Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19
A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell response...
Saved in:
Published in | Nature immunology Vol. 21; no. 12; pp. 1506 - 1516 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.12.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1529-2908 1529-2916 1529-2916 |
DOI | 10.1038/s41590-020-00814-z |
Cover
Abstract | A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.
Sanz and colleagues examine B cell subsets in a cohort of patients with COVID-19. Severely ill patients have higher frequencies of activated extrafollicular T-bet
+
B cells that form antibody-secreting cells, the majority of which express germline sequences and are reminiscent of antibody responses observed in patients with systemic lupus erythematosus during flares. |
---|---|
AbstractList | A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling. A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.Sanz and colleagues examine B cell subsets in a cohort of patients with COVID-19. Severely ill patients have higher frequencies of activated extrafollicular T-bet+ B cells that form antibody-secreting cells, the majority of which express germline sequences and are reminiscent of antibody responses observed in patients with systemic lupus erythematosus during flares. A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling. A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling. Sanz and colleagues examine B cell subsets in a cohort of patients with COVID-19. Severely ill patients have higher frequencies of activated extrafollicular T-bet + B cells that form antibody-secreting cells, the majority of which express germline sequences and are reminiscent of antibody responses observed in patients with systemic lupus erythematosus during flares. A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling. A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling. Sanz and colleagues examine B cell subsets in a cohort of patients with COVID-19. Severely ill patients have higher frequencies of activated extrafollicular T-bet.sup.+ B cells that form antibody-secreting cells, the majority of which express germline sequences and are reminiscent of antibody responses observed in patients with systemic lupus erythematosus during flares. |
Audience | Academic |
Author | Woodruff, Matthew C. Haddad, Natalie S. Nguyen, Doan C. Diamond, Michael S. Daiss, John L. Carnahan, Robert H. Suryadevara, Naveenchandra Ghosn, Eliver Saini, Ankur Singh Crowe, James E. Derrico, Andrew Sanz, Ignacio Howell, J. Christina Lee, Saeyun Kyu, Shuya Staitieh, Bashar Morrison-Porter, Andrea Cashman, Kevin S. Hu, William T. Ozturk, Tugba Sharma, Monika Jenks, Scott A. Ramonell, Richard P. Anam, Fabliha A. Lee, F. Eun-Hyung Estrada, Jacob Chen, Weirong Tipton, Christopher M. Ley, Ariel M. Wu, Henry M. Case, James Brett Bugrovsky, Regina Le, Sang N. |
AuthorAffiliation | 3 Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA 2 Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA 10 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA 8 Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA 9 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA 6 Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA 13 These authors contributed equally: Matthew C. Woodruff, Richard P. Ramonell 12 Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA 11 Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA 1 Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University |
AuthorAffiliation_xml | – name: 3 Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA – name: 9 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA – name: 12 Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA – name: 4 MicroB-plex, Atlanta, GA, USA – name: 7 Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA – name: 1 Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA – name: 6 Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA – name: 11 Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA – name: 10 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA – name: 13 These authors contributed equally: Matthew C. Woodruff, Richard P. Ramonell – name: 8 Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA – name: 5 Department of Neurology, Emory University, Atlanta, GA, USA – name: 2 Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA |
Author_xml | – sequence: 1 givenname: Matthew C. orcidid: 0000-0002-5252-7539 surname: Woodruff fullname: Woodruff, Matthew C. organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Emory Autoimmunity Center of Excellence, Emory University – sequence: 2 givenname: Richard P. orcidid: 0000-0002-2385-0636 surname: Ramonell fullname: Ramonell, Richard P. organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University – sequence: 3 givenname: Doan C. orcidid: 0000-0002-5389-6731 surname: Nguyen fullname: Nguyen, Doan C. organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University – sequence: 4 givenname: Kevin S. orcidid: 0000-0002-2907-9264 surname: Cashman fullname: Cashman, Kevin S. organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University – sequence: 5 givenname: Ankur Singh orcidid: 0000-0003-3963-6586 surname: Saini fullname: Saini, Ankur Singh organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University – sequence: 6 givenname: Natalie S. orcidid: 0000-0002-1348-3094 surname: Haddad fullname: Haddad, Natalie S. organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, MicroB-plex – sequence: 7 givenname: Ariel M. surname: Ley fullname: Ley, Ariel M. organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University – sequence: 8 givenname: Shuya surname: Kyu fullname: Kyu, Shuya organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University – sequence: 9 givenname: J. Christina surname: Howell fullname: Howell, J. Christina organization: Department of Neurology, Emory University – sequence: 10 givenname: Tugba surname: Ozturk fullname: Ozturk, Tugba organization: Department of Neurology, Emory University – sequence: 11 givenname: Saeyun surname: Lee fullname: Lee, Saeyun organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University – sequence: 12 givenname: Naveenchandra surname: Suryadevara fullname: Suryadevara, Naveenchandra organization: Vanderbilt Vaccine Center, Vanderbilt University Medical Center – sequence: 13 givenname: James Brett surname: Case fullname: Case, James Brett organization: Department of Medicine, Washington University School of Medicine – sequence: 14 givenname: Regina surname: Bugrovsky fullname: Bugrovsky, Regina organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University – sequence: 15 givenname: Weirong surname: Chen fullname: Chen, Weirong organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University – sequence: 16 givenname: Jacob surname: Estrada fullname: Estrada, Jacob organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University – sequence: 17 givenname: Andrea surname: Morrison-Porter fullname: Morrison-Porter, Andrea organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University – sequence: 18 givenname: Andrew surname: Derrico fullname: Derrico, Andrew organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University – sequence: 19 givenname: Fabliha A. orcidid: 0000-0002-2265-2726 surname: Anam fullname: Anam, Fabliha A. organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University – sequence: 20 givenname: Monika surname: Sharma fullname: Sharma, Monika organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University – sequence: 21 givenname: Henry M. surname: Wu fullname: Wu, Henry M. organization: Department of Medicine, Division of Infectious Diseases, Emory University – sequence: 22 givenname: Sang N. surname: Le fullname: Le, Sang N. organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University – sequence: 23 givenname: Scott A. surname: Jenks fullname: Jenks, Scott A. organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Emory Autoimmunity Center of Excellence, Emory University – sequence: 24 givenname: Christopher M. surname: Tipton fullname: Tipton, Christopher M. organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Emory Autoimmunity Center of Excellence, Emory University – sequence: 25 givenname: Bashar surname: Staitieh fullname: Staitieh, Bashar organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University – sequence: 26 givenname: John L. surname: Daiss fullname: Daiss, John L. organization: MicroB-plex – sequence: 27 givenname: Eliver orcidid: 0000-0001-7258-906X surname: Ghosn fullname: Ghosn, Eliver organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University – sequence: 28 givenname: Michael S. orcidid: 0000-0002-8791-3165 surname: Diamond fullname: Diamond, Michael S. organization: Department of Medicine, Washington University School of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, Department of Pathology and Immunology, Washington University School of Medicine, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine – sequence: 29 givenname: Robert H. surname: Carnahan fullname: Carnahan, Robert H. organization: Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Department of Pediatrics, Vanderbilt University Medical Center – sequence: 30 givenname: James E. orcidid: 0000-0002-0049-1079 surname: Crowe fullname: Crowe, James E. organization: Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Department of Pediatrics, Vanderbilt University Medical Center – sequence: 31 givenname: William T. surname: Hu fullname: Hu, William T. organization: Department of Neurology, Emory University – sequence: 32 givenname: F. Eun-Hyung orcidid: 0000-0002-6133-5942 surname: Lee fullname: Lee, F. Eun-Hyung email: f.e.lee@emory.edu organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University – sequence: 33 givenname: Ignacio orcidid: 0000-0003-4182-587X surname: Sanz fullname: Sanz, Ignacio email: ignacio.sanz@emory.edu organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Emory Autoimmunity Center of Excellence, Emory University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33028979$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt9v1SAUxxsz437oP-CDIfHFPXQChVJeTObd1JssWaKLr4RS2rFQuALV7f71Uu-88y5maUih_XzPOXzPOSz2nHe6KF4jeIJg1byPBFEOS4jzgg0i5fpZcYAo5iXmqN7b7mGzXxzGeAMhIqwmL4r9qoK44YwfFPL8NgXZe2uNmqwM4CNQ2loQdFx5F3UEyoegrUwa_DLpGjg9ZYE1a-MGIF0yre9MxqTrwOhDazqT7oBxYHH5fXlWIv6yeN5LG_Wr-_dRcfXp_Grxpby4_LxcnF6UijKayp5KJVldw1YRpbq2YQgjKjEhsMEK5XJbSnrVEUz7RtKupp3qqkbmAyeYV0fFh03Y1dSOulPazWWKVTCjDHfCSyN2_zhzLQb_UzBWcQZxDvDuPkDwPyYdkxhNnL2QTvspilwJxzWqaprRt4_QGz8Fl2-XKVZhiOqaPVCDtFoY1_ucV81BxWlNYQMZZ3Pak_9Q-en0aFRueG_y9x3B8Y4gM0nfpkFOMYrlt6-77Jt_Tdm68bf_GcAbQAUfY9D9FkFQzEMmNkMm8pCJP0Mm1lnUPBIpk2QyfjbW2Kel1UYacx436PDg3BOq3_-K5Vo |
CitedBy_id | crossref_primary_10_1016_j_autrev_2021_102883 crossref_primary_10_1002_art_42157 crossref_primary_10_1038_s41587_021_01131_y crossref_primary_10_1093_infdis_jiad603 crossref_primary_10_1007_s11357_024_01227_8 crossref_primary_10_1038_s41591_021_01329_2 crossref_primary_10_3389_fimmu_2022_988536 crossref_primary_10_1021_acs_molpharmaceut_4c00297 crossref_primary_10_1186_s13256_024_04889_2 crossref_primary_10_1038_s43587_021_00114_7 crossref_primary_10_1016_j_celrep_2024_114045 crossref_primary_10_1016_j_prp_2022_153848 crossref_primary_10_1126_scitranslmed_abl6141 crossref_primary_10_1016_j_cell_2022_01_018 crossref_primary_10_3389_fmed_2022_934270 crossref_primary_10_1136_jitc_2021_002550 crossref_primary_10_1016_j_jtauto_2024_100252 crossref_primary_10_3390_ijms222212539 crossref_primary_10_1111_imr_12975 crossref_primary_10_1016_j_jaut_2024_103299 crossref_primary_10_1038_s41422_021_00541_6 crossref_primary_10_3389_fcimb_2022_988604 crossref_primary_10_18231_j_ijcbr_2023_037 crossref_primary_10_1016_j_jaip_2021_01_012 crossref_primary_10_1016_j_cell_2020_12_015 crossref_primary_10_3390_v15030701 crossref_primary_10_1371_journal_pone_0291131 crossref_primary_10_1177_15353702231157941 crossref_primary_10_1084_jem_20212553 crossref_primary_10_1681_ASN_2021040573 crossref_primary_10_1089_vim_2021_0054 crossref_primary_10_1093_cei_uxac079 crossref_primary_10_3390_v15010175 crossref_primary_10_1093_cei_uxad044 crossref_primary_10_26508_lsa_202402774 crossref_primary_10_1038_s41467_022_30863_x crossref_primary_10_1016_j_smim_2024_101875 crossref_primary_10_1055_s_0041_1739495 crossref_primary_10_1097_RHU_0000000000001733 crossref_primary_10_1016_j_coi_2023_102300 crossref_primary_10_1038_s41590_022_01248_5 crossref_primary_10_1016_j_jim_2023_113437 crossref_primary_10_1038_s41590_021_01077_y crossref_primary_10_3390_cells12050774 crossref_primary_10_1084_jem_20202617 crossref_primary_10_1111_bcp_14792 crossref_primary_10_1128_msystems_00058_22 crossref_primary_10_12998_wjcc_v11_i10_2140 crossref_primary_10_1016_j_jiph_2023_01_016 crossref_primary_10_1016_j_celrep_2022_110393 crossref_primary_10_1002_art_42146 crossref_primary_10_1016_j_arr_2022_101818 crossref_primary_10_3390_v14051082 crossref_primary_10_1515_mr_2024_0013 crossref_primary_10_1016_j_nmd_2022_12_001 crossref_primary_10_1111_imr_12953 crossref_primary_10_1016_j_jaut_2024_103276 crossref_primary_10_4049_jimmunol_2100339 crossref_primary_10_1016_j_imlet_2024_106937 crossref_primary_10_1080_08820139_2023_2187303 crossref_primary_10_1007_s00296_023_05319_0 crossref_primary_10_1038_s41590_021_01042_9 crossref_primary_10_1016_j_ijid_2021_07_015 crossref_primary_10_1073_pnas_2217902120 crossref_primary_10_1136_annrheumdis_2021_221711 crossref_primary_10_1097_TP_0000000000004889 crossref_primary_10_3389_fmicb_2020_588409 crossref_primary_10_1186_s12979_023_00361_9 crossref_primary_10_1038_s41584_024_01179_5 crossref_primary_10_3389_fimmu_2023_1055457 crossref_primary_10_1128_mBio_01503_21 crossref_primary_10_1146_annurev_pathmechdis_031521_042754 crossref_primary_10_3389_fimmu_2021_722027 crossref_primary_10_1038_s41598_022_23923_1 crossref_primary_10_1016_j_xcrm_2022_100845 crossref_primary_10_1038_s41541_021_00389_2 crossref_primary_10_1007_s12026_023_09449_2 crossref_primary_10_1126_science_2020_5_54_twil crossref_primary_10_1186_s13073_022_01100_3 crossref_primary_10_1093_oxfimm_iqab018 crossref_primary_10_7554_eLife_79924 crossref_primary_10_47360_1995_4484_2021_384_393 crossref_primary_10_1016_j_celrep_2022_111895 crossref_primary_10_1080_22221751_2022_2130101 crossref_primary_10_1111_sji_13345 crossref_primary_10_1111_sji_13344 crossref_primary_10_1111_all_15302 crossref_primary_10_1016_j_micinf_2021_104807 crossref_primary_10_3389_fimmu_2023_1241474 crossref_primary_10_3389_fimmu_2024_1450380 crossref_primary_10_1093_jleuko_qiae083 crossref_primary_10_1093_oxfimm_iqab006 crossref_primary_10_1016_j_virol_2024_110067 crossref_primary_10_3389_fimmu_2022_943563 crossref_primary_10_1111_sji_13313 crossref_primary_10_3390_vaccines11020408 crossref_primary_10_3389_fimmu_2021_821729 crossref_primary_10_1515_cclm_2022_0239 crossref_primary_10_1182_bloodadvances_2024013267 crossref_primary_10_1007_s42977_023_00153_8 crossref_primary_10_3390_cimb46010003 crossref_primary_10_3389_fimmu_2022_970906 crossref_primary_10_1016_j_jaci_2023_02_020 crossref_primary_10_3389_fimmu_2023_974343 crossref_primary_10_1186_s41232_023_00255_9 crossref_primary_10_1021_acs_jproteome_4c00546 crossref_primary_10_1093_jalm_jfad123 crossref_primary_10_1016_j_mucimm_2023_02_008 crossref_primary_10_2139_ssrn_3866846 crossref_primary_10_1172_jci_insight_152288 crossref_primary_10_3390_ijms232213951 crossref_primary_10_1177_1721727X221098970 crossref_primary_10_1097_TP_0000000000004671 crossref_primary_10_1126_scitranslmed_abi7428 crossref_primary_10_1016_j_cll_2023_05_002 crossref_primary_10_3389_fimmu_2021_769442 crossref_primary_10_1016_j_cell_2021_01_050 crossref_primary_10_1136_annrheumdis_2021_219957 crossref_primary_10_4103_bhsj_bhsj_49_23 crossref_primary_10_1016_j_jaci_2023_10_009 crossref_primary_10_3390_v15102100 crossref_primary_10_1134_S1019331622040062 crossref_primary_10_1016_j_biopha_2025_117936 crossref_primary_10_3233_HAB_230017 crossref_primary_10_4049_immunohorizons_2100011 crossref_primary_10_1002_ctm2_720 crossref_primary_10_1016_j_ijid_2021_06_031 crossref_primary_10_1016_j_celrep_2021_108728 crossref_primary_10_7554_eLife_86014 crossref_primary_10_1016_j_isci_2021_103672 crossref_primary_10_1016_j_bbagrm_2022_194828 crossref_primary_10_3389_fimmu_2021_742631 crossref_primary_10_1016_j_coi_2023_102286 crossref_primary_10_5363_tits_26_9_79 crossref_primary_10_1038_s41467_021_25509_3 crossref_primary_10_1038_s41590_024_01858_1 crossref_primary_10_4049_jimmunol_2300027 crossref_primary_10_3389_fimmu_2022_988125 crossref_primary_10_3390_v15112250 crossref_primary_10_1016_j_immuni_2020_11_017 crossref_primary_10_1038_s41467_021_25102_8 crossref_primary_10_1016_j_imlet_2023_03_003 crossref_primary_10_1038_s41598_021_81629_2 crossref_primary_10_3390_vaccines10101612 crossref_primary_10_1016_j_immuni_2021_08_025 crossref_primary_10_1038_s41586_021_03631_y crossref_primary_10_1016_j_celrep_2025_115366 crossref_primary_10_1016_j_intimp_2021_108036 crossref_primary_10_3389_fimmu_2023_1241038 crossref_primary_10_1080_08820139_2021_1903033 crossref_primary_10_1038_s41467_023_36686_8 crossref_primary_10_3389_fmed_2021_808608 crossref_primary_10_1016_j_immuni_2024_11_006 crossref_primary_10_1016_j_immuni_2020_11_006 crossref_primary_10_1016_j_immuni_2022_02_007 crossref_primary_10_1016_j_isci_2021_103659 crossref_primary_10_3389_fimmu_2023_1224702 crossref_primary_10_3390_microorganisms12030617 crossref_primary_10_1016_j_rdc_2024_09_001 crossref_primary_10_3389_fimmu_2022_880829 crossref_primary_10_1126_scitranslmed_abf8654 crossref_primary_10_1016_j_ijid_2022_04_019 crossref_primary_10_1128_mSphere_00726_21 crossref_primary_10_7554_eLife_67397 crossref_primary_10_1016_j_immuni_2024_03_016 crossref_primary_10_1002_jmv_28000 crossref_primary_10_1002_art_42094 crossref_primary_10_1016_j_ijid_2022_07_026 crossref_primary_10_1016_j_isci_2023_106260 crossref_primary_10_1016_j_rdc_2021_04_006 crossref_primary_10_1111_pai_13434 crossref_primary_10_3389_fimmu_2023_1254310 crossref_primary_10_3389_fimmu_2024_1341600 crossref_primary_10_3389_fneur_2024_1465787 crossref_primary_10_3390_covid4090100 crossref_primary_10_1146_annurev_immunol_101921_040450 crossref_primary_10_3389_fimmu_2022_826152 crossref_primary_10_1111_1756_185X_14724 crossref_primary_10_3389_fimmu_2021_738123 crossref_primary_10_3389_fimmu_2022_1021370 crossref_primary_10_1038_s41423_021_00754_0 crossref_primary_10_1136_bmj_n436 crossref_primary_10_3389_fimmu_2021_686029 crossref_primary_10_20411_pai_v7i2_550 crossref_primary_10_3389_fimmu_2023_1077236 crossref_primary_10_3389_fmed_2022_950452 crossref_primary_10_1016_j_bpj_2021_05_025 crossref_primary_10_3389_fragi_2021_715981 crossref_primary_10_1016_j_intimp_2021_108254 crossref_primary_10_1126_sciimmunol_abl5652 crossref_primary_10_1016_j_celrep_2023_112630 crossref_primary_10_1038_s41541_024_00886_0 crossref_primary_10_1093_cei_uxac103 crossref_primary_10_1093_cei_uxac104 crossref_primary_10_1097_MCP_0000000000000775 crossref_primary_10_1016_j_immuni_2021_09_011 crossref_primary_10_15789_2220_7619_SIM_17596 crossref_primary_10_1186_s12969_021_00568_4 crossref_primary_10_1089_vim_2021_0191 crossref_primary_10_1007_s12275_022_2037_8 crossref_primary_10_1016_j_immuni_2022_09_006 crossref_primary_10_1111_imr_13115 crossref_primary_10_3389_fimmu_2020_611004 crossref_primary_10_2139_ssrn_3918293 crossref_primary_10_1038_s41467_023_43504_8 crossref_primary_10_1146_annurev_immunol_101921_042422 crossref_primary_10_3389_fimmu_2021_582166 crossref_primary_10_1038_s41592_022_01450_1 crossref_primary_10_1016_j_sjbs_2023_103821 crossref_primary_10_3389_fimmu_2021_690477 crossref_primary_10_2174_1570159X19666210330094017 crossref_primary_10_1038_s41598_023_37606_y crossref_primary_10_22391_fppc_1049314 crossref_primary_10_1016_j_transci_2021_103063 crossref_primary_10_1002_cti2_1339 crossref_primary_10_24075_brsmu_2024_023 crossref_primary_10_1111_joim_13310 crossref_primary_10_1126_sciimmunol_adj4748 crossref_primary_10_1016_j_tcm_2022_04_004 crossref_primary_10_1038_s41597_025_04510_1 crossref_primary_10_1007_s10875_022_01256_y crossref_primary_10_3389_fphys_2023_1203723 crossref_primary_10_1097_BOR_0000000000000776 crossref_primary_10_1084_jem_20202001 crossref_primary_10_1038_s41467_023_40012_7 crossref_primary_10_1186_s12014_024_09457_w crossref_primary_10_3389_fimmu_2022_853682 crossref_primary_10_47360_1995_4484_2021_119_128 crossref_primary_10_1016_j_cger_2022_04_002 crossref_primary_10_3389_fimmu_2022_993754 crossref_primary_10_1002_jmv_29001 crossref_primary_10_1038_s41584_020_00544_4 crossref_primary_10_3389_fimmu_2024_1395684 crossref_primary_10_15252_embr_202255747 crossref_primary_10_3389_fimmu_2022_1007068 crossref_primary_10_1126_sciimmunol_adj5948 crossref_primary_10_1016_j_immuni_2022_01_002 crossref_primary_10_3389_fimmu_2022_912336 crossref_primary_10_1016_j_cossms_2024_101191 crossref_primary_10_1016_j_trsl_2020_12_007 crossref_primary_10_1038_s41366_023_01344_y crossref_primary_10_1371_journal_pone_0245424 crossref_primary_10_3389_fimmu_2022_946786 crossref_primary_10_1016_j_eng_2022_01_003 crossref_primary_10_1038_s42003_024_06282_7 crossref_primary_10_1182_blood_2020010459 crossref_primary_10_1002_JLB_4COVA0121_084RR crossref_primary_10_1111_1756_185X_14767 crossref_primary_10_1038_s41590_021_00901_9 crossref_primary_10_3389_fimmu_2024_1348041 crossref_primary_10_3390_v15020272 crossref_primary_10_1016_j_cell_2022_09_032 crossref_primary_10_1089_vim_2023_0045 crossref_primary_10_1016_j_isci_2021_103325 crossref_primary_10_1172_jci_insight_177729 crossref_primary_10_1093_infdis_jiab174 crossref_primary_10_1016_j_chom_2021_06_009 crossref_primary_10_3390_ijms232315142 crossref_primary_10_47360_1995_4484_2021_5_30 crossref_primary_10_1126_sciadv_abg4081 crossref_primary_10_1155_2024_7112940 crossref_primary_10_1016_j_imbio_2023_152392 crossref_primary_10_1172_jci_insight_166602 crossref_primary_10_1016_j_cll_2021_10_001 crossref_primary_10_4049_jimmunol_2100135 crossref_primary_10_1038_s41366_021_01016_9 crossref_primary_10_1093_ckj_sfac174 crossref_primary_10_1126_sciimmunol_adj7029 crossref_primary_10_3390_pathogens13060514 crossref_primary_10_1093_intimm_dxab008 crossref_primary_10_3389_fimmu_2021_804808 crossref_primary_10_1016_j_jinf_2023_05_023 crossref_primary_10_1126_science_adj4857 crossref_primary_10_1002_cti2_1245 crossref_primary_10_1016_j_celrep_2021_109414 crossref_primary_10_3390_cells10102545 crossref_primary_10_18663_tjcl_1544956 crossref_primary_10_1007_s11102_024_01462_4 crossref_primary_10_1016_j_pccm_2024_11_006 crossref_primary_10_4049_jimmunol_2300670 crossref_primary_10_3390_cells11131991 crossref_primary_10_3390_ijerph19010042 crossref_primary_10_3389_fcell_2021_725606 crossref_primary_10_1371_journal_pone_0285025 crossref_primary_10_1182_blood_2021011871 crossref_primary_10_1186_s12929_022_00833_y crossref_primary_10_1371_journal_pone_0309316 crossref_primary_10_3389_fcimb_2022_909218 crossref_primary_10_1093_ajcp_aqab087 crossref_primary_10_1055_a_1701_2809 crossref_primary_10_3389_fimmu_2022_807104 crossref_primary_10_1212_NXI_0000000000001125 crossref_primary_10_1016_j_celrep_2021_109798 crossref_primary_10_1172_JCI162192 crossref_primary_10_20411_pai_v8i1_572 crossref_primary_10_3389_fimmu_2024_1505719 crossref_primary_10_1002_jor_25445 crossref_primary_10_1038_s41467_022_34145_4 crossref_primary_10_1038_s41598_023_37405_5 crossref_primary_10_1111_sji_13192 crossref_primary_10_1038_s41591_022_01724_3 crossref_primary_10_1002_jmv_29851 crossref_primary_10_1038_s41577_021_00522_1 crossref_primary_10_1016_j_ijid_2020_10_032 crossref_primary_10_1016_j_jiph_2022_10_025 crossref_primary_10_3389_fmed_2022_818882 crossref_primary_10_1007_s00018_022_04433_9 crossref_primary_10_1111_imr_13013 crossref_primary_10_2139_ssrn_3940630 crossref_primary_10_1038_s41385_021_00410_w crossref_primary_10_17816_rmmar111889 crossref_primary_10_1038_s41467_024_54228_8 crossref_primary_10_1128_mBio_02940_20 crossref_primary_10_1159_000517659 crossref_primary_10_3390_vaccines11111705 crossref_primary_10_1016_j_jtauto_2022_100154 crossref_primary_10_1038_s41563_024_02037_1 crossref_primary_10_4049_immunohorizons_2200005 crossref_primary_10_17264_stmarieng_13_29 crossref_primary_10_3390_biomedicines10092242 crossref_primary_10_1016_j_ijantimicag_2020_106261 crossref_primary_10_1038_s41591_021_01542_z crossref_primary_10_1038_s41590_024_02035_0 crossref_primary_10_1016_j_jdsr_2022_12_002 crossref_primary_10_4049_jimmunol_2200944 crossref_primary_10_4103_ijmr_ijmr_70_22 crossref_primary_10_3390_v16040611 crossref_primary_10_1038_s41586_023_07015_2 crossref_primary_10_4049_jimmunol_2001420 crossref_primary_10_1158_2326_6066_CIR_21_0675 crossref_primary_10_1002_path_5642 crossref_primary_10_1080_14397595_2020_1868673 crossref_primary_10_1016_j_jhep_2022_07_008 crossref_primary_10_1038_s41591_020_1140_9 crossref_primary_10_3389_fphys_2020_571416 crossref_primary_10_7554_eLife_72619 crossref_primary_10_1111_1756_185X_14238 crossref_primary_10_1093_braincomms_fcad218 crossref_primary_10_1016_j_clim_2022_108937 crossref_primary_10_1172_JCI152042 crossref_primary_10_3389_fimmu_2021_616650 crossref_primary_10_1038_s41586_022_05273_0 crossref_primary_10_1016_j_trim_2023_101791 crossref_primary_10_1126_sciimmunol_abh0891 crossref_primary_10_1183_13993003_00918_2021 crossref_primary_10_3390_ijms26041751 crossref_primary_10_3390_pathophysiology29020020 crossref_primary_10_3389_fimmu_2022_868724 crossref_primary_10_1016_j_isci_2023_106124 crossref_primary_10_1016_j_immuno_2024_100042 crossref_primary_10_3389_fimmu_2020_610688 crossref_primary_10_1038_s41564_023_01505_9 crossref_primary_10_3390_vaccines11061127 crossref_primary_10_1126_scitranslmed_abn5168 crossref_primary_10_3389_fimmu_2024_1427075 crossref_primary_10_4049_jimmunol_2200409 crossref_primary_10_1038_s41577_023_00933_2 crossref_primary_10_1111_imr_13068 crossref_primary_10_1111_imr_70005 crossref_primary_10_1111_imr_70004 crossref_primary_10_1111_imm_13564 crossref_primary_10_3389_fbioe_2022_1052436 crossref_primary_10_1038_s41586_022_05371_z crossref_primary_10_3389_fmed_2023_1271198 crossref_primary_10_1007_s11357_023_00887_2 crossref_primary_10_2174_138620732401210113110410 crossref_primary_10_1093_pnasnexus_pgaf006 crossref_primary_10_3389_fimmu_2021_709759 crossref_primary_10_1038_s41467_024_50997_4 crossref_primary_10_1371_journal_pcbi_1009778 crossref_primary_10_1038_s43587_021_00156_x crossref_primary_10_1093_infdis_jiac091 crossref_primary_10_3390_life13112121 crossref_primary_10_1007_s10875_021_01133_0 crossref_primary_10_1038_s41541_023_00724_9 crossref_primary_10_1002_eji_202149529 crossref_primary_10_1016_j_cytogfr_2021_03_001 crossref_primary_10_1016_j_molimm_2021_06_021 crossref_primary_10_1016_j_cell_2020_10_051 crossref_primary_10_1016_j_mad_2022_111667 crossref_primary_10_15252_emmm_202217341 crossref_primary_10_3389_fimmu_2025_1535014 crossref_primary_10_3390_covid2040033 crossref_primary_10_1126_sciimmunol_abf8870 crossref_primary_10_1038_s41590_024_02010_9 crossref_primary_10_3390_molecules26165004 crossref_primary_10_7326_M21_1043 crossref_primary_10_1212_NXI_0000000000001067 crossref_primary_10_1097_MD_0000000000039056 crossref_primary_10_1016_j_gendis_2022_04_007 crossref_primary_10_1016_j_hfc_2022_08_006 crossref_primary_10_1016_j_imlet_2021_03_012 crossref_primary_10_1371_journal_pmed_1003648 crossref_primary_10_1126_sciadv_ado1331 crossref_primary_10_3389_fmolb_2022_804109 crossref_primary_10_1038_s41467_024_48267_4 crossref_primary_10_2139_ssrn_3910805 crossref_primary_10_1371_journal_ppat_1010297 crossref_primary_10_3390_v15051215 crossref_primary_10_47360_1995_4484_2023_397_420 crossref_primary_10_1093_ofid_ofac171 crossref_primary_10_1111_eci_13661 crossref_primary_10_14348_molcells_2021_0075 crossref_primary_10_1016_j_jaut_2024_103218 crossref_primary_10_15789_2220_7619_PRD_16670 crossref_primary_10_3389_fimmu_2022_964976 crossref_primary_10_3390_pathogens12060815 crossref_primary_10_3389_fimmu_2023_1213344 crossref_primary_10_1016_j_immuni_2022_06_013 crossref_primary_10_1016_j_jtauto_2025_100270 crossref_primary_10_1038_s41590_022_01367_z crossref_primary_10_3390_ijms23063372 crossref_primary_10_1016_j_jaut_2023_103070 crossref_primary_10_1016_j_jim_2022_113327 crossref_primary_10_1038_s41385_021_00464_w crossref_primary_10_1007_s00109_021_02161_4 crossref_primary_10_3389_fimmu_2021_649567 crossref_primary_10_1016_j_cell_2021_01_007 crossref_primary_10_3389_fimmu_2021_815404 crossref_primary_10_1016_j_bbrc_2020_10_079 crossref_primary_10_1016_j_isci_2023_106935 crossref_primary_10_1016_j_jaut_2024_103320 crossref_primary_10_1016_j_clim_2022_108991 crossref_primary_10_3389_fimmu_2020_571481 crossref_primary_10_3390_v15030782 crossref_primary_10_1016_j_bbih_2024_100802 crossref_primary_10_1016_j_xcrm_2022_100663 crossref_primary_10_1186_s12979_021_00245_w crossref_primary_10_3389_fbinf_2022_1044975 crossref_primary_10_1002_art_41697 crossref_primary_10_1007_s00292_021_01024_6 crossref_primary_10_1093_cid_ciab732 crossref_primary_10_1016_j_eclinm_2022_101783 crossref_primary_10_1007_s11033_021_07020_6 crossref_primary_10_1016_j_vaccine_2024_126544 crossref_primary_10_1183_16000617_0197_2022 crossref_primary_10_1038_s41467_024_46053_w crossref_primary_10_1182_blood_2024025010 crossref_primary_10_47360_1995_4484_2024_32_54 crossref_primary_10_1002_ijc_34048 crossref_primary_10_1007_s10875_023_01468_w crossref_primary_10_1007_s12272_024_01529_7 crossref_primary_10_3390_jcm12134370 crossref_primary_10_15789_1563_0625_COI_2852 crossref_primary_10_1186_s10020_024_00965_x crossref_primary_10_1016_j_immuni_2025_02_025 crossref_primary_10_1136_annrheumdis_2021_220349 crossref_primary_10_1186_s12985_022_01783_5 crossref_primary_10_1038_s41590_024_01887_w crossref_primary_10_3389_fimmu_2022_840707 crossref_primary_10_3389_fmicb_2023_1259960 crossref_primary_10_1016_j_ijscr_2023_109218 crossref_primary_10_26442_00403660_2021_05_200799 crossref_primary_10_1038_s41467_022_32867_z crossref_primary_10_1016_j_vaccine_2023_06_011 crossref_primary_10_1371_journal_pone_0261656 crossref_primary_10_1007_s11904_021_00590_x crossref_primary_10_3389_fimmu_2021_649458 crossref_primary_10_1016_j_ccl_2022_03_006 crossref_primary_10_3389_fmicb_2024_1342749 crossref_primary_10_1136_bmjgast_2020_000556 crossref_primary_10_1038_s42003_021_01649_6 crossref_primary_10_26442_00403660_2023_05_202246 crossref_primary_10_3389_fimmu_2022_835104 crossref_primary_10_1093_bib_bbab043 crossref_primary_10_1038_s41467_023_39734_5 crossref_primary_10_3390_cells11010067 crossref_primary_10_1038_s41392_023_01650_x crossref_primary_10_1038_s41586_023_05736_y crossref_primary_10_12688_f1000research_121829_1 crossref_primary_10_12688_f1000research_121829_2 crossref_primary_10_3389_fped_2022_790273 crossref_primary_10_12688_f1000research_121829_3 crossref_primary_10_1038_s41587_021_01155_4 crossref_primary_10_1038_s41577_021_00657_1 crossref_primary_10_3389_fimmu_2024_1321236 crossref_primary_10_1265_ehpm_23_00361 crossref_primary_10_3389_fimmu_2022_938011 crossref_primary_10_1080_26895293_2021_1977186 crossref_primary_10_1007_s00011_021_01525_3 crossref_primary_10_1073_pnas_2300644120 crossref_primary_10_1093_intimm_dxad041 crossref_primary_10_1016_j_cytogfr_2021_01_004 crossref_primary_10_1002_eji_202149475 crossref_primary_10_1126_sciimmunol_abm9060 crossref_primary_10_1038_s41423_023_01095_w crossref_primary_10_1073_pnas_2204607119 crossref_primary_10_1172_JCI154886 crossref_primary_10_15789_2220_7619_THC_1882 crossref_primary_10_1016_j_cell_2021_02_015 crossref_primary_10_1186_s10020_021_00422_z crossref_primary_10_1016_j_jconrel_2021_09_028 crossref_primary_10_1016_j_csbj_2022_11_001 crossref_primary_10_1038_s41590_020_00822_z crossref_primary_10_1016_j_immuni_2022_05_004 crossref_primary_10_1016_j_bbadis_2022_166592 crossref_primary_10_1016_j_immuni_2022_05_005 crossref_primary_10_1002_eji_202451391 crossref_primary_10_3389_fimmu_2022_837629 crossref_primary_10_3389_fimmu_2024_1502937 crossref_primary_10_37349_ei_2021_00011 crossref_primary_10_1126_scitranslmed_adq1789 crossref_primary_10_3390_cells13242063 crossref_primary_10_3389_fimmu_2021_719023 crossref_primary_10_1038_s41598_022_25543_1 crossref_primary_10_3390_biomedicines12061306 crossref_primary_10_3390_antib13030065 crossref_primary_10_1016_j_immuni_2023_07_007 crossref_primary_10_1126_scitranslmed_adh1315 crossref_primary_10_3389_fimmu_2023_1133225 crossref_primary_10_3389_fimmu_2024_1326823 crossref_primary_10_3390_v14030646 |
Cites_doi | 10.1073/pnas.1921388117 10.1038/s41591-020-0965-6 10.1056/NEJMc2007575 10.1089/vim.2019.0207 10.1126/science.abc8511 10.1084/jem.20151978 10.1038/s41587-020-0634-9 10.2174/187152612800564437 10.1016/S2213-2600(20)30226-5 10.1111/imr.12754 10.1016/j.chom.2014.06.001 10.1093/cid/ciaa449 10.1016/j.immuni.2015.06.013 10.1016/j.cell.2020.08.025 10.1016/j.xcrm.2020.100040 10.1016/j.jbi.2019.103208 10.3389/fimmu.2020.01708 10.1371/journal.pmed.0030237 10.1038/ni.3175 10.1126/science.abb7269 10.4049/jimmunol.1501209 10.1001/jama.2020.12603 10.1111/imr.12660 10.1038/s41590-018-0056-8 10.1016/j.immuni.2019.04.004 10.1016/j.cell.2017.11.036 10.1172/JCI70084 10.1111/imr.12741 10.1002/art.30599 10.3389/fimmu.2019.02768 10.1016/j.molimm.2009.11.019 10.1056/NEJMoa2021436 10.1172/jci.insight.87310 10.3389/fimmu.2019.02458 10.4049/jimmunol.1700929 10.1038/s41586-020-2571-7 10.1186/ar3042 10.1038/s41590-019-0419-9 10.1080/22221751.2020.1762515 10.1038/nbt.4314 10.7554/eLife.41641 10.1038/s41586-020-2548-6 10.1038/nri2729 10.1186/s13075-017-1438-2 10.1002/art.41285 10.1126/science.1073924 10.1038/s41586-020-2588-y 10.1002/art.41425 10.1172/JCI91250 10.1016/S0140-6736(20)30628-0 10.1056/NEJMc2025179 10.1016/j.coi.2014.02.009 10.1007/s12021-018-9392-y 10.1128/JVI.06075-11 10.1101/2020.07.13.190140 10.1016/j.immuni.2018.08.015 10.1073/pnas.1901340116 10.4049/jimmunol.1500055 10.1016/j.transci.2020.102856 10.1038/s41392-020-0148-4 10.4049/jimmunol.1002932 10.1084/jem.189.10.1639 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 COPYRIGHT 2020 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7T5 7TK 7TM 7U9 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/s41590-020-00814-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Biological Science Database (NC LIVE) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1529-2916 |
EndPage | 1516 |
ExternalDocumentID | PMC7739702 A650807972 33028979 10_1038_s41590_020_00814_z |
Genre | Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging) grantid: R01-AG054991 funderid: https://doi.org/10.13039/100000049 – fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA) grantid: HR001117S0019 funderid: https://doi.org/10.13039/100000185 – fundername: Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID) grantid: R01 AI127828; 75N93019C00074; R01 AI127828; U19-AI110483; P01-AI125180-01; R37-AI049660; P01-AI125180-01; 1R01AI121252; 1U01AI141993 funderid: https://doi.org/10.13039/100006492 – fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI) grantid: T32-HL116271-07 funderid: https://doi.org/10.13039/100000050 – fundername: NIAID NIH HHS grantid: P01 AI125180 – fundername: NIAID NIH HHS grantid: 75N93019C00074 – fundername: NHLBI NIH HHS grantid: T32 HL116271 – fundername: NIAID NIH HHS grantid: R01 AI121252 – fundername: NIAID NIH HHS grantid: R01 AI127828 – fundername: NIAID NIH HHS grantid: R37 AI049660 – fundername: NIA NIH HHS grantid: RF1 AG054991 – fundername: NCATS NIH HHS grantid: UL1 TR000424 – fundername: NIAID NIH HHS grantid: T32 AI070081 – fundername: NIAID NIH HHS grantid: U19 AI110483 |
GroupedDBID | --- .55 0R~ 123 29M 2FS 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABNNU ABOCM ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACUHS ADBBV ADNMO AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EAS EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ISR ITC L-9 LK8 M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WH7 X7M Y6R ZXP AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT AGQPQ CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QP 7QR 7T5 7TK 7TM 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c575t-f5aca7660bc4ccdb871215a244082c1289b54fcd425f8a5d65dcd38af8a94293 |
IEDL.DBID | 7X7 |
ISSN | 1529-2908 1529-2916 |
IngestDate | Thu Aug 21 14:03:53 EDT 2025 Fri Sep 05 13:04:22 EDT 2025 Fri Jul 25 08:57:07 EDT 2025 Tue Jun 17 21:00:32 EDT 2025 Tue Jun 10 20:46:37 EDT 2025 Fri Jun 27 04:03:42 EDT 2025 Sat Jul 26 01:47:19 EDT 2025 Thu Apr 24 23:00:41 EDT 2025 Tue Jul 01 01:02:32 EDT 2025 Fri Feb 21 02:38:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Reprints and permissions information is available at www.nature.com/reprints. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-f5aca7660bc4ccdb871215a244082c1289b54fcd425f8a5d65dcd38af8a94293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 M.C.W., R.P.R., F.E.-H.L. and I.S. conceived the experimental design, analyzed and interpreted the data, designed figures and wrote the manuscript. D.C.N., K.S.C., A.S.S., A.M.L., W.C., S.A.J., J.L.D. and E.G. provided input into experimental design and assisted with figures and manuscript writing. M.C.W. and J.E. designed and ran the FCM panel. R.P.R., S.L., H.M.W., S.N.L., B.S. and F.E.-H.L. designed the inclusion and exclusion criteria for the study, identified research subjects and obtained samples. D.C.N., K.S.C., A.S.S., S.K., A.M.-P., A.D. and F.A.A. assisted with sample preparation and processing. A.S.S. performed FACS sorting and single-cell RNA sequencing. D.C.N., M.S. and C.M.T. performed B cell isolations, bulk V(D)J repertoire library preparation and sequencing. D.C.N., J.C.H., T.O. and W.T.H. performed cytokine and chemokine measurement. R.B. performed serum 9G4-idiotype antibody measurement. D.C.N., N.S.H., S.K., A.M.-P. and A.D. performed anti-SARS-CoV-2 RBD antibody measurements. N.S.H., J.B.C., M.S.D., R.H.C. and J.E.C. performed neutralization testing and data analysis. Author contributions |
ORCID | 0000-0002-2907-9264 0000-0002-2385-0636 0000-0003-3963-6586 0000-0002-8791-3165 0000-0002-6133-5942 0000-0001-7258-906X 0000-0002-0049-1079 0000-0002-2265-2726 0000-0002-5252-7539 0000-0002-5389-6731 0000-0002-1348-3094 0000-0003-4182-587X |
OpenAccessLink | https://www.nature.com/articles/s41590-020-00814-z.pdf |
PMID | 33028979 |
PQID | 2473201667 |
PQPubID | 45782 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7739702 proquest_miscellaneous_2449261365 proquest_journals_2473201667 gale_infotracmisc_A650807972 gale_infotracacademiconefile_A650807972 gale_incontextgauss_ISR_A650807972 pubmed_primary_33028979 crossref_primary_10_1038_s41590_020_00814_z crossref_citationtrail_10_1038_s41590_020_00814_z springer_journals_10_1038_s41590_020_00814_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature immunology |
PublicationTitleAbbrev | Nat Immunol |
PublicationTitleAlternate | Nat Immunol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | ZhangWExcessive CD11c+T-bet+ B cells promote aberrant TFH differentiation and affinity-based germinal center selection in lupusProc. Natl Acad. Sci. USA201911618550185601:CAS:528:DC%2BC1MXhslOhsbnL314516596744857 ZhangYCoagulopathy and antiphospholipid antibodies in patients with Covid-19N. Engl. J. Med.2020382e3832268022 IngrahamNEImmunomodulation in COVID-19Lancet Respir. Med.202085445461:CAS:528:DC%2BB3cXos1Wgt7o%3D323800237198187 IbarrondoFJRapid decay of anti-SARS-CoV-2 antibodies in persons with mild COVID-19N. Engl. J. Med.20203831085108732706954 PioliPDPlasma cells, the next generation: beyond antibody secretionFront. Immunol.20191027681:CAS:528:DC%2BB3cXhsVeqtbbI318245186883717 RubtsovaKB cells expressing the transcription factor T-bet drive lupus-like autoimmunityJ. Clin. Invest.201712713921404282406025373868 Chen, X. et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated IL-6 level in critically ill COVID-19 patients. Clin. Infect. Dis.https://doi.org/10.1093/cid/ciaa449 (2020). LongQXClinical and immunological assessment of asymptomatic SARS-CoV-2 infectionsNat. Med.202026120012041:CAS:528:DC%2BB3cXhtF2qtbrM32555424 TiptonCMDiversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosusNat. Immunol.2015167557651:CAS:528:DC%2BC2MXhtFSktrbJ260060144512288 YuanMA highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoVScience20203686306331:CAS:528:DC%2BB3cXovFCrt7Y%3D322457847164391 COVID-19 Treatment Guidelines Panel. National Institutes of Health. COVID-19 treatment guidelines. https://www.covid19treatmentguidelines.nih.gov/ (2020). TangYCytokine storm in COVID-19: the current evidence and treatment strategiesFront. Immunol.20201117081:CAS:528:DC%2BB3cXitF2mtbnP327541637365923 Rodríguez-BayonaBRamos-AmayaAPérez-VenegasJJRodríguezCBrievaJADecreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patientsArthritis Res.Ther.201012R108205252182911899 KwissaMDengue virus infection induces expansion of a CD14+CD16+ monocyte population that stimulates plasmablast differentiationCell Host Microbe2014161151271:CAS:528:DC%2BC2cXhtVKhur3O249813334116428 BechtEDimensionality reduction for visualizing single-cell data using UMAPNat. Biotechnol.2018373844 GustaveCASeptic shock shapes B cell response toward an exhausted-like/immunoregulatory profile in patientsJ. Immunol.2018200241824251:CAS:528:DC%2BC1cXltFSltbw%3D29459404 DangVDHilgenbergERiesSShenPFillatreauSFrom the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsetsCurr. Opin. Immunol.20142877831:CAS:528:DC%2BC2cXosl2hu7Y%3D24637161 JenksSADistinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosusImmunity2018497257391:CAS:528:DC%2BC1cXhvVOqsb7E303147586217820 StoneSLT-bet transcription factor promotes antibody-secreting cell differentiation by limiting the inflammatory effects of IFN-γ on B cellsImmunity201950117211871:CAS:528:DC%2BC1MXptVWisLg%3D310763596929688 Henderson, L. A. et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol.https://doi.org/10.1002/art.41285 (2020). AllmanDWilmoreJRGaudetteBTThe continuing story of T cell independent antibodiesImmunol. Rev.20192881281351:CAS:528:DC%2BC1MXkvVSls7s%3D308743576653682 LamJHSmithFLBaumgarthNB cell activation and response regulation during viral infectionsViral Immunol.2020332943061:CAS:528:DC%2BB3cXptVGlu7Y%3D323268527247032 Hoepel, W. et al. Anti-SARS-CoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses. Preprint at bioRxivhttps://doi.org/10.1101/2020.07.13.190140 (2020). ter MeulenJHuman monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutantsPLoS Med.20063e237167964011483912 WilliamJEulerCChristensenSShlomchikMJEvolution of autoantibody responses via somatic hypermutation outside of germinal centersScience2002297206620701:CAS:528:DC%2BD38Xnt1ansLY%3D12242446 TanLLymphopenia predicts disease severity of COVID-19: a descriptive and predictive studySignal Transduct. Target. Ther.20205331:CAS:528:DC%2BB3cXlvV2rtrw%3D322960697100419 SunBKinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patientsEmerg. Microbes Infect.202099409481:CAS:528:DC%2BB3cXhtFShsL%2FM323578087273175 LeeFECirculating human antibody-secreting cells during vaccinations and respiratory viral infections are characterized by high specificity and lack of bystander effectJ. Immunol.2011186551455211:CAS:528:DC%2BC3MXkvF2ju74%3D21441455 YangJFMST: an automatic neuron-tracing method based on fast marching and minimum spanning treeNeuroinformatics20191718519630039210 Di NiroRSalmonella infection drives promiscuous B cell activation followed by extrafollicular affinity maturationImmunity2015431201311:CAS:528:DC%2BC2MXhtFKrtLvP261874114523395 RubtsovAVCD11c-expressing B cells are located at the T cell/B cell border in spleen and are potent APCsJ. Immunol.201519571791:CAS:528:DC%2BC2MXhtVagur3F26034175 Group, R. C. et al. Dexamethasone in hospitalized patients with COVID-19—preliminary report. N Engl. J. Med.https://doi.org/10.1056/NEJMoa2021436 (2020). Zumaquero, E. et al. IFN-γ induces epigenetic programming of human T-bethi B cells and promotes TLR7/8- and IL-21-induced differentiation. Elife8, e41641 (2019). Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science369, eabc8511(2020). SutharMSRapid generation of neutralizing antibody responses in COVID-19 patientsCell Rep. Med.20201100040328353037276302 GayaMInitiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cellsCell20181725175331:CAS:528:DC%2BC2sXhvF2js7rK292493585786505 SellamJBlood memory B cells are disturbed and predict the response to rituximab in patients with rheumatoid arthritisArthritis Rheum.201163369237011:CAS:528:DC%2BC3MXhsFCqs7nI22127692 TiptonCMHomJRFucileCFRosenbergAFSanzIUnderstanding B cell activation and autoantibody repertoire selection in systemic lupus erythematosus: a B-cell immunomics approachImmunol. Rev.20182841201311:CAS:528:DC%2BC1cXhtF2mt7jM299447596022284 LeónBBallesteros-TatoAMisraRSWojciechowskiWLundFEUnraveling effector functions of B cells during infection: the hidden world beyond antibody productionInfect. Disord. Drug Targets201212213221223941734517595 MehtaPCOVID-19: consider cytokine storm syndromes and immunosuppressionLancet2020395103310341:CAS:528:DC%2BB3cXltFCjsb8%3D321925787270045 ManniMRegulation of age-associated B cells by IRF5 in systemic autoimmunityNat. Immunol.2018194074191:CAS:528:DC%2BC1cXmtVCksbw%3D294835976095139 Carfi, A., Bernabei, R., Landi, F. & Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA324, 603–605 (2020). ReedJHJacksonJChristDGoodnowCCClonal redemption of autoantibodies by somatic hypermutation away from self-reactivity during human immunizationJ. Exp. Med.2016213125512651:CAS:528:DC%2BC28Xhs1yntbrL272984454925023 ChanOTHannumLGHabermanAMMadaioMPShlomchikMJA novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupusJ. Exp. Med.1999189163916481:CAS:528:DyaK1MXjt1Skuro%3D103304432193634 RubtsovaKRubtsovAVCancroMPMarrackPAge-associated B cells: a T-bet-dependent effector with roles in protective and pathogenic immunityJ. Immunol.2015195193319371:CAS:528:DC%2BC2MXhtlOju7bM26297793 Xiao, M. et al. Anti-phospholipid antibodies in critically ill patients with COVID-19. Arthritis Rheumatol.https://doi.org/10.1002/art.41425 (2020). MenardLCB cells from African American lupus patients exhibit an activated phenotypeJCI Insight20161e87310276992745033941 YangXGLaMST: grow lineages along minimum spanning tree for B cell receptor sequencing dataBMC Genomics2020211:CAS:528:DC%2BB3cXhslyntrnF329003787488003 WrammertJRapid and massive virus-specific plasmablast responses during acute dengue virus infection in humansJ. Virol.201286291129181:CAS:528:DC%2BC38Xjs1KqtLk%3D222383183302324 Kiprov, D., Conboy, M. J. & Conboy, I. M. Immunomodulation for the management of COVID-19. Transfus. Apher. Sci.59,102856 (2020). JenksSACashmanKSWoodruffMCLeeFESanzIExtrafollicular responses in humans and SLEImmunol. Rev.20192881361481:CAS:528:DC%2BC1MXkvVSmurk%3D308743456422038 HarrisonCFocus shifts to antibody cocktails for COVID-19 cytokine stormNat. Biotechnol.2020389059081:CAS:528:DC%2BB3cXhsFegtbbN32760027 LiuLPotent neutralizing antibodies directed to multiple epitopes on SARS-CoV-2 spikeNature20205844504561:CAS:528:DC%2BB3cXhsF2ntL3L32698192 ScharerCDEpigenetic programming underpins B cell dysfunction in human SLENat. Immunol.201920107110821:CAS:528:DC%2BC1MXht1ymtr%2FJ312632776642679 FangYTAnnexin A2 on lung epithelial cell surface is recognized by severe acute respiratory syndrome-associated coronavirus spike domain 2 antibodiesMol. Immunol.201047100010091:CAS:528:DC%2BC3cXpsFKrsA%3D%3D20015551 LiuYT-bet+CD11c+ B cells are critical for antichromatin immunoglobulin G production in the development of lupusArthritis Res. Ther.201719225289823885629756 WecAZLongitudinal dynamics of the human B cell response to the yellow fever 17D vaccineProc. Natl Acad. Sci. USA2020117667566851:CAS:528:DC%2BB3cXlsl2jsLs%3D321521197104296 WangSIL-21 drives expansion and plasma cell differentiation of autoreactive CD11chi T-bet+ B cells in SLENat. Commun.20189297171105931508 Kaneko, N. et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cellhttps://doi.org/10.1016/j.cell.2020.08.025 (2020). ZengQB cells mediate chronic allograft rejection independently of antibody productionJ. Clin. Invest.2014124105210561:CAS:528:DC%2BC2cXkt1Wrs7c%3D245090793934170 LucasCLongitudinal analyses reveal imm J Sellam (814_CR29) 2011; 63 B Rodríguez-Bayona (814_CR28) 2010; 12 X Yang (814_CR62) 2020; 21 J William (814_CR46) 2002; 297 SJ Zost (814_CR7) 2020; 584 CA Gustave (814_CR56) 2018; 200 OT Chan (814_CR42) 1999; 189 E Becht (814_CR25) 2018; 37 VD Dang (814_CR43) 2014; 28 814_CR35 814_CR36 FE Lund (814_CR39) 2010; 10 B Sun (814_CR6) 2020; 9 K Rubtsova (814_CR14) 2015; 195 AZ Wec (814_CR54) 2020; 117 M Yuan (814_CR65) 2020; 368 J Wrammert (814_CR26) 2012; 86 M Manni (814_CR15) 2018; 19 C Harrison (814_CR5) 2020; 38 LC Menard (814_CR53) 2016; 1 M Gaya (814_CR38) 2018; 172 Q Zeng (814_CR41) 2014; 124 PA Harris (814_CR60) 2019; 95 MS Suthar (814_CR63) 2020; 1 SA Jenks (814_CR18) 2018; 49 I Sanz (814_CR23) 2019; 10 814_CR2 L Tan (814_CR24) 2020; 5 SL Stone (814_CR32) 2019; 50 814_CR1 R Di Niro (814_CR13) 2015; 43 814_CR3 FE Lee (814_CR27) 2011; 186 C Lucas (814_CR33) 2020; 584 B León (814_CR40) 2012; 12 J ter Meulen (814_CR64) 2006; 3 QX Long (814_CR9) 2020; 26 JH Reed (814_CR31) 2016; 213 JH Lam (814_CR11) 2020; 33 AV Rubtsov (814_CR51) 2015; 195 P Mehta (814_CR34) 2020; 395 NE Ingraham (814_CR59) 2020; 8 814_CR19 D Allman (814_CR12) 2019; 288 FJ Ibarrondo (814_CR10) 2020; 383 K Rubtsova (814_CR16) 2017; 127 S Wang (814_CR21) 2018; 9 814_CR55 Y Tang (814_CR4) 2020; 11 814_CR57 PD Pioli (814_CR44) 2019; 10 814_CR58 M Kwissa (814_CR37) 2014; 16 W Zhang (814_CR50) 2019; 116 Y Liu (814_CR52) 2017; 19 J Yang (814_CR61) 2019; 17 Y Zhang (814_CR49) 2020; 382 L Liu (814_CR8) 2020; 584 CM Tipton (814_CR17) 2015; 16 SA Jenks (814_CR22) 2019; 288 CM Tipton (814_CR30) 2018; 284 YT Fang (814_CR47) 2010; 47 CD Scharer (814_CR20) 2019; 20 814_CR45 814_CR48 32511635 - medRxiv. 2020 Jun 22:2020.04.29.20083717. doi: 10.1101/2020.04.29.20083717. |
References_xml | – reference: LiuLPotent neutralizing antibodies directed to multiple epitopes on SARS-CoV-2 spikeNature20205844504561:CAS:528:DC%2BB3cXhsF2ntL3L32698192 – reference: YangXGLaMST: grow lineages along minimum spanning tree for B cell receptor sequencing dataBMC Genomics2020211:CAS:528:DC%2BB3cXhslyntrnF329003787488003 – reference: Di NiroRSalmonella infection drives promiscuous B cell activation followed by extrafollicular affinity maturationImmunity2015431201311:CAS:528:DC%2BC2MXhtFKrtLvP261874114523395 – reference: Carfi, A., Bernabei, R., Landi, F. & Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA324, 603–605 (2020). – reference: StoneSLT-bet transcription factor promotes antibody-secreting cell differentiation by limiting the inflammatory effects of IFN-γ on B cellsImmunity201950117211871:CAS:528:DC%2BC1MXptVWisLg%3D310763596929688 – reference: TanLLymphopenia predicts disease severity of COVID-19: a descriptive and predictive studySignal Transduct. Target. Ther.20205331:CAS:528:DC%2BB3cXlvV2rtrw%3D322960697100419 – reference: MehtaPCOVID-19: consider cytokine storm syndromes and immunosuppressionLancet2020395103310341:CAS:528:DC%2BB3cXltFCjsb8%3D321925787270045 – reference: WilliamJEulerCChristensenSShlomchikMJEvolution of autoantibody responses via somatic hypermutation outside of germinal centersScience2002297206620701:CAS:528:DC%2BD38Xnt1ansLY%3D12242446 – reference: LeeFECirculating human antibody-secreting cells during vaccinations and respiratory viral infections are characterized by high specificity and lack of bystander effectJ. Immunol.2011186551455211:CAS:528:DC%2BC3MXkvF2ju74%3D21441455 – reference: KwissaMDengue virus infection induces expansion of a CD14+CD16+ monocyte population that stimulates plasmablast differentiationCell Host Microbe2014161151271:CAS:528:DC%2BC2cXhtVKhur3O249813334116428 – reference: Rodríguez-BayonaBRamos-AmayaAPérez-VenegasJJRodríguezCBrievaJADecreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patientsArthritis Res.Ther.201012R108205252182911899 – reference: TiptonCMDiversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosusNat. Immunol.2015167557651:CAS:528:DC%2BC2MXhtFSktrbJ260060144512288 – reference: RubtsovAVCD11c-expressing B cells are located at the T cell/B cell border in spleen and are potent APCsJ. Immunol.201519571791:CAS:528:DC%2BC2MXhtVagur3F26034175 – reference: WangSIL-21 drives expansion and plasma cell differentiation of autoreactive CD11chi T-bet+ B cells in SLENat. Commun.20189297171105931508 – reference: Xiao, M. et al. Anti-phospholipid antibodies in critically ill patients with COVID-19. Arthritis Rheumatol.https://doi.org/10.1002/art.41425 (2020). – reference: JenksSADistinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosusImmunity2018497257391:CAS:528:DC%2BC1cXhvVOqsb7E303147586217820 – reference: ScharerCDEpigenetic programming underpins B cell dysfunction in human SLENat. Immunol.201920107110821:CAS:528:DC%2BC1MXht1ymtr%2FJ312632776642679 – reference: COVID-19 Treatment Guidelines Panel. National Institutes of Health. COVID-19 treatment guidelines. https://www.covid19treatmentguidelines.nih.gov/ (2020). – reference: RubtsovaKB cells expressing the transcription factor T-bet drive lupus-like autoimmunityJ. Clin. Invest.201712713921404282406025373868 – reference: YangJFMST: an automatic neuron-tracing method based on fast marching and minimum spanning treeNeuroinformatics20191718519630039210 – reference: Zumaquero, E. et al. IFN-γ induces epigenetic programming of human T-bethi B cells and promotes TLR7/8- and IL-21-induced differentiation. Elife8, e41641 (2019). – reference: RubtsovaKRubtsovAVCancroMPMarrackPAge-associated B cells: a T-bet-dependent effector with roles in protective and pathogenic immunityJ. Immunol.2015195193319371:CAS:528:DC%2BC2MXhtlOju7bM26297793 – reference: PioliPDPlasma cells, the next generation: beyond antibody secretionFront. Immunol.20191027681:CAS:528:DC%2BB3cXhsVeqtbbI318245186883717 – reference: Chen, X. et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated IL-6 level in critically ill COVID-19 patients. Clin. Infect. Dis.https://doi.org/10.1093/cid/ciaa449 (2020). – reference: IngrahamNEImmunomodulation in COVID-19Lancet Respir. Med.202085445461:CAS:528:DC%2BB3cXos1Wgt7o%3D323800237198187 – reference: ZengQB cells mediate chronic allograft rejection independently of antibody productionJ. Clin. Invest.2014124105210561:CAS:528:DC%2BC2cXkt1Wrs7c%3D245090793934170 – reference: Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science369, eabc8511(2020). – reference: IbarrondoFJRapid decay of anti-SARS-CoV-2 antibodies in persons with mild COVID-19N. Engl. J. Med.20203831085108732706954 – reference: HarrisPAThe REDCap consortium: building an international community of software platform partnersJ. Biomed. Inform.201995103208310786607254481 – reference: JenksSACashmanKSWoodruffMCLeeFESanzIExtrafollicular responses in humans and SLEImmunol. Rev.20192881361481:CAS:528:DC%2BC1MXkvVSmurk%3D308743456422038 – reference: DangVDHilgenbergERiesSShenPFillatreauSFrom the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsetsCurr. Opin. Immunol.20142877831:CAS:528:DC%2BC2cXosl2hu7Y%3D24637161 – reference: LongQXClinical and immunological assessment of asymptomatic SARS-CoV-2 infectionsNat. Med.202026120012041:CAS:528:DC%2BB3cXhtF2qtbrM32555424 – reference: SutharMSRapid generation of neutralizing antibody responses in COVID-19 patientsCell Rep. Med.20201100040328353037276302 – reference: LeónBBallesteros-TatoAMisraRSWojciechowskiWLundFEUnraveling effector functions of B cells during infection: the hidden world beyond antibody productionInfect. Disord. Drug Targets201212213221223941734517595 – reference: GustaveCASeptic shock shapes B cell response toward an exhausted-like/immunoregulatory profile in patientsJ. Immunol.2018200241824251:CAS:528:DC%2BC1cXltFSltbw%3D29459404 – reference: SanzIChallenges and opportunities for consistent classification of human B cell and plasma cell populationsFront. Immunol.20191024581:CAS:528:DC%2BB3cXps1GhsLg%3D316813316813733 – reference: Hoepel, W. et al. Anti-SARS-CoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses. Preprint at bioRxivhttps://doi.org/10.1101/2020.07.13.190140 (2020). – reference: Group, R. C. et al. Dexamethasone in hospitalized patients with COVID-19—preliminary report. N Engl. J. Med.https://doi.org/10.1056/NEJMoa2021436 (2020). – reference: LundFERandallTDEffector and regulatory B cells: modulators of CD4+ T cell immunityNat. Rev. Immunol.2010102362471:CAS:528:DC%2BC3cXjtFSmtbg%3D202245693038334 – reference: ChanOTHannumLGHabermanAMMadaioMPShlomchikMJA novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupusJ. Exp. Med.1999189163916481:CAS:528:DyaK1MXjt1Skuro%3D103304432193634 – reference: Henderson, L. A. et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol.https://doi.org/10.1002/art.41285 (2020). – reference: TangYCytokine storm in COVID-19: the current evidence and treatment strategiesFront. Immunol.20201117081:CAS:528:DC%2BB3cXitF2mtbnP327541637365923 – reference: TiptonCMHomJRFucileCFRosenbergAFSanzIUnderstanding B cell activation and autoantibody repertoire selection in systemic lupus erythematosus: a B-cell immunomics approachImmunol. Rev.20182841201311:CAS:528:DC%2BC1cXhtF2mt7jM299447596022284 – reference: MenardLCB cells from African American lupus patients exhibit an activated phenotypeJCI Insight20161e87310276992745033941 – reference: Kiprov, D., Conboy, M. J. & Conboy, I. M. Immunomodulation for the management of COVID-19. Transfus. Apher. Sci.59,102856 (2020). – reference: SellamJBlood memory B cells are disturbed and predict the response to rituximab in patients with rheumatoid arthritisArthritis Rheum.201163369237011:CAS:528:DC%2BC3MXhsFCqs7nI22127692 – reference: Kaneko, N. et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cellhttps://doi.org/10.1016/j.cell.2020.08.025 (2020). – reference: BechtEDimensionality reduction for visualizing single-cell data using UMAPNat. Biotechnol.2018373844 – reference: WecAZLongitudinal dynamics of the human B cell response to the yellow fever 17D vaccineProc. Natl Acad. Sci. USA2020117667566851:CAS:528:DC%2BB3cXlsl2jsLs%3D321521197104296 – reference: ManniMRegulation of age-associated B cells by IRF5 in systemic autoimmunityNat. Immunol.2018194074191:CAS:528:DC%2BC1cXmtVCksbw%3D294835976095139 – reference: LamJHSmithFLBaumgarthNB cell activation and response regulation during viral infectionsViral Immunol.2020332943061:CAS:528:DC%2BB3cXptVGlu7Y%3D323268527247032 – reference: ReedJHJacksonJChristDGoodnowCCClonal redemption of autoantibodies by somatic hypermutation away from self-reactivity during human immunizationJ. Exp. Med.2016213125512651:CAS:528:DC%2BC28Xhs1yntbrL272984454925023 – reference: ZostSJPotently neutralizing and protective human antibodies against SARS-CoV-2Nature20205844434491:CAS:528:DC%2BB3cXhsF2ntLrM326684437584396 – reference: YuanMA highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoVScience20203686306331:CAS:528:DC%2BB3cXovFCrt7Y%3D322457847164391 – reference: GayaMInitiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cellsCell20181725175331:CAS:528:DC%2BC2sXhvF2js7rK292493585786505 – reference: HarrisonCFocus shifts to antibody cocktails for COVID-19 cytokine stormNat. Biotechnol.2020389059081:CAS:528:DC%2BB3cXhsFegtbbN32760027 – reference: ZhangWExcessive CD11c+T-bet+ B cells promote aberrant TFH differentiation and affinity-based germinal center selection in lupusProc. Natl Acad. Sci. USA201911618550185601:CAS:528:DC%2BC1MXhslOhsbnL314516596744857 – reference: ZhangYCoagulopathy and antiphospholipid antibodies in patients with Covid-19N. Engl. J. Med.2020382e3832268022 – reference: LucasCLongitudinal analyses reveal immunological misfiring in severe COVID-19Nature20205844634691:CAS:528:DC%2BB3cXhsF2ntL3K327177437477538 – reference: ter MeulenJHuman monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutantsPLoS Med.20063e237167964011483912 – reference: LiuYT-bet+CD11c+ B cells are critical for antichromatin immunoglobulin G production in the development of lupusArthritis Res. Ther.201719225289823885629756 – reference: SunBKinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patientsEmerg. Microbes Infect.202099409481:CAS:528:DC%2BB3cXhtFShsL%2FM323578087273175 – reference: AllmanDWilmoreJRGaudetteBTThe continuing story of T cell independent antibodiesImmunol. Rev.20192881281351:CAS:528:DC%2BC1MXkvVSls7s%3D308743576653682 – reference: FangYTAnnexin A2 on lung epithelial cell surface is recognized by severe acute respiratory syndrome-associated coronavirus spike domain 2 antibodiesMol. Immunol.201047100010091:CAS:528:DC%2BC3cXpsFKrsA%3D%3D20015551 – reference: WrammertJRapid and massive virus-specific plasmablast responses during acute dengue virus infection in humansJ. Virol.201286291129181:CAS:528:DC%2BC38Xjs1KqtLk%3D222383183302324 – volume: 21 year: 2020 ident: 814_CR62 publication-title: BMC Genomics – volume: 117 start-page: 6675 year: 2020 ident: 814_CR54 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1921388117 – volume: 26 start-page: 1200 year: 2020 ident: 814_CR9 publication-title: Nat. Med. doi: 10.1038/s41591-020-0965-6 – volume: 382 start-page: e38 year: 2020 ident: 814_CR49 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2007575 – volume: 33 start-page: 294 year: 2020 ident: 814_CR11 publication-title: Viral Immunol. doi: 10.1089/vim.2019.0207 – ident: 814_CR35 doi: 10.1126/science.abc8511 – volume: 213 start-page: 1255 year: 2016 ident: 814_CR31 publication-title: J. Exp. Med. doi: 10.1084/jem.20151978 – volume: 38 start-page: 905 year: 2020 ident: 814_CR5 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0634-9 – volume: 12 start-page: 213 year: 2012 ident: 814_CR40 publication-title: Infect. Disord. Drug Targets doi: 10.2174/187152612800564437 – volume: 8 start-page: 544 year: 2020 ident: 814_CR59 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30226-5 – volume: 288 start-page: 128 year: 2019 ident: 814_CR12 publication-title: Immunol. Rev. doi: 10.1111/imr.12754 – volume: 16 start-page: 115 year: 2014 ident: 814_CR37 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.06.001 – ident: 814_CR1 doi: 10.1093/cid/ciaa449 – volume: 43 start-page: 120 year: 2015 ident: 814_CR13 publication-title: Immunity doi: 10.1016/j.immuni.2015.06.013 – ident: 814_CR36 doi: 10.1016/j.cell.2020.08.025 – volume: 1 start-page: 100040 year: 2020 ident: 814_CR63 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2020.100040 – volume: 95 start-page: 103208 year: 2019 ident: 814_CR60 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2019.103208 – volume: 11 start-page: 1708 year: 2020 ident: 814_CR4 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.01708 – volume: 3 start-page: e237 year: 2006 ident: 814_CR64 publication-title: PLoS Med. doi: 10.1371/journal.pmed.0030237 – volume: 16 start-page: 755 year: 2015 ident: 814_CR17 publication-title: Nat. Immunol. doi: 10.1038/ni.3175 – volume: 368 start-page: 630 year: 2020 ident: 814_CR65 publication-title: Science doi: 10.1126/science.abb7269 – volume: 195 start-page: 1933 year: 2015 ident: 814_CR14 publication-title: J. Immunol. doi: 10.4049/jimmunol.1501209 – ident: 814_CR55 doi: 10.1001/jama.2020.12603 – volume: 9 year: 2018 ident: 814_CR21 publication-title: Nat. Commun. – volume: 284 start-page: 120 year: 2018 ident: 814_CR30 publication-title: Immunol. Rev. doi: 10.1111/imr.12660 – volume: 19 start-page: 407 year: 2018 ident: 814_CR15 publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0056-8 – volume: 50 start-page: 1172 year: 2019 ident: 814_CR32 publication-title: Immunity doi: 10.1016/j.immuni.2019.04.004 – volume: 172 start-page: 517 year: 2018 ident: 814_CR38 publication-title: Cell doi: 10.1016/j.cell.2017.11.036 – volume: 124 start-page: 1052 year: 2014 ident: 814_CR41 publication-title: J. Clin. Invest. doi: 10.1172/JCI70084 – volume: 288 start-page: 136 year: 2019 ident: 814_CR22 publication-title: Immunol. Rev. doi: 10.1111/imr.12741 – volume: 63 start-page: 3692 year: 2011 ident: 814_CR29 publication-title: Arthritis Rheum. doi: 10.1002/art.30599 – volume: 10 start-page: 2768 year: 2019 ident: 814_CR44 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02768 – volume: 47 start-page: 1000 year: 2010 ident: 814_CR47 publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2009.11.019 – ident: 814_CR3 doi: 10.1056/NEJMoa2021436 – volume: 1 start-page: e87310 year: 2016 ident: 814_CR53 publication-title: JCI Insight doi: 10.1172/jci.insight.87310 – ident: 814_CR57 – volume: 10 start-page: 2458 year: 2019 ident: 814_CR23 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02458 – volume: 200 start-page: 2418 year: 2018 ident: 814_CR56 publication-title: J. Immunol. doi: 10.4049/jimmunol.1700929 – volume: 584 start-page: 450 year: 2020 ident: 814_CR8 publication-title: Nature doi: 10.1038/s41586-020-2571-7 – volume: 12 start-page: R108 year: 2010 ident: 814_CR28 publication-title: Arthritis Res.Ther. doi: 10.1186/ar3042 – volume: 20 start-page: 1071 year: 2019 ident: 814_CR20 publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0419-9 – volume: 9 start-page: 940 year: 2020 ident: 814_CR6 publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1762515 – volume: 37 start-page: 38 year: 2018 ident: 814_CR25 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4314 – ident: 814_CR19 doi: 10.7554/eLife.41641 – volume: 584 start-page: 443 year: 2020 ident: 814_CR7 publication-title: Nature doi: 10.1038/s41586-020-2548-6 – volume: 10 start-page: 236 year: 2010 ident: 814_CR39 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2729 – volume: 19 start-page: 225 year: 2017 ident: 814_CR52 publication-title: Arthritis Res. Ther. doi: 10.1186/s13075-017-1438-2 – ident: 814_CR2 doi: 10.1002/art.41285 – volume: 297 start-page: 2066 year: 2002 ident: 814_CR46 publication-title: Science doi: 10.1126/science.1073924 – volume: 584 start-page: 463 year: 2020 ident: 814_CR33 publication-title: Nature doi: 10.1038/s41586-020-2588-y – ident: 814_CR48 doi: 10.1002/art.41425 – volume: 127 start-page: 1392 year: 2017 ident: 814_CR16 publication-title: J. Clin. Invest. doi: 10.1172/JCI91250 – volume: 395 start-page: 1033 year: 2020 ident: 814_CR34 publication-title: Lancet doi: 10.1016/S0140-6736(20)30628-0 – volume: 383 start-page: 1085 year: 2020 ident: 814_CR10 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2025179 – volume: 28 start-page: 77 year: 2014 ident: 814_CR43 publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2014.02.009 – volume: 17 start-page: 185 year: 2019 ident: 814_CR61 publication-title: Neuroinformatics doi: 10.1007/s12021-018-9392-y – volume: 86 start-page: 2911 year: 2012 ident: 814_CR26 publication-title: J. Virol. doi: 10.1128/JVI.06075-11 – ident: 814_CR45 doi: 10.1101/2020.07.13.190140 – volume: 49 start-page: 725 year: 2018 ident: 814_CR18 publication-title: Immunity doi: 10.1016/j.immuni.2018.08.015 – volume: 116 start-page: 18550 year: 2019 ident: 814_CR50 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1901340116 – volume: 195 start-page: 71 year: 2015 ident: 814_CR51 publication-title: J. Immunol. doi: 10.4049/jimmunol.1500055 – ident: 814_CR58 doi: 10.1016/j.transci.2020.102856 – volume: 5 start-page: 33 year: 2020 ident: 814_CR24 publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-020-0148-4 – volume: 186 start-page: 5514 year: 2011 ident: 814_CR27 publication-title: J. Immunol. doi: 10.4049/jimmunol.1002932 – volume: 189 start-page: 1639 year: 1999 ident: 814_CR42 publication-title: J. Exp. Med. doi: 10.1084/jem.189.10.1639 – reference: 32511635 - medRxiv. 2020 Jun 22:2020.04.29.20083717. doi: 10.1101/2020.04.29.20083717. |
SSID | ssj0014764 |
Score | 2.7249572 |
Snippet | A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic,... A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic,... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1506 |
SubjectTerms | 631/250 631/250/2152 631/250/254 Antibodies Antibodies, Neutralizing - immunology Antibodies, Viral - immunology B cells B-Lymphocytes - immunology Biomedical and Life Sciences Biomedicine Cell activation Coronaviruses COVID-19 COVID-19 - immunology Flow cytometry Health aspects Heterogeneity Humans Immune response Immunology Immunomodulation Immunomodulators Immunophenotyping Infectious Diseases Lymphocytes B Morbidity Observations Pandemics SARS-CoV-2 - immunology Severe acute respiratory syndrome coronavirus 2 Subpopulations Systemic lupus erythematosus |
Title | Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19 |
URI | https://link.springer.com/article/10.1038/s41590-020-00814-z https://www.ncbi.nlm.nih.gov/pubmed/33028979 https://www.proquest.com/docview/2473201667 https://www.proquest.com/docview/2449261365 https://pubmed.ncbi.nlm.nih.gov/PMC7739702 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgE2gvCAZsgTEZhMQDWEsTJ46fUFtabUgraAzUNyuxHag0ktG0EvSv585xO1KJvfRDvnw4d-ff-e5yR8jr0PCSi9AwAJOEcZ1ZVvBIs8iY0OpMcl2gH_J8kp5-5R-nydQ73BqfVrleE91CbWqNPvKTiIsYwCpNxfvrXwy7RmF01bfQuEt2e2CJYOsGMd1suHpcuPJRAFGSRTLM_EszYZydNABcMmS4eUJU5GzVAabt5fkffNrOndwKoDpcGj8kD7xBSfutBDwid2y1T-61LSb_7JP75z54_pjko99wrhKrcLvkUzqg6Lan8zZN1jZUY6uOK7A-KbpnaWWXzg-yggtT4MCsqDHnEH4a-rOeFzMDJjydVXT46dvZB9aTT8jleHQ5PGW-wwLTYKYtWJnkOhdpGhaaa20K2D2BCZBHrg21BuiSRcJLbUCxyyxPTJoYbeIshz8SgCx-SnaqurKHhKZFzrVMCh2ZkJc2zjnYIVbC_tHComCSgPTWT1dpX30cm2BcKRcFjzPVckQBR5TjiFoF5O3mmOu29sat1K-QaQqLWlSYNfM9XzaNOvtyofpohoZCiiggbzxRWcPlde5fQoBJYB2sDuVRhxK0TneH17KhvNY36kZGA_JyM4xHYiZbZesl0mCJRkwuDMhBK0qbycUxxn2FDIjoCNmGAGuBd0eq2Q9XE1wIMCxDuK13a3G8ua3_P7Nnt8_iOdmLUENc9s4R2VnMl_YF2GCL4tgpGnxmw94x2e2PB4MJfA9Gk88XfwHFzDAL |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDfLwgGF-BAQaBeABraeLE8QNCo9vUsnVI0KG9WYntQKWRjKYVrP-J_8idk3SkEnvbWyJfPuz79p3vCHnpG55z4RsGyiRiXCeWZTzQLDDGtzqRXGe4Dzk6jAdH_ONxdLxG_rRnYTCtspWJTlCbUuMe-VbARQjKKo7F-9OfDLtGYXS1baFRk8W-PfsFLlv1brgD-H0VBHu74_6ANV0FmAbTZMbyKNWpiGM_01xrk4HHAGovDVzrZQ3iWmYRz7UBYs6TNDJxZLQJkxRuJAjvEF57hVzFg0ZYqj_pLzNKely4alWgESULpJ80Z3T8MNmqQE9Kn6GvhkqYs0VHD65qg3_U4Wqq5kq81qnBvdvkVmO_0u2a4O6QNVtskGt1R8uzDXJ91MTq75J09ze8K8ei3y7XlX6gGCWg0zor11ZUY2eQEzB2Ke4G08LO3bbLAj5MAeGTrMQUR7g09Ec5zSYGPAY6KWj_09fhDuvJe2R8GUt_n6wXZWEfEhpnKdcyynRgfJ7bMOVg9lgJ7qoFGWQij_Ta1VW6KXaOPTdOlAu6h4mqMaIAI8phRC088mb5zGld6uNC6BeINIU1NApM0vmWzqtKDb98Vtto9fpCisAjrxugvITP67Q58wCTwLJbHcjNDiQwue4Ot7ShGiFTqXOW8Mjz5TA-iYlzhS3nCIMVITGX0SMPalJaTi4MMcwspEdEh8iWAFh6vDtSTL67EuRCgB3rw2-9bcnx_Lf-v2aPLp7FM3JjMB4dqIPh4f5jcjNAbnGJQ5tkfTad2ydg_s2yp47pKFGXzOR_Aaz7aJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJiZeEIyvwACDQDyA1Sxx4uRhQtvaamWsTGOgvVmJ7UClkYymFaz_If8Vd4mTkUrsbW-tcvmwfXe_O9_5jpBXruYZF65mACYB4yoyLOWeYp7WrlFRzFWK-5CH43D_C_9wGpyukD_NWRhMq2x0YqWodaFwj7znceEDWIWh6GU2LeKoP3x__pNhBymMtDbtNBLbZkFvV-XG7CGPA3PxC9y5cnvUh7V_7XnDwcnePrMdB5gCs2XGsiBRiQhDN1VcKZ2CNwGQmHhVW2YFqjxOA54pDYyeRUmgw0Ar7UcJ_IlBsfvw2BtkTQDogx-4tjsYHx23IQ0uqlpWgJcx82I3sid4XD_qlYCiscvQk0OI5mzRQcllrPgHLJcTOZeiuRVIDu-Q29a6pTs1O94lKybfIDfrfpcXG2T90Eby75Fk8BuelWFJ8CoTlu5SjCHQaZ2za0qqsG_IGZjCFPeKaW7m1abMAl5MgR0maYEJkPBT0x_FNJ1o8CfoJKd7n76O-mwrvk9OrmPyH5DVvMjNI0LDNOEqDlLlaZdnxk84GEUmBmfWgIbSgUO2mtmVypZCx44cZ7IKyfuRrFdEworIakXkwiFv23vO60IgV1K_xEWTWGEjR179lszLUo4-H8sdtIldEQvPIW8sUVbA61ViT0TAILAoV4dys0MJKkB1Lze8Ia0KKuWlwDjkRXsZ78S0utwUc6TBepGY6eiQhzUrtYPzfQxCi9ghosNkLQEWJu9eySffqwLlAiRAuPBZ7xp2vPys_8_Z46tH8Zysg8DLj6PxwRNyy0NhqbKKNsnqbDo3T8E2nKXPrNRRIq9Zzv8C1YVzrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extrafollicular+B+cell+responses+correlate+with+neutralizing+antibodies+and+morbidity+in+COVID-19&rft.jtitle=Nature+immunology&rft.au=Woodruff%2C+Matthew+C&rft.au=Ramonell%2C+Richard+P&rft.au=Nguyen%2C+Doan+C&rft.au=Cashman%2C+Kevin+S&rft.date=2020-12-01&rft.issn=1529-2916&rft.eissn=1529-2916&rft.volume=21&rft.issue=12&rft.spage=1506&rft_id=info:doi/10.1038%2Fs41590-020-00814-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon |