Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19

A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell response...

Full description

Saved in:
Bibliographic Details
Published inNature immunology Vol. 21; no. 12; pp. 1506 - 1516
Main Authors Woodruff, Matthew C., Ramonell, Richard P., Nguyen, Doan C., Cashman, Kevin S., Saini, Ankur Singh, Haddad, Natalie S., Ley, Ariel M., Kyu, Shuya, Howell, J. Christina, Ozturk, Tugba, Lee, Saeyun, Suryadevara, Naveenchandra, Case, James Brett, Bugrovsky, Regina, Chen, Weirong, Estrada, Jacob, Morrison-Porter, Andrea, Derrico, Andrew, Anam, Fabliha A., Sharma, Monika, Wu, Henry M., Le, Sang N., Jenks, Scott A., Tipton, Christopher M., Staitieh, Bashar, Daiss, John L., Ghosn, Eliver, Diamond, Michael S., Carnahan, Robert H., Crowe, James E., Hu, William T., Lee, F. Eun-Hyung, Sanz, Ignacio
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.12.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1529-2908
1529-2916
1529-2916
DOI10.1038/s41590-020-00814-z

Cover

Abstract A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling. Sanz and colleagues examine B cell subsets in a cohort of patients with COVID-19. Severely ill patients have higher frequencies of activated extrafollicular T-bet + B cells that form antibody-secreting cells, the majority of which express germline sequences and are reminiscent of antibody responses observed in patients with systemic lupus erythematosus during flares.
AbstractList A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.
A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.Sanz and colleagues examine B cell subsets in a cohort of patients with COVID-19. Severely ill patients have higher frequencies of activated extrafollicular T-bet+ B cells that form antibody-secreting cells, the majority of which express germline sequences and are reminiscent of antibody responses observed in patients with systemic lupus erythematosus during flares.
A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.
A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling. Sanz and colleagues examine B cell subsets in a cohort of patients with COVID-19. Severely ill patients have higher frequencies of activated extrafollicular T-bet + B cells that form antibody-secreting cells, the majority of which express germline sequences and are reminiscent of antibody responses observed in patients with systemic lupus erythematosus during flares.
A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.
A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling. Sanz and colleagues examine B cell subsets in a cohort of patients with COVID-19. Severely ill patients have higher frequencies of activated extrafollicular T-bet.sup.+ B cells that form antibody-secreting cells, the majority of which express germline sequences and are reminiscent of antibody responses observed in patients with systemic lupus erythematosus during flares.
Audience Academic
Author Woodruff, Matthew C.
Haddad, Natalie S.
Nguyen, Doan C.
Diamond, Michael S.
Daiss, John L.
Carnahan, Robert H.
Suryadevara, Naveenchandra
Ghosn, Eliver
Saini, Ankur Singh
Crowe, James E.
Derrico, Andrew
Sanz, Ignacio
Howell, J. Christina
Lee, Saeyun
Kyu, Shuya
Staitieh, Bashar
Morrison-Porter, Andrea
Cashman, Kevin S.
Hu, William T.
Ozturk, Tugba
Sharma, Monika
Jenks, Scott A.
Ramonell, Richard P.
Anam, Fabliha A.
Lee, F. Eun-Hyung
Estrada, Jacob
Chen, Weirong
Tipton, Christopher M.
Ley, Ariel M.
Wu, Henry M.
Case, James Brett
Bugrovsky, Regina
Le, Sang N.
AuthorAffiliation 3 Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
2 Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
10 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
8 Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA
9 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
6 Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
13 These authors contributed equally: Matthew C. Woodruff, Richard P. Ramonell
12 Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
11 Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
1 Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University
AuthorAffiliation_xml – name: 3 Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
– name: 9 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
– name: 12 Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
– name: 4 MicroB-plex, Atlanta, GA, USA
– name: 7 Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
– name: 1 Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
– name: 6 Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
– name: 11 Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
– name: 10 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
– name: 13 These authors contributed equally: Matthew C. Woodruff, Richard P. Ramonell
– name: 8 Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA
– name: 5 Department of Neurology, Emory University, Atlanta, GA, USA
– name: 2 Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
Author_xml – sequence: 1
  givenname: Matthew C.
  orcidid: 0000-0002-5252-7539
  surname: Woodruff
  fullname: Woodruff, Matthew C.
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Emory Autoimmunity Center of Excellence, Emory University
– sequence: 2
  givenname: Richard P.
  orcidid: 0000-0002-2385-0636
  surname: Ramonell
  fullname: Ramonell, Richard P.
  organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University
– sequence: 3
  givenname: Doan C.
  orcidid: 0000-0002-5389-6731
  surname: Nguyen
  fullname: Nguyen, Doan C.
  organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University
– sequence: 4
  givenname: Kevin S.
  orcidid: 0000-0002-2907-9264
  surname: Cashman
  fullname: Cashman, Kevin S.
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University
– sequence: 5
  givenname: Ankur Singh
  orcidid: 0000-0003-3963-6586
  surname: Saini
  fullname: Saini, Ankur Singh
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University
– sequence: 6
  givenname: Natalie S.
  orcidid: 0000-0002-1348-3094
  surname: Haddad
  fullname: Haddad, Natalie S.
  organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, MicroB-plex
– sequence: 7
  givenname: Ariel M.
  surname: Ley
  fullname: Ley, Ariel M.
  organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University
– sequence: 8
  givenname: Shuya
  surname: Kyu
  fullname: Kyu, Shuya
  organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University
– sequence: 9
  givenname: J. Christina
  surname: Howell
  fullname: Howell, J. Christina
  organization: Department of Neurology, Emory University
– sequence: 10
  givenname: Tugba
  surname: Ozturk
  fullname: Ozturk, Tugba
  organization: Department of Neurology, Emory University
– sequence: 11
  givenname: Saeyun
  surname: Lee
  fullname: Lee, Saeyun
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University
– sequence: 12
  givenname: Naveenchandra
  surname: Suryadevara
  fullname: Suryadevara, Naveenchandra
  organization: Vanderbilt Vaccine Center, Vanderbilt University Medical Center
– sequence: 13
  givenname: James Brett
  surname: Case
  fullname: Case, James Brett
  organization: Department of Medicine, Washington University School of Medicine
– sequence: 14
  givenname: Regina
  surname: Bugrovsky
  fullname: Bugrovsky, Regina
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University
– sequence: 15
  givenname: Weirong
  surname: Chen
  fullname: Chen, Weirong
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University
– sequence: 16
  givenname: Jacob
  surname: Estrada
  fullname: Estrada, Jacob
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University
– sequence: 17
  givenname: Andrea
  surname: Morrison-Porter
  fullname: Morrison-Porter, Andrea
  organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University
– sequence: 18
  givenname: Andrew
  surname: Derrico
  fullname: Derrico, Andrew
  organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University
– sequence: 19
  givenname: Fabliha A.
  orcidid: 0000-0002-2265-2726
  surname: Anam
  fullname: Anam, Fabliha A.
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University
– sequence: 20
  givenname: Monika
  surname: Sharma
  fullname: Sharma, Monika
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University
– sequence: 21
  givenname: Henry M.
  surname: Wu
  fullname: Wu, Henry M.
  organization: Department of Medicine, Division of Infectious Diseases, Emory University
– sequence: 22
  givenname: Sang N.
  surname: Le
  fullname: Le, Sang N.
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University
– sequence: 23
  givenname: Scott A.
  surname: Jenks
  fullname: Jenks, Scott A.
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Emory Autoimmunity Center of Excellence, Emory University
– sequence: 24
  givenname: Christopher M.
  surname: Tipton
  fullname: Tipton, Christopher M.
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Emory Autoimmunity Center of Excellence, Emory University
– sequence: 25
  givenname: Bashar
  surname: Staitieh
  fullname: Staitieh, Bashar
  organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University
– sequence: 26
  givenname: John L.
  surname: Daiss
  fullname: Daiss, John L.
  organization: MicroB-plex
– sequence: 27
  givenname: Eliver
  orcidid: 0000-0001-7258-906X
  surname: Ghosn
  fullname: Ghosn, Eliver
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University
– sequence: 28
  givenname: Michael S.
  orcidid: 0000-0002-8791-3165
  surname: Diamond
  fullname: Diamond, Michael S.
  organization: Department of Medicine, Washington University School of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, Department of Pathology and Immunology, Washington University School of Medicine, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine
– sequence: 29
  givenname: Robert H.
  surname: Carnahan
  fullname: Carnahan, Robert H.
  organization: Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Department of Pediatrics, Vanderbilt University Medical Center
– sequence: 30
  givenname: James E.
  orcidid: 0000-0002-0049-1079
  surname: Crowe
  fullname: Crowe, James E.
  organization: Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Department of Pediatrics, Vanderbilt University Medical Center
– sequence: 31
  givenname: William T.
  surname: Hu
  fullname: Hu, William T.
  organization: Department of Neurology, Emory University
– sequence: 32
  givenname: F. Eun-Hyung
  orcidid: 0000-0002-6133-5942
  surname: Lee
  fullname: Lee, F. Eun-Hyung
  email: f.e.lee@emory.edu
  organization: Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University
– sequence: 33
  givenname: Ignacio
  orcidid: 0000-0003-4182-587X
  surname: Sanz
  fullname: Sanz, Ignacio
  email: ignacio.sanz@emory.edu
  organization: Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Emory Autoimmunity Center of Excellence, Emory University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33028979$$D View this record in MEDLINE/PubMed
BookMark eNp9kt9v1SAUxxsz437oP-CDIfHFPXQChVJeTObd1JssWaKLr4RS2rFQuALV7f71Uu-88y5maUih_XzPOXzPOSz2nHe6KF4jeIJg1byPBFEOS4jzgg0i5fpZcYAo5iXmqN7b7mGzXxzGeAMhIqwmL4r9qoK44YwfFPL8NgXZe2uNmqwM4CNQ2loQdFx5F3UEyoegrUwa_DLpGjg9ZYE1a-MGIF0yre9MxqTrwOhDazqT7oBxYHH5fXlWIv6yeN5LG_Wr-_dRcfXp_Grxpby4_LxcnF6UijKayp5KJVldw1YRpbq2YQgjKjEhsMEK5XJbSnrVEUz7RtKupp3qqkbmAyeYV0fFh03Y1dSOulPazWWKVTCjDHfCSyN2_zhzLQb_UzBWcQZxDvDuPkDwPyYdkxhNnL2QTvspilwJxzWqaprRt4_QGz8Fl2-XKVZhiOqaPVCDtFoY1_ucV81BxWlNYQMZZ3Pak_9Q-en0aFRueG_y9x3B8Y4gM0nfpkFOMYrlt6-77Jt_Tdm68bf_GcAbQAUfY9D9FkFQzEMmNkMm8pCJP0Mm1lnUPBIpk2QyfjbW2Kel1UYacx436PDg3BOq3_-K5Vo
CitedBy_id crossref_primary_10_1016_j_autrev_2021_102883
crossref_primary_10_1002_art_42157
crossref_primary_10_1038_s41587_021_01131_y
crossref_primary_10_1093_infdis_jiad603
crossref_primary_10_1007_s11357_024_01227_8
crossref_primary_10_1038_s41591_021_01329_2
crossref_primary_10_3389_fimmu_2022_988536
crossref_primary_10_1021_acs_molpharmaceut_4c00297
crossref_primary_10_1186_s13256_024_04889_2
crossref_primary_10_1038_s43587_021_00114_7
crossref_primary_10_1016_j_celrep_2024_114045
crossref_primary_10_1016_j_prp_2022_153848
crossref_primary_10_1126_scitranslmed_abl6141
crossref_primary_10_1016_j_cell_2022_01_018
crossref_primary_10_3389_fmed_2022_934270
crossref_primary_10_1136_jitc_2021_002550
crossref_primary_10_1016_j_jtauto_2024_100252
crossref_primary_10_3390_ijms222212539
crossref_primary_10_1111_imr_12975
crossref_primary_10_1016_j_jaut_2024_103299
crossref_primary_10_1038_s41422_021_00541_6
crossref_primary_10_3389_fcimb_2022_988604
crossref_primary_10_18231_j_ijcbr_2023_037
crossref_primary_10_1016_j_jaip_2021_01_012
crossref_primary_10_1016_j_cell_2020_12_015
crossref_primary_10_3390_v15030701
crossref_primary_10_1371_journal_pone_0291131
crossref_primary_10_1177_15353702231157941
crossref_primary_10_1084_jem_20212553
crossref_primary_10_1681_ASN_2021040573
crossref_primary_10_1089_vim_2021_0054
crossref_primary_10_1093_cei_uxac079
crossref_primary_10_3390_v15010175
crossref_primary_10_1093_cei_uxad044
crossref_primary_10_26508_lsa_202402774
crossref_primary_10_1038_s41467_022_30863_x
crossref_primary_10_1016_j_smim_2024_101875
crossref_primary_10_1055_s_0041_1739495
crossref_primary_10_1097_RHU_0000000000001733
crossref_primary_10_1016_j_coi_2023_102300
crossref_primary_10_1038_s41590_022_01248_5
crossref_primary_10_1016_j_jim_2023_113437
crossref_primary_10_1038_s41590_021_01077_y
crossref_primary_10_3390_cells12050774
crossref_primary_10_1084_jem_20202617
crossref_primary_10_1111_bcp_14792
crossref_primary_10_1128_msystems_00058_22
crossref_primary_10_12998_wjcc_v11_i10_2140
crossref_primary_10_1016_j_jiph_2023_01_016
crossref_primary_10_1016_j_celrep_2022_110393
crossref_primary_10_1002_art_42146
crossref_primary_10_1016_j_arr_2022_101818
crossref_primary_10_3390_v14051082
crossref_primary_10_1515_mr_2024_0013
crossref_primary_10_1016_j_nmd_2022_12_001
crossref_primary_10_1111_imr_12953
crossref_primary_10_1016_j_jaut_2024_103276
crossref_primary_10_4049_jimmunol_2100339
crossref_primary_10_1016_j_imlet_2024_106937
crossref_primary_10_1080_08820139_2023_2187303
crossref_primary_10_1007_s00296_023_05319_0
crossref_primary_10_1038_s41590_021_01042_9
crossref_primary_10_1016_j_ijid_2021_07_015
crossref_primary_10_1073_pnas_2217902120
crossref_primary_10_1136_annrheumdis_2021_221711
crossref_primary_10_1097_TP_0000000000004889
crossref_primary_10_3389_fmicb_2020_588409
crossref_primary_10_1186_s12979_023_00361_9
crossref_primary_10_1038_s41584_024_01179_5
crossref_primary_10_3389_fimmu_2023_1055457
crossref_primary_10_1128_mBio_01503_21
crossref_primary_10_1146_annurev_pathmechdis_031521_042754
crossref_primary_10_3389_fimmu_2021_722027
crossref_primary_10_1038_s41598_022_23923_1
crossref_primary_10_1016_j_xcrm_2022_100845
crossref_primary_10_1038_s41541_021_00389_2
crossref_primary_10_1007_s12026_023_09449_2
crossref_primary_10_1126_science_2020_5_54_twil
crossref_primary_10_1186_s13073_022_01100_3
crossref_primary_10_1093_oxfimm_iqab018
crossref_primary_10_7554_eLife_79924
crossref_primary_10_47360_1995_4484_2021_384_393
crossref_primary_10_1016_j_celrep_2022_111895
crossref_primary_10_1080_22221751_2022_2130101
crossref_primary_10_1111_sji_13345
crossref_primary_10_1111_sji_13344
crossref_primary_10_1111_all_15302
crossref_primary_10_1016_j_micinf_2021_104807
crossref_primary_10_3389_fimmu_2023_1241474
crossref_primary_10_3389_fimmu_2024_1450380
crossref_primary_10_1093_jleuko_qiae083
crossref_primary_10_1093_oxfimm_iqab006
crossref_primary_10_1016_j_virol_2024_110067
crossref_primary_10_3389_fimmu_2022_943563
crossref_primary_10_1111_sji_13313
crossref_primary_10_3390_vaccines11020408
crossref_primary_10_3389_fimmu_2021_821729
crossref_primary_10_1515_cclm_2022_0239
crossref_primary_10_1182_bloodadvances_2024013267
crossref_primary_10_1007_s42977_023_00153_8
crossref_primary_10_3390_cimb46010003
crossref_primary_10_3389_fimmu_2022_970906
crossref_primary_10_1016_j_jaci_2023_02_020
crossref_primary_10_3389_fimmu_2023_974343
crossref_primary_10_1186_s41232_023_00255_9
crossref_primary_10_1021_acs_jproteome_4c00546
crossref_primary_10_1093_jalm_jfad123
crossref_primary_10_1016_j_mucimm_2023_02_008
crossref_primary_10_2139_ssrn_3866846
crossref_primary_10_1172_jci_insight_152288
crossref_primary_10_3390_ijms232213951
crossref_primary_10_1177_1721727X221098970
crossref_primary_10_1097_TP_0000000000004671
crossref_primary_10_1126_scitranslmed_abi7428
crossref_primary_10_1016_j_cll_2023_05_002
crossref_primary_10_3389_fimmu_2021_769442
crossref_primary_10_1016_j_cell_2021_01_050
crossref_primary_10_1136_annrheumdis_2021_219957
crossref_primary_10_4103_bhsj_bhsj_49_23
crossref_primary_10_1016_j_jaci_2023_10_009
crossref_primary_10_3390_v15102100
crossref_primary_10_1134_S1019331622040062
crossref_primary_10_1016_j_biopha_2025_117936
crossref_primary_10_3233_HAB_230017
crossref_primary_10_4049_immunohorizons_2100011
crossref_primary_10_1002_ctm2_720
crossref_primary_10_1016_j_ijid_2021_06_031
crossref_primary_10_1016_j_celrep_2021_108728
crossref_primary_10_7554_eLife_86014
crossref_primary_10_1016_j_isci_2021_103672
crossref_primary_10_1016_j_bbagrm_2022_194828
crossref_primary_10_3389_fimmu_2021_742631
crossref_primary_10_1016_j_coi_2023_102286
crossref_primary_10_5363_tits_26_9_79
crossref_primary_10_1038_s41467_021_25509_3
crossref_primary_10_1038_s41590_024_01858_1
crossref_primary_10_4049_jimmunol_2300027
crossref_primary_10_3389_fimmu_2022_988125
crossref_primary_10_3390_v15112250
crossref_primary_10_1016_j_immuni_2020_11_017
crossref_primary_10_1038_s41467_021_25102_8
crossref_primary_10_1016_j_imlet_2023_03_003
crossref_primary_10_1038_s41598_021_81629_2
crossref_primary_10_3390_vaccines10101612
crossref_primary_10_1016_j_immuni_2021_08_025
crossref_primary_10_1038_s41586_021_03631_y
crossref_primary_10_1016_j_celrep_2025_115366
crossref_primary_10_1016_j_intimp_2021_108036
crossref_primary_10_3389_fimmu_2023_1241038
crossref_primary_10_1080_08820139_2021_1903033
crossref_primary_10_1038_s41467_023_36686_8
crossref_primary_10_3389_fmed_2021_808608
crossref_primary_10_1016_j_immuni_2024_11_006
crossref_primary_10_1016_j_immuni_2020_11_006
crossref_primary_10_1016_j_immuni_2022_02_007
crossref_primary_10_1016_j_isci_2021_103659
crossref_primary_10_3389_fimmu_2023_1224702
crossref_primary_10_3390_microorganisms12030617
crossref_primary_10_1016_j_rdc_2024_09_001
crossref_primary_10_3389_fimmu_2022_880829
crossref_primary_10_1126_scitranslmed_abf8654
crossref_primary_10_1016_j_ijid_2022_04_019
crossref_primary_10_1128_mSphere_00726_21
crossref_primary_10_7554_eLife_67397
crossref_primary_10_1016_j_immuni_2024_03_016
crossref_primary_10_1002_jmv_28000
crossref_primary_10_1002_art_42094
crossref_primary_10_1016_j_ijid_2022_07_026
crossref_primary_10_1016_j_isci_2023_106260
crossref_primary_10_1016_j_rdc_2021_04_006
crossref_primary_10_1111_pai_13434
crossref_primary_10_3389_fimmu_2023_1254310
crossref_primary_10_3389_fimmu_2024_1341600
crossref_primary_10_3389_fneur_2024_1465787
crossref_primary_10_3390_covid4090100
crossref_primary_10_1146_annurev_immunol_101921_040450
crossref_primary_10_3389_fimmu_2022_826152
crossref_primary_10_1111_1756_185X_14724
crossref_primary_10_3389_fimmu_2021_738123
crossref_primary_10_3389_fimmu_2022_1021370
crossref_primary_10_1038_s41423_021_00754_0
crossref_primary_10_1136_bmj_n436
crossref_primary_10_3389_fimmu_2021_686029
crossref_primary_10_20411_pai_v7i2_550
crossref_primary_10_3389_fimmu_2023_1077236
crossref_primary_10_3389_fmed_2022_950452
crossref_primary_10_1016_j_bpj_2021_05_025
crossref_primary_10_3389_fragi_2021_715981
crossref_primary_10_1016_j_intimp_2021_108254
crossref_primary_10_1126_sciimmunol_abl5652
crossref_primary_10_1016_j_celrep_2023_112630
crossref_primary_10_1038_s41541_024_00886_0
crossref_primary_10_1093_cei_uxac103
crossref_primary_10_1093_cei_uxac104
crossref_primary_10_1097_MCP_0000000000000775
crossref_primary_10_1016_j_immuni_2021_09_011
crossref_primary_10_15789_2220_7619_SIM_17596
crossref_primary_10_1186_s12969_021_00568_4
crossref_primary_10_1089_vim_2021_0191
crossref_primary_10_1007_s12275_022_2037_8
crossref_primary_10_1016_j_immuni_2022_09_006
crossref_primary_10_1111_imr_13115
crossref_primary_10_3389_fimmu_2020_611004
crossref_primary_10_2139_ssrn_3918293
crossref_primary_10_1038_s41467_023_43504_8
crossref_primary_10_1146_annurev_immunol_101921_042422
crossref_primary_10_3389_fimmu_2021_582166
crossref_primary_10_1038_s41592_022_01450_1
crossref_primary_10_1016_j_sjbs_2023_103821
crossref_primary_10_3389_fimmu_2021_690477
crossref_primary_10_2174_1570159X19666210330094017
crossref_primary_10_1038_s41598_023_37606_y
crossref_primary_10_22391_fppc_1049314
crossref_primary_10_1016_j_transci_2021_103063
crossref_primary_10_1002_cti2_1339
crossref_primary_10_24075_brsmu_2024_023
crossref_primary_10_1111_joim_13310
crossref_primary_10_1126_sciimmunol_adj4748
crossref_primary_10_1016_j_tcm_2022_04_004
crossref_primary_10_1038_s41597_025_04510_1
crossref_primary_10_1007_s10875_022_01256_y
crossref_primary_10_3389_fphys_2023_1203723
crossref_primary_10_1097_BOR_0000000000000776
crossref_primary_10_1084_jem_20202001
crossref_primary_10_1038_s41467_023_40012_7
crossref_primary_10_1186_s12014_024_09457_w
crossref_primary_10_3389_fimmu_2022_853682
crossref_primary_10_47360_1995_4484_2021_119_128
crossref_primary_10_1016_j_cger_2022_04_002
crossref_primary_10_3389_fimmu_2022_993754
crossref_primary_10_1002_jmv_29001
crossref_primary_10_1038_s41584_020_00544_4
crossref_primary_10_3389_fimmu_2024_1395684
crossref_primary_10_15252_embr_202255747
crossref_primary_10_3389_fimmu_2022_1007068
crossref_primary_10_1126_sciimmunol_adj5948
crossref_primary_10_1016_j_immuni_2022_01_002
crossref_primary_10_3389_fimmu_2022_912336
crossref_primary_10_1016_j_cossms_2024_101191
crossref_primary_10_1016_j_trsl_2020_12_007
crossref_primary_10_1038_s41366_023_01344_y
crossref_primary_10_1371_journal_pone_0245424
crossref_primary_10_3389_fimmu_2022_946786
crossref_primary_10_1016_j_eng_2022_01_003
crossref_primary_10_1038_s42003_024_06282_7
crossref_primary_10_1182_blood_2020010459
crossref_primary_10_1002_JLB_4COVA0121_084RR
crossref_primary_10_1111_1756_185X_14767
crossref_primary_10_1038_s41590_021_00901_9
crossref_primary_10_3389_fimmu_2024_1348041
crossref_primary_10_3390_v15020272
crossref_primary_10_1016_j_cell_2022_09_032
crossref_primary_10_1089_vim_2023_0045
crossref_primary_10_1016_j_isci_2021_103325
crossref_primary_10_1172_jci_insight_177729
crossref_primary_10_1093_infdis_jiab174
crossref_primary_10_1016_j_chom_2021_06_009
crossref_primary_10_3390_ijms232315142
crossref_primary_10_47360_1995_4484_2021_5_30
crossref_primary_10_1126_sciadv_abg4081
crossref_primary_10_1155_2024_7112940
crossref_primary_10_1016_j_imbio_2023_152392
crossref_primary_10_1172_jci_insight_166602
crossref_primary_10_1016_j_cll_2021_10_001
crossref_primary_10_4049_jimmunol_2100135
crossref_primary_10_1038_s41366_021_01016_9
crossref_primary_10_1093_ckj_sfac174
crossref_primary_10_1126_sciimmunol_adj7029
crossref_primary_10_3390_pathogens13060514
crossref_primary_10_1093_intimm_dxab008
crossref_primary_10_3389_fimmu_2021_804808
crossref_primary_10_1016_j_jinf_2023_05_023
crossref_primary_10_1126_science_adj4857
crossref_primary_10_1002_cti2_1245
crossref_primary_10_1016_j_celrep_2021_109414
crossref_primary_10_3390_cells10102545
crossref_primary_10_18663_tjcl_1544956
crossref_primary_10_1007_s11102_024_01462_4
crossref_primary_10_1016_j_pccm_2024_11_006
crossref_primary_10_4049_jimmunol_2300670
crossref_primary_10_3390_cells11131991
crossref_primary_10_3390_ijerph19010042
crossref_primary_10_3389_fcell_2021_725606
crossref_primary_10_1371_journal_pone_0285025
crossref_primary_10_1182_blood_2021011871
crossref_primary_10_1186_s12929_022_00833_y
crossref_primary_10_1371_journal_pone_0309316
crossref_primary_10_3389_fcimb_2022_909218
crossref_primary_10_1093_ajcp_aqab087
crossref_primary_10_1055_a_1701_2809
crossref_primary_10_3389_fimmu_2022_807104
crossref_primary_10_1212_NXI_0000000000001125
crossref_primary_10_1016_j_celrep_2021_109798
crossref_primary_10_1172_JCI162192
crossref_primary_10_20411_pai_v8i1_572
crossref_primary_10_3389_fimmu_2024_1505719
crossref_primary_10_1002_jor_25445
crossref_primary_10_1038_s41467_022_34145_4
crossref_primary_10_1038_s41598_023_37405_5
crossref_primary_10_1111_sji_13192
crossref_primary_10_1038_s41591_022_01724_3
crossref_primary_10_1002_jmv_29851
crossref_primary_10_1038_s41577_021_00522_1
crossref_primary_10_1016_j_ijid_2020_10_032
crossref_primary_10_1016_j_jiph_2022_10_025
crossref_primary_10_3389_fmed_2022_818882
crossref_primary_10_1007_s00018_022_04433_9
crossref_primary_10_1111_imr_13013
crossref_primary_10_2139_ssrn_3940630
crossref_primary_10_1038_s41385_021_00410_w
crossref_primary_10_17816_rmmar111889
crossref_primary_10_1038_s41467_024_54228_8
crossref_primary_10_1128_mBio_02940_20
crossref_primary_10_1159_000517659
crossref_primary_10_3390_vaccines11111705
crossref_primary_10_1016_j_jtauto_2022_100154
crossref_primary_10_1038_s41563_024_02037_1
crossref_primary_10_4049_immunohorizons_2200005
crossref_primary_10_17264_stmarieng_13_29
crossref_primary_10_3390_biomedicines10092242
crossref_primary_10_1016_j_ijantimicag_2020_106261
crossref_primary_10_1038_s41591_021_01542_z
crossref_primary_10_1038_s41590_024_02035_0
crossref_primary_10_1016_j_jdsr_2022_12_002
crossref_primary_10_4049_jimmunol_2200944
crossref_primary_10_4103_ijmr_ijmr_70_22
crossref_primary_10_3390_v16040611
crossref_primary_10_1038_s41586_023_07015_2
crossref_primary_10_4049_jimmunol_2001420
crossref_primary_10_1158_2326_6066_CIR_21_0675
crossref_primary_10_1002_path_5642
crossref_primary_10_1080_14397595_2020_1868673
crossref_primary_10_1016_j_jhep_2022_07_008
crossref_primary_10_1038_s41591_020_1140_9
crossref_primary_10_3389_fphys_2020_571416
crossref_primary_10_7554_eLife_72619
crossref_primary_10_1111_1756_185X_14238
crossref_primary_10_1093_braincomms_fcad218
crossref_primary_10_1016_j_clim_2022_108937
crossref_primary_10_1172_JCI152042
crossref_primary_10_3389_fimmu_2021_616650
crossref_primary_10_1038_s41586_022_05273_0
crossref_primary_10_1016_j_trim_2023_101791
crossref_primary_10_1126_sciimmunol_abh0891
crossref_primary_10_1183_13993003_00918_2021
crossref_primary_10_3390_ijms26041751
crossref_primary_10_3390_pathophysiology29020020
crossref_primary_10_3389_fimmu_2022_868724
crossref_primary_10_1016_j_isci_2023_106124
crossref_primary_10_1016_j_immuno_2024_100042
crossref_primary_10_3389_fimmu_2020_610688
crossref_primary_10_1038_s41564_023_01505_9
crossref_primary_10_3390_vaccines11061127
crossref_primary_10_1126_scitranslmed_abn5168
crossref_primary_10_3389_fimmu_2024_1427075
crossref_primary_10_4049_jimmunol_2200409
crossref_primary_10_1038_s41577_023_00933_2
crossref_primary_10_1111_imr_13068
crossref_primary_10_1111_imr_70005
crossref_primary_10_1111_imr_70004
crossref_primary_10_1111_imm_13564
crossref_primary_10_3389_fbioe_2022_1052436
crossref_primary_10_1038_s41586_022_05371_z
crossref_primary_10_3389_fmed_2023_1271198
crossref_primary_10_1007_s11357_023_00887_2
crossref_primary_10_2174_138620732401210113110410
crossref_primary_10_1093_pnasnexus_pgaf006
crossref_primary_10_3389_fimmu_2021_709759
crossref_primary_10_1038_s41467_024_50997_4
crossref_primary_10_1371_journal_pcbi_1009778
crossref_primary_10_1038_s43587_021_00156_x
crossref_primary_10_1093_infdis_jiac091
crossref_primary_10_3390_life13112121
crossref_primary_10_1007_s10875_021_01133_0
crossref_primary_10_1038_s41541_023_00724_9
crossref_primary_10_1002_eji_202149529
crossref_primary_10_1016_j_cytogfr_2021_03_001
crossref_primary_10_1016_j_molimm_2021_06_021
crossref_primary_10_1016_j_cell_2020_10_051
crossref_primary_10_1016_j_mad_2022_111667
crossref_primary_10_15252_emmm_202217341
crossref_primary_10_3389_fimmu_2025_1535014
crossref_primary_10_3390_covid2040033
crossref_primary_10_1126_sciimmunol_abf8870
crossref_primary_10_1038_s41590_024_02010_9
crossref_primary_10_3390_molecules26165004
crossref_primary_10_7326_M21_1043
crossref_primary_10_1212_NXI_0000000000001067
crossref_primary_10_1097_MD_0000000000039056
crossref_primary_10_1016_j_gendis_2022_04_007
crossref_primary_10_1016_j_hfc_2022_08_006
crossref_primary_10_1016_j_imlet_2021_03_012
crossref_primary_10_1371_journal_pmed_1003648
crossref_primary_10_1126_sciadv_ado1331
crossref_primary_10_3389_fmolb_2022_804109
crossref_primary_10_1038_s41467_024_48267_4
crossref_primary_10_2139_ssrn_3910805
crossref_primary_10_1371_journal_ppat_1010297
crossref_primary_10_3390_v15051215
crossref_primary_10_47360_1995_4484_2023_397_420
crossref_primary_10_1093_ofid_ofac171
crossref_primary_10_1111_eci_13661
crossref_primary_10_14348_molcells_2021_0075
crossref_primary_10_1016_j_jaut_2024_103218
crossref_primary_10_15789_2220_7619_PRD_16670
crossref_primary_10_3389_fimmu_2022_964976
crossref_primary_10_3390_pathogens12060815
crossref_primary_10_3389_fimmu_2023_1213344
crossref_primary_10_1016_j_immuni_2022_06_013
crossref_primary_10_1016_j_jtauto_2025_100270
crossref_primary_10_1038_s41590_022_01367_z
crossref_primary_10_3390_ijms23063372
crossref_primary_10_1016_j_jaut_2023_103070
crossref_primary_10_1016_j_jim_2022_113327
crossref_primary_10_1038_s41385_021_00464_w
crossref_primary_10_1007_s00109_021_02161_4
crossref_primary_10_3389_fimmu_2021_649567
crossref_primary_10_1016_j_cell_2021_01_007
crossref_primary_10_3389_fimmu_2021_815404
crossref_primary_10_1016_j_bbrc_2020_10_079
crossref_primary_10_1016_j_isci_2023_106935
crossref_primary_10_1016_j_jaut_2024_103320
crossref_primary_10_1016_j_clim_2022_108991
crossref_primary_10_3389_fimmu_2020_571481
crossref_primary_10_3390_v15030782
crossref_primary_10_1016_j_bbih_2024_100802
crossref_primary_10_1016_j_xcrm_2022_100663
crossref_primary_10_1186_s12979_021_00245_w
crossref_primary_10_3389_fbinf_2022_1044975
crossref_primary_10_1002_art_41697
crossref_primary_10_1007_s00292_021_01024_6
crossref_primary_10_1093_cid_ciab732
crossref_primary_10_1016_j_eclinm_2022_101783
crossref_primary_10_1007_s11033_021_07020_6
crossref_primary_10_1016_j_vaccine_2024_126544
crossref_primary_10_1183_16000617_0197_2022
crossref_primary_10_1038_s41467_024_46053_w
crossref_primary_10_1182_blood_2024025010
crossref_primary_10_47360_1995_4484_2024_32_54
crossref_primary_10_1002_ijc_34048
crossref_primary_10_1007_s10875_023_01468_w
crossref_primary_10_1007_s12272_024_01529_7
crossref_primary_10_3390_jcm12134370
crossref_primary_10_15789_1563_0625_COI_2852
crossref_primary_10_1186_s10020_024_00965_x
crossref_primary_10_1016_j_immuni_2025_02_025
crossref_primary_10_1136_annrheumdis_2021_220349
crossref_primary_10_1186_s12985_022_01783_5
crossref_primary_10_1038_s41590_024_01887_w
crossref_primary_10_3389_fimmu_2022_840707
crossref_primary_10_3389_fmicb_2023_1259960
crossref_primary_10_1016_j_ijscr_2023_109218
crossref_primary_10_26442_00403660_2021_05_200799
crossref_primary_10_1038_s41467_022_32867_z
crossref_primary_10_1016_j_vaccine_2023_06_011
crossref_primary_10_1371_journal_pone_0261656
crossref_primary_10_1007_s11904_021_00590_x
crossref_primary_10_3389_fimmu_2021_649458
crossref_primary_10_1016_j_ccl_2022_03_006
crossref_primary_10_3389_fmicb_2024_1342749
crossref_primary_10_1136_bmjgast_2020_000556
crossref_primary_10_1038_s42003_021_01649_6
crossref_primary_10_26442_00403660_2023_05_202246
crossref_primary_10_3389_fimmu_2022_835104
crossref_primary_10_1093_bib_bbab043
crossref_primary_10_1038_s41467_023_39734_5
crossref_primary_10_3390_cells11010067
crossref_primary_10_1038_s41392_023_01650_x
crossref_primary_10_1038_s41586_023_05736_y
crossref_primary_10_12688_f1000research_121829_1
crossref_primary_10_12688_f1000research_121829_2
crossref_primary_10_3389_fped_2022_790273
crossref_primary_10_12688_f1000research_121829_3
crossref_primary_10_1038_s41587_021_01155_4
crossref_primary_10_1038_s41577_021_00657_1
crossref_primary_10_3389_fimmu_2024_1321236
crossref_primary_10_1265_ehpm_23_00361
crossref_primary_10_3389_fimmu_2022_938011
crossref_primary_10_1080_26895293_2021_1977186
crossref_primary_10_1007_s00011_021_01525_3
crossref_primary_10_1073_pnas_2300644120
crossref_primary_10_1093_intimm_dxad041
crossref_primary_10_1016_j_cytogfr_2021_01_004
crossref_primary_10_1002_eji_202149475
crossref_primary_10_1126_sciimmunol_abm9060
crossref_primary_10_1038_s41423_023_01095_w
crossref_primary_10_1073_pnas_2204607119
crossref_primary_10_1172_JCI154886
crossref_primary_10_15789_2220_7619_THC_1882
crossref_primary_10_1016_j_cell_2021_02_015
crossref_primary_10_1186_s10020_021_00422_z
crossref_primary_10_1016_j_jconrel_2021_09_028
crossref_primary_10_1016_j_csbj_2022_11_001
crossref_primary_10_1038_s41590_020_00822_z
crossref_primary_10_1016_j_immuni_2022_05_004
crossref_primary_10_1016_j_bbadis_2022_166592
crossref_primary_10_1016_j_immuni_2022_05_005
crossref_primary_10_1002_eji_202451391
crossref_primary_10_3389_fimmu_2022_837629
crossref_primary_10_3389_fimmu_2024_1502937
crossref_primary_10_37349_ei_2021_00011
crossref_primary_10_1126_scitranslmed_adq1789
crossref_primary_10_3390_cells13242063
crossref_primary_10_3389_fimmu_2021_719023
crossref_primary_10_1038_s41598_022_25543_1
crossref_primary_10_3390_biomedicines12061306
crossref_primary_10_3390_antib13030065
crossref_primary_10_1016_j_immuni_2023_07_007
crossref_primary_10_1126_scitranslmed_adh1315
crossref_primary_10_3389_fimmu_2023_1133225
crossref_primary_10_3389_fimmu_2024_1326823
crossref_primary_10_3390_v14030646
Cites_doi 10.1073/pnas.1921388117
10.1038/s41591-020-0965-6
10.1056/NEJMc2007575
10.1089/vim.2019.0207
10.1126/science.abc8511
10.1084/jem.20151978
10.1038/s41587-020-0634-9
10.2174/187152612800564437
10.1016/S2213-2600(20)30226-5
10.1111/imr.12754
10.1016/j.chom.2014.06.001
10.1093/cid/ciaa449
10.1016/j.immuni.2015.06.013
10.1016/j.cell.2020.08.025
10.1016/j.xcrm.2020.100040
10.1016/j.jbi.2019.103208
10.3389/fimmu.2020.01708
10.1371/journal.pmed.0030237
10.1038/ni.3175
10.1126/science.abb7269
10.4049/jimmunol.1501209
10.1001/jama.2020.12603
10.1111/imr.12660
10.1038/s41590-018-0056-8
10.1016/j.immuni.2019.04.004
10.1016/j.cell.2017.11.036
10.1172/JCI70084
10.1111/imr.12741
10.1002/art.30599
10.3389/fimmu.2019.02768
10.1016/j.molimm.2009.11.019
10.1056/NEJMoa2021436
10.1172/jci.insight.87310
10.3389/fimmu.2019.02458
10.4049/jimmunol.1700929
10.1038/s41586-020-2571-7
10.1186/ar3042
10.1038/s41590-019-0419-9
10.1080/22221751.2020.1762515
10.1038/nbt.4314
10.7554/eLife.41641
10.1038/s41586-020-2548-6
10.1038/nri2729
10.1186/s13075-017-1438-2
10.1002/art.41285
10.1126/science.1073924
10.1038/s41586-020-2588-y
10.1002/art.41425
10.1172/JCI91250
10.1016/S0140-6736(20)30628-0
10.1056/NEJMc2025179
10.1016/j.coi.2014.02.009
10.1007/s12021-018-9392-y
10.1128/JVI.06075-11
10.1101/2020.07.13.190140
10.1016/j.immuni.2018.08.015
10.1073/pnas.1901340116
10.4049/jimmunol.1500055
10.1016/j.transci.2020.102856
10.1038/s41392-020-0148-4
10.4049/jimmunol.1002932
10.1084/jem.189.10.1639
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
COPYRIGHT 2020 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7T5
7TK
7TM
7U9
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/s41590-020-00814-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Biological Science Database (NC LIVE)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student


MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1529-2916
EndPage 1516
ExternalDocumentID PMC7739702
A650807972
33028979
10_1038_s41590_020_00814_z
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
  grantid: R01-AG054991
  funderid: https://doi.org/10.13039/100000049
– fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA)
  grantid: HR001117S0019
  funderid: https://doi.org/10.13039/100000185
– fundername: Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID)
  grantid: R01 AI127828; 75N93019C00074; R01 AI127828; U19-AI110483; P01-AI125180-01; R37-AI049660; P01-AI125180-01; 1R01AI121252; 1U01AI141993
  funderid: https://doi.org/10.13039/100006492
– fundername: U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
  grantid: T32-HL116271-07
  funderid: https://doi.org/10.13039/100000050
– fundername: NIAID NIH HHS
  grantid: P01 AI125180
– fundername: NIAID NIH HHS
  grantid: 75N93019C00074
– fundername: NHLBI NIH HHS
  grantid: T32 HL116271
– fundername: NIAID NIH HHS
  grantid: R01 AI121252
– fundername: NIAID NIH HHS
  grantid: R01 AI127828
– fundername: NIAID NIH HHS
  grantid: R37 AI049660
– fundername: NIA NIH HHS
  grantid: RF1 AG054991
– fundername: NCATS NIH HHS
  grantid: UL1 TR000424
– fundername: NIAID NIH HHS
  grantid: T32 AI070081
– fundername: NIAID NIH HHS
  grantid: U19 AI110483
GroupedDBID ---
.55
0R~
123
29M
2FS
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABNNU
ABOCM
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EAS
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ISR
ITC
L-9
LK8
M1P
M7P
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WH7
X7M
Y6R
ZXP
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AGQPQ
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QP
7QR
7T5
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c575t-f5aca7660bc4ccdb871215a244082c1289b54fcd425f8a5d65dcd38af8a94293
IEDL.DBID 7X7
ISSN 1529-2908
1529-2916
IngestDate Thu Aug 21 14:03:53 EDT 2025
Fri Sep 05 13:04:22 EDT 2025
Fri Jul 25 08:57:07 EDT 2025
Tue Jun 17 21:00:32 EDT 2025
Tue Jun 10 20:46:37 EDT 2025
Fri Jun 27 04:03:42 EDT 2025
Sat Jul 26 01:47:19 EDT 2025
Thu Apr 24 23:00:41 EDT 2025
Tue Jul 01 01:02:32 EDT 2025
Fri Feb 21 02:38:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Reprints and permissions information is available at www.nature.com/reprints.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-f5aca7660bc4ccdb871215a244082c1289b54fcd425f8a5d65dcd38af8a94293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
M.C.W., R.P.R., F.E.-H.L. and I.S. conceived the experimental design, analyzed and interpreted the data, designed figures and wrote the manuscript. D.C.N., K.S.C., A.S.S., A.M.L., W.C., S.A.J., J.L.D. and E.G. provided input into experimental design and assisted with figures and manuscript writing. M.C.W. and J.E. designed and ran the FCM panel. R.P.R., S.L., H.M.W., S.N.L., B.S. and F.E.-H.L. designed the inclusion and exclusion criteria for the study, identified research subjects and obtained samples. D.C.N., K.S.C., A.S.S., S.K., A.M.-P., A.D. and F.A.A. assisted with sample preparation and processing. A.S.S. performed FACS sorting and single-cell RNA sequencing. D.C.N., M.S. and C.M.T. performed B cell isolations, bulk V(D)J repertoire library preparation and sequencing. D.C.N., J.C.H., T.O. and W.T.H. performed cytokine and chemokine measurement. R.B. performed serum 9G4-idiotype antibody measurement. D.C.N., N.S.H., S.K., A.M.-P. and A.D. performed anti-SARS-CoV-2 RBD antibody measurements. N.S.H., J.B.C., M.S.D., R.H.C. and J.E.C. performed neutralization testing and data analysis.
Author contributions
ORCID 0000-0002-2907-9264
0000-0002-2385-0636
0000-0003-3963-6586
0000-0002-8791-3165
0000-0002-6133-5942
0000-0001-7258-906X
0000-0002-0049-1079
0000-0002-2265-2726
0000-0002-5252-7539
0000-0002-5389-6731
0000-0002-1348-3094
0000-0003-4182-587X
OpenAccessLink https://www.nature.com/articles/s41590-020-00814-z.pdf
PMID 33028979
PQID 2473201667
PQPubID 45782
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7739702
proquest_miscellaneous_2449261365
proquest_journals_2473201667
gale_infotracmisc_A650807972
gale_infotracacademiconefile_A650807972
gale_incontextgauss_ISR_A650807972
pubmed_primary_33028979
crossref_primary_10_1038_s41590_020_00814_z
crossref_citationtrail_10_1038_s41590_020_00814_z
springer_journals_10_1038_s41590_020_00814_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature immunology
PublicationTitleAbbrev Nat Immunol
PublicationTitleAlternate Nat Immunol
PublicationYear 2020
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References ZhangWExcessive CD11c+T-bet+ B cells promote aberrant TFH differentiation and affinity-based germinal center selection in lupusProc. Natl Acad. Sci. USA201911618550185601:CAS:528:DC%2BC1MXhslOhsbnL314516596744857
ZhangYCoagulopathy and antiphospholipid antibodies in patients with Covid-19N. Engl. J. Med.2020382e3832268022
IngrahamNEImmunomodulation in COVID-19Lancet Respir. Med.202085445461:CAS:528:DC%2BB3cXos1Wgt7o%3D323800237198187
IbarrondoFJRapid decay of anti-SARS-CoV-2 antibodies in persons with mild COVID-19N. Engl. J. Med.20203831085108732706954
PioliPDPlasma cells, the next generation: beyond antibody secretionFront. Immunol.20191027681:CAS:528:DC%2BB3cXhsVeqtbbI318245186883717
RubtsovaKB cells expressing the transcription factor T-bet drive lupus-like autoimmunityJ. Clin. Invest.201712713921404282406025373868
Chen, X. et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated IL-6 level in critically ill COVID-19 patients. Clin. Infect. Dis.https://doi.org/10.1093/cid/ciaa449 (2020).
LongQXClinical and immunological assessment of asymptomatic SARS-CoV-2 infectionsNat. Med.202026120012041:CAS:528:DC%2BB3cXhtF2qtbrM32555424
TiptonCMDiversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosusNat. Immunol.2015167557651:CAS:528:DC%2BC2MXhtFSktrbJ260060144512288
YuanMA highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoVScience20203686306331:CAS:528:DC%2BB3cXovFCrt7Y%3D322457847164391
COVID-19 Treatment Guidelines Panel. National Institutes of Health. COVID-19 treatment guidelines. https://www.covid19treatmentguidelines.nih.gov/ (2020).
TangYCytokine storm in COVID-19: the current evidence and treatment strategiesFront. Immunol.20201117081:CAS:528:DC%2BB3cXitF2mtbnP327541637365923
Rodríguez-BayonaBRamos-AmayaAPérez-VenegasJJRodríguezCBrievaJADecreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patientsArthritis Res.Ther.201012R108205252182911899
KwissaMDengue virus infection induces expansion of a CD14+CD16+ monocyte population that stimulates plasmablast differentiationCell Host Microbe2014161151271:CAS:528:DC%2BC2cXhtVKhur3O249813334116428
BechtEDimensionality reduction for visualizing single-cell data using UMAPNat. Biotechnol.2018373844
GustaveCASeptic shock shapes B cell response toward an exhausted-like/immunoregulatory profile in patientsJ. Immunol.2018200241824251:CAS:528:DC%2BC1cXltFSltbw%3D29459404
DangVDHilgenbergERiesSShenPFillatreauSFrom the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsetsCurr. Opin. Immunol.20142877831:CAS:528:DC%2BC2cXosl2hu7Y%3D24637161
JenksSADistinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosusImmunity2018497257391:CAS:528:DC%2BC1cXhvVOqsb7E303147586217820
StoneSLT-bet transcription factor promotes antibody-secreting cell differentiation by limiting the inflammatory effects of IFN-γ on B cellsImmunity201950117211871:CAS:528:DC%2BC1MXptVWisLg%3D310763596929688
Henderson, L. A. et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol.https://doi.org/10.1002/art.41285 (2020).
AllmanDWilmoreJRGaudetteBTThe continuing story of T cell independent antibodiesImmunol. Rev.20192881281351:CAS:528:DC%2BC1MXkvVSls7s%3D308743576653682
LamJHSmithFLBaumgarthNB cell activation and response regulation during viral infectionsViral Immunol.2020332943061:CAS:528:DC%2BB3cXptVGlu7Y%3D323268527247032
Hoepel, W. et al. Anti-SARS-CoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses. Preprint at bioRxivhttps://doi.org/10.1101/2020.07.13.190140 (2020).
ter MeulenJHuman monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutantsPLoS Med.20063e237167964011483912
WilliamJEulerCChristensenSShlomchikMJEvolution of autoantibody responses via somatic hypermutation outside of germinal centersScience2002297206620701:CAS:528:DC%2BD38Xnt1ansLY%3D12242446
TanLLymphopenia predicts disease severity of COVID-19: a descriptive and predictive studySignal Transduct. Target. Ther.20205331:CAS:528:DC%2BB3cXlvV2rtrw%3D322960697100419
SunBKinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patientsEmerg. Microbes Infect.202099409481:CAS:528:DC%2BB3cXhtFShsL%2FM323578087273175
LeeFECirculating human antibody-secreting cells during vaccinations and respiratory viral infections are characterized by high specificity and lack of bystander effectJ. Immunol.2011186551455211:CAS:528:DC%2BC3MXkvF2ju74%3D21441455
YangJFMST: an automatic neuron-tracing method based on fast marching and minimum spanning treeNeuroinformatics20191718519630039210
Di NiroRSalmonella infection drives promiscuous B cell activation followed by extrafollicular affinity maturationImmunity2015431201311:CAS:528:DC%2BC2MXhtFKrtLvP261874114523395
RubtsovAVCD11c-expressing B cells are located at the T cell/B cell border in spleen and are potent APCsJ. Immunol.201519571791:CAS:528:DC%2BC2MXhtVagur3F26034175
Group, R. C. et al. Dexamethasone in hospitalized patients with COVID-19—preliminary report. N Engl. J. Med.https://doi.org/10.1056/NEJMoa2021436 (2020).
Zumaquero, E. et al. IFN-γ induces epigenetic programming of human T-bethi B cells and promotes TLR7/8- and IL-21-induced differentiation. Elife8, e41641 (2019).
Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science369, eabc8511(2020).
SutharMSRapid generation of neutralizing antibody responses in COVID-19 patientsCell Rep. Med.20201100040328353037276302
GayaMInitiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cellsCell20181725175331:CAS:528:DC%2BC2sXhvF2js7rK292493585786505
SellamJBlood memory B cells are disturbed and predict the response to rituximab in patients with rheumatoid arthritisArthritis Rheum.201163369237011:CAS:528:DC%2BC3MXhsFCqs7nI22127692
TiptonCMHomJRFucileCFRosenbergAFSanzIUnderstanding B cell activation and autoantibody repertoire selection in systemic lupus erythematosus: a B-cell immunomics approachImmunol. Rev.20182841201311:CAS:528:DC%2BC1cXhtF2mt7jM299447596022284
LeónBBallesteros-TatoAMisraRSWojciechowskiWLundFEUnraveling effector functions of B cells during infection: the hidden world beyond antibody productionInfect. Disord. Drug Targets201212213221223941734517595
MehtaPCOVID-19: consider cytokine storm syndromes and immunosuppressionLancet2020395103310341:CAS:528:DC%2BB3cXltFCjsb8%3D321925787270045
ManniMRegulation of age-associated B cells by IRF5 in systemic autoimmunityNat. Immunol.2018194074191:CAS:528:DC%2BC1cXmtVCksbw%3D294835976095139
Carfi, A., Bernabei, R., Landi, F. & Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA324, 603–605 (2020).
ReedJHJacksonJChristDGoodnowCCClonal redemption of autoantibodies by somatic hypermutation away from self-reactivity during human immunizationJ. Exp. Med.2016213125512651:CAS:528:DC%2BC28Xhs1yntbrL272984454925023
ChanOTHannumLGHabermanAMMadaioMPShlomchikMJA novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupusJ. Exp. Med.1999189163916481:CAS:528:DyaK1MXjt1Skuro%3D103304432193634
RubtsovaKRubtsovAVCancroMPMarrackPAge-associated B cells: a T-bet-dependent effector with roles in protective and pathogenic immunityJ. Immunol.2015195193319371:CAS:528:DC%2BC2MXhtlOju7bM26297793
Xiao, M. et al. Anti-phospholipid antibodies in critically ill patients with COVID-19. Arthritis Rheumatol.https://doi.org/10.1002/art.41425 (2020).
MenardLCB cells from African American lupus patients exhibit an activated phenotypeJCI Insight20161e87310276992745033941
YangXGLaMST: grow lineages along minimum spanning tree for B cell receptor sequencing dataBMC Genomics2020211:CAS:528:DC%2BB3cXhslyntrnF329003787488003
WrammertJRapid and massive virus-specific plasmablast responses during acute dengue virus infection in humansJ. Virol.201286291129181:CAS:528:DC%2BC38Xjs1KqtLk%3D222383183302324
Kiprov, D., Conboy, M. J. & Conboy, I. M. Immunomodulation for the management of COVID-19. Transfus. Apher. Sci.59,102856 (2020).
JenksSACashmanKSWoodruffMCLeeFESanzIExtrafollicular responses in humans and SLEImmunol. Rev.20192881361481:CAS:528:DC%2BC1MXkvVSmurk%3D308743456422038
HarrisonCFocus shifts to antibody cocktails for COVID-19 cytokine stormNat. Biotechnol.2020389059081:CAS:528:DC%2BB3cXhsFegtbbN32760027
LiuLPotent neutralizing antibodies directed to multiple epitopes on SARS-CoV-2 spikeNature20205844504561:CAS:528:DC%2BB3cXhsF2ntL3L32698192
ScharerCDEpigenetic programming underpins B cell dysfunction in human SLENat. Immunol.201920107110821:CAS:528:DC%2BC1MXht1ymtr%2FJ312632776642679
FangYTAnnexin A2 on lung epithelial cell surface is recognized by severe acute respiratory syndrome-associated coronavirus spike domain 2 antibodiesMol. Immunol.201047100010091:CAS:528:DC%2BC3cXpsFKrsA%3D%3D20015551
LiuYT-bet+CD11c+ B cells are critical for antichromatin immunoglobulin G production in the development of lupusArthritis Res. Ther.201719225289823885629756
WecAZLongitudinal dynamics of the human B cell response to the yellow fever 17D vaccineProc. Natl Acad. Sci. USA2020117667566851:CAS:528:DC%2BB3cXlsl2jsLs%3D321521197104296
WangSIL-21 drives expansion and plasma cell differentiation of autoreactive CD11chi T-bet+ B cells in SLENat. Commun.20189297171105931508
Kaneko, N. et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cellhttps://doi.org/10.1016/j.cell.2020.08.025 (2020).
ZengQB cells mediate chronic allograft rejection independently of antibody productionJ. Clin. Invest.2014124105210561:CAS:528:DC%2BC2cXkt1Wrs7c%3D245090793934170
LucasCLongitudinal analyses reveal imm
J Sellam (814_CR29) 2011; 63
B Rodríguez-Bayona (814_CR28) 2010; 12
X Yang (814_CR62) 2020; 21
J William (814_CR46) 2002; 297
SJ Zost (814_CR7) 2020; 584
CA Gustave (814_CR56) 2018; 200
OT Chan (814_CR42) 1999; 189
E Becht (814_CR25) 2018; 37
VD Dang (814_CR43) 2014; 28
814_CR35
814_CR36
FE Lund (814_CR39) 2010; 10
B Sun (814_CR6) 2020; 9
K Rubtsova (814_CR14) 2015; 195
AZ Wec (814_CR54) 2020; 117
M Yuan (814_CR65) 2020; 368
J Wrammert (814_CR26) 2012; 86
M Manni (814_CR15) 2018; 19
C Harrison (814_CR5) 2020; 38
LC Menard (814_CR53) 2016; 1
M Gaya (814_CR38) 2018; 172
Q Zeng (814_CR41) 2014; 124
PA Harris (814_CR60) 2019; 95
MS Suthar (814_CR63) 2020; 1
SA Jenks (814_CR18) 2018; 49
I Sanz (814_CR23) 2019; 10
814_CR2
L Tan (814_CR24) 2020; 5
SL Stone (814_CR32) 2019; 50
814_CR1
R Di Niro (814_CR13) 2015; 43
814_CR3
FE Lee (814_CR27) 2011; 186
C Lucas (814_CR33) 2020; 584
B León (814_CR40) 2012; 12
J ter Meulen (814_CR64) 2006; 3
QX Long (814_CR9) 2020; 26
JH Reed (814_CR31) 2016; 213
JH Lam (814_CR11) 2020; 33
AV Rubtsov (814_CR51) 2015; 195
P Mehta (814_CR34) 2020; 395
NE Ingraham (814_CR59) 2020; 8
814_CR19
D Allman (814_CR12) 2019; 288
FJ Ibarrondo (814_CR10) 2020; 383
K Rubtsova (814_CR16) 2017; 127
S Wang (814_CR21) 2018; 9
814_CR55
Y Tang (814_CR4) 2020; 11
814_CR57
PD Pioli (814_CR44) 2019; 10
814_CR58
M Kwissa (814_CR37) 2014; 16
W Zhang (814_CR50) 2019; 116
Y Liu (814_CR52) 2017; 19
J Yang (814_CR61) 2019; 17
Y Zhang (814_CR49) 2020; 382
L Liu (814_CR8) 2020; 584
CM Tipton (814_CR17) 2015; 16
SA Jenks (814_CR22) 2019; 288
CM Tipton (814_CR30) 2018; 284
YT Fang (814_CR47) 2010; 47
CD Scharer (814_CR20) 2019; 20
814_CR45
814_CR48
32511635 - medRxiv. 2020 Jun 22:2020.04.29.20083717. doi: 10.1101/2020.04.29.20083717.
References_xml – reference: LiuLPotent neutralizing antibodies directed to multiple epitopes on SARS-CoV-2 spikeNature20205844504561:CAS:528:DC%2BB3cXhsF2ntL3L32698192
– reference: YangXGLaMST: grow lineages along minimum spanning tree for B cell receptor sequencing dataBMC Genomics2020211:CAS:528:DC%2BB3cXhslyntrnF329003787488003
– reference: Di NiroRSalmonella infection drives promiscuous B cell activation followed by extrafollicular affinity maturationImmunity2015431201311:CAS:528:DC%2BC2MXhtFKrtLvP261874114523395
– reference: Carfi, A., Bernabei, R., Landi, F. & Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA324, 603–605 (2020).
– reference: StoneSLT-bet transcription factor promotes antibody-secreting cell differentiation by limiting the inflammatory effects of IFN-γ on B cellsImmunity201950117211871:CAS:528:DC%2BC1MXptVWisLg%3D310763596929688
– reference: TanLLymphopenia predicts disease severity of COVID-19: a descriptive and predictive studySignal Transduct. Target. Ther.20205331:CAS:528:DC%2BB3cXlvV2rtrw%3D322960697100419
– reference: MehtaPCOVID-19: consider cytokine storm syndromes and immunosuppressionLancet2020395103310341:CAS:528:DC%2BB3cXltFCjsb8%3D321925787270045
– reference: WilliamJEulerCChristensenSShlomchikMJEvolution of autoantibody responses via somatic hypermutation outside of germinal centersScience2002297206620701:CAS:528:DC%2BD38Xnt1ansLY%3D12242446
– reference: LeeFECirculating human antibody-secreting cells during vaccinations and respiratory viral infections are characterized by high specificity and lack of bystander effectJ. Immunol.2011186551455211:CAS:528:DC%2BC3MXkvF2ju74%3D21441455
– reference: KwissaMDengue virus infection induces expansion of a CD14+CD16+ monocyte population that stimulates plasmablast differentiationCell Host Microbe2014161151271:CAS:528:DC%2BC2cXhtVKhur3O249813334116428
– reference: Rodríguez-BayonaBRamos-AmayaAPérez-VenegasJJRodríguezCBrievaJADecreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patientsArthritis Res.Ther.201012R108205252182911899
– reference: TiptonCMDiversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosusNat. Immunol.2015167557651:CAS:528:DC%2BC2MXhtFSktrbJ260060144512288
– reference: RubtsovAVCD11c-expressing B cells are located at the T cell/B cell border in spleen and are potent APCsJ. Immunol.201519571791:CAS:528:DC%2BC2MXhtVagur3F26034175
– reference: WangSIL-21 drives expansion and plasma cell differentiation of autoreactive CD11chi T-bet+ B cells in SLENat. Commun.20189297171105931508
– reference: Xiao, M. et al. Anti-phospholipid antibodies in critically ill patients with COVID-19. Arthritis Rheumatol.https://doi.org/10.1002/art.41425 (2020).
– reference: JenksSADistinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosusImmunity2018497257391:CAS:528:DC%2BC1cXhvVOqsb7E303147586217820
– reference: ScharerCDEpigenetic programming underpins B cell dysfunction in human SLENat. Immunol.201920107110821:CAS:528:DC%2BC1MXht1ymtr%2FJ312632776642679
– reference: COVID-19 Treatment Guidelines Panel. National Institutes of Health. COVID-19 treatment guidelines. https://www.covid19treatmentguidelines.nih.gov/ (2020).
– reference: RubtsovaKB cells expressing the transcription factor T-bet drive lupus-like autoimmunityJ. Clin. Invest.201712713921404282406025373868
– reference: YangJFMST: an automatic neuron-tracing method based on fast marching and minimum spanning treeNeuroinformatics20191718519630039210
– reference: Zumaquero, E. et al. IFN-γ induces epigenetic programming of human T-bethi B cells and promotes TLR7/8- and IL-21-induced differentiation. Elife8, e41641 (2019).
– reference: RubtsovaKRubtsovAVCancroMPMarrackPAge-associated B cells: a T-bet-dependent effector with roles in protective and pathogenic immunityJ. Immunol.2015195193319371:CAS:528:DC%2BC2MXhtlOju7bM26297793
– reference: PioliPDPlasma cells, the next generation: beyond antibody secretionFront. Immunol.20191027681:CAS:528:DC%2BB3cXhsVeqtbbI318245186883717
– reference: Chen, X. et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated IL-6 level in critically ill COVID-19 patients. Clin. Infect. Dis.https://doi.org/10.1093/cid/ciaa449 (2020).
– reference: IngrahamNEImmunomodulation in COVID-19Lancet Respir. Med.202085445461:CAS:528:DC%2BB3cXos1Wgt7o%3D323800237198187
– reference: ZengQB cells mediate chronic allograft rejection independently of antibody productionJ. Clin. Invest.2014124105210561:CAS:528:DC%2BC2cXkt1Wrs7c%3D245090793934170
– reference: Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science369, eabc8511(2020).
– reference: IbarrondoFJRapid decay of anti-SARS-CoV-2 antibodies in persons with mild COVID-19N. Engl. J. Med.20203831085108732706954
– reference: HarrisPAThe REDCap consortium: building an international community of software platform partnersJ. Biomed. Inform.201995103208310786607254481
– reference: JenksSACashmanKSWoodruffMCLeeFESanzIExtrafollicular responses in humans and SLEImmunol. Rev.20192881361481:CAS:528:DC%2BC1MXkvVSmurk%3D308743456422038
– reference: DangVDHilgenbergERiesSShenPFillatreauSFrom the regulatory functions of B cells to the identification of cytokine-producing plasma cell subsetsCurr. Opin. Immunol.20142877831:CAS:528:DC%2BC2cXosl2hu7Y%3D24637161
– reference: LongQXClinical and immunological assessment of asymptomatic SARS-CoV-2 infectionsNat. Med.202026120012041:CAS:528:DC%2BB3cXhtF2qtbrM32555424
– reference: SutharMSRapid generation of neutralizing antibody responses in COVID-19 patientsCell Rep. Med.20201100040328353037276302
– reference: LeónBBallesteros-TatoAMisraRSWojciechowskiWLundFEUnraveling effector functions of B cells during infection: the hidden world beyond antibody productionInfect. Disord. Drug Targets201212213221223941734517595
– reference: GustaveCASeptic shock shapes B cell response toward an exhausted-like/immunoregulatory profile in patientsJ. Immunol.2018200241824251:CAS:528:DC%2BC1cXltFSltbw%3D29459404
– reference: SanzIChallenges and opportunities for consistent classification of human B cell and plasma cell populationsFront. Immunol.20191024581:CAS:528:DC%2BB3cXps1GhsLg%3D316813316813733
– reference: Hoepel, W. et al. Anti-SARS-CoV-2 IgG from severely ill COVID-19 patients promotes macrophage hyper-inflammatory responses. Preprint at bioRxivhttps://doi.org/10.1101/2020.07.13.190140 (2020).
– reference: Group, R. C. et al. Dexamethasone in hospitalized patients with COVID-19—preliminary report. N Engl. J. Med.https://doi.org/10.1056/NEJMoa2021436 (2020).
– reference: LundFERandallTDEffector and regulatory B cells: modulators of CD4+ T cell immunityNat. Rev. Immunol.2010102362471:CAS:528:DC%2BC3cXjtFSmtbg%3D202245693038334
– reference: ChanOTHannumLGHabermanAMMadaioMPShlomchikMJA novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupusJ. Exp. Med.1999189163916481:CAS:528:DyaK1MXjt1Skuro%3D103304432193634
– reference: Henderson, L. A. et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol.https://doi.org/10.1002/art.41285 (2020).
– reference: TangYCytokine storm in COVID-19: the current evidence and treatment strategiesFront. Immunol.20201117081:CAS:528:DC%2BB3cXitF2mtbnP327541637365923
– reference: TiptonCMHomJRFucileCFRosenbergAFSanzIUnderstanding B cell activation and autoantibody repertoire selection in systemic lupus erythematosus: a B-cell immunomics approachImmunol. Rev.20182841201311:CAS:528:DC%2BC1cXhtF2mt7jM299447596022284
– reference: MenardLCB cells from African American lupus patients exhibit an activated phenotypeJCI Insight20161e87310276992745033941
– reference: Kiprov, D., Conboy, M. J. & Conboy, I. M. Immunomodulation for the management of COVID-19. Transfus. Apher. Sci.59,102856 (2020).
– reference: SellamJBlood memory B cells are disturbed and predict the response to rituximab in patients with rheumatoid arthritisArthritis Rheum.201163369237011:CAS:528:DC%2BC3MXhsFCqs7nI22127692
– reference: Kaneko, N. et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cellhttps://doi.org/10.1016/j.cell.2020.08.025 (2020).
– reference: BechtEDimensionality reduction for visualizing single-cell data using UMAPNat. Biotechnol.2018373844
– reference: WecAZLongitudinal dynamics of the human B cell response to the yellow fever 17D vaccineProc. Natl Acad. Sci. USA2020117667566851:CAS:528:DC%2BB3cXlsl2jsLs%3D321521197104296
– reference: ManniMRegulation of age-associated B cells by IRF5 in systemic autoimmunityNat. Immunol.2018194074191:CAS:528:DC%2BC1cXmtVCksbw%3D294835976095139
– reference: LamJHSmithFLBaumgarthNB cell activation and response regulation during viral infectionsViral Immunol.2020332943061:CAS:528:DC%2BB3cXptVGlu7Y%3D323268527247032
– reference: ReedJHJacksonJChristDGoodnowCCClonal redemption of autoantibodies by somatic hypermutation away from self-reactivity during human immunizationJ. Exp. Med.2016213125512651:CAS:528:DC%2BC28Xhs1yntbrL272984454925023
– reference: ZostSJPotently neutralizing and protective human antibodies against SARS-CoV-2Nature20205844434491:CAS:528:DC%2BB3cXhsF2ntLrM326684437584396
– reference: YuanMA highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoVScience20203686306331:CAS:528:DC%2BB3cXovFCrt7Y%3D322457847164391
– reference: GayaMInitiation of antiviral B cell immunity relies on innate signals from spatially positioned NKT cellsCell20181725175331:CAS:528:DC%2BC2sXhvF2js7rK292493585786505
– reference: HarrisonCFocus shifts to antibody cocktails for COVID-19 cytokine stormNat. Biotechnol.2020389059081:CAS:528:DC%2BB3cXhsFegtbbN32760027
– reference: ZhangWExcessive CD11c+T-bet+ B cells promote aberrant TFH differentiation and affinity-based germinal center selection in lupusProc. Natl Acad. Sci. USA201911618550185601:CAS:528:DC%2BC1MXhslOhsbnL314516596744857
– reference: ZhangYCoagulopathy and antiphospholipid antibodies in patients with Covid-19N. Engl. J. Med.2020382e3832268022
– reference: LucasCLongitudinal analyses reveal immunological misfiring in severe COVID-19Nature20205844634691:CAS:528:DC%2BB3cXhsF2ntL3K327177437477538
– reference: ter MeulenJHuman monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutantsPLoS Med.20063e237167964011483912
– reference: LiuYT-bet+CD11c+ B cells are critical for antichromatin immunoglobulin G production in the development of lupusArthritis Res. Ther.201719225289823885629756
– reference: SunBKinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patientsEmerg. Microbes Infect.202099409481:CAS:528:DC%2BB3cXhtFShsL%2FM323578087273175
– reference: AllmanDWilmoreJRGaudetteBTThe continuing story of T cell independent antibodiesImmunol. Rev.20192881281351:CAS:528:DC%2BC1MXkvVSls7s%3D308743576653682
– reference: FangYTAnnexin A2 on lung epithelial cell surface is recognized by severe acute respiratory syndrome-associated coronavirus spike domain 2 antibodiesMol. Immunol.201047100010091:CAS:528:DC%2BC3cXpsFKrsA%3D%3D20015551
– reference: WrammertJRapid and massive virus-specific plasmablast responses during acute dengue virus infection in humansJ. Virol.201286291129181:CAS:528:DC%2BC38Xjs1KqtLk%3D222383183302324
– volume: 21
  year: 2020
  ident: 814_CR62
  publication-title: BMC Genomics
– volume: 117
  start-page: 6675
  year: 2020
  ident: 814_CR54
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1921388117
– volume: 26
  start-page: 1200
  year: 2020
  ident: 814_CR9
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0965-6
– volume: 382
  start-page: e38
  year: 2020
  ident: 814_CR49
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2007575
– volume: 33
  start-page: 294
  year: 2020
  ident: 814_CR11
  publication-title: Viral Immunol.
  doi: 10.1089/vim.2019.0207
– ident: 814_CR35
  doi: 10.1126/science.abc8511
– volume: 213
  start-page: 1255
  year: 2016
  ident: 814_CR31
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20151978
– volume: 38
  start-page: 905
  year: 2020
  ident: 814_CR5
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0634-9
– volume: 12
  start-page: 213
  year: 2012
  ident: 814_CR40
  publication-title: Infect. Disord. Drug Targets
  doi: 10.2174/187152612800564437
– volume: 8
  start-page: 544
  year: 2020
  ident: 814_CR59
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(20)30226-5
– volume: 288
  start-page: 128
  year: 2019
  ident: 814_CR12
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12754
– volume: 16
  start-page: 115
  year: 2014
  ident: 814_CR37
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.06.001
– ident: 814_CR1
  doi: 10.1093/cid/ciaa449
– volume: 43
  start-page: 120
  year: 2015
  ident: 814_CR13
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.06.013
– ident: 814_CR36
  doi: 10.1016/j.cell.2020.08.025
– volume: 1
  start-page: 100040
  year: 2020
  ident: 814_CR63
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2020.100040
– volume: 95
  start-page: 103208
  year: 2019
  ident: 814_CR60
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2019.103208
– volume: 11
  start-page: 1708
  year: 2020
  ident: 814_CR4
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.01708
– volume: 3
  start-page: e237
  year: 2006
  ident: 814_CR64
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.0030237
– volume: 16
  start-page: 755
  year: 2015
  ident: 814_CR17
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3175
– volume: 368
  start-page: 630
  year: 2020
  ident: 814_CR65
  publication-title: Science
  doi: 10.1126/science.abb7269
– volume: 195
  start-page: 1933
  year: 2015
  ident: 814_CR14
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1501209
– ident: 814_CR55
  doi: 10.1001/jama.2020.12603
– volume: 9
  year: 2018
  ident: 814_CR21
  publication-title: Nat. Commun.
– volume: 284
  start-page: 120
  year: 2018
  ident: 814_CR30
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12660
– volume: 19
  start-page: 407
  year: 2018
  ident: 814_CR15
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0056-8
– volume: 50
  start-page: 1172
  year: 2019
  ident: 814_CR32
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.04.004
– volume: 172
  start-page: 517
  year: 2018
  ident: 814_CR38
  publication-title: Cell
  doi: 10.1016/j.cell.2017.11.036
– volume: 124
  start-page: 1052
  year: 2014
  ident: 814_CR41
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI70084
– volume: 288
  start-page: 136
  year: 2019
  ident: 814_CR22
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12741
– volume: 63
  start-page: 3692
  year: 2011
  ident: 814_CR29
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.30599
– volume: 10
  start-page: 2768
  year: 2019
  ident: 814_CR44
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02768
– volume: 47
  start-page: 1000
  year: 2010
  ident: 814_CR47
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2009.11.019
– ident: 814_CR3
  doi: 10.1056/NEJMoa2021436
– volume: 1
  start-page: e87310
  year: 2016
  ident: 814_CR53
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.87310
– ident: 814_CR57
– volume: 10
  start-page: 2458
  year: 2019
  ident: 814_CR23
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02458
– volume: 200
  start-page: 2418
  year: 2018
  ident: 814_CR56
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1700929
– volume: 584
  start-page: 450
  year: 2020
  ident: 814_CR8
  publication-title: Nature
  doi: 10.1038/s41586-020-2571-7
– volume: 12
  start-page: R108
  year: 2010
  ident: 814_CR28
  publication-title: Arthritis Res.Ther.
  doi: 10.1186/ar3042
– volume: 20
  start-page: 1071
  year: 2019
  ident: 814_CR20
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0419-9
– volume: 9
  start-page: 940
  year: 2020
  ident: 814_CR6
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1762515
– volume: 37
  start-page: 38
  year: 2018
  ident: 814_CR25
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4314
– ident: 814_CR19
  doi: 10.7554/eLife.41641
– volume: 584
  start-page: 443
  year: 2020
  ident: 814_CR7
  publication-title: Nature
  doi: 10.1038/s41586-020-2548-6
– volume: 10
  start-page: 236
  year: 2010
  ident: 814_CR39
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2729
– volume: 19
  start-page: 225
  year: 2017
  ident: 814_CR52
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-017-1438-2
– ident: 814_CR2
  doi: 10.1002/art.41285
– volume: 297
  start-page: 2066
  year: 2002
  ident: 814_CR46
  publication-title: Science
  doi: 10.1126/science.1073924
– volume: 584
  start-page: 463
  year: 2020
  ident: 814_CR33
  publication-title: Nature
  doi: 10.1038/s41586-020-2588-y
– ident: 814_CR48
  doi: 10.1002/art.41425
– volume: 127
  start-page: 1392
  year: 2017
  ident: 814_CR16
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI91250
– volume: 395
  start-page: 1033
  year: 2020
  ident: 814_CR34
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30628-0
– volume: 383
  start-page: 1085
  year: 2020
  ident: 814_CR10
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2025179
– volume: 28
  start-page: 77
  year: 2014
  ident: 814_CR43
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2014.02.009
– volume: 17
  start-page: 185
  year: 2019
  ident: 814_CR61
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-018-9392-y
– volume: 86
  start-page: 2911
  year: 2012
  ident: 814_CR26
  publication-title: J. Virol.
  doi: 10.1128/JVI.06075-11
– ident: 814_CR45
  doi: 10.1101/2020.07.13.190140
– volume: 49
  start-page: 725
  year: 2018
  ident: 814_CR18
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.08.015
– volume: 116
  start-page: 18550
  year: 2019
  ident: 814_CR50
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1901340116
– volume: 195
  start-page: 71
  year: 2015
  ident: 814_CR51
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1500055
– ident: 814_CR58
  doi: 10.1016/j.transci.2020.102856
– volume: 5
  start-page: 33
  year: 2020
  ident: 814_CR24
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-020-0148-4
– volume: 186
  start-page: 5514
  year: 2011
  ident: 814_CR27
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1002932
– volume: 189
  start-page: 1639
  year: 1999
  ident: 814_CR42
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.189.10.1639
– reference: 32511635 - medRxiv. 2020 Jun 22:2020.04.29.20083717. doi: 10.1101/2020.04.29.20083717.
SSID ssj0014764
Score 2.7249572
Snippet A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic,...
A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic,...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1506
SubjectTerms 631/250
631/250/2152
631/250/254
Antibodies
Antibodies, Neutralizing - immunology
Antibodies, Viral - immunology
B cells
B-Lymphocytes - immunology
Biomedical and Life Sciences
Biomedicine
Cell activation
Coronaviruses
COVID-19
COVID-19 - immunology
Flow cytometry
Health aspects
Heterogeneity
Humans
Immune response
Immunology
Immunomodulation
Immunomodulators
Immunophenotyping
Infectious Diseases
Lymphocytes B
Morbidity
Observations
Pandemics
SARS-CoV-2 - immunology
Severe acute respiratory syndrome coronavirus 2
Subpopulations
Systemic lupus erythematosus
Title Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19
URI https://link.springer.com/article/10.1038/s41590-020-00814-z
https://www.ncbi.nlm.nih.gov/pubmed/33028979
https://www.proquest.com/docview/2473201667
https://www.proquest.com/docview/2449261365
https://pubmed.ncbi.nlm.nih.gov/PMC7739702
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgE2gvCAZsgTEZhMQDWEsTJ46fUFtabUgraAzUNyuxHag0ktG0EvSv585xO1KJvfRDvnw4d-ff-e5yR8jr0PCSi9AwAJOEcZ1ZVvBIs8iY0OpMcl2gH_J8kp5-5R-nydQ73BqfVrleE91CbWqNPvKTiIsYwCpNxfvrXwy7RmF01bfQuEt2e2CJYOsGMd1suHpcuPJRAFGSRTLM_EszYZydNABcMmS4eUJU5GzVAabt5fkffNrOndwKoDpcGj8kD7xBSfutBDwid2y1T-61LSb_7JP75z54_pjko99wrhKrcLvkUzqg6Lan8zZN1jZUY6uOK7A-KbpnaWWXzg-yggtT4MCsqDHnEH4a-rOeFzMDJjydVXT46dvZB9aTT8jleHQ5PGW-wwLTYKYtWJnkOhdpGhaaa20K2D2BCZBHrg21BuiSRcJLbUCxyyxPTJoYbeIshz8SgCx-SnaqurKHhKZFzrVMCh2ZkJc2zjnYIVbC_tHComCSgPTWT1dpX30cm2BcKRcFjzPVckQBR5TjiFoF5O3mmOu29sat1K-QaQqLWlSYNfM9XzaNOvtyofpohoZCiiggbzxRWcPlde5fQoBJYB2sDuVRhxK0TneH17KhvNY36kZGA_JyM4xHYiZbZesl0mCJRkwuDMhBK0qbycUxxn2FDIjoCNmGAGuBd0eq2Q9XE1wIMCxDuK13a3G8ua3_P7Nnt8_iOdmLUENc9s4R2VnMl_YF2GCL4tgpGnxmw94x2e2PB4MJfA9Gk88XfwHFzDAL
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BpDfLwgGF-BAQaBeABraeLE8QNCo9vUsnVI0KG9WYntQKWRjKYVrP-J_8idk3SkEnvbWyJfPuz79p3vCHnpG55z4RsGyiRiXCeWZTzQLDDGtzqRXGe4Dzk6jAdH_ONxdLxG_rRnYTCtspWJTlCbUuMe-VbARQjKKo7F-9OfDLtGYXS1baFRk8W-PfsFLlv1brgD-H0VBHu74_6ANV0FmAbTZMbyKNWpiGM_01xrk4HHAGovDVzrZQ3iWmYRz7UBYs6TNDJxZLQJkxRuJAjvEF57hVzFg0ZYqj_pLzNKely4alWgESULpJ80Z3T8MNmqQE9Kn6GvhkqYs0VHD65qg3_U4Wqq5kq81qnBvdvkVmO_0u2a4O6QNVtskGt1R8uzDXJ91MTq75J09ze8K8ei3y7XlX6gGCWg0zor11ZUY2eQEzB2Ke4G08LO3bbLAj5MAeGTrMQUR7g09Ec5zSYGPAY6KWj_09fhDuvJe2R8GUt_n6wXZWEfEhpnKdcyynRgfJ7bMOVg9lgJ7qoFGWQij_Ta1VW6KXaOPTdOlAu6h4mqMaIAI8phRC088mb5zGld6uNC6BeINIU1NApM0vmWzqtKDb98Vtto9fpCisAjrxugvITP67Q58wCTwLJbHcjNDiQwue4Ot7ShGiFTqXOW8Mjz5TA-iYlzhS3nCIMVITGX0SMPalJaTi4MMcwspEdEh8iWAFh6vDtSTL67EuRCgB3rw2-9bcnx_Lf-v2aPLp7FM3JjMB4dqIPh4f5jcjNAbnGJQ5tkfTad2ydg_s2yp47pKFGXzOR_Aaz7aJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJiZeEIyvwACDQDyA1Sxx4uRhQtvaamWsTGOgvVmJ7UClkYymFaz_If8Vd4mTkUrsbW-tcvmwfXe_O9_5jpBXruYZF65mACYB4yoyLOWeYp7WrlFRzFWK-5CH43D_C_9wGpyukD_NWRhMq2x0YqWodaFwj7znceEDWIWh6GU2LeKoP3x__pNhBymMtDbtNBLbZkFvV-XG7CGPA3PxC9y5cnvUh7V_7XnDwcnePrMdB5gCs2XGsiBRiQhDN1VcKZ2CNwGQmHhVW2YFqjxOA54pDYyeRUmgw0Ar7UcJ_IlBsfvw2BtkTQDogx-4tjsYHx23IQ0uqlpWgJcx82I3sid4XD_qlYCiscvQk0OI5mzRQcllrPgHLJcTOZeiuRVIDu-Q29a6pTs1O94lKybfIDfrfpcXG2T90Eby75Fk8BuelWFJ8CoTlu5SjCHQaZ2za0qqsG_IGZjCFPeKaW7m1abMAl5MgR0maYEJkPBT0x_FNJ1o8CfoJKd7n76O-mwrvk9OrmPyH5DVvMjNI0LDNOEqDlLlaZdnxk84GEUmBmfWgIbSgUO2mtmVypZCx44cZ7IKyfuRrFdEworIakXkwiFv23vO60IgV1K_xEWTWGEjR179lszLUo4-H8sdtIldEQvPIW8sUVbA61ViT0TAILAoV4dys0MJKkB1Lze8Ia0KKuWlwDjkRXsZ78S0utwUc6TBepGY6eiQhzUrtYPzfQxCi9ghosNkLQEWJu9eySffqwLlAiRAuPBZ7xp2vPys_8_Z46tH8Zysg8DLj6PxwRNyy0NhqbKKNsnqbDo3T8E2nKXPrNRRIq9Zzv8C1YVzrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extrafollicular+B+cell+responses+correlate+with+neutralizing+antibodies+and+morbidity+in+COVID-19&rft.jtitle=Nature+immunology&rft.au=Woodruff%2C+Matthew+C&rft.au=Ramonell%2C+Richard+P&rft.au=Nguyen%2C+Doan+C&rft.au=Cashman%2C+Kevin+S&rft.date=2020-12-01&rft.issn=1529-2916&rft.eissn=1529-2916&rft.volume=21&rft.issue=12&rft.spage=1506&rft_id=info:doi/10.1038%2Fs41590-020-00814-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon