Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models

Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidan...

Full description

Saved in:
Bibliographic Details
Published inBMC medical research methodology Vol. 17; no. 1; pp. 170 - 12
Main Authors Degeling, Koen, IJzerman, Maarten J., Koopman, Miriam, Koffijberg, Hendrik
Format Journal Article
LanguageEnglish
Published London BioMed Central 15.12.2017
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2288
1471-2288
DOI10.1186/s12874-017-0437-y

Cover

Abstract Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Methods Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Results Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n  = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n  = 25), yielding infeasible modeling outcomes. Conclusions Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.
AbstractList Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Methods Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Results Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Conclusions Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty. Keywords: Patient-level variation, Stochastic uncertainty, Parameter uncertainty, State-transition modeling, Discrete event simulation, Personalized medicine, Individual patient data
Abstract Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Methods Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Results Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Conclusions Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.
Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.
Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Methods Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Results Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n  = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n  = 25), yielding infeasible modeling outcomes. Conclusions Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.
Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.
Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes.BACKGROUNDParametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes.Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study.METHODSTwo approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study.Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes.RESULTSAccounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes.Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.CONCLUSIONSModelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.
ArticleNumber 170
Audience Academic
Author Koopman, Miriam
IJzerman, Maarten J.
Degeling, Koen
Koffijberg, Hendrik
Author_xml – sequence: 1
  givenname: Koen
  orcidid: 0000-0001-7487-2491
  surname: Degeling
  fullname: Degeling, Koen
  organization: Health Technology and Services Research Department, MIRA institute for Biomedical Technology and Technical Medicine, University of Twente
– sequence: 2
  givenname: Maarten J.
  surname: IJzerman
  fullname: IJzerman, Maarten J.
  organization: Health Technology and Services Research Department, MIRA institute for Biomedical Technology and Technical Medicine, University of Twente
– sequence: 3
  givenname: Miriam
  surname: Koopman
  fullname: Koopman, Miriam
  organization: Department of Medical Oncology, University Medical Centre
– sequence: 4
  givenname: Hendrik
  surname: Koffijberg
  fullname: Koffijberg, Hendrik
  email: h.koffijberg@utwente.nl
  organization: Health Technology and Services Research Department, MIRA institute for Biomedical Technology and Technical Medicine, University of Twente
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29246192$$D View this record in MEDLINE/PubMed
BookMark eNp9ksuK2zAUhk2Z0rm0D9BNMXTTjaeS7FjKphCGXgYGumnX4lg6ThQcKZXkQF6lT9vjZFImpQxaSBz9_6fL-a-LCx88FsVbzm45V-3HxIWSTcW4rFhTy2r_orjijeSVEEpdPFlfFtcprRkJVd2-Ki7FXDQtn4ur4vfCmDD67Pyy7EMstxBhgxljOXqDMYPzeV86X-YVlhZ75112wZehP0mjM6V1ieZunLZSOSa0ZQ4kT4aqSHbrds6OMJApO_S53EF0cCARe4Uw5FWJJviwIdwmWBzS6-JlD0PCN4_zTfHzy-cfd9-qh-9f7-8WD5WZyVmusGNdh6qBTtpOiLYXAmqYM86UqQFxpjgACuzmDLCZ21Y1HPq2qVULKOu-vinuj1wbYK230W0g7nUApw-FEJcaYnZmQC14g6pvEWppGwu14shgRgeC4gYYEuvTkbUduw1aQ0-NMJxBz3e8W-ll2OmZrKklggAfHgEx_BoxZb1xyeAwgMcwJs3nUk5NZIyk74_SJdDVnO8DEc0k14tZ09ZS8mYC3v5HRcMifTXlqXdUPzO8e_qEv3c_ZYYE8igwMaQUsdfG5UMviewGzZme0qmP6dQUOj2lU-_Jyf9xnuDPecTRk0jrlxj1OozRUyCeMf0BFrr8Sg
CitedBy_id crossref_primary_10_1016_j_jval_2021_07_016
crossref_primary_10_1007_s40273_020_00908_4
crossref_primary_10_1007_s13721_022_00404_z
crossref_primary_10_1093_icesjms_fsaa103
crossref_primary_10_1016_j_canep_2018_09_008
crossref_primary_10_3389_fgene_2022_880799
crossref_primary_10_1016_j_jval_2021_06_004
crossref_primary_10_1080_14737167_2022_2108408
crossref_primary_10_1007_s40273_020_00951_1
crossref_primary_10_1177_0272989X18814770
crossref_primary_10_1016_j_jval_2020_01_016
crossref_primary_10_4103_abr_abr_208_22
crossref_primary_10_1007_s40273_021_01125_3
crossref_primary_10_1007_s40273_021_01047_0
crossref_primary_10_1097_JOM_0000000000001627
crossref_primary_10_1177_0272989X211026292
crossref_primary_10_3389_feart_2020_00076
crossref_primary_10_3390_atmos10020043
crossref_primary_10_1080_14737167_2024_2416255
crossref_primary_10_1007_s40258_024_00936_7
crossref_primary_10_1007_s40273_023_01292_5
Cites_doi 10.1002/hec.1477
10.1080/14737167.2017.1273110
10.1016/j.eururo.2016.08.024
10.1016/j.ijcard.2017.05.003
10.1016/j.jval.2013.06.008
10.1007/978-0-387-21706-2
10.1016/j.csda.2006.08.014
10.1016/j.jval.2012.04.013
10.1016/j.jval.2012.04.012
10.1007/s40273-015-0327-2
10.18637/jss.v028.i04
10.3310/hta8110
10.18637/jss.v064.i04
10.1016/S0140-6736(14)62004-3
10.1177/0272989X12458348
10.1016/j.jval.2012.06.014
10.18637/jss.v011.i08
10.1080/13696998.2016.1276070
10.18553/jmcp.2017.23.1.64
10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
10.2165/00019053-200826090-00008
10.1093/oso/9780198526629.001.0001
10.1016/j.ejca.2017.01.019
10.1002/047174882X
10.1017/CBO9780511802843
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/s12874-017-0437-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList



MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2288
EndPage 12
ExternalDocumentID oai_doaj_org_article_214e8f6ea37d4da381e0a522aa81ca0e
PMC5732462
A546377142
29246192
10_1186_s12874_017_0437_y
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
5PM
ID FETCH-LOGICAL-c575t-eb0bbe84ab7db226f22a3a90108c3aee581aae2eb90ae49d6841af64386ae73f3
IEDL.DBID M48
ISSN 1471-2288
IngestDate Wed Aug 27 00:46:08 EDT 2025
Thu Aug 21 14:04:06 EDT 2025
Thu Sep 04 17:09:55 EDT 2025
Tue Jun 17 21:01:46 EDT 2025
Tue Jun 10 20:29:02 EDT 2025
Wed Feb 19 02:43:45 EST 2025
Thu Apr 24 22:53:08 EDT 2025
Tue Jul 01 04:30:53 EDT 2025
Sat Sep 06 07:35:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Parameter uncertainty
Individual patient data
Discrete event simulation
Patient-level variation
Personalized medicine
State-transition modeling
Stochastic uncertainty
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-eb0bbe84ab7db226f22a3a90108c3aee581aae2eb90ae49d6841af64386ae73f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7487-2491
OpenAccessLink https://doi.org/10.1186/s12874-017-0437-y
PMID 29246192
PQID 1977783600
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_214e8f6ea37d4da381e0a522aa81ca0e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5732462
proquest_miscellaneous_1977783600
gale_infotracmisc_A546377142
gale_infotracacademiconefile_A546377142
pubmed_primary_29246192
crossref_citationtrail_10_1186_s12874_017_0437_y
crossref_primary_10_1186_s12874_017_0437_y
springer_journals_10_1186_s12874_017_0437_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-15
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-15
  day: 15
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC medical research methodology
PublicationTitleAbbrev BMC Med Res Methodol
PublicationTitleAlternate BMC Med Res Methodol
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References J Carpenter (437_CR14) 2000; 19
LHJ Simkens (437_CR23) 2015; 385
AH Briggs (437_CR15) 2006
J Karnon (437_CR7) 2012; 15
F Leisch (437_CR22) 2004; 11
437_CR19
437_CR18
P Barton (437_CR28) 2004; 8
B Grün (437_CR21) 2008; 28
437_CR13
U Siebert (437_CR6) 2012; 15
RC Parikh (437_CR11) 2017; 23
L Annemans (437_CR2) 2013; 16
AH Briggs (437_CR4) 2012; 32
ML Delignette-Muller (437_CR17) 2015; 64
MD Franken (437_CR27) 2017; 75
T Chen (437_CR9) 2017; 240
R Core Team (437_CR16) 2016
SM Montgomery (437_CR10) 2017; 20
DM Eddy (437_CR25) 2012; 15
437_CR29
AM Law (437_CR8) 2007
RM Nixon (437_CR5) 2010; 19
B Grün (437_CR20) 2007; 51
437_CR24
CE Barbieri (437_CR1) 2017; 71
K Degeling (437_CR3) 2017; 17
K Claxton (437_CR12) 2008; 26
P Vemer (437_CR26) 2016; 34
25862517 - Lancet. 2015 May 9;385(9980):1843-52
22999130 - Value Health. 2012 Sep-Oct;15(6):812-20
22990087 - Med Decis Making. 2012 Sep-Oct;32(5):722-32
27978765 - Expert Rev Pharmacoecon Outcomes Res. 2017 Feb;17 (1):17-25
24034308 - Value Health. 2013 Sep-Oct;16(6 Suppl):S20-6
18767898 - Pharmacoeconomics. 2008;26(9):781-98
22999131 - Value Health. 2012 Sep-Oct;15(6):821-7
14982655 - Health Technol Assess. 2004 Mar;8(11):iii, 1-91
28008769 - J Med Econ. 2017 May;20(5):474-482
27567210 - Eur Urol. 2017 Feb;71(2):237-246
28025930 - J Manag Care Spec Pharm. 2017 Jan;23 (1):64-73
28237866 - Eur J Cancer. 2017 Apr;75:204-212
10797513 - Stat Med. 2000 May 15;19(9):1141-64
19378353 - Health Econ. 2010 Mar;19(3):316-33
26660529 - Pharmacoeconomics. 2016 Apr;34(4):349-61
22999134 - Value Health. 2012 Sep-Oct;15(6):843-50
28501349 - Int J Cardiol. 2017 Aug 1;240:403-408
References_xml – volume: 19
  start-page: 316
  issue: 3
  year: 2010
  ident: 437_CR5
  publication-title: Health Econ
  doi: 10.1002/hec.1477
– volume: 17
  start-page: 17
  issue: 1
  year: 2017
  ident: 437_CR3
  publication-title: Expert Rev Pharmacoecon Outcomes Res
  doi: 10.1080/14737167.2017.1273110
– volume: 71
  start-page: 237
  issue: 2
  year: 2017
  ident: 437_CR1
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2016.08.024
– volume: 240
  start-page: 403
  year: 2017
  ident: 437_CR9
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2017.05.003
– volume: 16
  start-page: S20
  issue: 6 Suppl
  year: 2013
  ident: 437_CR2
  publication-title: Value Health
  doi: 10.1016/j.jval.2013.06.008
– ident: 437_CR18
  doi: 10.1007/978-0-387-21706-2
– volume: 51
  start-page: 5247
  issue: 11
  year: 2007
  ident: 437_CR20
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2006.08.014
– volume: 15
  start-page: 821
  issue: 6
  year: 2012
  ident: 437_CR7
  publication-title: Value Health
  doi: 10.1016/j.jval.2012.04.013
– ident: 437_CR24
– volume: 15
  start-page: 843
  issue: 6
  year: 2012
  ident: 437_CR25
  publication-title: Value Health
  doi: 10.1016/j.jval.2012.04.012
– volume-title: R: a language and environment for statistical computing
  year: 2016
  ident: 437_CR16
– volume: 34
  start-page: 349
  year: 2016
  ident: 437_CR26
  publication-title: PharmacoEconomics
  doi: 10.1007/s40273-015-0327-2
– volume: 28
  start-page: 35
  issue: 4
  year: 2008
  ident: 437_CR21
  publication-title: J Stat Softw
  doi: 10.18637/jss.v028.i04
– volume: 8
  start-page: 104
  issue: 11
  year: 2004
  ident: 437_CR28
  publication-title: Health Technol Assess
  doi: 10.3310/hta8110
– volume: 64
  start-page: 1
  issue: 4
  year: 2015
  ident: 437_CR17
  publication-title: J Stat Softw
  doi: 10.18637/jss.v064.i04
– volume: 385
  start-page: 1843
  issue: 9980
  year: 2015
  ident: 437_CR23
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)62004-3
– volume: 32
  start-page: 722
  issue: 5
  year: 2012
  ident: 437_CR4
  publication-title: Med Decis Mak
  doi: 10.1177/0272989X12458348
– volume: 15
  start-page: 812
  issue: 6
  year: 2012
  ident: 437_CR6
  publication-title: Value Health
  doi: 10.1016/j.jval.2012.06.014
– volume: 11
  start-page: 1
  issue: 8
  year: 2004
  ident: 437_CR22
  publication-title: J Stat Softw
  doi: 10.18637/jss.v011.i08
– volume: 20
  start-page: 474
  year: 2017
  ident: 437_CR10
  publication-title: J Med Econ
  doi: 10.1080/13696998.2016.1276070
– volume: 23
  start-page: 64
  year: 2017
  ident: 437_CR11
  publication-title: J Manag Care Spec Pharm
  doi: 10.18553/jmcp.2017.23.1.64
– volume: 19
  start-page: 1141
  issue: 9
  year: 2000
  ident: 437_CR14
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
– volume: 26
  start-page: 781
  issue: 9
  year: 2008
  ident: 437_CR12
  publication-title: PharmacoEconomics
  doi: 10.2165/00019053-200826090-00008
– volume-title: Decision modeling for health economic evaluation
  year: 2006
  ident: 437_CR15
  doi: 10.1093/oso/9780198526629.001.0001
– volume: 75
  start-page: 204
  year: 2017
  ident: 437_CR27
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2017.01.019
– ident: 437_CR19
  doi: 10.1002/047174882X
– volume-title: Simulation Modeling and Analysis
  year: 2007
  ident: 437_CR8
– ident: 437_CR29
– ident: 437_CR13
  doi: 10.1017/CBO9780511802843
– reference: 27978765 - Expert Rev Pharmacoecon Outcomes Res. 2017 Feb;17 (1):17-25
– reference: 19378353 - Health Econ. 2010 Mar;19(3):316-33
– reference: 18767898 - Pharmacoeconomics. 2008;26(9):781-98
– reference: 26660529 - Pharmacoeconomics. 2016 Apr;34(4):349-61
– reference: 25862517 - Lancet. 2015 May 9;385(9980):1843-52
– reference: 10797513 - Stat Med. 2000 May 15;19(9):1141-64
– reference: 28501349 - Int J Cardiol. 2017 Aug 1;240:403-408
– reference: 22999134 - Value Health. 2012 Sep-Oct;15(6):843-50
– reference: 22990087 - Med Decis Making. 2012 Sep-Oct;32(5):722-32
– reference: 22999131 - Value Health. 2012 Sep-Oct;15(6):821-7
– reference: 22999130 - Value Health. 2012 Sep-Oct;15(6):812-20
– reference: 28008769 - J Med Econ. 2017 May;20(5):474-482
– reference: 27567210 - Eur Urol. 2017 Feb;71(2):237-246
– reference: 14982655 - Health Technol Assess. 2004 Mar;8(11):iii, 1-91
– reference: 24034308 - Value Health. 2013 Sep-Oct;16(6 Suppl):S20-6
– reference: 28237866 - Eur J Cancer. 2017 Apr;75:204-212
– reference: 28025930 - J Manag Care Spec Pharm. 2017 Jan;23 (1):64-73
SSID ssj0017836
Score 2.3149827
Snippet Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general...
Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is...
Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general...
Abstract Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 170
SubjectTerms Analysis
Case studies
Colorectal Neoplasms - drug therapy
Colorectal Neoplasms - economics
Cost-Benefit Analysis
Data analysis
Discrete event simulation
Health aspects
Health Care Costs
Health Sciences
Humans
Medical research
Medicine
Medicine & Public Health
Models, Economic
Multivariate Analysis
Parameter uncertainty
Patient-level variation
Personalized medicine
Research Article
State-transition modeling
Statistical Theory and Methods
statistics and modelling
Statistics for Life Sciences
Statistics, Nonparametric
Stochastic uncertainty
Theory of Medicine/Bioethics
Uncertainty
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pi9UwEA-yB_Ei_vfpKhEEQQnbtGmaHldxWYT15MLeQtJM8IH2LbZPeF_FT-tMmj63K-rFazMJaWYyM2FmfsPYS1mC9DJGUcWmFQTZLYyEIKq6KYIOXVcrqh0--6hPz9WHi_riSqsvygmb4IGngzsqpQITNbiqCSo4NDBQOFzSOSM7VwBp36It5sdUjh9QbUKOYUqjjwZJsO6CNDJh-YjdwgolsP7fVfIVm3Q9X_Ja0DTZopM77HZ2IvnxtPm77Ab099jNsxwmv89-_OoBwdEp5YTv_ZXyXjhasSkHYNzxdc_R--MB4rpPiVt8E2dS1I48EKZuboc18O0AgY8bJCdF44Gv96VcPIOz8u_48E6cprWnCksOufKZp547wwN2fvL-07tTkZswiA49uVGAL7wHo5xvgkdfLeLRV46SOkxXOYDaSOegBN8WDlQbtFHSRfRzjHbQVLF6yA76TQ-PGa8VvjW7WBlnnDLamwAGQqEpyU5X0a9YMTPFdhmhnBplfLHppWK0nfhokY-W-Gh3K_Z6P-Vyguf4G_Fb4vSekJC10weUN5vlzf5L3lbsFcmJpfuPm-tcLmPAXyQkLXtM_QWaRqpyxQ4XlHhvu8Xwi1nSLA1RslsPm-1gJfrkqbimWLFHk-Tt91y2BADY4uxmIZOLn1qO9OvPCTa8btB51jjzzSy9Nuur4c9n9uR_nNlTdqukuydLIetDdjB-28Iz9OVG_zxd25_v5Eq8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96gvgifls9JYIgKMWmTdP08Vw8DuF88uDeQtJMcEG7h-0K-6_41zqTZuv1_ABfN5Ol7XzkF2bmN4y9FCUIJ0LIq9C0OVF251qAz6u6KbzyXVdL6h0-_ahOzuSH8_o8kUVTL8zl_L3Q6u0giJA9p1hKLDz57jq7UWPcJWNeqdWcMKBmhJS0_OO2xbET2fl_j8GXDqGrBZJXsqTx8Dm-w24n1MiPJjXfZdegv8dunqa8-H3249fQB44olBOh91cqdOF4bE1J_3HH1z1HuMc9hHUfK7X4JuxFMRxyTyS6af7VwLcDeD5uUJwiiwO-nnu3eGJj5d_xph1VS_89tVRySK3OPA7ZGR6ws-P3n1YneZq6kHcI3cYcXOEcaGld4x2Cs1CWtrJUxaG7ygLUWlgLJbi2sCBbr7QUNiCw0cpCU4XqITvoNz08ZryWeLnsQqWttlIrpz1o8IWiqjpVBZexYq8U0yVKcpqM8cXEq4lWZtKjQT0a0qPZZez1vOVi4uP4l_A70vQsSFTa8Qe0MJM805RCgg4KbNV46S0iGCgs2qy1WnS2gIy9Ijsx5PD4cJ1NfQv4ikSdZY5ooEDTCFlm7HAhiY7aLZZf7C3N0BJVt_Ww2Q5GIAiP3TRFxh5Nljc_c9kS41-Lu5uFTS5earnSrz9HnvC6QbSscOebvfWaFKCGv3-zJ_8l_ZTdKsnJRJmL-pAdjN-28AxR2uieR__8CRKJOpU
  priority: 102
  providerName: Springer Nature
Title Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models
URI https://link.springer.com/article/10.1186/s12874-017-0437-y
https://www.ncbi.nlm.nih.gov/pubmed/29246192
https://www.proquest.com/docview/1977783600
https://pubmed.ncbi.nlm.nih.gov/PMC5732462
https://doaj.org/article/214e8f6ea37d4da381e0a522aa81ca0e
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ti9QwEA73AuIX8d3Vc4kgCEq1adMk-0HkdrnjEO6Qw4XDLyFtpufC2dXtrrh_xV_rTNru2fMU_FLYZlLazEzyZDPzDGPPRQIiF2UZpaUeRUTZHRkBPkozHXvliyKTlDt8fKKOpvL9WXa2xbryVu0A1tdu7aie1HRx8frHt_U7dPi3weGNelMLIm2PaL4lpp5ovc12w3ERRfLJy0MFSlgIyUZaREliTHvIee0jestUYPP_c87-bdG6GlB55VQ1LFaHt9mtFmXy_cYs7rAtqO6yG8ftOfo99vOySARH1MqJAPwLBcZwXOaaIIHlms8qjvCQeyhnVYjs4vOyE8Xpk3si3W3rZdV8VYPnyzmK00yUA59tcr14y97Kv-POPJgCPbtJweTQpkbzUJSnvs-mhwcfJ0dRW6UhKhDqLSPI4zwHI12ufY5grkwSlzqK-jBF6gAyI5yDBPJR7ECOvDJSuBKBkFEOdFqmD9hONa_gEeOZxM1oUabGGSeNyo0HAz5WFIWn0jIfsLhTii1aCnOqpHFhw1bGKNvo0aIeLenRrgfs5abL14a_41_CY9L0RpCot8ON-eLctp5sEyHBlApcqr30DhEPxA5t3DkjChfDgL0gO7FksvhyhWvzHPATiWrL7lMBAq2FTAZsryeJjl30mp91lmapiaLhKpivaisQtIfsm3jAHjaWt3nnZEQMgSPsrXs22fuofks1-xx4xTON6Fphz1ed9drOH_8-Zo__Z4CfsJsJ-ZhIIpHtsZ3lYgVPEdQt8yHb1md6yHbHBycfTvHXRE2G4Q-SYXBivJ6OP_0CvjpP7g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96gvoifls9NYIgKMWmH2n6eC4eq97e0x3cW0iaCbegXbFdYf8V_1pn0ux6PT_A181kaTsf-YWZ-Q1jL0UOwgrv08LXTUqU3akS4NKiqjMnXdtWJfUOL47l_LT8eFadRbJo6oW5mL8XSr7tBRGypxRLiYUn3Vxl1yhxSTT5MznbJQyoGSEmLf-4bXLsBHb-32PwhUPocoHkpSxpOHwOb7NbETXyg1HNd9gV6O6y64uYF7_Hfvwa-sARhXIi9P5ChS4cj60x6T9s-LLjCPe4A7_sQqUWX_mtKIZD7ohEN86_6vm6B8eHFYpTZLHAl7veLR7ZWPl3vGkH1dJ_jy2VHGKrMw9Ddvr77PTw_clsnsapC2mL0G1IwWbWgiqNrZ1FcObz3BSGqjhUWxiASgljIAfbZAbKxklVCuMR2ChpoC588YDtdasOHjFelXi5bH2hjDKlklY5UOAySVV1svA2YdlWKbqNlOQ0GeOzDlcTJfWoR4161KRHvUnY692WryMfx7-E35Gmd4JEpR1-QAvT0TN1LkpQXoIpalc6gwgGMoM2a4wSrckgYa_ITjQ5PD5ca2LfAr4iUWfpAxooUNeizBO2P5FER20nyy-2lqZpiarbOlitey0QhIdumixhD0fL2z1z3hDjX4O764lNTl5qutItzwNPeFUjWpa4883WenUMUP3fv9nj_5J-zm7MTxZH-ujD8acn7GZODifyVFT7bG_4toaniNgG-yz46k8GaT2E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEA96B4dfxLfVUyMIglKu6SNNP66P5Vy9Q9CD-xaSZqIL2j2uXWH_Ff9aZ9p0tecD_LqZLG3nkV-Ymd8w9kSkIKzwPs58WcVE2R0rAS7OijJx0tV1kVPv8NGxPDzJF6fFaZhz2o7V7mNKcuhpIJampjs4c35wcSUPWkE07TFFWOLmiTeX2a4qqgpvX7uz2eLDYptIoCaFkMz848bJcdSz9v8em385nC4WTl7InvaH0vwauxrQJJ8N6r_OLkFzg-0dhXz5Tfb95zAIjuiUE9H3VyqA4XicDcUA3YYvG44wkDvwy6av4OIrP4pimOSOyHXDXKyWr1twvFuhOEUcC3y57enigaWVf8MbeK9y-u-h1ZJDaIHm_fCd9hY7mb_--PIwDtMY4hohXReDTawFlRtbOougzaepyQxVd6g6MwCFEsZACrZKDOSVkyoXxiPgUdJAmfnsNttpVg3cZbzI8dJZ-0wZZXIlrXKgwCWSqu1k5m3EklEpug5U5TQx44vuryxK6kGPGvWoSY96E7Fn2y1nA0_Hv4RfkKa3gkSx3f-wOv-kg8fqVOSgvASTlS53BpENJAZt2RglapNAxJ6SnWgKBPhwtQn9DPiKRKmlZzRooCxFnkZsfyKJDlxPlh-PlqZpiareGlitWy0QnPddNknE7gyWt33mtCImwAp3lxObnLzUdKVZfu75w4sSUbTEnc9H69UhcLV__2b3_kv6Edt7_2qu3705fnufXUnJ30Qai2Kf7XTna3iAQK6zD4Oz_gB1_kdC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accounting+for+parameter+uncertainty+in+the+definition+of+parametric+distributions+used+to+describe+individual+patient+variation+in+health+economic+models&rft.jtitle=BMC+medical+research+methodology&rft.au=Degeling%2C+Koen&rft.au=IJzerman%2C+Maarten+J.&rft.au=Koopman%2C+Miriam&rft.au=Koffijberg%2C+Hendrik&rft.date=2017-12-15&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs12874-017-0437-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12874_017_0437_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon