Increasingly complex representations of natural movies across the dorsal stream are shared between subjects
Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion p...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 145; no. Pt B; pp. 329 - 336 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.01.2017
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2015.12.036 |
Cover
Abstract | Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment.
Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects.
•Deep neural network and dorsal stream representations show correspondence.•Dorsal stream representations are shared between subjects.•A common encoder can predict fMRI responses to novel stimuli for unseen subjects.•A common decoder can identify novel stimuli from fMRI responses for unseen subjects. |
---|---|
AbstractList | Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects. Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects.Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects. Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects. •Deep neural network and dorsal stream representations show correspondence.•Dorsal stream representations are shared between subjects.•A common encoder can predict fMRI responses to novel stimuli for unseen subjects.•A common decoder can identify novel stimuli from fMRI responses for unseen subjects. |
Author | van Gerven, Marcel A.J. Güçlü, Umut |
Author_xml | – sequence: 1 givenname: Umut surname: Güçlü fullname: Güçlü, Umut email: u.guclu@donders.ru.nl – sequence: 2 givenname: Marcel A.J. surname: van Gerven fullname: van Gerven, Marcel A.J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26724778$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkU2P1SAUhhszxvnQv2BI3LhpBVqgbIw68WOSSdzomlB6OkOHQoV2xvvv5dpRk7u6boCE9zznnPc9L0588FAUiOCKYMLfjJWHNQY76RuoKCasIrTCNX9SnBEsWSmZoCf7N6vLlhB5WpynNGKMJWnaZ8Up5YI2QrRnxd2VNxF0sv7G7ZAJ0-zgJ4owR0jgF73Y4BMKA_J6WaN2aAr3FhLSJoaU0HILqA8x5Y-0ZM6EdASUbvPZow6WBwCP0tqNYJb0vHg6aJfgxeN9UXz_9PHb5Zfy-uvnq8v316Vhgi2l4SBwr3VDJTGyFpTwoeNa9rxmdc-krDuWN5O4aQXvjdYDxVx2hraMiaHF9UUhN-7qZ7170M6pOWav4k4RrPYGqlH9M1DtDVSEqmxgrn291c4x_FghLWqyyYBz2kNYkyIt5bwRbbNv8-pAOoY1-rxZVgkhpGyaNqtePqrWboL-7yR_IsiCdhP8djTC8D_Dvj0oNXaLbInaumMAHzYA5DhyrlElY8Eb6G3Miak-2GMg7w4gxllvjXZ3sDsO8QuzSeNh |
CitedBy_id | crossref_primary_10_1007_s10489_024_05873_5 crossref_primary_10_1038_s41562_022_01302_0 crossref_primary_10_7554_eLife_56601 crossref_primary_10_3389_fncom_2017_00007 crossref_primary_10_1109_TCDS_2020_3007761 crossref_primary_10_1038_s41467_021_22244_7 crossref_primary_10_1523_JNEUROSCI_1993_20_2021 crossref_primary_10_3389_fncom_2023_1153572 crossref_primary_10_1016_j_neuroimage_2022_119769 crossref_primary_10_1126_sciadv_abe7547 crossref_primary_10_1155_2019_9210785 crossref_primary_10_1038_s41467_018_07471_9 crossref_primary_10_3389_fninf_2025_1526259 crossref_primary_10_1016_j_neuroimage_2021_118554 crossref_primary_10_1371_journal_pone_0253442 crossref_primary_10_1016_j_cobme_2021_100298 crossref_primary_10_1038_s41467_021_25409_6 crossref_primary_10_3389_fncom_2019_00021 crossref_primary_10_3390_brainsci11081004 crossref_primary_10_1088_1741_2552_ad6184 crossref_primary_10_3389_fninf_2018_00023 crossref_primary_10_1016_j_neuroimage_2017_08_016 crossref_primary_10_3389_fncom_2017_00112 crossref_primary_10_1038_s41598_021_03938_w crossref_primary_10_1371_journal_pcbi_1012822 crossref_primary_10_1016_j_dcn_2024_101470 crossref_primary_10_12688_f1000research_11154_1 crossref_primary_10_1371_journal_pcbi_1009267 crossref_primary_10_1016_j_neuroimage_2020_116561 crossref_primary_10_1155_2020_5408942 crossref_primary_10_1016_j_neuroimage_2018_04_053 crossref_primary_10_1016_j_neuroimage_2024_120772 crossref_primary_10_1038_s41598_018_21636_y crossref_primary_10_1038_s41598_018_22160_9 crossref_primary_10_1371_journal_pcbi_1008558 crossref_primary_10_1038_s41467_024_50310_3 crossref_primary_10_1371_journal_pcbi_1008714 crossref_primary_10_1146_annurev_vision_091718_014951 crossref_primary_10_3389_fnins_2018_00437 crossref_primary_10_1371_journal_pcbi_1009976 crossref_primary_10_1371_journal_pcbi_1012058 crossref_primary_10_1016_j_neuroimage_2020_117445 crossref_primary_10_1016_j_neuroimage_2023_120007 crossref_primary_10_1016_j_neuroimage_2018_01_009 crossref_primary_10_1038_s41597_022_01299_1 crossref_primary_10_1038_s41598_020_68853_y crossref_primary_10_3389_fnins_2023_1154252 crossref_primary_10_1093_cercor_bhx268 crossref_primary_10_1007_s11571_023_10061_1 crossref_primary_10_3390_biology12101330 crossref_primary_10_1016_j_neuroimage_2020_116865 crossref_primary_10_3389_fnins_2021_614182 crossref_primary_10_3389_fninf_2021_677925 crossref_primary_10_1016_j_neuroimage_2016_12_012 crossref_primary_10_3390_brainsci12081101 crossref_primary_10_3389_fnhum_2018_00242 |
Cites_doi | 10.1073/pnas.88.5.1621 10.1038/nature14539 10.1016/j.neuroimage.2015.03.059 10.1016/j.neuron.2005.05.021 10.1016/0166-2236(83)90190-X 10.1016/j.neunet.2014.09.003 10.1016/j.neuron.2011.08.026 10.1523/JNEUROSCI.6801-10.2011 10.1016/0166-2236(92)90344-8 10.1371/journal.pcbi.1003724 10.1016/j.neuroimage.2010.07.073 10.1007/s12021-008-9041-y 10.1007/BF00344251 10.1162/neco.1997.9.8.1735 10.1073/pnas.1403112111 10.1016/j.cub.2011.08.031 10.1038/nature06713 10.1371/journal.pcbi.1003915 10.1148/radiology.143.1.7063747 10.1016/j.neuroimage.2004.05.012 10.1152/jn.00105.2013 10.1523/JNEUROSCI.5023-14.2015 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 15, 2017 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 15, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 ADTOC UNPAY |
DOI | 10.1016/j.neuroimage.2015.12.036 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central (New) Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 336 |
ExternalDocumentID | 10.1016/j.neuroimage.2015.12.036 4320860381 26724778 10_1016_j_neuroimage_2015_12_036 S1053811915011490 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACLOT ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AIGII AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT ~HD ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c575t-c6e70daa4291c937216fb6a9d6353d5993b5105904876dcaaf2069bc28557f803 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Oct 01 15:46:43 EDT 2025 Sat Sep 27 23:49:07 EDT 2025 Wed Aug 13 07:01:23 EDT 2025 Thu Apr 03 06:59:17 EDT 2025 Thu Apr 24 23:12:52 EDT 2025 Wed Oct 01 03:42:59 EDT 2025 Fri Feb 23 02:25:04 EST 2024 Tue Aug 26 20:08:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt B |
Keywords | Deep neural network Hyperalignment Encoding Dorsal stream Decoding |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-c6e70daa4291c937216fb6a9d6353d5993b5105904876dcaaf2069bc28557f803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811915011490 |
PMID | 26724778 |
PQID | 1877799448 |
PQPubID | 2031077 |
PageCount | 8 |
ParticipantIDs | unpaywall_primary_10_1016_j_neuroimage_2015_12_036 proquest_miscellaneous_1826647840 proquest_journals_1877799448 pubmed_primary_26724778 crossref_primary_10_1016_j_neuroimage_2015_12_036 crossref_citationtrail_10_1016_j_neuroimage_2015_12_036 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2015_12_036 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_12_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-15 |
PublicationDateYYYYMMDD | 2017-01-15 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Güçlü, van Gerven (bb0040) 2015; 35 Tran, Bourdev, Fergus, Torresani, Paluri (bb0170) 2014 Dieleman, Schrauwen (bb0010) 2014 Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (bb0030) 2015 Goodale, Milner (bb0025) 1992; 15 Hanley, McNeil (bb0050) 1982; 143 Hinton, Srivastava, Krizhevsky, Sutskever, Salakhutdinov (bb0070) 2012 Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini, Hanke, Ramadge (bb0065) 2011; 72 Zeiler, Fergus (bb0180) 2013 Springenberg, Dosovitskiy, Brox, Riedmiller (bb0165) 2014 Nishimoto, Vu, Naselaris, Benjamini, Yu, Gallant (bb0135) 2011; 21 Simonyan, Vedaldi, Zisserman (bb0155) 2013 Güçlü, van Gerven (bb0035) 2014; 10 Agrawal, Stansbury, Malik, Gallant (bb9000) 2014 Nishimoto, Gallant (bb0130) 2011; 31 LeCun, Bengio, Hinton (bb0110) 2015; 521 Hochreiter, Schmidhuber (bb0075) 1997; 9 Eickenberg (bb9005) 2015 Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bb9015) 2014; 111 Khaligh-Razavi, Kriegeskorte (bb0100) 2014; 10 Kay, Naselaris, Prenger, Gallant (bb0090) 2008; 452 Haxby, Grady, Horwitz, Ungerleider, Mishkin, Carson, Herscovitch, Schapiro, Rapoport (bb0060) 1991; 88 Naselaris, Kay, Nishimoto, Gallant (bb0125) 2011; 56 Dosovitskiy, Brox (bb0015) 2015 Cadieu, Hong, Yamins, Pinto, Ardila, Solomon, Majaj, DiCarlo (bb0005) 2014; 10 Karpathy, Toderici, Shetty, Leung, Sukthankar, Fei-Fei (bb0085) 2014 Yamada, Miyawaki, Kamitani (bb0175) 2015; 113 Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bb0080) 2014 Krizhevsky, Sutskever, Hinton (bb0105) 2012 Nishimoto, Vu, Naselaris, Benjamini, Yu, Gallant (bb9010) 2014 Schmidhuber (bb0145) 2015; 61 Rust, Schwartz, Movshon, Simoncelli (bb0140) 2005; 46 Kay, Winawer, Mezer, Wandell (bb0095) 2013; 110 Hanke, Halchenko, Sederberg, Hanson, Haxby, Pollmann (bb0045) 2009; 7 Hansen, David, Gallant (bb0055) 2004; 23 Soomro, Zamir, Shah (bb0160) 2012 Mishkin, Ungerleider, Macko (bb0120) 1983; 6 Simonyan, Zisserman (bb0150) 2014 Fukushima (bb0020) 1980; 36 Mahendran, Vedaldi (bb0115) 2014 Yamins (10.1016/j.neuroimage.2015.12.036_bb9015) 2014; 111 Haxby (10.1016/j.neuroimage.2015.12.036_bb0065) 2011; 72 Güçlü (10.1016/j.neuroimage.2015.12.036_bb0035) 2014; 10 Kay (10.1016/j.neuroimage.2015.12.036_bb0095) 2013; 110 Zeiler (10.1016/j.neuroimage.2015.12.036_bb0180) Hanke (10.1016/j.neuroimage.2015.12.036_bb0045) 2009; 7 Goodale (10.1016/j.neuroimage.2015.12.036_bb0025) 1992; 15 Krizhevsky (10.1016/j.neuroimage.2015.12.036_bb0105) 2012 Schmidhuber (10.1016/j.neuroimage.2015.12.036_bb0145) 2015; 61 Simonyan (10.1016/j.neuroimage.2015.12.036_bb0155) Hansen (10.1016/j.neuroimage.2015.12.036_bb0055) 2004; 23 Khaligh-Razavi (10.1016/j.neuroimage.2015.12.036_bb0100) 2014; 10 Karpathy (10.1016/j.neuroimage.2015.12.036_bb0085) 2014 Fukushima (10.1016/j.neuroimage.2015.12.036_bb0020) 1980; 36 Mishkin (10.1016/j.neuroimage.2015.12.036_bb0120) 1983; 6 Yamada (10.1016/j.neuroimage.2015.12.036_bb0175) 2015; 113 Dosovitskiy (10.1016/j.neuroimage.2015.12.036_bb0015) Nishimoto (10.1016/j.neuroimage.2015.12.036_bb0135) 2011; 21 Springenberg (10.1016/j.neuroimage.2015.12.036_bb0165) LeCun (10.1016/j.neuroimage.2015.12.036_bb0110) 2015; 521 Simonyan (10.1016/j.neuroimage.2015.12.036_bb0150) Haxby (10.1016/j.neuroimage.2015.12.036_bb0060) 1991; 88 Hochreiter (10.1016/j.neuroimage.2015.12.036_bb0075) 1997; 9 Jia (10.1016/j.neuroimage.2015.12.036_bb0080) Greff (10.1016/j.neuroimage.2015.12.036_bb0030) Cadieu (10.1016/j.neuroimage.2015.12.036_bb0005) 2014; 10 Soomro (10.1016/j.neuroimage.2015.12.036_bb0160) 2012 Kay (10.1016/j.neuroimage.2015.12.036_bb0090) 2008; 452 Rust (10.1016/j.neuroimage.2015.12.036_bb0140) 2005; 46 Agrawal (10.1016/j.neuroimage.2015.12.036_bb9000) 2014 Eickenberg (10.1016/j.neuroimage.2015.12.036_bb9005) 2015 Mahendran (10.1016/j.neuroimage.2015.12.036_bb0115) Naselaris (10.1016/j.neuroimage.2015.12.036_bb0125) 2011; 56 Dieleman (10.1016/j.neuroimage.2015.12.036_bb0010) 2014 Tran (10.1016/j.neuroimage.2015.12.036_bb0170) Güçlü (10.1016/j.neuroimage.2015.12.036_bb0040) 2015; 35 Hinton (10.1016/j.neuroimage.2015.12.036_bb0070) Nishimoto (10.1016/j.neuroimage.2015.12.036_bb9010) 2014 Hanley (10.1016/j.neuroimage.2015.12.036_bb0050) 1982; 143 Nishimoto (10.1016/j.neuroimage.2015.12.036_bb0130) 2011; 31 |
References_xml | – year: 2014 ident: bb0080 article-title: Caffe: Convolutional Architecture for Fast Feature Embedding – volume: 143 start-page: 29 year: 1982 end-page: 36 ident: bb0050 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology – year: 2013 ident: bb0180 article-title: Visualizing and Understanding Convolutional Networks – volume: 10 start-page: e1003915 year: 2014 ident: bb0100 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. – year: 2014 ident: bb9010 publication-title: Gallant Lab Natural Movie 4T fMRI Data – volume: 21 start-page: 1641 year: 2011 end-page: 1646 ident: bb0135 article-title: Reconstructing visual experiences from brain activity evoked by natural movies publication-title: Curr. Biol. – volume: 113 start-page: 289 year: 2015 end-page: 297 ident: bb0175 article-title: Inter-subject neural code converter for visual image representation publication-title: NeuroImage – volume: 10 start-page: e1003963 year: 2014 ident: bb0005 article-title: Deep neural networks rival the representation of primate IT cortex for core visual object recognition – volume: 35 start-page: 10005 year: 2015 end-page: 10014 ident: bb0040 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. – volume: 56 start-page: 400 year: 2011 end-page: 410 ident: bb0125 article-title: Encoding and decoding in fMRI publication-title: NeuroImage – start-page: 6964 year: 2014 end-page: 6968 ident: bb0010 article-title: End-to-end learning for music audio publication-title: in: IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bb0075 article-title: Long short-term memory publication-title: Neural Comput. – year: 2015 ident: bb0030 article-title: LSTM: A Search Space Odyssey – volume: 6 start-page: 414 year: 1983 end-page: 417 ident: bb0120 article-title: Object vision and spatial vision: two cortical pathways publication-title: Trends Neurosci. – volume: 452 start-page: 352 year: 2008 end-page: 356 ident: bb0090 article-title: Identifying natural images from human brain activity publication-title: Nature – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bb0110 article-title: Deep learning publication-title: Nature – year: 2014 ident: bb0115 article-title: Understanding Deep Image Representations by Inverting Them – year: 2015 ident: bb9005 article-title: Evaluating Computational Models of Vision with Functional Magnetic Resonance Imaging – volume: 46 start-page: 945 year: 2005 end-page: 956 ident: bb0140 article-title: Spatiotemporal elements of macaque V1 receptive fields publication-title: Neuron – volume: 61 year: 2015 ident: bb0145 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. – volume: 36 start-page: 193 year: 1980 end-page: 202 ident: bb0020 article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybern. – year: 2013 ident: bb0155 article-title: Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps – start-page: 1725 year: 2014 end-page: 1732 ident: bb0085 article-title: Large-scale video classification with convolutional neural networks publication-title: in: IEEE Conference on Computer Vision and Pattern Recognition – year: 2014 ident: bb0170 article-title: Learning Spatiotemporal Features with 3D Convolutional Networks – volume: 7 start-page: 37 year: 2009 end-page: 53 ident: bb0045 article-title: PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data publication-title: Neuroinformatics – year: 2014 ident: bb0165 article-title: Striving for Simplicity: The all Convolutional net – year: 2012 ident: bb0070 article-title: Improving Neural Networks by Preventing co-Adaptation of Feature Detectors – year: 2012 ident: bb0105 article-title: ImageNet classification with deep convolutional neural networks publication-title: in: Advances in Neural Information Processing Systems 25 – volume: 110 start-page: 481 year: 2013 end-page: 494 ident: bb0095 article-title: Compressive spatial summation in human visual cortex publication-title: J. Neurophysiol. – volume: 72 start-page: 404 year: 2011 end-page: 416 ident: bb0065 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron – volume: 15 start-page: 20 year: 1992 end-page: 25 ident: bb0025 article-title: Separate visual pathways for perception and action publication-title: Trends Neurosci. – volume: 88 start-page: 1621 year: 1991 end-page: 1625 ident: bb0060 article-title: Dissociation of object and spatial visual processing pathways in human extrastriate cortex publication-title: Proc. Natl. Acad. Sci. – volume: 111 start-page: 8619 year: 2014 end-page: 8624 ident: bb9015 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 31 start-page: 14551 year: 2011 end-page: 14564 ident: bb0130 article-title: A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies publication-title: J. Neurosci. – year: 2015 ident: bb0015 article-title: Inverting convolutional networks with convolutional networks – year: 2014 ident: bb0150 article-title: Two-Stream Convolutional Networks for Action Recognition in Videos – year: 2014 ident: bb9000 publication-title: Pixels to Voxels: Modeling visual representation in the human brain – volume: 23 start-page: 233 year: 2004 end-page: 241 ident: bb0055 article-title: Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response publication-title: NeuroImage – year: 2012 ident: bb0160 article-title: UCF101: A Dataset of 101 Human Action Classes from Videos in the Wild publication-title: Technical Report CRCV–TR–12–01 – volume: 10 start-page: e1003724 year: 2014 ident: bb0035 article-title: Unsupervised feature learning improves prediction of human brain activity in response to natural images publication-title: PLoS Comput. Biol. – volume: 88 start-page: 1621 year: 1991 ident: 10.1016/j.neuroimage.2015.12.036_bb0060 article-title: Dissociation of object and spatial visual processing pathways in human extrastriate cortex publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.88.5.1621 – ident: 10.1016/j.neuroimage.2015.12.036_bb0155 – ident: 10.1016/j.neuroimage.2015.12.036_bb0070 – ident: 10.1016/j.neuroimage.2015.12.036_bb0170 – year: 2012 ident: 10.1016/j.neuroimage.2015.12.036_bb0105 article-title: ImageNet classification with deep convolutional neural networks publication-title: in: Advances in Neural Information Processing Systems 25 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.neuroimage.2015.12.036_bb0110 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 113 start-page: 289 year: 2015 ident: 10.1016/j.neuroimage.2015.12.036_bb0175 article-title: Inter-subject neural code converter for visual image representation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.03.059 – volume: 46 start-page: 945 year: 2005 ident: 10.1016/j.neuroimage.2015.12.036_bb0140 article-title: Spatiotemporal elements of macaque V1 receptive fields publication-title: Neuron doi: 10.1016/j.neuron.2005.05.021 – ident: 10.1016/j.neuroimage.2015.12.036_bb0150 – volume: 6 start-page: 414 year: 1983 ident: 10.1016/j.neuroimage.2015.12.036_bb0120 article-title: Object vision and spatial vision: two cortical pathways publication-title: Trends Neurosci. doi: 10.1016/0166-2236(83)90190-X – volume: 61 year: 2015 ident: 10.1016/j.neuroimage.2015.12.036_bb0145 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 72 start-page: 404 year: 2011 ident: 10.1016/j.neuroimage.2015.12.036_bb0065 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron doi: 10.1016/j.neuron.2011.08.026 – volume: 31 start-page: 14551 year: 2011 ident: 10.1016/j.neuroimage.2015.12.036_bb0130 article-title: A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6801-10.2011 – start-page: 6964 year: 2014 ident: 10.1016/j.neuroimage.2015.12.036_bb0010 article-title: End-to-end learning for music audio publication-title: in: IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 15 start-page: 20 year: 1992 ident: 10.1016/j.neuroimage.2015.12.036_bb0025 article-title: Separate visual pathways for perception and action publication-title: Trends Neurosci. doi: 10.1016/0166-2236(92)90344-8 – volume: 10 start-page: e1003724 year: 2014 ident: 10.1016/j.neuroimage.2015.12.036_bb0035 article-title: Unsupervised feature learning improves prediction of human brain activity in response to natural images publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003724 – year: 2014 ident: 10.1016/j.neuroimage.2015.12.036_bb9010 publication-title: Gallant Lab Natural Movie 4T fMRI Data – volume: 56 start-page: 400 year: 2011 ident: 10.1016/j.neuroimage.2015.12.036_bb0125 article-title: Encoding and decoding in fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.073 – volume: 7 start-page: 37 year: 2009 ident: 10.1016/j.neuroimage.2015.12.036_bb0045 article-title: PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data publication-title: Neuroinformatics doi: 10.1007/s12021-008-9041-y – volume: 36 start-page: 193 year: 1980 ident: 10.1016/j.neuroimage.2015.12.036_bb0020 article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybern. doi: 10.1007/BF00344251 – ident: 10.1016/j.neuroimage.2015.12.036_bb0080 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.neuroimage.2015.12.036_bb0075 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – start-page: 1725 year: 2014 ident: 10.1016/j.neuroimage.2015.12.036_bb0085 article-title: Large-scale video classification with convolutional neural networks publication-title: in: IEEE Conference on Computer Vision and Pattern Recognition – year: 2014 ident: 10.1016/j.neuroimage.2015.12.036_bb9000 publication-title: Pixels to Voxels: Modeling visual representation in the human brain – volume: 111 start-page: 8619 year: 2014 ident: 10.1016/j.neuroimage.2015.12.036_bb9015 article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1403112111 – volume: 21 start-page: 1641 year: 2011 ident: 10.1016/j.neuroimage.2015.12.036_bb0135 article-title: Reconstructing visual experiences from brain activity evoked by natural movies publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.08.031 – ident: 10.1016/j.neuroimage.2015.12.036_bb0180 – ident: 10.1016/j.neuroimage.2015.12.036_bb0115 – volume: 452 start-page: 352 year: 2008 ident: 10.1016/j.neuroimage.2015.12.036_bb0090 article-title: Identifying natural images from human brain activity publication-title: Nature doi: 10.1038/nature06713 – volume: 10 start-page: e1003915 year: 2014 ident: 10.1016/j.neuroimage.2015.12.036_bb0100 article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003915 – volume: 143 start-page: 29 year: 1982 ident: 10.1016/j.neuroimage.2015.12.036_bb0050 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – ident: 10.1016/j.neuroimage.2015.12.036_bb0165 – volume: 23 start-page: 233 year: 2004 ident: 10.1016/j.neuroimage.2015.12.036_bb0055 article-title: Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.05.012 – ident: 10.1016/j.neuroimage.2015.12.036_bb0015 – volume: 110 start-page: 481 year: 2013 ident: 10.1016/j.neuroimage.2015.12.036_bb0095 article-title: Compressive spatial summation in human visual cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00105.2013 – volume: 10 start-page: e1003963 year: 2014 ident: 10.1016/j.neuroimage.2015.12.036_bb0005 article-title: Deep neural networks rival the representation of primate IT cortex for core visual object recognition – year: 2015 ident: 10.1016/j.neuroimage.2015.12.036_bb9005 – volume: 35 start-page: 10005 year: 2015 ident: 10.1016/j.neuroimage.2015.12.036_bb0040 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5023-14.2015 – ident: 10.1016/j.neuroimage.2015.12.036_bb0030 – year: 2012 ident: 10.1016/j.neuroimage.2015.12.036_bb0160 article-title: UCF101: A Dataset of 101 Human Action Classes from Videos in the Wild |
SSID | ssj0009148 |
Score | 2.5340066 |
Snippet | Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore... |
SourceID | unpaywall proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 329 |
SubjectTerms | Adult Datasets Decoding Deep neural network Dorsal stream Encoding Humans Hyperalignment Image Processing, Computer-Assisted - methods Motion Pictures Neural networks Neural Networks (Computer) Studies Visual Pathways - diagnostic imaging Visual Pathways - physiology Visual Perception - physiology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96gh8P4td5q6dE8DXYZJukxQcR8TiE88mDfQvTJsWP3Xbd7qL3399MmnYFRfa5mZBmZjK_TH6ZMPbakJIrVQklgxJ5AUGAlF5g6C2zDObeAuU7Lj6b88v800IvUsKtT7TKcU2MC7XvasqRv5FUuK4scTfxbv1T0KtRdLqantC4yW5JhCpk1XZh90V3ZT5chdNzUWCDxOQZ-F2xXuS3FXotEbx0TArGQs3_DE9_w8977M6uXcPVL1gu_whJZw_Y_YQl-ftB-Q_ZjdA-Yrcv0mn5Y_YDnZ845xidllc8ksfDbx7LWI5Xjtqedw2P1T2xp1WHw-g5xLFxhIbcd5seP9CNElhx2ATefyXKOk_8Lt7vKsrk9E_Y5dnHLx_ORXpcQdSI0LaiNsFmHgDjkawRoyhpmspA6RGBzL1G2FJF7IUebo2vARqVmbKqVaG1bYpsfsyO2q4NJ4xXPve-gCYLGnKrTaEr7IkCYcANEzQzZsc5dXWqPE4PYCzdSDH77vbacKQNJ5VDbcyYnCTXQ_WNA2TKUW1uvF2K66HDEHGA7NtJNiGQAVkcKH06WolLK0Hv9nY7Y6-mz-jDdDADbeh21AZhUm5xrz1jTwfrmn5XGatya1FaTeZ28Fw8-_-InrO7ilBKJoXUp-xou9mFF4ixttXL6EjXIgUniA priority: 102 providerName: ProQuest |
Title | Increasingly complex representations of natural movies across the dorsal stream are shared between subjects |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915011490 https://dx.doi.org/10.1016/j.neuroimage.2015.12.036 https://www.ncbi.nlm.nih.gov/pubmed/26724778 https://www.proquest.com/docview/1877799448 https://www.proquest.com/docview/1826647840 https://www.sciencedirect.com/science/article/pii/S1053811915011490 |
UnpaywallVersion | publishedVersion |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemIfHxgMZ3YZuMxGto7MZ2Ip5Gtal8rJoGk_pmObEjCm1SNa1gL_zt3DlOBoKHSrw0UpOLHN_57nfO7y6EvJKo5JznEWeOR0lqXGQYsxGE3iyOzcgqg_sd51M5uUrez8Rsj4y7WhikVQbf3_p0763DP8Mwm8PVfD78BMgAwg3kGwJBfYZ5O3b_Apt-_fOG5pGxpC2HE6MIrw5snpbj5XtGzpewcpHkJfzGoG_W_M8Q9TcEvUfubKuVuf5uFovfwtLZAbkf8CQ9aYf8gOy56iG5fR7emD8i38ABIO8cItTimnoCuftBfSvLruyoamhdUt_hE-60rGEYDTV-bBTgIbX1uoETWFViltSsHW2-IG2dBo4XbbY57uY0j8nV2enn8SQKH1iICkBpm6iQTsXWGIhJrACcwpksc2kyCyhkZAVAl9zjL1jlStrCmJLHMssLngqhyjQePSH7VV25Z4TmNrE2NWXshEmUkKnI4U4YDB0kTaYcENXNqS5C93H8CMZCdzSzr_pGGxq1oRnXoI0BYb3kqu3AsYNM1qlNdxWm4BM1hIkdZN_0sn9Y4o7Sh52V6OANGs2w6WKWQSY8IC_707CO8eWMqVy9xWsAKiUK8u0BedpaV_-4XCqeKAXSvDe3nefi-X89zwtylyOQiVnExCHZ36y37ghg2CY_9usMftVMHZNbJ-PLjxd4fPdhMoXj29PpxeUvNcg4WQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NITF4QHyOwgAjwaNF7MRxIjRNEzB1bN3TJvXNOLEjYG1Smlaj_xR_487OR5FAqC97ds5yfOe7n-27nwHexk7JGc8oZ5bTKNGWasYMxdCbBoEOjdTuvGN0Fg8voi9jMd6C310tjEur7Hyid9Smyt0Z-XvmiOvSFHcTB7Of1L0a5W5Xuyc0GrM4sasr3LLV-8efUL_vOD_6fP5xSNtXBWiO0GRB89jKwGiNjpjlGJw5i4ss1qnB0BsagfE686ADTVvGJte64EGcZjlPhJBFEoTY7y24HYVB5Lj65ViuSX5Z1JTeiZAmjKVt5lCTT-b5Kb9P0Uu4hDLhDyE9MfQ_w-HfcPce7CzLmV5d6cnkjxB49ADut9iVHDbG9hC2bPkI7oza2_nHcInOxuW4YzScrIhPVre_iKfN7EqcyppUBfFsotjTtMJh1ET7sRGEosRU8xobXAWLnhI9t6T-5lLkSZtPRupl5k6O6idwcSPT_hS2y6q0z4BkJjIm0UVghY6kiBORYU8u8FrcoOliALKbU5W3TOfuwY2J6lLafqi1NpTThmJcoTYGwHrJWcP2sYFM2qlNddWs6H8VhqQNZD_0si3iaZDMhtJ7nZWo1vPUar1OBvCmb0af4S6CdGmrpfsGYVkkcW8_gN3Guvrf5bHkkZQozXtz23gunv9_RK9hZ3g-OlWnx2cnL-AudwgpYJSJPdhezJf2JeK7RfbKLyoCX296FV8D9IJizg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhU4VLxKFwoYCY5WYyeOEyFUIcqqpbTiQKW9GSd2xGM32W52Vfav9dd17DwWCYT20rMzluMZz3y2vxkDvI6dkjOeUc4sp1GiLdWMGYqhNw0CHRqp3XnH6Vl8dB59GonRBlx1uTCOVtn5RO-oTZW7M_J95grXpSnuJvaLlhbx5XB4ML2g7gUpd9PaPafRmMiJXV7i9q1-d3yIun7D-fDj1w9HtH1hgOYIU-Y0j60MjNbolFmOgZqzuMhinRoMw6ERGLszD0DQzGVscq0LHsRplvNECFkkQYj93oLbMoxCRyeTI7kq-MuiJg1PhDRhLG1ZRA23zNeq_DFBj-HIZcIfSPoi0f8MjX9D33twZ1FO9fJSj8d_hMPhfdhucSx53xjeA9iw5UPYOm1v6h_BL3Q8ju-OkXG8JJ64bn8TX0KzS3cqa1IVxFcWxZ4mFQ6jJtqPjSAsJaaa1djgsln0hOiZJfV3R5cnLbeM1IvMnSLVj-H8RqZ9BzbLqrS7QDITGZPoIrBCR1LEiciwJxeELW7WdDEA2c2pytuq5-7xjbHq6G0_1UobymlDMa5QGwNgveS0qfyxhkzaqU11ma3oixWGpzVk3_ayLfppUM2a0nudlajWC9VqtWYG8KpvRv_hLoV0aauF-wYhWiRxnz-AJ4119b_LY8kjKVGa9-a29lw8_f-IXsIWrl_1-fjs5Bnc5Q4sBYwysQeb89nCPkeoN89e-DVF4NtNL-JrjednCQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasingly+complex+representations+of+natural+movies+across+the+dorsal+stream+are+shared+between+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=G%C3%BC%C3%A7l%C3%BC%2C+Umut&rft.au=van+Gerven%2C+Marcel+A.J.&rft.date=2017-01-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=145&rft.spage=329&rft.epage=336&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.12.036&rft.externalDocID=S1053811915011490 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |