Increasingly complex representations of natural movies across the dorsal stream are shared between subjects

Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion p...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 145; no. Pt B; pp. 329 - 336
Main Authors Güçlü, Umut, van Gerven, Marcel A.J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.01.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2015.12.036

Cover

Abstract Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects. •Deep neural network and dorsal stream representations show correspondence.•Dorsal stream representations are shared between subjects.•A common encoder can predict fMRI responses to novel stimuli for unseen subjects.•A common decoder can identify novel stimuli from fMRI responses for unseen subjects.
AbstractList Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects.
Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects.Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects.
Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects. •Deep neural network and dorsal stream representations show correspondence.•Dorsal stream representations are shared between subjects.•A common encoder can predict fMRI responses to novel stimuli for unseen subjects.•A common decoder can identify novel stimuli from fMRI responses for unseen subjects.
Author van Gerven, Marcel A.J.
Güçlü, Umut
Author_xml – sequence: 1
  givenname: Umut
  surname: Güçlü
  fullname: Güçlü, Umut
  email: u.guclu@donders.ru.nl
– sequence: 2
  givenname: Marcel A.J.
  surname: van Gerven
  fullname: van Gerven, Marcel A.J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26724778$$D View this record in MEDLINE/PubMed
BookMark eNqVkU2P1SAUhhszxvnQv2BI3LhpBVqgbIw68WOSSdzomlB6OkOHQoV2xvvv5dpRk7u6boCE9zznnPc9L0588FAUiOCKYMLfjJWHNQY76RuoKCasIrTCNX9SnBEsWSmZoCf7N6vLlhB5WpynNGKMJWnaZ8Up5YI2QrRnxd2VNxF0sv7G7ZAJ0-zgJ4owR0jgF73Y4BMKA_J6WaN2aAr3FhLSJoaU0HILqA8x5Y-0ZM6EdASUbvPZow6WBwCP0tqNYJb0vHg6aJfgxeN9UXz_9PHb5Zfy-uvnq8v316Vhgi2l4SBwr3VDJTGyFpTwoeNa9rxmdc-krDuWN5O4aQXvjdYDxVx2hraMiaHF9UUhN-7qZ7170M6pOWav4k4RrPYGqlH9M1DtDVSEqmxgrn291c4x_FghLWqyyYBz2kNYkyIt5bwRbbNv8-pAOoY1-rxZVgkhpGyaNqtePqrWboL-7yR_IsiCdhP8djTC8D_Dvj0oNXaLbInaumMAHzYA5DhyrlElY8Eb6G3Miak-2GMg7w4gxllvjXZ3sDsO8QuzSeNh
CitedBy_id crossref_primary_10_1007_s10489_024_05873_5
crossref_primary_10_1038_s41562_022_01302_0
crossref_primary_10_7554_eLife_56601
crossref_primary_10_3389_fncom_2017_00007
crossref_primary_10_1109_TCDS_2020_3007761
crossref_primary_10_1038_s41467_021_22244_7
crossref_primary_10_1523_JNEUROSCI_1993_20_2021
crossref_primary_10_3389_fncom_2023_1153572
crossref_primary_10_1016_j_neuroimage_2022_119769
crossref_primary_10_1126_sciadv_abe7547
crossref_primary_10_1155_2019_9210785
crossref_primary_10_1038_s41467_018_07471_9
crossref_primary_10_3389_fninf_2025_1526259
crossref_primary_10_1016_j_neuroimage_2021_118554
crossref_primary_10_1371_journal_pone_0253442
crossref_primary_10_1016_j_cobme_2021_100298
crossref_primary_10_1038_s41467_021_25409_6
crossref_primary_10_3389_fncom_2019_00021
crossref_primary_10_3390_brainsci11081004
crossref_primary_10_1088_1741_2552_ad6184
crossref_primary_10_3389_fninf_2018_00023
crossref_primary_10_1016_j_neuroimage_2017_08_016
crossref_primary_10_3389_fncom_2017_00112
crossref_primary_10_1038_s41598_021_03938_w
crossref_primary_10_1371_journal_pcbi_1012822
crossref_primary_10_1016_j_dcn_2024_101470
crossref_primary_10_12688_f1000research_11154_1
crossref_primary_10_1371_journal_pcbi_1009267
crossref_primary_10_1016_j_neuroimage_2020_116561
crossref_primary_10_1155_2020_5408942
crossref_primary_10_1016_j_neuroimage_2018_04_053
crossref_primary_10_1016_j_neuroimage_2024_120772
crossref_primary_10_1038_s41598_018_21636_y
crossref_primary_10_1038_s41598_018_22160_9
crossref_primary_10_1371_journal_pcbi_1008558
crossref_primary_10_1038_s41467_024_50310_3
crossref_primary_10_1371_journal_pcbi_1008714
crossref_primary_10_1146_annurev_vision_091718_014951
crossref_primary_10_3389_fnins_2018_00437
crossref_primary_10_1371_journal_pcbi_1009976
crossref_primary_10_1371_journal_pcbi_1012058
crossref_primary_10_1016_j_neuroimage_2020_117445
crossref_primary_10_1016_j_neuroimage_2023_120007
crossref_primary_10_1016_j_neuroimage_2018_01_009
crossref_primary_10_1038_s41597_022_01299_1
crossref_primary_10_1038_s41598_020_68853_y
crossref_primary_10_3389_fnins_2023_1154252
crossref_primary_10_1093_cercor_bhx268
crossref_primary_10_1007_s11571_023_10061_1
crossref_primary_10_3390_biology12101330
crossref_primary_10_1016_j_neuroimage_2020_116865
crossref_primary_10_3389_fnins_2021_614182
crossref_primary_10_3389_fninf_2021_677925
crossref_primary_10_1016_j_neuroimage_2016_12_012
crossref_primary_10_3390_brainsci12081101
crossref_primary_10_3389_fnhum_2018_00242
Cites_doi 10.1073/pnas.88.5.1621
10.1038/nature14539
10.1016/j.neuroimage.2015.03.059
10.1016/j.neuron.2005.05.021
10.1016/0166-2236(83)90190-X
10.1016/j.neunet.2014.09.003
10.1016/j.neuron.2011.08.026
10.1523/JNEUROSCI.6801-10.2011
10.1016/0166-2236(92)90344-8
10.1371/journal.pcbi.1003724
10.1016/j.neuroimage.2010.07.073
10.1007/s12021-008-9041-y
10.1007/BF00344251
10.1162/neco.1997.9.8.1735
10.1073/pnas.1403112111
10.1016/j.cub.2011.08.031
10.1038/nature06713
10.1371/journal.pcbi.1003915
10.1148/radiology.143.1.7063747
10.1016/j.neuroimage.2004.05.012
10.1152/jn.00105.2013
10.1523/JNEUROSCI.5023-14.2015
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jan 15, 2017
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jan 15, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
ADTOC
UNPAY
DOI 10.1016/j.neuroimage.2015.12.036
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest One Psychology


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 336
ExternalDocumentID 10.1016/j.neuroimage.2015.12.036
4320860381
26724778
10_1016_j_neuroimage_2015_12_036
S1053811915011490
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACLOT
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
~HD
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c575t-c6e70daa4291c937216fb6a9d6353d5993b5105904876dcaaf2069bc28557f803
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Wed Oct 01 15:46:43 EDT 2025
Sat Sep 27 23:49:07 EDT 2025
Wed Aug 13 07:01:23 EDT 2025
Thu Apr 03 06:59:17 EDT 2025
Thu Apr 24 23:12:52 EDT 2025
Wed Oct 01 03:42:59 EDT 2025
Fri Feb 23 02:25:04 EST 2024
Tue Aug 26 20:08:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Deep neural network
Hyperalignment
Encoding
Dorsal stream
Decoding
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-c6e70daa4291c937216fb6a9d6353d5993b5105904876dcaaf2069bc28557f803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811915011490
PMID 26724778
PQID 1877799448
PQPubID 2031077
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_neuroimage_2015_12_036
proquest_miscellaneous_1826647840
proquest_journals_1877799448
pubmed_primary_26724778
crossref_primary_10_1016_j_neuroimage_2015_12_036
crossref_citationtrail_10_1016_j_neuroimage_2015_12_036
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2015_12_036
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_12_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-15
PublicationDateYYYYMMDD 2017-01-15
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Güçlü, van Gerven (bb0040) 2015; 35
Tran, Bourdev, Fergus, Torresani, Paluri (bb0170) 2014
Dieleman, Schrauwen (bb0010) 2014
Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (bb0030) 2015
Goodale, Milner (bb0025) 1992; 15
Hanley, McNeil (bb0050) 1982; 143
Hinton, Srivastava, Krizhevsky, Sutskever, Salakhutdinov (bb0070) 2012
Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini, Hanke, Ramadge (bb0065) 2011; 72
Zeiler, Fergus (bb0180) 2013
Springenberg, Dosovitskiy, Brox, Riedmiller (bb0165) 2014
Nishimoto, Vu, Naselaris, Benjamini, Yu, Gallant (bb0135) 2011; 21
Simonyan, Vedaldi, Zisserman (bb0155) 2013
Güçlü, van Gerven (bb0035) 2014; 10
Agrawal, Stansbury, Malik, Gallant (bb9000) 2014
Nishimoto, Gallant (bb0130) 2011; 31
LeCun, Bengio, Hinton (bb0110) 2015; 521
Hochreiter, Schmidhuber (bb0075) 1997; 9
Eickenberg (bb9005) 2015
Yamins, Hong, Cadieu, Solomon, Seibert, DiCarlo (bb9015) 2014; 111
Khaligh-Razavi, Kriegeskorte (bb0100) 2014; 10
Kay, Naselaris, Prenger, Gallant (bb0090) 2008; 452
Haxby, Grady, Horwitz, Ungerleider, Mishkin, Carson, Herscovitch, Schapiro, Rapoport (bb0060) 1991; 88
Naselaris, Kay, Nishimoto, Gallant (bb0125) 2011; 56
Dosovitskiy, Brox (bb0015) 2015
Cadieu, Hong, Yamins, Pinto, Ardila, Solomon, Majaj, DiCarlo (bb0005) 2014; 10
Karpathy, Toderici, Shetty, Leung, Sukthankar, Fei-Fei (bb0085) 2014
Yamada, Miyawaki, Kamitani (bb0175) 2015; 113
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bb0080) 2014
Krizhevsky, Sutskever, Hinton (bb0105) 2012
Nishimoto, Vu, Naselaris, Benjamini, Yu, Gallant (bb9010) 2014
Schmidhuber (bb0145) 2015; 61
Rust, Schwartz, Movshon, Simoncelli (bb0140) 2005; 46
Kay, Winawer, Mezer, Wandell (bb0095) 2013; 110
Hanke, Halchenko, Sederberg, Hanson, Haxby, Pollmann (bb0045) 2009; 7
Hansen, David, Gallant (bb0055) 2004; 23
Soomro, Zamir, Shah (bb0160) 2012
Mishkin, Ungerleider, Macko (bb0120) 1983; 6
Simonyan, Zisserman (bb0150) 2014
Fukushima (bb0020) 1980; 36
Mahendran, Vedaldi (bb0115) 2014
Yamins (10.1016/j.neuroimage.2015.12.036_bb9015) 2014; 111
Haxby (10.1016/j.neuroimage.2015.12.036_bb0065) 2011; 72
Güçlü (10.1016/j.neuroimage.2015.12.036_bb0035) 2014; 10
Kay (10.1016/j.neuroimage.2015.12.036_bb0095) 2013; 110
Zeiler (10.1016/j.neuroimage.2015.12.036_bb0180)
Hanke (10.1016/j.neuroimage.2015.12.036_bb0045) 2009; 7
Goodale (10.1016/j.neuroimage.2015.12.036_bb0025) 1992; 15
Krizhevsky (10.1016/j.neuroimage.2015.12.036_bb0105) 2012
Schmidhuber (10.1016/j.neuroimage.2015.12.036_bb0145) 2015; 61
Simonyan (10.1016/j.neuroimage.2015.12.036_bb0155)
Hansen (10.1016/j.neuroimage.2015.12.036_bb0055) 2004; 23
Khaligh-Razavi (10.1016/j.neuroimage.2015.12.036_bb0100) 2014; 10
Karpathy (10.1016/j.neuroimage.2015.12.036_bb0085) 2014
Fukushima (10.1016/j.neuroimage.2015.12.036_bb0020) 1980; 36
Mishkin (10.1016/j.neuroimage.2015.12.036_bb0120) 1983; 6
Yamada (10.1016/j.neuroimage.2015.12.036_bb0175) 2015; 113
Dosovitskiy (10.1016/j.neuroimage.2015.12.036_bb0015)
Nishimoto (10.1016/j.neuroimage.2015.12.036_bb0135) 2011; 21
Springenberg (10.1016/j.neuroimage.2015.12.036_bb0165)
LeCun (10.1016/j.neuroimage.2015.12.036_bb0110) 2015; 521
Simonyan (10.1016/j.neuroimage.2015.12.036_bb0150)
Haxby (10.1016/j.neuroimage.2015.12.036_bb0060) 1991; 88
Hochreiter (10.1016/j.neuroimage.2015.12.036_bb0075) 1997; 9
Jia (10.1016/j.neuroimage.2015.12.036_bb0080)
Greff (10.1016/j.neuroimage.2015.12.036_bb0030)
Cadieu (10.1016/j.neuroimage.2015.12.036_bb0005) 2014; 10
Soomro (10.1016/j.neuroimage.2015.12.036_bb0160) 2012
Kay (10.1016/j.neuroimage.2015.12.036_bb0090) 2008; 452
Rust (10.1016/j.neuroimage.2015.12.036_bb0140) 2005; 46
Agrawal (10.1016/j.neuroimage.2015.12.036_bb9000) 2014
Eickenberg (10.1016/j.neuroimage.2015.12.036_bb9005) 2015
Mahendran (10.1016/j.neuroimage.2015.12.036_bb0115)
Naselaris (10.1016/j.neuroimage.2015.12.036_bb0125) 2011; 56
Dieleman (10.1016/j.neuroimage.2015.12.036_bb0010) 2014
Tran (10.1016/j.neuroimage.2015.12.036_bb0170)
Güçlü (10.1016/j.neuroimage.2015.12.036_bb0040) 2015; 35
Hinton (10.1016/j.neuroimage.2015.12.036_bb0070)
Nishimoto (10.1016/j.neuroimage.2015.12.036_bb9010) 2014
Hanley (10.1016/j.neuroimage.2015.12.036_bb0050) 1982; 143
Nishimoto (10.1016/j.neuroimage.2015.12.036_bb0130) 2011; 31
References_xml – year: 2014
  ident: bb0080
  article-title: Caffe: Convolutional Architecture for Fast Feature Embedding
– volume: 143
  start-page: 29
  year: 1982
  end-page: 36
  ident: bb0050
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
– year: 2013
  ident: bb0180
  article-title: Visualizing and Understanding Convolutional Networks
– volume: 10
  start-page: e1003915
  year: 2014
  ident: bb0100
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
– year: 2014
  ident: bb9010
  publication-title: Gallant Lab Natural Movie 4T fMRI Data
– volume: 21
  start-page: 1641
  year: 2011
  end-page: 1646
  ident: bb0135
  article-title: Reconstructing visual experiences from brain activity evoked by natural movies
  publication-title: Curr. Biol.
– volume: 113
  start-page: 289
  year: 2015
  end-page: 297
  ident: bb0175
  article-title: Inter-subject neural code converter for visual image representation
  publication-title: NeuroImage
– volume: 10
  start-page: e1003963
  year: 2014
  ident: bb0005
  article-title: Deep neural networks rival the representation of primate IT cortex for core visual object recognition
– volume: 35
  start-page: 10005
  year: 2015
  end-page: 10014
  ident: bb0040
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
– volume: 56
  start-page: 400
  year: 2011
  end-page: 410
  ident: bb0125
  article-title: Encoding and decoding in fMRI
  publication-title: NeuroImage
– start-page: 6964
  year: 2014
  end-page: 6968
  ident: bb0010
  article-title: End-to-end learning for music audio
  publication-title: in: IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bb0075
  article-title: Long short-term memory
  publication-title: Neural Comput.
– year: 2015
  ident: bb0030
  article-title: LSTM: A Search Space Odyssey
– volume: 6
  start-page: 414
  year: 1983
  end-page: 417
  ident: bb0120
  article-title: Object vision and spatial vision: two cortical pathways
  publication-title: Trends Neurosci.
– volume: 452
  start-page: 352
  year: 2008
  end-page: 356
  ident: bb0090
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bb0110
  article-title: Deep learning
  publication-title: Nature
– year: 2014
  ident: bb0115
  article-title: Understanding Deep Image Representations by Inverting Them
– year: 2015
  ident: bb9005
  article-title: Evaluating Computational Models of Vision with Functional Magnetic Resonance Imaging
– volume: 46
  start-page: 945
  year: 2005
  end-page: 956
  ident: bb0140
  article-title: Spatiotemporal elements of macaque V1 receptive fields
  publication-title: Neuron
– volume: 61
  year: 2015
  ident: bb0145
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
– volume: 36
  start-page: 193
  year: 1980
  end-page: 202
  ident: bb0020
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
– year: 2013
  ident: bb0155
  article-title: Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
– start-page: 1725
  year: 2014
  end-page: 1732
  ident: bb0085
  article-title: Large-scale video classification with convolutional neural networks
  publication-title: in: IEEE Conference on Computer Vision and Pattern Recognition
– year: 2014
  ident: bb0170
  article-title: Learning Spatiotemporal Features with 3D Convolutional Networks
– volume: 7
  start-page: 37
  year: 2009
  end-page: 53
  ident: bb0045
  article-title: PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data
  publication-title: Neuroinformatics
– year: 2014
  ident: bb0165
  article-title: Striving for Simplicity: The all Convolutional net
– year: 2012
  ident: bb0070
  article-title: Improving Neural Networks by Preventing co-Adaptation of Feature Detectors
– year: 2012
  ident: bb0105
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: in: Advances in Neural Information Processing Systems 25
– volume: 110
  start-page: 481
  year: 2013
  end-page: 494
  ident: bb0095
  article-title: Compressive spatial summation in human visual cortex
  publication-title: J. Neurophysiol.
– volume: 72
  start-page: 404
  year: 2011
  end-page: 416
  ident: bb0065
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
– volume: 15
  start-page: 20
  year: 1992
  end-page: 25
  ident: bb0025
  article-title: Separate visual pathways for perception and action
  publication-title: Trends Neurosci.
– volume: 88
  start-page: 1621
  year: 1991
  end-page: 1625
  ident: bb0060
  article-title: Dissociation of object and spatial visual processing pathways in human extrastriate cortex
  publication-title: Proc. Natl. Acad. Sci.
– volume: 111
  start-page: 8619
  year: 2014
  end-page: 8624
  ident: bb9015
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 31
  start-page: 14551
  year: 2011
  end-page: 14564
  ident: bb0130
  article-title: A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies
  publication-title: J. Neurosci.
– year: 2015
  ident: bb0015
  article-title: Inverting convolutional networks with convolutional networks
– year: 2014
  ident: bb0150
  article-title: Two-Stream Convolutional Networks for Action Recognition in Videos
– year: 2014
  ident: bb9000
  publication-title: Pixels to Voxels: Modeling visual representation in the human brain
– volume: 23
  start-page: 233
  year: 2004
  end-page: 241
  ident: bb0055
  article-title: Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response
  publication-title: NeuroImage
– year: 2012
  ident: bb0160
  article-title: UCF101: A Dataset of 101 Human Action Classes from Videos in the Wild
  publication-title: Technical Report CRCV–TR–12–01
– volume: 10
  start-page: e1003724
  year: 2014
  ident: bb0035
  article-title: Unsupervised feature learning improves prediction of human brain activity in response to natural images
  publication-title: PLoS Comput. Biol.
– volume: 88
  start-page: 1621
  year: 1991
  ident: 10.1016/j.neuroimage.2015.12.036_bb0060
  article-title: Dissociation of object and spatial visual processing pathways in human extrastriate cortex
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.88.5.1621
– ident: 10.1016/j.neuroimage.2015.12.036_bb0155
– ident: 10.1016/j.neuroimage.2015.12.036_bb0070
– ident: 10.1016/j.neuroimage.2015.12.036_bb0170
– year: 2012
  ident: 10.1016/j.neuroimage.2015.12.036_bb0105
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: in: Advances in Neural Information Processing Systems 25
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.neuroimage.2015.12.036_bb0110
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 113
  start-page: 289
  year: 2015
  ident: 10.1016/j.neuroimage.2015.12.036_bb0175
  article-title: Inter-subject neural code converter for visual image representation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.03.059
– volume: 46
  start-page: 945
  year: 2005
  ident: 10.1016/j.neuroimage.2015.12.036_bb0140
  article-title: Spatiotemporal elements of macaque V1 receptive fields
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.05.021
– ident: 10.1016/j.neuroimage.2015.12.036_bb0150
– volume: 6
  start-page: 414
  year: 1983
  ident: 10.1016/j.neuroimage.2015.12.036_bb0120
  article-title: Object vision and spatial vision: two cortical pathways
  publication-title: Trends Neurosci.
  doi: 10.1016/0166-2236(83)90190-X
– volume: 61
  year: 2015
  ident: 10.1016/j.neuroimage.2015.12.036_bb0145
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 72
  start-page: 404
  year: 2011
  ident: 10.1016/j.neuroimage.2015.12.036_bb0065
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.08.026
– volume: 31
  start-page: 14551
  year: 2011
  ident: 10.1016/j.neuroimage.2015.12.036_bb0130
  article-title: A three-dimensional spatiotemporal receptive field model explains responses of area MT neurons to naturalistic movies
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6801-10.2011
– start-page: 6964
  year: 2014
  ident: 10.1016/j.neuroimage.2015.12.036_bb0010
  article-title: End-to-end learning for music audio
  publication-title: in: IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 15
  start-page: 20
  year: 1992
  ident: 10.1016/j.neuroimage.2015.12.036_bb0025
  article-title: Separate visual pathways for perception and action
  publication-title: Trends Neurosci.
  doi: 10.1016/0166-2236(92)90344-8
– volume: 10
  start-page: e1003724
  year: 2014
  ident: 10.1016/j.neuroimage.2015.12.036_bb0035
  article-title: Unsupervised feature learning improves prediction of human brain activity in response to natural images
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003724
– year: 2014
  ident: 10.1016/j.neuroimage.2015.12.036_bb9010
  publication-title: Gallant Lab Natural Movie 4T fMRI Data
– volume: 56
  start-page: 400
  year: 2011
  ident: 10.1016/j.neuroimage.2015.12.036_bb0125
  article-title: Encoding and decoding in fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.073
– volume: 7
  start-page: 37
  year: 2009
  ident: 10.1016/j.neuroimage.2015.12.036_bb0045
  article-title: PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9041-y
– volume: 36
  start-page: 193
  year: 1980
  ident: 10.1016/j.neuroimage.2015.12.036_bb0020
  article-title: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– ident: 10.1016/j.neuroimage.2015.12.036_bb0080
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.neuroimage.2015.12.036_bb0075
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 1725
  year: 2014
  ident: 10.1016/j.neuroimage.2015.12.036_bb0085
  article-title: Large-scale video classification with convolutional neural networks
  publication-title: in: IEEE Conference on Computer Vision and Pattern Recognition
– year: 2014
  ident: 10.1016/j.neuroimage.2015.12.036_bb9000
  publication-title: Pixels to Voxels: Modeling visual representation in the human brain
– volume: 111
  start-page: 8619
  year: 2014
  ident: 10.1016/j.neuroimage.2015.12.036_bb9015
  article-title: Performance-optimized hierarchical models predict neural responses in higher visual cortex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1403112111
– volume: 21
  start-page: 1641
  year: 2011
  ident: 10.1016/j.neuroimage.2015.12.036_bb0135
  article-title: Reconstructing visual experiences from brain activity evoked by natural movies
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.08.031
– ident: 10.1016/j.neuroimage.2015.12.036_bb0180
– ident: 10.1016/j.neuroimage.2015.12.036_bb0115
– volume: 452
  start-page: 352
  year: 2008
  ident: 10.1016/j.neuroimage.2015.12.036_bb0090
  article-title: Identifying natural images from human brain activity
  publication-title: Nature
  doi: 10.1038/nature06713
– volume: 10
  start-page: e1003915
  year: 2014
  ident: 10.1016/j.neuroimage.2015.12.036_bb0100
  article-title: Deep supervised, but not unsupervised, models may explain IT cortical representation
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003915
– volume: 143
  start-page: 29
  year: 1982
  ident: 10.1016/j.neuroimage.2015.12.036_bb0050
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– ident: 10.1016/j.neuroimage.2015.12.036_bb0165
– volume: 23
  start-page: 233
  year: 2004
  ident: 10.1016/j.neuroimage.2015.12.036_bb0055
  article-title: Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.05.012
– ident: 10.1016/j.neuroimage.2015.12.036_bb0015
– volume: 110
  start-page: 481
  year: 2013
  ident: 10.1016/j.neuroimage.2015.12.036_bb0095
  article-title: Compressive spatial summation in human visual cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00105.2013
– volume: 10
  start-page: e1003963
  year: 2014
  ident: 10.1016/j.neuroimage.2015.12.036_bb0005
  article-title: Deep neural networks rival the representation of primate IT cortex for core visual object recognition
– year: 2015
  ident: 10.1016/j.neuroimage.2015.12.036_bb9005
– volume: 35
  start-page: 10005
  year: 2015
  ident: 10.1016/j.neuroimage.2015.12.036_bb0040
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5023-14.2015
– ident: 10.1016/j.neuroimage.2015.12.036_bb0030
– year: 2012
  ident: 10.1016/j.neuroimage.2015.12.036_bb0160
  article-title: UCF101: A Dataset of 101 Human Action Classes from Videos in the Wild
SSID ssj0009148
Score 2.5340066
Snippet Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 329
SubjectTerms Adult
Datasets
Decoding
Deep neural network
Dorsal stream
Encoding
Humans
Hyperalignment
Image Processing, Computer-Assisted - methods
Motion Pictures
Neural networks
Neural Networks (Computer)
Studies
Visual Pathways - diagnostic imaging
Visual Pathways - physiology
Visual Perception - physiology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96gh8P4td5q6dE8DXYZJukxQcR8TiE88mDfQvTJsWP3Xbd7qL3399MmnYFRfa5mZBmZjK_TH6ZMPbakJIrVQklgxJ5AUGAlF5g6C2zDObeAuU7Lj6b88v800IvUsKtT7TKcU2MC7XvasqRv5FUuK4scTfxbv1T0KtRdLqantC4yW5JhCpk1XZh90V3ZT5chdNzUWCDxOQZ-F2xXuS3FXotEbx0TArGQs3_DE9_w8977M6uXcPVL1gu_whJZw_Y_YQl-ftB-Q_ZjdA-Yrcv0mn5Y_YDnZ845xidllc8ksfDbx7LWI5Xjtqedw2P1T2xp1WHw-g5xLFxhIbcd5seP9CNElhx2ATefyXKOk_8Lt7vKsrk9E_Y5dnHLx_ORXpcQdSI0LaiNsFmHgDjkawRoyhpmspA6RGBzL1G2FJF7IUebo2vARqVmbKqVaG1bYpsfsyO2q4NJ4xXPve-gCYLGnKrTaEr7IkCYcANEzQzZsc5dXWqPE4PYCzdSDH77vbacKQNJ5VDbcyYnCTXQ_WNA2TKUW1uvF2K66HDEHGA7NtJNiGQAVkcKH06WolLK0Hv9nY7Y6-mz-jDdDADbeh21AZhUm5xrz1jTwfrmn5XGatya1FaTeZ28Fw8-_-InrO7ilBKJoXUp-xou9mFF4ixttXL6EjXIgUniA
  priority: 102
  providerName: ProQuest
Title Increasingly complex representations of natural movies across the dorsal stream are shared between subjects
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915011490
https://dx.doi.org/10.1016/j.neuroimage.2015.12.036
https://www.ncbi.nlm.nih.gov/pubmed/26724778
https://www.proquest.com/docview/1877799448
https://www.proquest.com/docview/1826647840
https://www.sciencedirect.com/science/article/pii/S1053811915011490
UnpaywallVersion publishedVersion
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemIfHxgMZ3YZuMxGto7MZ2Ip5Gtal8rJoGk_pmObEjCm1SNa1gL_zt3DlOBoKHSrw0UpOLHN_57nfO7y6EvJKo5JznEWeOR0lqXGQYsxGE3iyOzcgqg_sd51M5uUrez8Rsj4y7WhikVQbf3_p0763DP8Mwm8PVfD78BMgAwg3kGwJBfYZ5O3b_Apt-_fOG5pGxpC2HE6MIrw5snpbj5XtGzpewcpHkJfzGoG_W_M8Q9TcEvUfubKuVuf5uFovfwtLZAbkf8CQ9aYf8gOy56iG5fR7emD8i38ABIO8cItTimnoCuftBfSvLruyoamhdUt_hE-60rGEYDTV-bBTgIbX1uoETWFViltSsHW2-IG2dBo4XbbY57uY0j8nV2enn8SQKH1iICkBpm6iQTsXWGIhJrACcwpksc2kyCyhkZAVAl9zjL1jlStrCmJLHMssLngqhyjQePSH7VV25Z4TmNrE2NWXshEmUkKnI4U4YDB0kTaYcENXNqS5C93H8CMZCdzSzr_pGGxq1oRnXoI0BYb3kqu3AsYNM1qlNdxWm4BM1hIkdZN_0sn9Y4o7Sh52V6OANGs2w6WKWQSY8IC_707CO8eWMqVy9xWsAKiUK8u0BedpaV_-4XCqeKAXSvDe3nefi-X89zwtylyOQiVnExCHZ36y37ghg2CY_9usMftVMHZNbJ-PLjxd4fPdhMoXj29PpxeUvNcg4WQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NITF4QHyOwgAjwaNF7MRxIjRNEzB1bN3TJvXNOLEjYG1Smlaj_xR_487OR5FAqC97ds5yfOe7n-27nwHexk7JGc8oZ5bTKNGWasYMxdCbBoEOjdTuvGN0Fg8voi9jMd6C310tjEur7Hyid9Smyt0Z-XvmiOvSFHcTB7Of1L0a5W5Xuyc0GrM4sasr3LLV-8efUL_vOD_6fP5xSNtXBWiO0GRB89jKwGiNjpjlGJw5i4ss1qnB0BsagfE686ADTVvGJte64EGcZjlPhJBFEoTY7y24HYVB5Lj65ViuSX5Z1JTeiZAmjKVt5lCTT-b5Kb9P0Uu4hDLhDyE9MfQ_w-HfcPce7CzLmV5d6cnkjxB49ADut9iVHDbG9hC2bPkI7oza2_nHcInOxuW4YzScrIhPVre_iKfN7EqcyppUBfFsotjTtMJh1ET7sRGEosRU8xobXAWLnhI9t6T-5lLkSZtPRupl5k6O6idwcSPT_hS2y6q0z4BkJjIm0UVghY6kiBORYU8u8FrcoOliALKbU5W3TOfuwY2J6lLafqi1NpTThmJcoTYGwHrJWcP2sYFM2qlNddWs6H8VhqQNZD_0si3iaZDMhtJ7nZWo1vPUar1OBvCmb0af4S6CdGmrpfsGYVkkcW8_gN3Guvrf5bHkkZQozXtz23gunv9_RK9hZ3g-OlWnx2cnL-AudwgpYJSJPdhezJf2JeK7RfbKLyoCX296FV8D9IJizg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhU4VLxKFwoYCY5WYyeOEyFUIcqqpbTiQKW9GSd2xGM32W52Vfav9dd17DwWCYT20rMzluMZz3y2vxkDvI6dkjOeUc4sp1GiLdWMGYqhNw0CHRqp3XnH6Vl8dB59GonRBlx1uTCOVtn5RO-oTZW7M_J95grXpSnuJvaLlhbx5XB4ML2g7gUpd9PaPafRmMiJXV7i9q1-d3yIun7D-fDj1w9HtH1hgOYIU-Y0j60MjNbolFmOgZqzuMhinRoMw6ERGLszD0DQzGVscq0LHsRplvNECFkkQYj93oLbMoxCRyeTI7kq-MuiJg1PhDRhLG1ZRA23zNeq_DFBj-HIZcIfSPoi0f8MjX9D33twZ1FO9fJSj8d_hMPhfdhucSx53xjeA9iw5UPYOm1v6h_BL3Q8ju-OkXG8JJ64bn8TX0KzS3cqa1IVxFcWxZ4mFQ6jJtqPjSAsJaaa1djgsln0hOiZJfV3R5cnLbeM1IvMnSLVj-H8RqZ9BzbLqrS7QDITGZPoIrBCR1LEiciwJxeELW7WdDEA2c2pytuq5-7xjbHq6G0_1UobymlDMa5QGwNgveS0qfyxhkzaqU11ma3oixWGpzVk3_ayLfppUM2a0nudlajWC9VqtWYG8KpvRv_hLoV0aauF-wYhWiRxnz-AJ4119b_LY8kjKVGa9-a29lw8_f-IXsIWrl_1-fjs5Bnc5Q4sBYwysQeb89nCPkeoN89e-DVF4NtNL-JrjednCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasingly+complex+representations+of+natural+movies+across+the+dorsal+stream+are+shared+between+subjects&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=G%C3%BC%C3%A7l%C3%BC%2C+Umut&rft.au=van+Gerven%2C+Marcel+A.J.&rft.date=2017-01-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=145&rft.spage=329&rft.epage=336&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.12.036&rft.externalDocID=S1053811915011490
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon