossref_primary_10_1016_j_bspc_2025_107653
crossref_primary_10_1109_TIM_2022_3184360
crossref_primary_10_1109_LSP_2019_2895749
crossref_primary_10_1364_JOSAA_388447
crossref_primary_10_1117_1_JEI_31_6_063045
crossref_primary_10_1109_TIP_2017_2779274
crossref_primary_10_1109_LSP_2016_2618776
crossref_primary_10_1155_2022_5691099
crossref_primary_10_1016_j_ijleo_2021_166726
crossref_primary_10_1016_j_sigpro_2020_107793
crossref_primary_10_1109_TIP_2016_2524212
crossref_primary_10_1016_j_ins_2020_09_006
crossref_primary_10_3390_s23146616
crossref_primary_10_1016_j_infrared_2022_104205
crossref_primary_10_3390_app10031171
crossref_primary_10_1016_j_compbiomed_2021_105005
crossref_primary_10_1007_s42235_021_00100_0
crossref_primary_10_1109_TIP_2020_2977573
crossref_primary_10_1007_s11042_024_19470_8
crossref_primary_10_1088_1742_6596_2025_1_012065
crossref_primary_10_1109_TETCI_2022_3231657
crossref_primary_10_1016_j_neucom_2024_127353
crossref_primary_10_1109_ACCESS_2020_3010542
crossref_primary_10_1109_TIM_2023_3244817
crossref_primary_10_1137_20M1334103
crossref_primary_10_1007_s11042_024_18141_y
crossref_primary_10_1109_ACCESS_2020_2990539
crossref_primary_10_1049_ipr2_12363
crossref_primary_10_1016_j_compeleceng_2023_108736
crossref_primary_10_1016_j_sigpro_2021_108254
crossref_primary_10_1007_s11042_022_12225_3
crossref_primary_10_1016_j_bspc_2023_105699
crossref_primary_10_1016_j_eswa_2022_118631
crossref_primary_10_1016_j_sigpro_2020_107546
crossref_primary_10_1109_ACCESS_2019_2934523
crossref_primary_10_1364_AO_55_002230
crossref_primary_10_1109_JBHI_2022_3196710
crossref_primary_10_1109_TCSVT_2023_3342808
crossref_primary_10_1109_TIM_2019_2962849
crossref_primary_10_1007_s00500_020_05448_9
crossref_primary_10_1109_TIP_2024_3512365
crossref_primary_10_3390_rs14040939
crossref_primary_10_1049_iet_ipr_2017_1067
crossref_primary_10_1109_MCI_2022_3223487
crossref_primary_10_1109_TRPMS_2023_3239520
crossref_primary_10_1016_j_image_2021_116554
crossref_primary_10_1109_TCI_2020_3039564
crossref_primary_10_1007_s10044_020_00919_z
crossref_primary_10_3390_computers10100129
crossref_primary_10_1007_s11042_022_13218_y
crossref_primary_10_1007_s12559_021_09958_y
crossref_primary_10_1016_j_rio_2020_100038
crossref_primary_10_1016_j_bspc_2022_103534
crossref_primary_10_3390_electronics12122659
crossref_primary_10_1016_j_patcog_2020_107325
crossref_primary_10_1088_1742_6596_1634_1_012113
crossref_primary_10_3390_s20082169
crossref_primary_10_1007_s11760_019_01597_z
crossref_primary_10_1016_j_eswa_2024_125665
crossref_primary_10_1364_AO_55_010352
crossref_primary_10_1002_cpe_5632
crossref_primary_10_1016_j_knosys_2020_106182
crossref_primary_10_1049_ipr2_12383
crossref_primary_10_1016_j_ndteint_2021_102535
crossref_primary_10_1016_j_jvcir_2025_104427
crossref_primary_10_1016_j_infrared_2020_103362
crossref_primary_10_1109_JBHI_2021_3083752
crossref_primary_10_1109_ACCESS_2019_2897320
crossref_primary_10_1016_j_inffus_2020_06_013
crossref_primary_10_1109_JSTARS_2020_3035633
crossref_primary_10_1016_j_sigpro_2019_107327
crossref_primary_10_1088_1742_6596_2173_1_012037
crossref_primary_10_1109_ACCESS_2019_2955382
crossref_primary_10_1016_j_infrared_2018_08_013
crossref_primary_10_1109_TNNLS_2023_3238511
crossref_primary_10_1364_JOSAA_34_000432
crossref_primary_10_1016_j_micpro_2023_104781
crossref_primary_10_1155_2022_9245014
crossref_primary_10_1007_s11263_021_01501_8
crossref_primary_10_1109_TIM_2018_2865046
crossref_primary_10_1016_j_inffus_2025_102974
crossref_primary_10_3390_app8091543
crossref_primary_10_1109_TMM_2021_3096088
crossref_primary_10_3390_e21030267
crossref_primary_10_1002_ima_22310
crossref_primary_10_1088_1757_899X_1070_1_012080
crossref_primary_10_1109_TMM_2021_3129609
crossref_primary_10_1016_j_compbiomed_2022_106339
crossref_primary_10_1016_j_infrared_2024_105375
crossref_primary_10_1109_TIM_2022_3169571
crossref_primary_10_1016_j_compbiomed_2020_103823
crossref_primary_10_1016_j_ijleo_2022_170223
crossref_primary_10_1080_15472450_2019_1643725
crossref_primary_10_1016_j_neucom_2022_09_157
crossref_primary_10_3390_rs15112784
crossref_primary_10_1016_j_ndteint_2024_103051
crossref_primary_10_1016_j_patrec_2020_11_014
crossref_primary_10_1109_ACCESS_2019_2929303
crossref_primary_10_1109_TCI_2018_2889959
crossref_primary_10_1155_2021_1544955
crossref_primary_10_1016_j_bspc_2017_02_005
crossref_primary_10_1109_ACCESS_2020_2993607
crossref_primary_10_1109_JSEN_2023_3330871
crossref_primary_10_1016_j_bspc_2024_107050
crossref_primary_10_1007_s11042_017_4583_3
crossref_primary_10_1016_j_inffus_2017_05_006
crossref_primary_10_2139_ssrn_4003392
crossref_primary_10_1049_iet_ipr_2018_5720
crossref_primary_10_3390_electronics8040447
crossref_primary_10_1007_s10489_022_03160_9
crossref_primary_10_3390_electronics11010034
crossref_primary_10_1109_TPAMI_2021_3078906
crossref_primary_10_1007_s11042_022_12046_4
crossref_primary_10_1109_TIM_2019_2912239
crossref_primary_10_1109_ACCESS_2019_2908978
Cites_doi 10.1016/j.inffus.2006.02.001
10.1023/B:VISI.0000029664.99615.94
10.1109/TIP.2002.1014998
10.1016/j.inffus.2005.09.006
10.1016/j.sigpro.2009.01.012
10.1016/j.eswa.2010.06.011
10.1049/iet-ipr.2012.0122
10.1006/gmip.1995.1022
10.1109/TIP.2007.911828
10.1016/j.inffus.2010.03.002
10.1016/j.patrec.2006.09.005
10.1109/TIP.2004.823821
10.1016/j.imavis.2007.12.002
10.1109/78.258082
10.1049/el:20000267
10.1109/TIP.2010.2050625
10.1109/TIP.2006.881969
10.1109/TPAMI.2011.109
10.1049/el:20020212
10.1016/j.inffus.2006.09.001
10.1049/iet-ipr.2013.0429
10.1016/0167-8655(89)90004-4
10.1109/TIM.2009.2026612
10.1038/381607a0
10.1016/S1566-2535(03)00046-0
10.1049/el:20081754
10.1016/j.inffus.2006.04.001
10.1016/j.patcog.2012.09.012
10.1109/ICIG.2013.123
10.1109/TIP.2006.877507
10.1016/j.inffus.2010.04.001
10.1109/TSP.2006.881199
10.1049/iet-ipr.2012.0558
10.1016/j.inffus.2012.01.008
10.1109/TIP.2003.819861
10.1016/S1566-2535(01)00038-0
10.1109/JSTSP.2011.2112332
10.1016/j.imavis.2007.10.012
10.1109/TIT.2009.2027565
10.1109/TIP.2011.2108306
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1049/iet-ipr.2014.0311
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
Technology Research Database
Technology Research Database
CrossRef
Technology Research Database


Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 357
ExternalDocumentID 10_1049_iet_ipr_2014_0311
IPR2BF02652
Genre article
GrantInformation_xml – fundername: National Science and Technology
  funderid: 2012GB102007
GroupedDBID 0R
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
DU5
EBS
EJD
ESX
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
L6V
LAI
M43
M7S
MS
O9-
OCL
P2P
P62
PTHSS
QWB
RIE
RNS
RUI
S0W
UNR
ZL0
.DC
0R~
1OC
AAHHS
AAHJG
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
ITC
K1G
MCNEO
MS~
OK1
ROL
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c5762-7f93b286280657648a836f0f10d18f47f4f674784d4e8b51dd50fc85806161073
IEDL.DBID 24P
ISSN 1751-9659
IngestDate Thu Sep 04 20:21:30 EDT 2025
Wed Jul 30 11:14:01 EDT 2025
Thu Sep 04 18:12:45 EDT 2025
Fri Sep 05 11:11:14 EDT 2025
Tue Aug 05 11:34:54 EDT 2025
Tue Aug 05 12:04:47 EDT 2025
Thu Apr 24 22:55:02 EDT 2025
Wed Jan 22 16:32:34 EST 2025
Thu May 09 18:28:39 EDT 2019
Tue Jan 05 21:53:18 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords image processing
multifocus image sets
image classification
image fusion
gradient information
ASR model
single redundant dictionary learning
simultaneous image fusion
adaptive sparse representation
objective assessment
image reconstruction
visual quality
potential visual artefacts
image denoising
high computational cost
source image patches
compact sub-dictionaries
high-quality image patches
multimodal image sets
signal modelling technique
image representation
learning (artificial intelligence)
signal reconstruction requirement
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5762-7f93b286280657648a836f0f10d18f47f4f674784d4e8b51dd50fc85806161073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ipr.2014.0311
PQID 1793225020
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1793257889
proquest_miscellaneous_1793225020
proquest_miscellaneous_1793256824
crossref_primary_10_1049_iet_ipr_2014_0311
iet_journals_10_1049_iet_ipr_2014_0311
wiley_primary_10_1049_iet_ipr_2014_0311_IPR2BF02652
proquest_miscellaneous_1793254439
crossref_citationtrail_10_1049_iet_ipr_2014_0311
proquest_miscellaneous_1793257921
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationTitle IET image processing
PublicationYear 2015
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Huang, W.; Jing, Z. (C6) 2007; 28
Aharon, M.; Elad, M.; Bruckstein, A. (C29) 2006; 54
Li, S.; Kwok, J.; Wang, Y. (C3) 2001; 2
Yin, H.; Li, S.; Fang, L. (C23) 2013; 14
Aslantas, V.; Kurban, R. (C4) 2010; 37
Li, S.; Yang, B.; Hu, J. (C32) 2011; 12
Qu, G.; Zhang, D.; Yan, P. (C37) 2002; 38
Li, S.; Yang, B. (C5) 2008; 26
Starck, J.; Candès, E.; Donoho, D. (C33) 2002; 11
Lewis, J.J.; O'Callaghan, R.J.; Nikolov, S.G. (C11) 2007; 8
Nencini, F.; Garzelli, A.; Baronti, S. (C12) 2007; 8
Dong, W.; Zhang, L.; Shi, G. (C19) 2011; 20
Li, H.; Manjunath, B.S.; Mitra, S.K. (C10) 1995; 57
Iqbal, M.; Chen, J. (C24) 2012; 6
da Cunha, A.L.; Zhou, J.; Do, M.N. (C34) 2006; 15
Yang, C.; Zhang, J.; Wang, X. (C39) 2008; 9
Elad, M.; Aharon, M. (C17) 2006; 15
Olshausen, B.; Field, J. (C27) 1996; 381
Yu, N.; Qiu, T.; Bi, F. (C22) 2011; 5
Xydeas, C.; Petrović, V. (C38) 2000; 36
Wang, Z.; Bovik, A.; Sheikh, H. (C40) 2004; 13
Yang, B.; Li, S. (C20) 2010; 59
Yang, B.; Li, S. (C21) 2012; 13
Lowe, D. (C31) 2004; 60
Zhang, Q.; Guo, B. (C13) 2009; 89
Gao, G.; Xu, L.; Feng, D. (C14) 2013; 7
Jiang, Y.; Wang, M. (C15) 2014; 8
Piella, G. (C7) 2003; 4
Zhao, H.; Shang, Z.; Tang, Y. (C16) 2013; 46
Hossny, M.; Nahavandi, S.; Creighton, D. (C36) 2008; 44
Mallat, S.; Zhang, Z. (C28) 1993; 41
Goshtasby, A.A.; Nikolov, S. (C1) 2007; 8
Yang, J.; Wright, J.; Huang, T. (C18) 2010; 19
Toet, A. (C8) 1989; 9
Mairal, J.; Elad, M.; Sapiro, G. (C30) 2008; 17
Chen, Y.; Blum, R. (C41) 2009; 27
Elad, M.; Yavneh, I. (C26) 2009; 55
Liu, Z.; Blasch, E.; Xue, Z. (C35) 2012; 34
Petrović, V.S.; Xydeas, C.S. (C9) 2004; 13
2009; 89
2002; 38
2010; 37
2010; 59
2004; 60
2010; 19
2013; 46
2006; 54
1995; 57
1989; 9
2006; 15
1993; 41
2008; 17
2002; 11
2008; 9
2008
1996; 381
2011; 12
2013; 7
2012; 13
2012; 34
2011; 5
2009; 27
2007; 28
2009; 55
2013; 14
2000; 36
2004; 13
July 2013
2007; 8
2011; 20
2008; 26
2003; 4
2001; 2
2008; 44
2012; 6
2014; 8
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Stathaki T. (e_1_2_8_3_1) 2008
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 2
  start-page: 169
  issue: 3
  year: 2001
  end-page: 176
  ident: C3
  article-title: Combination of images with diverse focuses using the spatial frequency
  publication-title: Inf. Fusion
– volume: 28
  start-page: 493
  issue: 4
  year: 2007
  end-page: 500
  ident: C6
  article-title: Evaluation of focus measures in multi-focus image fusion
  publication-title: Pattern Recognit. Lett.
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  end-page: 110
  ident: C31
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  end-page: 4322
  ident: C29
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  ident: C40
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  end-page: 3415
  ident: C28
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
– volume: 14
  start-page: 229
  issue: 3
  year: 2013
  end-page: 240
  ident: C23
  article-title: Simultaneous image fusion and super-resolution using sparse representation
  publication-title: Inf. Fusion
– volume: 7
  start-page: 633
  issue: 6
  year: 2013
  end-page: 639
  ident: C14
  article-title: Multi-focus image fusion based on non-subsampled shearlet transform
  publication-title: IET Image Process.
– volume: 59
  start-page: 884
  issue: 4
  year: 2010
  end-page: 892
  ident: C20
  article-title: Multifocus image fusion and restoration with sparse representation
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 15
  start-page: 3089
  issue: 10
  year: 2006
  end-page: 3101
  ident: C34
  article-title: The nonsubsampled contourlet transform: theory, design, and applications
  publication-title: IEEE Trans. Image Process.
– volume: 8
  start-page: 143
  issue: 2
  year: 2007
  end-page: 156
  ident: C12
  article-title: Remote sensing image fusion using the curvelet transform
  publication-title: Inf. Fusion
– volume: 34
  start-page: 94
  issue: 1
  year: 2012
  end-page: 109
  ident: C35
  article-title: Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 17
  start-page: 53
  issue: 1
  year: 2008
  end-page: 69
  ident: C30
  article-title: Sparse representation for color image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 57
  start-page: 235
  issue: 3
  year: 1995
  end-page: 245
  ident: C10
  article-title: Multisensor image fusion using the wavelet transform
  publication-title: Graph. Models Image Process.
– volume: 5
  start-page: 1074
  issue: 5
  year: 2011
  end-page: 1082
  ident: C22
  article-title: Image features extraction and fusion based on joint sparse representation
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 9
  start-page: 156
  issue: 2
  year: 2008
  end-page: 160
  ident: C39
  article-title: A novel similarity based quality metric for image fusion
  publication-title: Inf. Fusion
– volume: 8
  start-page: 119
  issue: 2
  year: 2007
  end-page: 130
  ident: C11
  article-title: Pixel- and region-based image fusion with complex wavelets
  publication-title: Inf. Fusion
– volume: 37
  start-page: 8861
  issue: 12
  year: 2010
  end-page: 8870
  ident: C4
  article-title: Fusion of multi-focus images using differential evolution algorithm
  publication-title: Expert Syst. Appl.
– volume: 46
  start-page: 1002
  issue: 3
  year: 2013
  end-page: 1011
  ident: C16
  article-title: Multi-focus image fusion based on the neighbor distance
  publication-title: Pattern Recognit.
– volume: 6
  start-page: 1299
  issue: 9
  year: 2012
  end-page: 1310
  ident: C24
  article-title: Unification of image fusion and super-resolution using jointly trained dictionaries and local information contents
  publication-title: IET Image Process.
– volume: 26
  start-page: 971
  issue: 7
  year: 2008
  end-page: 979
  ident: C5
  article-title: Multifocus image fusion using region segmentation and spatial frequency
  publication-title: Image vis. Comput.
– volume: 12
  start-page: 74
  issue: 2
  year: 2011
  end-page: 84
  ident: C32
  article-title: Performance comparison of different multi-resolution transforms for image fusion
  publication-title: Inf. Fusion
– volume: 44
  start-page: 1066
  issue: 18
  year: 2008
  end-page: 1067
  ident: C36
  article-title: Comments on ‘information measure for performance of image fusion
  publication-title: Electron. Lett.
– volume: 8
  start-page: 183
  issue: 3
  year: 2014
  end-page: 190
  ident: C15
  article-title: Image fusion using multiscale edge-preserving decomposition based on weighted least squares filter
  publication-title: IET Image Process.
– volume: 20
  start-page: 1838
  issue: 7
  year: 2011
  end-page: 1857
  ident: C19
  article-title: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
  publication-title: IEEE Trans. Image Process.
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  end-page: 609
  ident: C27
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
– volume: 8
  start-page: 114
  issue: 2
  year: 2007
  end-page: 118
  ident: C1
  article-title: Image fusion: advances in the state of the art
  publication-title: Inf. Fusion
– volume: 89
  start-page: 1334
  issue: 7
  year: 2009
  end-page: 1346
  ident: C13
  article-title: Multifocus image fusion using the nonsubsampled contourlet transform
  publication-title: Signal Process.
– volume: 4
  start-page: 259
  issue: 4
  year: 2003
  end-page: 280
  ident: C7
  article-title: A general framework for multiresolution image fusion: from pixels to regions
  publication-title: Inf. Fusion
– volume: 38
  start-page: 313
  issue: 7
  year: 2002
  end-page: 315
  ident: C37
  article-title: Information measure for performance of image fusion
  publication-title: Electron. Lett.
– volume: 19
  start-page: 2861
  issue: 11
  year: 2010
  end-page: 2873
  ident: C18
  article-title: Image super-resolution via sparse representation
  publication-title: IEEE Trans. Image Process.
– volume: 27
  start-page: 1421
  issue: 10
  year: 2009
  end-page: 1432
  ident: C41
  article-title: A new automated quality assessment algorithm for image fusion
  publication-title: Image Vis. Comput.
– volume: 15
  start-page: 3736
  issue: 2
  year: 2006
  end-page: 3745
  ident: C17
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
– volume: 13
  start-page: 228
  issue: 2
  year: 2004
  end-page: 237
  ident: C9
  article-title: Gradient-based multiresolution image fusion
  publication-title: IEEE Trans. Image Process.
– volume: 11
  start-page: 670
  issue: 6
  year: 2002
  end-page: 684
  ident: C33
  article-title: The curvelet transform for image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 55
  start-page: 4701
  issue: 10
  year: 2009
  end-page: 4714
  ident: C26
  article-title: A plurality of sparse representations is better than the sparsest one alone
  publication-title: IEEE Trans. Inf. Theory
– volume: 9
  start-page: 255
  issue: 4
  year: 1989
  end-page: 261
  ident: C8
  article-title: A morphological pyramidal image decomposition
  publication-title: Pattern Recognit. Lett.
– volume: 36
  start-page: 308
  issue: 4
  year: 2000
  end-page: 309
  ident: C38
  article-title: Objective image fusion performance measure
  publication-title: Electron. Lett.
– volume: 13
  start-page: 10
  issue: 1
  year: 2012
  end-page: 19
  ident: C21
  article-title: Pixel-level image fusion with simultaneous orthogonal matching pursuit
  publication-title: Inf. Fusion
– volume: 8
  start-page: 114
  issue: 2
  year: 2007
  end-page: 118
  article-title: Image fusion: advances in the state of the art
  publication-title: Inf. Fusion
– volume: 38
  start-page: 313
  issue: 7
  year: 2002
  end-page: 315
  article-title: Information measure for performance of image fusion
  publication-title: Electron. Lett.
– volume: 28
  start-page: 493
  issue: 4
  year: 2007
  end-page: 500
  article-title: Evaluation of focus measures in multi‐focus image fusion
  publication-title: Pattern Recognit. Lett.
– volume: 13
  start-page: 228
  issue: 2
  year: 2004
  end-page: 237
  article-title: Gradient‐based multiresolution image fusion
  publication-title: IEEE Trans. Image Process.
– volume: 89
  start-page: 1334
  issue: 7
  year: 2009
  end-page: 1346
  article-title: Multifocus image fusion using the nonsubsampled contourlet transform
  publication-title: Signal Process.
– volume: 8
  start-page: 119
  issue: 2
  year: 2007
  end-page: 130
  article-title: Pixel‐ and region‐based image fusion with complex wavelets
  publication-title: Inf. Fusion
– volume: 19
  start-page: 2861
  issue: 11
  year: 2010
  end-page: 2873
  article-title: Image super‐resolution via sparse representation
  publication-title: IEEE Trans. Image Process.
– volume: 15
  start-page: 3736
  issue: 2
  year: 2006
  end-page: 3745
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
– volume: 57
  start-page: 235
  issue: 3
  year: 1995
  end-page: 245
  article-title: Multisensor image fusion using the wavelet transform
  publication-title: Graph. Models Image Process.
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  end-page: 4322
  article-title: K‐SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
– start-page: 591
  year: July 2013
  end-page: 596
– volume: 12
  start-page: 74
  issue: 2
  year: 2011
  end-page: 84
  article-title: Performance comparison of different multi‐resolution transforms for image fusion
  publication-title: Inf. Fusion
– volume: 7
  start-page: 633
  issue: 6
  year: 2013
  end-page: 639
  article-title: Multi‐focus image fusion based on non‐subsampled shearlet transform
  publication-title: IET Image Process.
– volume: 26
  start-page: 971
  issue: 7
  year: 2008
  end-page: 979
  article-title: Multifocus image fusion using region segmentation and spatial frequency
  publication-title: Image vis. Comput.
– volume: 9
  start-page: 255
  issue: 4
  year: 1989
  end-page: 261
  article-title: A morphological pyramidal image decomposition
  publication-title: Pattern Recognit. Lett.
– volume: 6
  start-page: 1299
  issue: 9
  year: 2012
  end-page: 1310
  article-title: Unification of image fusion and super‐resolution using jointly trained dictionaries and local information contents
  publication-title: IET Image Process.
– volume: 27
  start-page: 1421
  issue: 10
  year: 2009
  end-page: 1432
  article-title: A new automated quality assessment algorithm for image fusion
  publication-title: Image Vis. Comput.
– volume: 9
  start-page: 156
  issue: 2
  year: 2008
  end-page: 160
  article-title: A novel similarity based quality metric for image fusion
  publication-title: Inf. Fusion
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 20
  start-page: 1838
  issue: 7
  year: 2011
  end-page: 1857
  article-title: Image deblurring and super‐resolution by adaptive sparse domain selection and adaptive regularization
  publication-title: IEEE Trans. Image Process.
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  end-page: 609
  article-title: Emergence of simple‐cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
– volume: 17
  start-page: 53
  issue: 1
  year: 2008
  end-page: 69
  article-title: Sparse representation for color image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 8
  start-page: 143
  issue: 2
  year: 2007
  end-page: 156
  article-title: Remote sensing image fusion using the curvelet transform
  publication-title: Inf. Fusion
– volume: 14
  start-page: 229
  issue: 3
  year: 2013
  end-page: 240
  article-title: Simultaneous image fusion and super‐resolution using sparse representation
  publication-title: Inf. Fusion
– volume: 2
  start-page: 169
  issue: 3
  year: 2001
  end-page: 176
  article-title: Combination of images with diverse focuses using the spatial frequency
  publication-title: Inf. Fusion
– volume: 37
  start-page: 8861
  issue: 12
  year: 2010
  end-page: 8870
  article-title: Fusion of multi‐focus images using differential evolution algorithm
  publication-title: Expert Syst. Appl.
– volume: 44
  start-page: 1066
  issue: 18
  year: 2008
  end-page: 1067
  article-title: Comments on ‘information measure for performance of image fusion
  publication-title: Electron. Lett.
– volume: 46
  start-page: 1002
  issue: 3
  year: 2013
  end-page: 1011
  article-title: Multi‐focus image fusion based on the neighbor distance
  publication-title: Pattern Recognit.
– volume: 13
  start-page: 10
  issue: 1
  year: 2012
  end-page: 19
  article-title: Pixel‐level image fusion with simultaneous orthogonal matching pursuit
  publication-title: Inf. Fusion
– year: 2008
– volume: 4
  start-page: 259
  issue: 4
  year: 2003
  end-page: 280
  article-title: A general framework for multiresolution image fusion: from pixels to regions
  publication-title: Inf. Fusion
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  end-page: 110
  article-title: Distinctive image features from scale‐invariant keypoints
  publication-title: Int. J. Comput. Vis.
– volume: 11
  start-page: 670
  issue: 6
  year: 2002
  end-page: 684
  article-title: The curvelet transform for image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 34
  start-page: 94
  issue: 1
  year: 2012
  end-page: 109
  article-title: Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 5
  start-page: 1074
  issue: 5
  year: 2011
  end-page: 1082
  article-title: Image features extraction and fusion based on joint sparse representation
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 8
  start-page: 183
  issue: 3
  year: 2014
  end-page: 190
  article-title: Image fusion using multiscale edge‐preserving decomposition based on weighted least squares filter
  publication-title: IET Image Process.
– volume: 55
  start-page: 4701
  issue: 10
  year: 2009
  end-page: 4714
  article-title: A plurality of sparse representations is better than the sparsest one alone
  publication-title: IEEE Trans. Inf. Theory
– volume: 15
  start-page: 3089
  issue: 10
  year: 2006
  end-page: 3101
  article-title: The nonsubsampled contourlet transform: theory, design, and applications
  publication-title: IEEE Trans. Image Process.
– volume: 59
  start-page: 884
  issue: 4
  year: 2010
  end-page: 892
  article-title: Multifocus image fusion and restoration with sparse representation
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  end-page: 3415
  article-title: Matching pursuits with time‐frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
– volume: 36
  start-page: 308
  issue: 4
  year: 2000
  end-page: 309
  article-title: Objective image fusion performance measure
  publication-title: Electron. Lett.
– volume-title: Image fusion: algorithms and applications
  year: 2008
  ident: e_1_2_8_3_1
– ident: e_1_2_8_13_1
  doi: 10.1016/j.inffus.2006.02.001
– ident: e_1_2_8_32_1
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: e_1_2_8_34_1
  doi: 10.1109/TIP.2002.1014998
– ident: e_1_2_8_12_1
  doi: 10.1016/j.inffus.2005.09.006
– ident: e_1_2_8_14_1
  doi: 10.1016/j.sigpro.2009.01.012
– ident: e_1_2_8_5_1
  doi: 10.1016/j.eswa.2010.06.011
– ident: e_1_2_8_25_1
  doi: 10.1049/iet-ipr.2012.0122
– ident: e_1_2_8_11_1
  doi: 10.1006/gmip.1995.1022
– ident: e_1_2_8_31_1
  doi: 10.1109/TIP.2007.911828
– ident: e_1_2_8_33_1
  doi: 10.1016/j.inffus.2010.03.002
– ident: e_1_2_8_7_1
  doi: 10.1016/j.patrec.2006.09.005
– ident: e_1_2_8_10_1
  doi: 10.1109/TIP.2004.823821
– ident: e_1_2_8_42_1
  doi: 10.1016/j.imavis.2007.12.002
– ident: e_1_2_8_29_1
  doi: 10.1109/78.258082
– ident: e_1_2_8_39_1
  doi: 10.1049/el:20000267
– ident: e_1_2_8_19_1
  doi: 10.1109/TIP.2010.2050625
– ident: e_1_2_8_18_1
  doi: 10.1109/TIP.2006.881969
– ident: e_1_2_8_36_1
  doi: 10.1109/TPAMI.2011.109
– ident: e_1_2_8_38_1
  doi: 10.1049/el:20020212
– ident: e_1_2_8_40_1
  doi: 10.1016/j.inffus.2006.09.001
– ident: e_1_2_8_16_1
  doi: 10.1049/iet-ipr.2013.0429
– ident: e_1_2_8_9_1
  doi: 10.1016/0167-8655(89)90004-4
– ident: e_1_2_8_21_1
  doi: 10.1109/TIM.2009.2026612
– ident: e_1_2_8_28_1
  doi: 10.1038/381607a0
– ident: e_1_2_8_8_1
  doi: 10.1016/S1566-2535(03)00046-0
– ident: e_1_2_8_37_1
  doi: 10.1049/el:20081754
– ident: e_1_2_8_2_1
  doi: 10.1016/j.inffus.2006.04.001
– ident: e_1_2_8_17_1
  doi: 10.1016/j.patcog.2012.09.012
– ident: e_1_2_8_26_1
  doi: 10.1109/ICIG.2013.123
– ident: e_1_2_8_35_1
  doi: 10.1109/TIP.2006.877507
– ident: e_1_2_8_22_1
  doi: 10.1016/j.inffus.2010.04.001
– ident: e_1_2_8_30_1
  doi: 10.1109/TSP.2006.881199
– ident: e_1_2_8_15_1
  doi: 10.1049/iet-ipr.2012.0558
– ident: e_1_2_8_24_1
  doi: 10.1016/j.inffus.2012.01.008
– ident: e_1_2_8_41_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_8_4_1
  doi: 10.1016/S1566-2535(01)00038-0
– ident: e_1_2_8_23_1
  doi: 10.1109/JSTSP.2011.2112332
– ident: e_1_2_8_6_1
  doi: 10.1016/j.imavis.2007.10.012
– ident: e_1_2_8_27_1
  doi: 10.1109/TIT.2009.2027565
– ident: e_1_2_8_20_1
  doi: 10.1109/TIP.2011.2108306
SSID ssj0059085
Score 2.4888852
Snippet In this study, a novel adaptive sparse representation (ASR) model is presented for simultaneous image fusion and denoising. As a powerful signal modelling...
SourceID proquest
crossref
wiley
iet
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 347
SubjectTerms adaptive sparse representation
ASR model
compact sub‐dictionaries
Computer vision
gradient information
high computational cost
high‐quality image patches
image classification
image denoising
image fusion
Image processing
image reconstruction
image representation
learning (artificial intelligence)
multifocus image sets
multimodal image sets
Noise reduction
objective assessment
potential visual artefacts
Redundant
Representations
signal modelling technique
signal reconstruction requirement
simultaneous image fusion
single redundant dictionary learning
source image patches
Strontium
Visual
visual quality
SummonAdditionalLinks – databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgXLiwI8omgxAHpEAWO3aOrKKAEGKRuFlObKNIkFYt_D8zWVoqIcKtal8q5U08eTNjzxBykGhpQChHnnUCApQ0c16CRV6hpbMm4o6n5S7f-_j6hd288tfJ8WiTv-GsDK_JuGG23FYnD3DrNvjhk5rjaiAJ6NsTAHj5AHt7BuwYnlGIheZCIXzZIXO9izsMsSrPjOO9eXlAEkfLxzwZVzl_-ZOp99Qs_DwlQX8K2fJNdLVEFmoJSU8rmy-TGVuskMVaTtJ6sY5Wye1TjtsFdWEhuqf5B3gO6r4wO0Z1YSg4nH6OmQKKuViqjR6g66PgYoYjS8tul83JpGKNvFxdPp9fe_XsBC-DCAJEs0uiNAQrYOFUxExqGcXOd4FvAumYcMzF2DqfGWZlygNjuO8yyQEOGhDW_TrpFP3CbhAqbCh8Z3iYWcZ0lEqZ-HHqdGAjcAmOd4nfMKWyurE4zrd4V2WBmyUK2FNArkJyFZLbJUfjSwZVV42_wIf4XWP3v4D7U8De5bPqPTxOAGpgXJfsNWZUsJKwPFLZQaGrAu8G-rkFgy0DkzZMLEPWhhFAZSsmCeHGovJ5a-cK7zc8w14hPNz8L29bZB4-82ob5zbpfA6_7A5Irc90t15B33RWIuE
  priority: 102
  providerName: Institution of Engineering and Technology
Title Simultaneous image fusion and denoising with adaptive sparse representation
URI http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2014.0311
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2014.0311
https://www.proquest.com/docview/1793225020
https://www.proquest.com/docview/1793254439
https://www.proquest.com/docview/1793256824
https://www.proquest.com/docview/1793257889
https://www.proquest.com/docview/1793257921
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ-rKX9bax9BLUUfow8OaLZEuPadqSdKUNWzPKXoRsSWDY3JDL_-85vqQLhRr6ZJA_G3zk8-mTjnQOIadSCwNCOfKsS2CCkmbOkxjkTbRw1kTc8bTc5Xsbj6bs-oE_dMiwOQtT5YdYL7ihZ5R8jQ6u06oKCYha6MTcLr18hik9A_YNfk2YAm3hEVus3xCySUPHWNObl6cisZ58zOU6tCm_v3jFxuD0Dm5v6M7_1Ws5_FztkA-1bqSDqqN3SccWe2S71pC09tDFPvnxK8c9grqwMKWn-T-gC-pWuCRGdWEosMxjjssDFBdgqTZ6hnxHgVfmC0vLFJfNcaTiI5leXd4PR15dMMHLYNoAStnJKA3B9BgtTWImtIhi57vAN4FwLHHMxZgvnxlmRcoDY7jvMsEBDsIPnP0T6RaPhf1MaGLDxHeGh5llTEepENKPU6cDGwEPON4jfmMpldXZxLGoxV9VRrWZVGA9BcZVaFyFxu2Rr-tHZlUqjdfAZ9hWO9TiNeCXDeD48l6NJz-fAWpmXI-cNN2owH0wJlL1g0J-AkoD0dyCwTyBsg0Ti5C1YRIwZStGhvBhUfm_tdsKvzc8xwQhPDx401OH5D2082oj5xHpLucrewxia5n2S2fqk63B7-mfKVzHFzd3gyeOJSQ8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5UAvfUHF9kHdquoBKSUPO7GPQEG7hSJEdxHiYjmxLUVqw4pd_n9n8lhYIRGp1-RLpIw9X76ZsccAX5WRFoVyEjifYYCSFz5QVOTNjPTOJsKLvF7le5aOpvznlbhagx_dXpimP8Qy4UaeUfM1OTglpJuAk1OTzNItgnJGPT0j_h3nJsZA66Ru4gGs719Or6cdI9Ox3qLeGElHyqdCLaubau_RS1b-T8_w9or0fChg6z_Q8St40UpHtt-M9WtYc9UbeNnKSNY66XwTTn6XtEzQVA6jelb-RcZg_o6yYsxUliHR3JSUIWCUg2XGmhlRHkNquZ07Vne57HYkVVswPT6aHI6C9syEoMDIAcWyV0keo_WpYJqlXBqZpD70UWgj6XnmuU-pZT633MlcRNaK0BdSIBy1H_r7WxhUN5XbBpa5OAu9FXHhODdJLqUK09ybyCVIBV4MIewspYu2oTida_FH14VtrjRaT6NxNRlXk3GHsLt8ZNZ003gK_I2utT41fwr4ZQU4Ppro8fnFPUDPrB_C524YNXoQlUWacdBEUchqqJt7MNQqUPVhUhnzPkyGpuzFqBg_LKnnW7-t6HvjA-oRIuJ3__XUJ9gYTX6d6tPx2cl7eI4Y0azr_ACDxe2d-4jaa5HvtK71D5NMJis
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA4eIL54i-sZRXwQqj2SNnn0WlwVWTzAt5A2CRS0Lu76_53psboIFnxtvxQ6yXyZySRfCDmUWhgIlCPPugQSlDRznsQib6KFsybijqflLt_7-PqZ3bzwlyly0ZyFqfQhxgtu6BklX6ODD4yr8k2GGpm5HXn5ACU9A3YCQxNSoFks-qF3hqzf0DHe6c3LU5F4n3zM5bi0KU9_fWJicpqG1xNx58_otZx-uktkoY4b6VnV0ctkyhYrZLGOIWntocNVcvuY4x5BXVhI6Wn-BnRB3ScuiVFdGAos857j8gDFBViqjR4g31HglY-hpaXEZXMcqVgjz92rp4trr74wwcsgbYBI2ckoDcH0WC1NYia0iGLnu8A3gXAscczFqJfPDLMi5YEx3HeZ4ACHwA-cfZ3MFO-F3SA0sWHiO8PDzDKmo1QI6cep04GNgAcc7xC_sZTKajVxvNTiVZVVbSYVWE-BcRUaV6FxO-R43GRQSWn8BT7CZ7VDDf8CHkwAe1dPqtd_-AYoGDYdst90owL3wZpI1Q8K-QkoDYLmFgzqBMo2TCxC1oZJwJStGBnCj0XleGu3Ff5veI4CITzc_FerPTLXv-yqu9797RaZBwiv9nRuk5nRx6fdgbhrlO6WfvUFGp8jjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+image+fusion+and+denoising+with+adaptive+sparse+representation&rft.jtitle=IET+image+processing&rft.au=Liu%2C+Yu&rft.au=Wang%2C+Zengfu&rft.date=2015-05-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=9&rft.issue=9&rft.spage=347&rft.epage=357&rft_id=info:doi/10.1049%2Fiet-ipr.2014.0311&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon