Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models
Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidan...
Saved in:
Published in | BMC medical research methodology Vol. 17; no. 1; pp. 170 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
15.12.2017
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2288 1471-2288 |
DOI | 10.1186/s12874-017-0437-y |
Cover
Abstract | Background
Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes.
Methods
Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study.
Results
Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e.
n
= 500), the second approach was more sensitive to extreme values for small sample sizes (i.e.
n
= 25), yielding infeasible modeling outcomes.
Conclusions
Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty. |
---|---|
AbstractList | Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Methods Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Results Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Conclusions Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty. Keywords: Patient-level variation, Stochastic uncertainty, Parameter uncertainty, State-transition modeling, Discrete event simulation, Personalized medicine, Individual patient data Abstract Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Methods Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Results Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Conclusions Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty. Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty. Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Methods Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Results Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Conclusions Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty. Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty. Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes.BACKGROUNDParametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes.Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study.METHODSTwo approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study.Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes.RESULTSAccounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes.Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.CONCLUSIONSModelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty. |
ArticleNumber | 170 |
Audience | Academic |
Author | Koopman, Miriam IJzerman, Maarten J. Degeling, Koen Koffijberg, Hendrik |
Author_xml | – sequence: 1 givenname: Koen orcidid: 0000-0001-7487-2491 surname: Degeling fullname: Degeling, Koen organization: Health Technology and Services Research Department, MIRA institute for Biomedical Technology and Technical Medicine, University of Twente – sequence: 2 givenname: Maarten J. surname: IJzerman fullname: IJzerman, Maarten J. organization: Health Technology and Services Research Department, MIRA institute for Biomedical Technology and Technical Medicine, University of Twente – sequence: 3 givenname: Miriam surname: Koopman fullname: Koopman, Miriam organization: Department of Medical Oncology, University Medical Centre – sequence: 4 givenname: Hendrik surname: Koffijberg fullname: Koffijberg, Hendrik email: h.koffijberg@utwente.nl organization: Health Technology and Services Research Department, MIRA institute for Biomedical Technology and Technical Medicine, University of Twente |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29246192$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksuK2zAUhk2Z0rm0D9BNMXTTjaeS7FjKphCGXgYGumnX4lg6ThQcKZXkQF6lT9vjZFImpQxaSBz9_6fL-a-LCx88FsVbzm45V-3HxIWSTcW4rFhTy2r_orjijeSVEEpdPFlfFtcprRkJVd2-Ki7FXDQtn4ur4vfCmDD67Pyy7EMstxBhgxljOXqDMYPzeV86X-YVlhZ75112wZehP0mjM6V1ieZunLZSOSa0ZQ4kT4aqSHbrds6OMJApO_S53EF0cCARe4Uw5FWJJviwIdwmWBzS6-JlD0PCN4_zTfHzy-cfd9-qh-9f7-8WD5WZyVmusGNdh6qBTtpOiLYXAmqYM86UqQFxpjgACuzmDLCZ21Y1HPq2qVULKOu-vinuj1wbYK230W0g7nUApw-FEJcaYnZmQC14g6pvEWppGwu14shgRgeC4gYYEuvTkbUduw1aQ0-NMJxBz3e8W-ll2OmZrKklggAfHgEx_BoxZb1xyeAwgMcwJs3nUk5NZIyk74_SJdDVnO8DEc0k14tZ09ZS8mYC3v5HRcMifTXlqXdUPzO8e_qEv3c_ZYYE8igwMaQUsdfG5UMviewGzZme0qmP6dQUOj2lU-_Jyf9xnuDPecTRk0jrlxj1OozRUyCeMf0BFrr8Sg |
CitedBy_id | crossref_primary_10_1016_j_jval_2021_07_016 crossref_primary_10_1007_s40273_020_00908_4 crossref_primary_10_1007_s13721_022_00404_z crossref_primary_10_1093_icesjms_fsaa103 crossref_primary_10_1016_j_canep_2018_09_008 crossref_primary_10_3389_fgene_2022_880799 crossref_primary_10_1016_j_jval_2021_06_004 crossref_primary_10_1080_14737167_2022_2108408 crossref_primary_10_1007_s40273_020_00951_1 crossref_primary_10_1177_0272989X18814770 crossref_primary_10_1016_j_jval_2020_01_016 crossref_primary_10_4103_abr_abr_208_22 crossref_primary_10_1007_s40273_021_01125_3 crossref_primary_10_1007_s40273_021_01047_0 crossref_primary_10_1097_JOM_0000000000001627 crossref_primary_10_1177_0272989X211026292 crossref_primary_10_3389_feart_2020_00076 crossref_primary_10_3390_atmos10020043 crossref_primary_10_1080_14737167_2024_2416255 crossref_primary_10_1007_s40258_024_00936_7 crossref_primary_10_1007_s40273_023_01292_5 |
Cites_doi | 10.1002/hec.1477 10.1080/14737167.2017.1273110 10.1016/j.eururo.2016.08.024 10.1016/j.ijcard.2017.05.003 10.1016/j.jval.2013.06.008 10.1007/978-0-387-21706-2 10.1016/j.csda.2006.08.014 10.1016/j.jval.2012.04.013 10.1016/j.jval.2012.04.012 10.1007/s40273-015-0327-2 10.18637/jss.v028.i04 10.3310/hta8110 10.18637/jss.v064.i04 10.1016/S0140-6736(14)62004-3 10.1177/0272989X12458348 10.1016/j.jval.2012.06.014 10.18637/jss.v011.i08 10.1080/13696998.2016.1276070 10.18553/jmcp.2017.23.1.64 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F 10.2165/00019053-200826090-00008 10.1093/oso/9780198526629.001.0001 10.1016/j.ejca.2017.01.019 10.1002/047174882X 10.1017/CBO9780511802843 |
ContentType | Journal Article |
Copyright | The Author(s). 2017 COPYRIGHT 2017 BioMed Central Ltd. |
Copyright_xml | – notice: The Author(s). 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1186/s12874-017-0437-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1471-2288 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_214e8f6ea37d4da381e0a522aa81ca0e PMC5732462 A546377142 29246192 10_1186_s12874_017_0437_y |
Genre | Journal Article |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR INH INR IPNFZ ITC KQ8 M1P M48 MK0 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX ALIPV CITATION -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7X8 5PM |
ID | FETCH-LOGICAL-c575t-eb0bbe84ab7db226f22a3a90108c3aee581aae2eb90ae49d6841af64386ae73f3 |
IEDL.DBID | M48 |
ISSN | 1471-2288 |
IngestDate | Wed Aug 27 00:46:08 EDT 2025 Thu Aug 21 14:04:06 EDT 2025 Thu Sep 04 17:09:55 EDT 2025 Tue Jun 17 21:01:46 EDT 2025 Tue Jun 10 20:29:02 EDT 2025 Wed Feb 19 02:43:45 EST 2025 Thu Apr 24 22:53:08 EDT 2025 Tue Jul 01 04:30:53 EDT 2025 Sat Sep 06 07:35:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Parameter uncertainty Individual patient data Discrete event simulation Patient-level variation Personalized medicine State-transition modeling Stochastic uncertainty |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-eb0bbe84ab7db226f22a3a90108c3aee581aae2eb90ae49d6841af64386ae73f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7487-2491 |
OpenAccessLink | https://doi.org/10.1186/s12874-017-0437-y |
PMID | 29246192 |
PQID | 1977783600 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_214e8f6ea37d4da381e0a522aa81ca0e pubmedcentral_primary_oai_pubmedcentral_nih_gov_5732462 proquest_miscellaneous_1977783600 gale_infotracmisc_A546377142 gale_infotracacademiconefile_A546377142 pubmed_primary_29246192 crossref_citationtrail_10_1186_s12874_017_0437_y crossref_primary_10_1186_s12874_017_0437_y springer_journals_10_1186_s12874_017_0437_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-15 |
PublicationDateYYYYMMDD | 2017-12-15 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | BMC series – open, inclusive and trusted |
PublicationTitle | BMC medical research methodology |
PublicationTitleAbbrev | BMC Med Res Methodol |
PublicationTitleAlternate | BMC Med Res Methodol |
PublicationYear | 2017 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | J Carpenter (437_CR14) 2000; 19 LHJ Simkens (437_CR23) 2015; 385 AH Briggs (437_CR15) 2006 J Karnon (437_CR7) 2012; 15 F Leisch (437_CR22) 2004; 11 437_CR19 437_CR18 P Barton (437_CR28) 2004; 8 B Grün (437_CR21) 2008; 28 437_CR13 U Siebert (437_CR6) 2012; 15 RC Parikh (437_CR11) 2017; 23 L Annemans (437_CR2) 2013; 16 AH Briggs (437_CR4) 2012; 32 ML Delignette-Muller (437_CR17) 2015; 64 MD Franken (437_CR27) 2017; 75 T Chen (437_CR9) 2017; 240 R Core Team (437_CR16) 2016 SM Montgomery (437_CR10) 2017; 20 DM Eddy (437_CR25) 2012; 15 437_CR29 AM Law (437_CR8) 2007 RM Nixon (437_CR5) 2010; 19 B Grün (437_CR20) 2007; 51 437_CR24 CE Barbieri (437_CR1) 2017; 71 K Degeling (437_CR3) 2017; 17 K Claxton (437_CR12) 2008; 26 P Vemer (437_CR26) 2016; 34 25862517 - Lancet. 2015 May 9;385(9980):1843-52 22999130 - Value Health. 2012 Sep-Oct;15(6):812-20 22990087 - Med Decis Making. 2012 Sep-Oct;32(5):722-32 27978765 - Expert Rev Pharmacoecon Outcomes Res. 2017 Feb;17 (1):17-25 24034308 - Value Health. 2013 Sep-Oct;16(6 Suppl):S20-6 18767898 - Pharmacoeconomics. 2008;26(9):781-98 22999131 - Value Health. 2012 Sep-Oct;15(6):821-7 14982655 - Health Technol Assess. 2004 Mar;8(11):iii, 1-91 28008769 - J Med Econ. 2017 May;20(5):474-482 27567210 - Eur Urol. 2017 Feb;71(2):237-246 28025930 - J Manag Care Spec Pharm. 2017 Jan;23 (1):64-73 28237866 - Eur J Cancer. 2017 Apr;75:204-212 10797513 - Stat Med. 2000 May 15;19(9):1141-64 19378353 - Health Econ. 2010 Mar;19(3):316-33 26660529 - Pharmacoeconomics. 2016 Apr;34(4):349-61 22999134 - Value Health. 2012 Sep-Oct;15(6):843-50 28501349 - Int J Cardiol. 2017 Aug 1;240:403-408 |
References_xml | – volume: 19 start-page: 316 issue: 3 year: 2010 ident: 437_CR5 publication-title: Health Econ doi: 10.1002/hec.1477 – volume: 17 start-page: 17 issue: 1 year: 2017 ident: 437_CR3 publication-title: Expert Rev Pharmacoecon Outcomes Res doi: 10.1080/14737167.2017.1273110 – volume: 71 start-page: 237 issue: 2 year: 2017 ident: 437_CR1 publication-title: Eur Urol doi: 10.1016/j.eururo.2016.08.024 – volume: 240 start-page: 403 year: 2017 ident: 437_CR9 publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2017.05.003 – volume: 16 start-page: S20 issue: 6 Suppl year: 2013 ident: 437_CR2 publication-title: Value Health doi: 10.1016/j.jval.2013.06.008 – ident: 437_CR18 doi: 10.1007/978-0-387-21706-2 – volume: 51 start-page: 5247 issue: 11 year: 2007 ident: 437_CR20 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2006.08.014 – volume: 15 start-page: 821 issue: 6 year: 2012 ident: 437_CR7 publication-title: Value Health doi: 10.1016/j.jval.2012.04.013 – ident: 437_CR24 – volume: 15 start-page: 843 issue: 6 year: 2012 ident: 437_CR25 publication-title: Value Health doi: 10.1016/j.jval.2012.04.012 – volume-title: R: a language and environment for statistical computing year: 2016 ident: 437_CR16 – volume: 34 start-page: 349 year: 2016 ident: 437_CR26 publication-title: PharmacoEconomics doi: 10.1007/s40273-015-0327-2 – volume: 28 start-page: 35 issue: 4 year: 2008 ident: 437_CR21 publication-title: J Stat Softw doi: 10.18637/jss.v028.i04 – volume: 8 start-page: 104 issue: 11 year: 2004 ident: 437_CR28 publication-title: Health Technol Assess doi: 10.3310/hta8110 – volume: 64 start-page: 1 issue: 4 year: 2015 ident: 437_CR17 publication-title: J Stat Softw doi: 10.18637/jss.v064.i04 – volume: 385 start-page: 1843 issue: 9980 year: 2015 ident: 437_CR23 publication-title: Lancet doi: 10.1016/S0140-6736(14)62004-3 – volume: 32 start-page: 722 issue: 5 year: 2012 ident: 437_CR4 publication-title: Med Decis Mak doi: 10.1177/0272989X12458348 – volume: 15 start-page: 812 issue: 6 year: 2012 ident: 437_CR6 publication-title: Value Health doi: 10.1016/j.jval.2012.06.014 – volume: 11 start-page: 1 issue: 8 year: 2004 ident: 437_CR22 publication-title: J Stat Softw doi: 10.18637/jss.v011.i08 – volume: 20 start-page: 474 year: 2017 ident: 437_CR10 publication-title: J Med Econ doi: 10.1080/13696998.2016.1276070 – volume: 23 start-page: 64 year: 2017 ident: 437_CR11 publication-title: J Manag Care Spec Pharm doi: 10.18553/jmcp.2017.23.1.64 – volume: 19 start-page: 1141 issue: 9 year: 2000 ident: 437_CR14 publication-title: Stat Med doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F – volume: 26 start-page: 781 issue: 9 year: 2008 ident: 437_CR12 publication-title: PharmacoEconomics doi: 10.2165/00019053-200826090-00008 – volume-title: Decision modeling for health economic evaluation year: 2006 ident: 437_CR15 doi: 10.1093/oso/9780198526629.001.0001 – volume: 75 start-page: 204 year: 2017 ident: 437_CR27 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2017.01.019 – ident: 437_CR19 doi: 10.1002/047174882X – volume-title: Simulation Modeling and Analysis year: 2007 ident: 437_CR8 – ident: 437_CR29 – ident: 437_CR13 doi: 10.1017/CBO9780511802843 – reference: 27978765 - Expert Rev Pharmacoecon Outcomes Res. 2017 Feb;17 (1):17-25 – reference: 19378353 - Health Econ. 2010 Mar;19(3):316-33 – reference: 18767898 - Pharmacoeconomics. 2008;26(9):781-98 – reference: 26660529 - Pharmacoeconomics. 2016 Apr;34(4):349-61 – reference: 25862517 - Lancet. 2015 May 9;385(9980):1843-52 – reference: 10797513 - Stat Med. 2000 May 15;19(9):1141-64 – reference: 28501349 - Int J Cardiol. 2017 Aug 1;240:403-408 – reference: 22999134 - Value Health. 2012 Sep-Oct;15(6):843-50 – reference: 22990087 - Med Decis Making. 2012 Sep-Oct;32(5):722-32 – reference: 22999131 - Value Health. 2012 Sep-Oct;15(6):821-7 – reference: 22999130 - Value Health. 2012 Sep-Oct;15(6):812-20 – reference: 28008769 - J Med Econ. 2017 May;20(5):474-482 – reference: 27567210 - Eur Urol. 2017 Feb;71(2):237-246 – reference: 14982655 - Health Technol Assess. 2004 Mar;8(11):iii, 1-91 – reference: 24034308 - Value Health. 2013 Sep-Oct;16(6 Suppl):S20-6 – reference: 28237866 - Eur J Cancer. 2017 Apr;75:204-212 – reference: 28025930 - J Manag Care Spec Pharm. 2017 Jan;23 (1):64-73 |
SSID | ssj0017836 |
Score | 2.3149827 |
Snippet | Background
Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general... Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is... Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general... Abstract Background Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 170 |
SubjectTerms | Analysis Case studies Colorectal Neoplasms - drug therapy Colorectal Neoplasms - economics Cost-Benefit Analysis Data analysis Discrete event simulation Health aspects Health Care Costs Health Sciences Humans Medical research Medicine Medicine & Public Health Models, Economic Multivariate Analysis Parameter uncertainty Patient-level variation Personalized medicine Research Article State-transition modeling Statistical Theory and Methods statistics and modelling Statistics for Life Sciences Statistics, Nonparametric Stochastic uncertainty Theory of Medicine/Bioethics Uncertainty |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pi9UwEA-yB_Ei_vfpKhEEQQnbtGmaHldxWYT15MLeQtJM8IH2LbZPeF_FT-tMmj63K-rFazMJaWYyM2FmfsPYS1mC9DJGUcWmFQTZLYyEIKq6KYIOXVcrqh0--6hPz9WHi_riSqsvygmb4IGngzsqpQITNbiqCSo4NDBQOFzSOSM7VwBp36It5sdUjh9QbUKOYUqjjwZJsO6CNDJh-YjdwgolsP7fVfIVm3Q9X_Ja0DTZopM77HZ2IvnxtPm77Ab099jNsxwmv89-_OoBwdEp5YTv_ZXyXjhasSkHYNzxdc_R--MB4rpPiVt8E2dS1I48EKZuboc18O0AgY8bJCdF44Gv96VcPIOz8u_48E6cprWnCksOufKZp547wwN2fvL-07tTkZswiA49uVGAL7wHo5xvgkdfLeLRV46SOkxXOYDaSOegBN8WDlQbtFHSRfRzjHbQVLF6yA76TQ-PGa8VvjW7WBlnnDLamwAGQqEpyU5X0a9YMTPFdhmhnBplfLHppWK0nfhokY-W-Gh3K_Z6P-Vyguf4G_Fb4vSekJC10weUN5vlzf5L3lbsFcmJpfuPm-tcLmPAXyQkLXtM_QWaRqpyxQ4XlHhvu8Xwi1nSLA1RslsPm-1gJfrkqbimWLFHk-Tt91y2BADY4uxmIZOLn1qO9OvPCTa8btB51jjzzSy9Nuur4c9n9uR_nNlTdqukuydLIetDdjB-28Iz9OVG_zxd25_v5Eq8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96gvgifls9JYIgKMWmTdP08Vw8DuF88uDeQtJMcEG7h-0K-6_41zqTZuv1_ABfN5Ol7XzkF2bmN4y9FCUIJ0LIq9C0OVF251qAz6u6KbzyXVdL6h0-_ahOzuSH8_o8kUVTL8zl_L3Q6u0giJA9p1hKLDz57jq7UWPcJWNeqdWcMKBmhJS0_OO2xbET2fl_j8GXDqGrBZJXsqTx8Dm-w24n1MiPJjXfZdegv8dunqa8-H3249fQB44olBOh91cqdOF4bE1J_3HH1z1HuMc9hHUfK7X4JuxFMRxyTyS6af7VwLcDeD5uUJwiiwO-nnu3eGJj5d_xph1VS_89tVRySK3OPA7ZGR6ws-P3n1YneZq6kHcI3cYcXOEcaGld4x2Cs1CWtrJUxaG7ygLUWlgLJbi2sCBbr7QUNiCw0cpCU4XqITvoNz08ZryWeLnsQqWttlIrpz1o8IWiqjpVBZexYq8U0yVKcpqM8cXEq4lWZtKjQT0a0qPZZez1vOVi4uP4l_A70vQsSFTa8Qe0MJM805RCgg4KbNV46S0iGCgs2qy1WnS2gIy9Ijsx5PD4cJ1NfQv4ikSdZY5ooEDTCFlm7HAhiY7aLZZf7C3N0BJVt_Ww2Q5GIAiP3TRFxh5Nljc_c9kS41-Lu5uFTS5earnSrz9HnvC6QbSscOebvfWaFKCGv3-zJ_8l_ZTdKsnJRJmL-pAdjN-28AxR2uieR__8CRKJOpU priority: 102 providerName: Springer Nature |
Title | Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models |
URI | https://link.springer.com/article/10.1186/s12874-017-0437-y https://www.ncbi.nlm.nih.gov/pubmed/29246192 https://www.proquest.com/docview/1977783600 https://pubmed.ncbi.nlm.nih.gov/PMC5732462 https://doaj.org/article/214e8f6ea37d4da381e0a522aa81ca0e |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ti9QwEA73AuIX8d3Vc4kgCEq1adMk-0HkdrnjEO6Qw4XDLyFtpufC2dXtrrh_xV_rTNru2fMU_FLYZlLazEzyZDPzDGPPRQIiF2UZpaUeRUTZHRkBPkozHXvliyKTlDt8fKKOpvL9WXa2xbryVu0A1tdu7aie1HRx8frHt_U7dPi3weGNelMLIm2PaL4lpp5ovc12w3ERRfLJy0MFSlgIyUZaREliTHvIee0jestUYPP_c87-bdG6GlB55VQ1LFaHt9mtFmXy_cYs7rAtqO6yG8ftOfo99vOySARH1MqJAPwLBcZwXOaaIIHlms8qjvCQeyhnVYjs4vOyE8Xpk3si3W3rZdV8VYPnyzmK00yUA59tcr14y97Kv-POPJgCPbtJweTQpkbzUJSnvs-mhwcfJ0dRW6UhKhDqLSPI4zwHI12ufY5grkwSlzqK-jBF6gAyI5yDBPJR7ECOvDJSuBKBkFEOdFqmD9hONa_gEeOZxM1oUabGGSeNyo0HAz5WFIWn0jIfsLhTii1aCnOqpHFhw1bGKNvo0aIeLenRrgfs5abL14a_41_CY9L0RpCot8ON-eLctp5sEyHBlApcqr30DhEPxA5t3DkjChfDgL0gO7FksvhyhWvzHPATiWrL7lMBAq2FTAZsryeJjl30mp91lmapiaLhKpivaisQtIfsm3jAHjaWt3nnZEQMgSPsrXs22fuofks1-xx4xTON6Fphz1ed9drOH_8-Zo__Z4CfsJsJ-ZhIIpHtsZ3lYgVPEdQt8yHb1md6yHbHBycfTvHXRE2G4Q-SYXBivJ6OP_0CvjpP7g |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96gvoifls9NYIgKMWmH2n6eC4eq97e0x3cW0iaCbegXbFdYf8V_1pn0ux6PT_A181kaTsf-YWZ-Q1jL0UOwgrv08LXTUqU3akS4NKiqjMnXdtWJfUOL47l_LT8eFadRbJo6oW5mL8XSr7tBRGypxRLiYUn3Vxl1yhxSTT5MznbJQyoGSEmLf-4bXLsBHb-32PwhUPocoHkpSxpOHwOb7NbETXyg1HNd9gV6O6y64uYF7_Hfvwa-sARhXIi9P5ChS4cj60x6T9s-LLjCPe4A7_sQqUWX_mtKIZD7ohEN86_6vm6B8eHFYpTZLHAl7veLR7ZWPl3vGkH1dJ_jy2VHGKrMw9Ddvr77PTw_clsnsapC2mL0G1IwWbWgiqNrZ1FcObz3BSGqjhUWxiASgljIAfbZAbKxklVCuMR2ChpoC588YDtdasOHjFelXi5bH2hjDKlklY5UOAySVV1svA2YdlWKbqNlOQ0GeOzDlcTJfWoR4161KRHvUnY692WryMfx7-E35Gmd4JEpR1-QAvT0TN1LkpQXoIpalc6gwgGMoM2a4wSrckgYa_ITjQ5PD5ca2LfAr4iUWfpAxooUNeizBO2P5FER20nyy-2lqZpiarbOlitey0QhIdumixhD0fL2z1z3hDjX4O764lNTl5qutItzwNPeFUjWpa4883WenUMUP3fv9nj_5J-zm7MTxZH-ujD8acn7GZODifyVFT7bG_4toaniNgG-yz46k8GaT2E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEA96B4dfxLfVUyMIglKu6SNNP66P5Vy9Q9CD-xaSZqIL2j2uXWH_Ff9aZ9p0tecD_LqZLG3nkV-Ymd8w9kSkIKzwPs58WcVE2R0rAS7OijJx0tV1kVPv8NGxPDzJF6fFaZhz2o7V7mNKcuhpIJampjs4c35wcSUPWkE07TFFWOLmiTeX2a4qqgpvX7uz2eLDYptIoCaFkMz848bJcdSz9v8em385nC4WTl7InvaH0vwauxrQJJ8N6r_OLkFzg-0dhXz5Tfb95zAIjuiUE9H3VyqA4XicDcUA3YYvG44wkDvwy6av4OIrP4pimOSOyHXDXKyWr1twvFuhOEUcC3y57enigaWVf8MbeK9y-u-h1ZJDaIHm_fCd9hY7mb_--PIwDtMY4hohXReDTawFlRtbOougzaepyQxVd6g6MwCFEsZACrZKDOSVkyoXxiPgUdJAmfnsNttpVg3cZbzI8dJZ-0wZZXIlrXKgwCWSqu1k5m3EklEpug5U5TQx44vuryxK6kGPGvWoSY96E7Fn2y1nA0_Hv4RfkKa3gkSx3f-wOv-kg8fqVOSgvASTlS53BpENJAZt2RglapNAxJ6SnWgKBPhwtQn9DPiKRKmlZzRooCxFnkZsfyKJDlxPlh-PlqZpiareGlitWy0QnPddNknE7gyWt33mtCImwAp3lxObnLzUdKVZfu75w4sSUbTEnc9H69UhcLV__2b3_kv6Edt7_2qu3705fnufXUnJ30Qai2Kf7XTna3iAQK6zD4Oz_gB1_kdC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accounting+for+parameter+uncertainty+in+the+definition+of+parametric+distributions+used+to+describe+individual+patient+variation+in+health+economic+models&rft.jtitle=BMC+medical+research+methodology&rft.au=Degeling%2C+Koen&rft.au=IJzerman%2C+Maarten+J.&rft.au=Koopman%2C+Miriam&rft.au=Koffijberg%2C+Hendrik&rft.date=2017-12-15&rft.issn=1471-2288&rft.eissn=1471-2288&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1186%2Fs12874-017-0437-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12874_017_0437_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon |