TractSeg - Fast and accurate white matter tract segmentation
The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains. Diffusion-weighted MRI tractography in combination with region-based or clustering-based selection of streamlines is a unique combination of tools wh...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 183; pp. 239 - 253 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.12.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2018.07.070 |
Cover
Abstract | The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains. Diffusion-weighted MRI tractography in combination with region-based or clustering-based selection of streamlines is a unique combination of tools which enables the in-vivo delineation and analysis of anatomically well-known tracts. This, however, currently requires complex, computationally intensive processing pipelines which take a lot of time to set up. TractSeg is a novel convolutional neural network-based approach that directly segments tracts in the field of fiber orientation distribution function (fODF) peaks without using tractography, image registration or parcellation. We demonstrate that the proposed approach is much faster than existing methods while providing unprecedented accuracy, using a population of 105 subjects from the Human Connectome Project. We also show initial evidence that TractSeg is able to generalize to differently acquired data sets for most of the bundles. The code and data are openly available at https://github.com/MIC-DKFZ/TractSeg/ and https://doi.org/10.5281/zenodo.1088277, respectively.
•Fast white matter tract segmentation with high accuracy.•No need for additional techniques like registration, tractography or parcellation.•Extensive evaluation for 72 tracts with comparison to six other segmentation methods.•Openly available dataset of reference tract delineations.•Openly available code with pretrained model. |
---|---|
AbstractList | The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains. Diffusion-weighted MRI tractography in combination with region-based or clustering-based selection of streamlines is a unique combination of tools which enables the in-vivo delineation and analysis of anatomically well-known tracts. This, however, currently requires complex, computationally intensive processing pipelines which take a lot of time to set up. TractSeg is a novel convolutional neural network-based approach that directly segments tracts in the field of fiber orientation distribution function (fODF) peaks without using tractography, image registration or parcellation. We demonstrate that the proposed approach is much faster than existing methods while providing unprecedented accuracy, using a population of 105 subjects from the Human Connectome Project. We also show initial evidence that TractSeg is able to generalize to differently acquired data sets for most of the bundles. The code and data are openly available at https://github.com/MIC-DKFZ/TractSeg/ and https://doi.org/10.5281/zenodo.1088277, respectively.The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains. Diffusion-weighted MRI tractography in combination with region-based or clustering-based selection of streamlines is a unique combination of tools which enables the in-vivo delineation and analysis of anatomically well-known tracts. This, however, currently requires complex, computationally intensive processing pipelines which take a lot of time to set up. TractSeg is a novel convolutional neural network-based approach that directly segments tracts in the field of fiber orientation distribution function (fODF) peaks without using tractography, image registration or parcellation. We demonstrate that the proposed approach is much faster than existing methods while providing unprecedented accuracy, using a population of 105 subjects from the Human Connectome Project. We also show initial evidence that TractSeg is able to generalize to differently acquired data sets for most of the bundles. The code and data are openly available at https://github.com/MIC-DKFZ/TractSeg/ and https://doi.org/10.5281/zenodo.1088277, respectively. The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains. Diffusion-weighted MRI tractography in combination with region-based or clustering-based selection of streamlines is a unique combination of tools which enables the in-vivo delineation and analysis of anatomically well-known tracts. This, however, currently requires complex, computationally intensive processing pipelines which take a lot of time to set up. TractSeg is a novel convolutional neural network-based approach that directly segments tracts in the field of fiber orientation distribution function (fODF) peaks without using tractography, image registration or parcellation. We demonstrate that the proposed approach is much faster than existing methods while providing unprecedented accuracy, using a population of 105 subjects from the Human Connectome Project. We also show initial evidence that TractSeg is able to generalize to differently acquired data sets for most of the bundles. The code and data are openly available at https://github.com/MIC-DKFZ/TractSeg/ and https://doi.org/10.5281/zenodo.1088277, respectively. The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains. Diffusion-weighted MRI tractography in combination with region-based or clustering-based selection of streamlines is a unique combination of tools which enables the in-vivo delineation and analysis of anatomically well-known tracts. This, however, currently requires complex, computationally intensive processing pipelines which take a lot of time to set up. TractSeg is a novel convolutional neural network-based approach that directly segments tracts in the field of fiber orientation distribution function (fODF) peaks without using tractography, image registration or parcellation. We demonstrate that the proposed approach is much faster than existing methods while providing unprecedented accuracy, using a population of 105 subjects from the Human Connectome Project. We also show initial evidence that TractSeg is able to generalize to differently acquired data sets for most of the bundles. The code and data are openly available at https://github.com/MIC-DKFZ/TractSeg/ and https://doi.org/10.5281/zenodo.1088277, respectively. •Fast white matter tract segmentation with high accuracy.•No need for additional techniques like registration, tractography or parcellation.•Extensive evaluation for 72 tracts with comparison to six other segmentation methods.•Openly available dataset of reference tract delineations.•Openly available code with pretrained model. |
Author | Neher, Peter Wasserthal, Jakob Maier-Hein, Klaus H. |
Author_xml | – sequence: 1 givenname: Jakob surname: Wasserthal fullname: Wasserthal, Jakob email: j.wasserthal@dkfz.de organization: Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany – sequence: 2 givenname: Peter surname: Neher fullname: Neher, Peter email: p.neher@dkfz.de organization: Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany – sequence: 3 givenname: Klaus H. surname: Maier-Hein fullname: Maier-Hein, Klaus H. email: k.maier-hein@dkfz.de organization: Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30086412$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1rFDEUhoNU-mX_ggx4481sTzL5mAERtdgqFHrReh0yyZk160ymJhml_94sWxX2auGQhPCch8N7zshRmAMSUlFYUaDycrMKuMTZT2aNKwa0XYEqBS_IKYVO1J1Q7Gj7Fk3dUtqdkLOUNgDQUd4ek5MGoJWcslPy7iEam-9xXdXVtUm5MsFVxtolmozV7---nJPJGWOVt2SVcD1hyCb7ObwiLwczJrx4vs_Jt-vPD1df6tu7m69XH29rK5TItXSdFY0Cioy3vDeub3o2OCfLL1PUOtfwvgPTCabYIFRvFKMDRUk719MWm3Pydud9jPPPBVPWk08Wx9EEnJekGbRCCi6lLOibPXQzLzGU6TSjjHGqgPNCvX6mln5Cpx9jiTI-6b-5FKDdATbOKUUc_iEU9HYFeqP_r0BvV6BBlYLS-n6v1fpdXCVAPx4i-LQTYIn0l8eok_UYLDof0WbtZn-I5MOexI4-eGvGH_h0mOIPDhi9gQ |
CitedBy_id | crossref_primary_10_1016_j_cortex_2022_09_006 crossref_primary_10_3389_fnagi_2021_668559 crossref_primary_10_1016_j_pnpbp_2024_111083 crossref_primary_10_1002_jmri_28964 crossref_primary_10_1016_j_neuroimage_2020_116923 crossref_primary_10_1111_psyp_13871 crossref_primary_10_1038_s41598_021_95238_6 crossref_primary_10_1016_j_neuroimage_2021_118706 crossref_primary_10_1007_s11548_018_1883_7 crossref_primary_10_1016_j_dcn_2024_101341 crossref_primary_10_1016_j_neuroimage_2021_117986 crossref_primary_10_1016_j_nicl_2025_103758 crossref_primary_10_1016_j_mri_2018_11_014 crossref_primary_10_1016_j_bpsc_2023_03_008 crossref_primary_10_3389_fnins_2024_1333243 crossref_primary_10_1007_s00406_023_01598_7 crossref_primary_10_1016_j_neuroimage_2020_117583 crossref_primary_10_1016_j_bpsc_2022_09_013 crossref_primary_10_1016_j_neuroimage_2023_120004 crossref_primary_10_1016_j_jad_2022_03_039 crossref_primary_10_2463_mrms_rev_2024_0007 crossref_primary_10_1016_j_neurobiolaging_2024_09_013 crossref_primary_10_1007_s00429_024_02812_5 crossref_primary_10_1073_pnas_2219666120 crossref_primary_10_1186_s13229_022_00499_1 crossref_primary_10_1016_j_neuroimage_2020_117329 crossref_primary_10_1038_s41597_022_01833_1 crossref_primary_10_1016_j_media_2024_103297 crossref_primary_10_1007_s00429_024_02836_x crossref_primary_10_1016_j_media_2019_101559 crossref_primary_10_1002_mrm_28730 crossref_primary_10_3389_fradi_2024_1416672 crossref_primary_10_1038_s41386_020_0691_2 crossref_primary_10_1186_s12883_023_03284_6 crossref_primary_10_1371_journal_pone_0282549 crossref_primary_10_1016_j_media_2020_101791 crossref_primary_10_1016_j_neuroimage_2019_116121 crossref_primary_10_1002_hbm_26662 crossref_primary_10_1007_s00429_022_02503_z crossref_primary_10_1093_sleep_zsab007 crossref_primary_10_1002_hbm_25697 crossref_primary_10_1016_j_neuroimage_2023_120376 crossref_primary_10_1016_j_nicl_2024_103580 crossref_primary_10_1007_s10072_024_07951_5 crossref_primary_10_3389_fnsys_2021_692152 crossref_primary_10_1038_s41390_024_03463_2 crossref_primary_10_3390_s24216981 crossref_primary_10_1002_hbm_24917 crossref_primary_10_1016_j_media_2024_103165 crossref_primary_10_3389_fonc_2022_1008442 crossref_primary_10_1007_s00415_023_12086_2 crossref_primary_10_1016_j_dcn_2024_101440 crossref_primary_10_1016_j_neuroimage_2021_117967 crossref_primary_10_1016_j_brainres_2023_148289 crossref_primary_10_3390_children10010045 crossref_primary_10_1080_21678421_2020_1733020 crossref_primary_10_1016_j_nicl_2025_103738 crossref_primary_10_3389_fneur_2022_934650 crossref_primary_10_1016_j_biopsych_2022_09_011 crossref_primary_10_1016_j_media_2022_102431 crossref_primary_10_1016_j_neuroimage_2023_120248 crossref_primary_10_1016_j_neuroscience_2025_03_013 crossref_primary_10_1016_j_neuroimage_2024_120723 crossref_primary_10_1080_17474086_2021_1893687 crossref_primary_10_1016_j_media_2021_102129 crossref_primary_10_1016_j_media_2023_102968 crossref_primary_10_1093_braincomms_fcae295 crossref_primary_10_1016_j_media_2021_102126 crossref_primary_10_1007_s00429_024_02872_7 crossref_primary_10_1038_s42003_024_07274_3 crossref_primary_10_3389_fpsyt_2024_1244694 crossref_primary_10_7554_eLife_55444 crossref_primary_10_1002_jmri_26794 crossref_primary_10_1007_s10803_023_05980_1 crossref_primary_10_1016_j_mri_2025_110326 crossref_primary_10_1016_j_nicl_2020_102359 crossref_primary_10_1109_JBHI_2023_3273771 crossref_primary_10_1016_j_neuroimage_2021_118704 crossref_primary_10_1111_cgf_14724 crossref_primary_10_3389_fnins_2023_1191999 crossref_primary_10_1016_j_nicl_2022_103130 crossref_primary_10_1016_j_jns_2023_120726 crossref_primary_10_1038_s43588_021_00126_8 crossref_primary_10_1080_21678421_2021_1962353 crossref_primary_10_7554_eLife_82088 crossref_primary_10_1093_brain_awac203 crossref_primary_10_1016_j_zemedi_2021_11_004 crossref_primary_10_1002_hbm_25632 crossref_primary_10_1002_mrm_30187 crossref_primary_10_1016_j_neuroimage_2019_116439 crossref_primary_10_1016_j_neuroimage_2022_119168 crossref_primary_10_1016_j_biopsych_2025_01_005 crossref_primary_10_1016_j_neulet_2023_137574 crossref_primary_10_3389_fnimg_2023_1129587 crossref_primary_10_1016_j_nicl_2019_101883 crossref_primary_10_1002_mp_16478 crossref_primary_10_1016_j_euroneuro_2021_04_007 crossref_primary_10_1136_bmjopen_2020_044491 crossref_primary_10_1016_j_nicl_2024_103679 crossref_primary_10_1002_alz_14156 crossref_primary_10_3389_fninf_2022_859973 crossref_primary_10_1007_s10548_020_00771_8 crossref_primary_10_1162_nol_a_00153 crossref_primary_10_1016_j_nicl_2022_103284 crossref_primary_10_1016_j_mri_2021_10_017 crossref_primary_10_1016_j_media_2020_101761 crossref_primary_10_3389_fneur_2022_972590 crossref_primary_10_1016_j_neucom_2020_05_070 crossref_primary_10_1089_neu_2021_0447 crossref_primary_10_1016_j_jpedcp_2024_200101 crossref_primary_10_1109_TBME_2020_2977531 crossref_primary_10_1002_mp_15495 crossref_primary_10_1038_s41537_025_00586_1 crossref_primary_10_1016_j_pnpbp_2020_110125 crossref_primary_10_1002_hbm_26393 crossref_primary_10_1016_j_neuroimage_2020_117406 crossref_primary_10_1088_1361_6560_ac0d90 crossref_primary_10_1162_imag_a_00050 crossref_primary_10_1002_dmrr_3772 crossref_primary_10_1016_j_neuroimage_2021_118004 crossref_primary_10_1016_j_nicl_2022_103151 crossref_primary_10_1016_j_mri_2024_05_009 crossref_primary_10_1093_braincomms_fcac132 crossref_primary_10_1016_j_yfrne_2022_101031 crossref_primary_10_1136_jnnp_2023_331183 crossref_primary_10_1002_hbm_25859 crossref_primary_10_1002_hbm_26706 crossref_primary_10_1016_j_cortex_2023_01_006 crossref_primary_10_1016_j_jns_2021_117584 crossref_primary_10_1093_brain_awac265 crossref_primary_10_1089_neur_2023_0043 crossref_primary_10_1016_j_compbiomed_2024_109334 crossref_primary_10_1016_j_neuroimage_2020_117402 crossref_primary_10_1016_j_cortex_2023_11_006 crossref_primary_10_1016_j_zemedi_2018_11_002 crossref_primary_10_1016_j_brs_2024_07_019 crossref_primary_10_1093_cercor_bhab500 crossref_primary_10_1016_j_neuroimage_2021_118451 crossref_primary_10_1073_pnas_2217232120 crossref_primary_10_1007_s00429_023_02718_8 crossref_primary_10_1007_s12021_020_09497_1 crossref_primary_10_1093_cercor_bhad125 crossref_primary_10_1093_cercor_bhae457 crossref_primary_10_1007_s11682_024_00906_6 crossref_primary_10_1016_j_media_2025_103482 crossref_primary_10_1016_j_neuroimage_2024_120766 crossref_primary_10_1162_imag_a_00144 crossref_primary_10_1016_j_neuroimage_2020_117070 crossref_primary_10_1186_s13063_023_07234_y crossref_primary_10_1089_neu_2019_6852 crossref_primary_10_1007_s00429_024_02813_4 crossref_primary_10_1016_j_nicl_2021_102696 crossref_primary_10_1016_j_neuroimage_2021_117927 crossref_primary_10_3389_fnins_2022_866312 crossref_primary_10_1002_nbm_4904 crossref_primary_10_1016_j_neuroimage_2021_117934 crossref_primary_10_1016_j_nicl_2022_103059 crossref_primary_10_1016_j_nicl_2022_103057 crossref_primary_10_1109_JBHI_2020_3016306 crossref_primary_10_1038_s41598_024_67535_3 crossref_primary_10_2139_ssrn_4098561 crossref_primary_10_1038_s41467_022_32595_4 crossref_primary_10_1093_brain_awac126 crossref_primary_10_3389_fpsyt_2024_1323786 crossref_primary_10_3390_diagnostics13050911 crossref_primary_10_1002_jmri_27911 crossref_primary_10_3389_fneur_2022_837385 crossref_primary_10_1016_j_neucom_2019_12_050 crossref_primary_10_3390_brainsci15010082 crossref_primary_10_1109_TNNLS_2022_3213581 crossref_primary_10_1016_j_neuri_2022_100099 crossref_primary_10_1016_j_mri_2024_03_033 crossref_primary_10_1016_j_nicl_2020_102541 crossref_primary_10_1002_nbm_5267 crossref_primary_10_1016_j_cortex_2021_02_015 crossref_primary_10_1016_j_neuroimage_2020_116889 crossref_primary_10_1016_j_media_2021_102094 crossref_primary_10_1016_j_media_2021_102093 crossref_primary_10_3389_fnhum_2022_944908 crossref_primary_10_1016_j_bandc_2024_106204 crossref_primary_10_1016_j_media_2023_102893 crossref_primary_10_1093_brain_awae255 crossref_primary_10_1002_hbm_70071 crossref_primary_10_1016_j_neuroimage_2023_120086 crossref_primary_10_1111_jon_12964 crossref_primary_10_1016_j_neuroimage_2022_119475 crossref_primary_10_1007_s11682_023_00818_x crossref_primary_10_1007_s10334_022_01033_3 crossref_primary_10_3389_fradi_2023_1238566 crossref_primary_10_1002_hbm_25382 crossref_primary_10_1089_neu_2022_0276 crossref_primary_10_1007_s12021_023_09636_4 crossref_primary_10_1212_WNL_0000000000209695 crossref_primary_10_1038_s43588_022_00250_z crossref_primary_10_1007_s00415_023_11994_7 crossref_primary_10_2139_ssrn_4186501 crossref_primary_10_1016_j_dcn_2023_101211 crossref_primary_10_3390_diagnostics13243679 crossref_primary_10_1002_hbm_24964 crossref_primary_10_1016_j_neuroimage_2021_118442 crossref_primary_10_1038_s41598_023_28210_1 crossref_primary_10_1016_j_nicl_2022_103191 crossref_primary_10_1162_imag_a_00012 crossref_primary_10_1016_j_nicl_2021_102929 crossref_primary_10_1016_j_wneu_2022_05_042 crossref_primary_10_1016_j_bandl_2025_105537 crossref_primary_10_1016_j_ejrad_2023_111207 crossref_primary_10_1038_s41380_023_02390_8 crossref_primary_10_1016_j_neuroimage_2022_119029 crossref_primary_10_1038_s41380_021_01153_7 crossref_primary_10_1016_j_neuroimage_2022_119824 crossref_primary_10_1007_s00429_021_02382_w crossref_primary_10_1038_s41390_020_01134_6 crossref_primary_10_1038_s42003_023_04741_1 crossref_primary_10_1038_s41380_022_01641_4 crossref_primary_10_1088_1741_2552_ab6aad crossref_primary_10_1038_s41398_022_02091_w crossref_primary_10_1089_neu_2024_0064 crossref_primary_10_1016_j_neuroimage_2020_116993 crossref_primary_10_1016_j_neuroimage_2021_118651 crossref_primary_10_1117_1_JMI_9_6_064002 crossref_primary_10_1038_s41598_022_27233_4 crossref_primary_10_1089_neu_2023_0099 crossref_primary_10_25259_SNI_982_2024 crossref_primary_10_1093_braincomms_fcad352 crossref_primary_10_1016_j_jpain_2024_104536 crossref_primary_10_1002_hbm_26497 crossref_primary_10_3389_fnins_2024_1403804 crossref_primary_10_1038_s42003_025_07587_x crossref_primary_10_1038_s42003_024_07414_9 crossref_primary_10_1016_j_pnpbp_2025_111297 crossref_primary_10_1002_mrm_30429 crossref_primary_10_1007_s12565_023_00715_9 crossref_primary_10_1001_jamanetworkopen_2021_0994 crossref_primary_10_1177_15330338221131387 crossref_primary_10_1038_s41598_022_05665_2 crossref_primary_10_1016_j_nicl_2022_103097 crossref_primary_10_1093_braincomms_fcab065 crossref_primary_10_1523_JNEUROSCI_0608_22_2023 crossref_primary_10_1002_hbm_26800 crossref_primary_10_1016_j_jneumeth_2023_109933 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_1371_journal_pone_0244766 crossref_primary_10_1002_brb3_3250 crossref_primary_10_1002_hbm_25598 crossref_primary_10_3390_jpm12122024 crossref_primary_10_3389_fnins_2024_1376570 crossref_primary_10_1109_TMI_2020_3034038 crossref_primary_10_1111_cns_14322 crossref_primary_10_3389_fnins_2024_1385847 crossref_primary_10_1016_j_nicl_2024_103711 crossref_primary_10_1038_s41531_023_00565_2 crossref_primary_10_1038_s41386_021_01088_1 crossref_primary_10_1016_j_brainres_2024_149114 crossref_primary_10_1016_j_neuroimage_2022_118909 crossref_primary_10_1016_j_neuropsychologia_2023_108761 crossref_primary_10_1016_j_neuroimage_2020_117147 crossref_primary_10_1016_j_media_2022_102454 crossref_primary_10_1093_braincomms_fcae027 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1093_cercor_bhac415 crossref_primary_10_1016_j_bpsc_2024_04_002 crossref_primary_10_1093_cercor_bhad197 crossref_primary_10_1016_j_neuroimage_2022_119672 crossref_primary_10_1038_s41598_023_32924_7 crossref_primary_10_1016_j_neuroimage_2023_120288 crossref_primary_10_1016_j_nbas_2023_100067 crossref_primary_10_1016_j_brainres_2023_148440 crossref_primary_10_1016_j_neuroimage_2021_118519 crossref_primary_10_1038_s41597_024_03058_w crossref_primary_10_1016_j_clineuro_2021_107001 crossref_primary_10_1002_jmri_29561 crossref_primary_10_1016_j_nicl_2022_103310 crossref_primary_10_1016_j_mri_2019_04_013 crossref_primary_10_1007_s00429_019_01907_8 crossref_primary_10_1016_j_dcn_2025_101537 crossref_primary_10_1002_hbm_70143 crossref_primary_10_1038_s41598_020_74054_4 crossref_primary_10_52294_e6198273_b8e3_4b63_babb_6e6b0da10669 crossref_primary_10_3389_fneur_2021_681467 crossref_primary_10_1002_hbm_26462 crossref_primary_10_1016_j_media_2023_102759 crossref_primary_10_2139_ssrn_4157505 crossref_primary_10_3389_fradi_2022_866974 crossref_primary_10_1016_j_msard_2025_106335 crossref_primary_10_1007_s00429_020_02129_z crossref_primary_10_1007_s13760_024_02675_x crossref_primary_10_1002_mrm_29496 crossref_primary_10_1016_j_neucom_2021_04_094 crossref_primary_10_1002_mp_17505 crossref_primary_10_1016_j_neuroimage_2020_116703 crossref_primary_10_1016_j_neuroimage_2022_118934 crossref_primary_10_1007_s11263_020_01384_1 crossref_primary_10_3389_fnagi_2021_760663 crossref_primary_10_1007_s13760_023_02170_9 crossref_primary_10_1038_s41380_024_02821_0 crossref_primary_10_1002_hbm_70132 crossref_primary_10_1007_s12021_022_09593_4 crossref_primary_10_1109_TMI_2021_3139507 crossref_primary_10_1016_j_bpsc_2020_07_007 crossref_primary_10_1093_braincomms_fcae130 crossref_primary_10_1177_08830738221083487 crossref_primary_10_1016_j_media_2023_102766 crossref_primary_10_1371_journal_pone_0304449 crossref_primary_10_1016_j_nicl_2022_103209 crossref_primary_10_3389_fpsyt_2024_1304528 crossref_primary_10_1016_j_molmet_2022_101527 crossref_primary_10_3389_fnins_2024_1394681 crossref_primary_10_1038_s41598_023_29205_8 crossref_primary_10_1097_j_pain_0000000000003069 crossref_primary_10_1097_RMR_0000000000000212 crossref_primary_10_1038_s41467_023_44591_3 crossref_primary_10_1016_j_compbiomed_2021_104643 crossref_primary_10_3389_fnimg_2024_1359589 crossref_primary_10_1007_s00259_023_06530_8 crossref_primary_10_1016_j_jadohealth_2024_10_007 crossref_primary_10_1126_sciadv_adi0616 crossref_primary_10_1002_hbm_70002 crossref_primary_10_1002_hbm_25359 crossref_primary_10_1002_hbm_70121 crossref_primary_10_1016_j_bpsc_2025_02_003 crossref_primary_10_3389_fnins_2022_986873 crossref_primary_10_1002_mds_29578 |
Cites_doi | 10.1016/j.neuroimage.2013.04.127 10.2307/3001968 10.1109/TMI.2007.905826 10.3389/fninf.2011.00023 10.1016/j.neuroimage.2013.05.057 10.1016/j.neuroimage.2011.06.020 10.1016/j.neuroimage.2008.12.010 10.3389/fninf.2014.00008 10.1007/s00429-015-1179-4 10.1371/journal.pone.0049790 10.1038/s41467-017-01285-x 10.1016/j.neuroimage.2009.01.065 10.1016/j.media.2004.07.004 10.1016/j.neuroimage.2014.04.009 10.3389/fnins.2012.00175 10.1186/s12880-015-0068-x 10.1007/s12021-016-9316-7 10.1109/TMI.2007.906785 10.1016/j.neuroimage.2017.10.058 10.1002/hbm.23082 10.1002/hbm.23609 10.1371/journal.pone.0061892 10.1007/s10851-008-0071-8 10.1016/j.nicl.2016.11.023 10.1016/j.neuroimage.2014.04.048 10.1016/j.neuroimage.2013.05.041 10.1016/j.neuroimage.2014.07.061 10.1016/j.neuroimage.2010.07.055 10.1016/j.media.2007.06.004 10.1016/j.neuroimage.2007.02.016 10.1109/TMI.2006.873299 10.1016/j.neuroimage.2014.08.001 |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. 2018. The Authors |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2018. The Authors |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2018.07.070 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 253 |
ExternalDocumentID | 30086412 10_1016_j_neuroimage_2018_07_070 S1053811918306864 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX ACLOT CITATION ~HD AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c575t-6d9c53701e2484badb3b2fdd6c53271cdd34b90a95272f57ba721f1e619db18e3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Sun Sep 28 12:17:47 EDT 2025 Sat Aug 23 13:20:20 EDT 2025 Mon Jul 21 05:59:15 EDT 2025 Wed Oct 01 03:43:14 EDT 2025 Thu Apr 24 22:53:29 EDT 2025 Fri Feb 23 02:45:22 EST 2024 Tue Aug 26 20:08:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Diffusion-weighted imaging Deep learning Fiber tractography Segmentation Machine learning |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-6d9c53701e2484badb3b2fdd6c53271cdd34b90a95272f57ba721f1e619db18e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811918306864 |
PMID | 30086412 |
PQID | 2122417044 |
PQPubID | 2031077 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2085654666 proquest_journals_2122417044 pubmed_primary_30086412 crossref_primary_10_1016_j_neuroimage_2018_07_070 crossref_citationtrail_10_1016_j_neuroimage_2018_07_070 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_07_070 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_07_070 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 2018-12-00 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Dayan, Monohan, Pandya, Kuceyeski, Nguyen, Raj, Gauthier (bib10) 2016; 37 Garyfallidis, Côté, Rheault, Sidhu, Hau, Petit, Fortin, Cunanne, Descoteaux (bib17) 2017 Hirjak, Thomann, Wolf, Kubera, Goch, Hering, Maier-Hein (bib20) 2017 Bustillo (bib4) 2016 Wilcoxon (bib46) 1945; 1 Clayden, Storkey, Bastin (bib7) 2007; 26 Wang, Benner, Sorensen, Wedeen (bib44) 2007 O'Donnell, Westin (bib30) 2007; 26 Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib6) 2016 Garyfallidis, Brett, Correia, Williams, Nimmo-Smith (bib15) 2012; 6 Jin, Shi, Zhan, Gutman, de Zubicaray, McMahon, Wright, Toga, Thompson (bib22) 2014; 100 Dumoulin, Visin (bib13) 2016 Jonasson, Bresson, Hagmann, Cuisenaire, Meuli, Thiran (bib2a) 2005; 9 Hernández, Guerrero, Cecilia, García, Inuggi, Jbabdi, Behrens, Sotiropoulos (bib19) 2013; 8 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib18) 2013; 80 O'Donnell, Suter, Rigolo, Kahali, Zhang, Norton, Albi, Olubiyi, Meola, Essayed, Unadkat, Ciris, Wells, Rathi, Westin, Golby (bib28) 2016; 13 Yendiki, Panneck, Srinivasan, Stevens, Zöllei, Augustinack, Wang, Salat, Ehrlich, Behrens, Jbabdi, Gollub, Fischl (bib48) 2011; 5 Bells, Cercignani, Deoni, Assaf, Pasternak, Evans, Leemans, Jones (bib3) 2011; vol. 678 Lenglet, Rousson, Deriche (bib25) 2006; 25 Rokem, Yeatman, Pestilli, Wandell (bib34) 2013 Tournier, Calamante, Connelly (bib41) 2010 Labra, Guevara, Duclap, Houenou, Poupon, Mangin, Figueroa (bib24) 2017; 15 Thiebaut de Schotten, ffytche, Bizzi, Dell'Acqua, Allin, Walshe, Murray, Williams, Murphy, Catani (bib40) 2011; 54 Stieltjes, Brunner, Maier-Hein, Laun (bib38) 2013 Bazin, Ye, Bogovic, Shiee, Reich, Prince, Pham (bib2) 2011; 58 Ratnarajah, Qiu (bib32) 2014; 102 O'Donnell, Wells, Golby, Westin (bib29) 2012; 15 Yeatman, Dougherty, Myall, Wandell, Feldman (bib47) 2012; 7 Taha, Hanbury (bib39) 2015; 15 Wassermann, Makris, Rathi, Shenton, Kikinis, Kubicki, Westin (bib45) 2016; 221 Jeurissen, Tournier, Dhollander, Connelly, Sijbers (bib21) 2014; 103 Avants, Epstein, Grossman, Gee (bib1) 2008; 12 Maier-Hein, Neher, Houde, Côté, Garyfallidis, Zhong, Chamberland, Yeh, Lin, Ji, Reddick, Glass, Chen, Feng, Gao, Wu, Ma, Renjie, Li, Westin, Deslauriers-Gauthier, González, Paquette, St-Jean, Girard, Rheault, Sidhu, Tax, Guo, Mesri, Dávid, Froeling, Heemskerk, Leemans, Boré, Pinsard, Bedetti, Desrosiers, Brambati, Doyon, Sarica, Vasta, Cerasa, Quattrone, Yeatman, Khan, Hodges, Alexander, Romascano, Barakovic, Auría, Esteban, Lemkaddem, Thiran, Cetingul, Odry, Mailhe, Nadar, Pizzagalli, Prasad, Villalon-Reina, Galvis, Thompson, Requejo, Laguna, Lacerda, Barrett, Dell'Acqua, Catani, Petit, Caruyer, Daducci, Dyrby, Holland-Letz, Hilgetag, Stieltjes, Descoteaux (bib26) 2017; 8 Zhang, Norton, Cai, Song, Wells, O'Donnell (bib49) 2017 Cook, Zhang, Avants, Yushkevich, Alexander, Gee, Ciccarelli, Thompson (bib9) 2005 Eckstein, Shattuck, Stein, McMahon, de Zubicaray, Wright, Thompson, Toga (bib14) 2009; 47 Çetin, Christensen, Abbott, Stephen, Mayer, Cañive, Bustillo, Pearlson, Calhoun (bib5) 2014; 97 Siless, Chang, Fischl, Yendiki (bib35) 2018; 166 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib37) 2014; 15 Tournier, Calamante, Connelly (bib42) 2007; 35 Clayden, Storkey, Maniega, Bastin (bib8) 2009; 45 Descoteaux, Deriche (bib11) 2009; 33 Kingma, Ba (bib23) 2014 Nair, Hinton (bib27) 2010 Guo, Chen, Zeng (bib1a) 2008; 366 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib43) 2013; 80 Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach, Glasser, Hernandez, Sapiro, Jenkinson, Feinberg, Yacoub, Lenglet, Van Essen, Ugurbil, Behrens (bib36) 2013; 80 Garyfallidis, Brett, Amirbekian, Rokem, Van Der Walt, Descoteaux, Nimmo-Smith (bib16) 2014; 8 Ronneberger, Fischer, Brox (bib33) 2015 Dieleman, Schlüter, Raffel, Olson, Sønderby, Nouri, Maturana, Thoma, Battenberg, Kelly, Fauw, Heilman, Almeida, McFee, Weideman, Takács, Rivaz, Crall, Sanders, Rasul, Liu, French, Degrave (bib12) 2015 Garyfallidis (10.1016/j.neuroimage.2018.07.070_bib15) 2012; 6 Çetin (10.1016/j.neuroimage.2018.07.070_bib5) 2014; 97 Hernández (10.1016/j.neuroimage.2018.07.070_bib19) 2013; 8 Guo (10.1016/j.neuroimage.2018.07.070_bib1a) 2008; 366 Kingma (10.1016/j.neuroimage.2018.07.070_bib23) 2014 Labra (10.1016/j.neuroimage.2018.07.070_bib24) 2017; 15 Garyfallidis (10.1016/j.neuroimage.2018.07.070_bib17) 2017 Jonasson (10.1016/j.neuroimage.2018.07.070_bib2a) 2005; 9 Dumoulin (10.1016/j.neuroimage.2018.07.070_bib13) 2016 Van Essen (10.1016/j.neuroimage.2018.07.070_bib43) 2013; 80 Sotiropoulos (10.1016/j.neuroimage.2018.07.070_bib36) 2013; 80 Jin (10.1016/j.neuroimage.2018.07.070_bib22) 2014; 100 Clayden (10.1016/j.neuroimage.2018.07.070_bib8) 2009; 45 Clayden (10.1016/j.neuroimage.2018.07.070_bib7) 2007; 26 Wang (10.1016/j.neuroimage.2018.07.070_bib44) 2007 Garyfallidis (10.1016/j.neuroimage.2018.07.070_bib16) 2014; 8 Thiebaut de Schotten (10.1016/j.neuroimage.2018.07.070_bib40) 2011; 54 Taha (10.1016/j.neuroimage.2018.07.070_bib39) 2015; 15 Maier-Hein (10.1016/j.neuroimage.2018.07.070_bib26) 2017; 8 Descoteaux (10.1016/j.neuroimage.2018.07.070_bib11) 2009; 33 Dieleman (10.1016/j.neuroimage.2018.07.070_bib12) 2015 Lenglet (10.1016/j.neuroimage.2018.07.070_bib25) 2006; 25 Dayan (10.1016/j.neuroimage.2018.07.070_bib10) 2016; 37 O'Donnell (10.1016/j.neuroimage.2018.07.070_bib29) 2012; 15 Ratnarajah (10.1016/j.neuroimage.2018.07.070_bib32) 2014; 102 Jeurissen (10.1016/j.neuroimage.2018.07.070_bib21) 2014; 103 Çiçek (10.1016/j.neuroimage.2018.07.070_bib6) 2016 Glasser (10.1016/j.neuroimage.2018.07.070_bib18) 2013; 80 O'Donnell (10.1016/j.neuroimage.2018.07.070_bib28) 2016; 13 Avants (10.1016/j.neuroimage.2018.07.070_bib1) 2008; 12 Tournier (10.1016/j.neuroimage.2018.07.070_bib41) 2010 Zhang (10.1016/j.neuroimage.2018.07.070_bib49) 2017 Nair (10.1016/j.neuroimage.2018.07.070_bib27) 2010 Wilcoxon (10.1016/j.neuroimage.2018.07.070_bib46) 1945; 1 Hirjak (10.1016/j.neuroimage.2018.07.070_bib20) 2017 Wassermann (10.1016/j.neuroimage.2018.07.070_bib45) 2016; 221 O'Donnell (10.1016/j.neuroimage.2018.07.070_bib30) 2007; 26 Tournier (10.1016/j.neuroimage.2018.07.070_bib42) 2007; 35 Eckstein (10.1016/j.neuroimage.2018.07.070_bib14) 2009; 47 Siless (10.1016/j.neuroimage.2018.07.070_bib35) 2018; 166 Cook (10.1016/j.neuroimage.2018.07.070_bib9) 2005 Srivastava (10.1016/j.neuroimage.2018.07.070_bib37) 2014; 15 Yeatman (10.1016/j.neuroimage.2018.07.070_bib47) 2012; 7 Bustillo (10.1016/j.neuroimage.2018.07.070_bib4) 2016 Rokem (10.1016/j.neuroimage.2018.07.070_bib34) 2013 Bazin (10.1016/j.neuroimage.2018.07.070_bib2) 2011; 58 Bells (10.1016/j.neuroimage.2018.07.070_bib3) 2011; vol. 678 Ronneberger (10.1016/j.neuroimage.2018.07.070_bib33) 2015 Stieltjes (10.1016/j.neuroimage.2018.07.070_bib38) 2013 Yendiki (10.1016/j.neuroimage.2018.07.070_bib48) 2011; 5 |
References_xml | – volume: 35 start-page: 1459 year: 2007 end-page: 1472 ident: bib42 article-title: Robust determination of the fiber orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage – volume: 9 start-page: 223 year: 2005 end-page: 236 ident: bib2a article-title: White matter fiber tract segmentation in DT-MRI using geometric flows publication-title: Med. Image Anal. – year: 2017 ident: bib20 article-title: White matter microstructure variations contribute to neurological soft signs in healthy adults publication-title: Hum. Brain Mapp. – volume: 25 start-page: 685 year: 2006 end-page: 700 ident: bib25 article-title: DTI segmentation by statistical surface evolution publication-title: IEEE Trans. Med. Imag. – volume: 37 start-page: 989 year: 2016 end-page: 1004 ident: bib10 article-title: Profilometry: a new statistical framework for the characterization of white matter pathways, with application to multiple sclerosis publication-title: Hum. Brain Mapp. – volume: 8 year: 2014 ident: bib16 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front. Neuroinf. – volume: 13 start-page: 138 year: 2016 end-page: 153 ident: bib28 article-title: Automated white matter fiber tract identification in patients with brain tumors publication-title: Neuroimage Clin. – year: 2015 ident: bib33 article-title: U-net: Convolutional Networks for Biomedical Image Segmentation – volume: 47 start-page: T82 year: 2009 end-page: T89 ident: bib14 article-title: Active fibers: matching deformable tract templates to diffusion tensor images publication-title: Neuroimage – year: 2015 ident: bib12 article-title: Lasagne – volume: 58 start-page: 458 year: 2011 end-page: 468 ident: bib2 article-title: Direct segmentation of the major white matter tracts in diffusion tensor images publication-title: Neuroimage – start-page: 15 year: 2007 ident: bib44 article-title: Diffusion toolkit: a software package for diffusion imaging data processing and tractography publication-title: Proc Intl Soc Mag Reson Med – volume: 5 year: 2011 ident: bib48 article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy publication-title: Front. Neuroinf. – start-page: 424 year: 2016 end-page: 432 ident: bib6 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation publication-title: Medical Image Computing and Computer-assisted Intervention – MICCAI 2016, Lecture Notes in Computer Science. Presented at the International Conference on Medical Image Computing and Computer-assisted Intervention – volume: 33 start-page: 239 year: 2009 end-page: 252 ident: bib11 article-title: High angular resolution diffusion MRI segmentation using region-based statistical surface evolution publication-title: J. Math. Imag. Vis. – volume: 8 start-page: 1349 year: 2017 ident: bib26 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun. – volume: 12 start-page: 26 year: 2008 end-page: 41 ident: bib1 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. – start-page: 18 year: 2010 ident: bib41 article-title: Improved probabilistic streamlines tractography by 2nd order integration over fiber orientation distributions publication-title: Proc Intl Soc Mag Reson Med ISMRM – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib37 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – year: 2014 ident: bib23 article-title: Adam: a Method for Stochastic Optimization – year: 2010 ident: bib27 article-title: Rectified Linear Units Improve Restricted Boltzmann Machines – volume: 166 start-page: 32 year: 2018 end-page: 45 ident: bib35 article-title: AnatomiCuts: hierarchical clustering of tractography streamlines based on anatomical similarity publication-title: Neuroimage – volume: 102 start-page: 913 year: 2014 end-page: 922 ident: bib32 article-title: Multi-label segmentation of white matter structures: application to neonatal brains publication-title: Neuroimage – volume: 45 start-page: 377 year: 2009 end-page: 385 ident: bib8 article-title: Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach publication-title: Neuroimage – volume: 15 year: 2015 ident: bib39 article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool publication-title: BMC Med. Imag. – volume: 8 year: 2013 ident: bib19 article-title: Accelerating fiber orientation estimation from diffusion weighted magnetic resonance imaging using GPUs publication-title: PLoS One – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib18 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage – volume: 7 year: 2012 ident: bib47 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PLoS One – volume: 26 start-page: 1562 year: 2007 end-page: 1575 ident: bib30 article-title: Automatic tractography segmentation using a high-dimensional white matter atlas publication-title: IEEE Trans. Med. Imag. – volume: 103 start-page: 411 year: 2014 end-page: 426 ident: bib21 article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data publication-title: Neuroimage – volume: 15 start-page: 123 year: 2012 end-page: 130 ident: bib29 article-title: Unbiased groupwise registration of white matter tractography publication-title: Med. Image Comput. Comput.-Assist. Interv. MICCAI Int. Conf. Med. Image Comput. Comput.-Assist. Interv. – volume: 80 start-page: 125 year: 2013 end-page: 143 ident: bib36 article-title: Advances in diffusion MRI acquisition and processing in the human connectome project publication-title: Neuroimage, Mapp. Connectome – volume: 54 start-page: 49 year: 2011 end-page: 59 ident: bib40 article-title: Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography publication-title: Neuroimage – year: 2013 ident: bib38 article-title: Diffusion Tensor Imaging: Introduction and Atlas – start-page: 164 year: 2005 end-page: 171 ident: bib9 article-title: An automated approach to connectivity-based partitioning of brain structures publication-title: Medical Image Computing and Computer-assisted Intervention – MICCAI 2005, Lecture Notes in Computer Science. Presented at the International Conference on Medical Image Computing and Computer-assisted Intervention – year: 2016 ident: bib4 article-title: Glutamatergic and Neuronal Dysfunction in gray and white Matter: a Spectroscopic Imaging Study in a Large Schizophrenia Sample Schizophr Bull – year: 2013 ident: bib34 article-title: High Angular Resolution Diffusion MRI. Stanford Digital Repository – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib43 article-title: The WU-minn human connectome project: an overview publication-title: Neuroimage, Mapp. Connectome – year: 2016 ident: bib13 article-title: A Guide to Convolution Arithmetic for Deep Learning – volume: vol. 678 year: 2011 ident: bib3 article-title: Tractometry–comprehensive multi-modal quantitative assessment of white matter along specific tracts publication-title: Proc. ISMRM – volume: 6 year: 2012 ident: bib15 article-title: QuickBundles, a method for tractography simplification publication-title: Front. Neurosci. – volume: 97 start-page: 117 year: 2014 end-page: 126 ident: bib5 article-title: Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia publication-title: Neuroimage – volume: 100 start-page: 75 year: 2014 end-page: 90 ident: bib22 article-title: Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics publication-title: Neuroimage – volume: 26 start-page: 1555 year: 2007 end-page: 1561 ident: bib7 article-title: A probabilistic model-based approach to consistent white matter tract segmentation publication-title: IEEE Trans. Med. Imag. – year: 2017 ident: bib17 article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering publication-title: Neuroimage – start-page: 796 year: 2017 end-page: 799 ident: bib49 article-title: Comparison between two white matter segmentation strategies: an investigation into white matter segmentation consistency publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) – volume: 15 start-page: 71 year: 2017 end-page: 86 ident: bib24 article-title: Fast automatic segmentation of white matter streamlines based on a multi-subject bundle atlas publication-title: Neuroinformatics – volume: 221 start-page: 4705 year: 2016 end-page: 4721 ident: bib45 article-title: The white matter query language: a novel approach for describing human white matter anatomy publication-title: Brain Struct. Funct. – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: bib46 article-title: Individual comparisons by ranking methods publication-title: Biometrics Bull. – volume: 366 start-page: 2279 year: 2008 end-page: 2292 ident: bib1a article-title: A geometric flow-based approach for diffusion tensor image segmentation publication-title: Philos. Trans. A Math Phys. Eng. Sci. – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2018.07.070_bib18 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 366 start-page: 2279 year: 2008 ident: 10.1016/j.neuroimage.2018.07.070_bib1a article-title: A geometric flow-based approach for diffusion tensor image segmentation publication-title: Philos. Trans. A Math Phys. Eng. Sci. – year: 2013 ident: 10.1016/j.neuroimage.2018.07.070_bib34 – volume: 1 start-page: 80 year: 1945 ident: 10.1016/j.neuroimage.2018.07.070_bib46 article-title: Individual comparisons by ranking methods publication-title: Biometrics Bull. doi: 10.2307/3001968 – volume: 26 start-page: 1555 year: 2007 ident: 10.1016/j.neuroimage.2018.07.070_bib7 article-title: A probabilistic model-based approach to consistent white matter tract segmentation publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2007.905826 – volume: 5 year: 2011 ident: 10.1016/j.neuroimage.2018.07.070_bib48 article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy publication-title: Front. Neuroinf. doi: 10.3389/fninf.2011.00023 – volume: 80 start-page: 125 year: 2013 ident: 10.1016/j.neuroimage.2018.07.070_bib36 article-title: Advances in diffusion MRI acquisition and processing in the human connectome project publication-title: Neuroimage, Mapp. Connectome doi: 10.1016/j.neuroimage.2013.05.057 – volume: 58 start-page: 458 year: 2011 ident: 10.1016/j.neuroimage.2018.07.070_bib2 article-title: Direct segmentation of the major white matter tracts in diffusion tensor images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.020 – volume: 45 start-page: 377 year: 2009 ident: 10.1016/j.neuroimage.2018.07.070_bib8 article-title: Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.12.010 – year: 2015 ident: 10.1016/j.neuroimage.2018.07.070_bib12 – volume: 8 year: 2014 ident: 10.1016/j.neuroimage.2018.07.070_bib16 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front. Neuroinf. doi: 10.3389/fninf.2014.00008 – year: 2014 ident: 10.1016/j.neuroimage.2018.07.070_bib23 – start-page: 164 year: 2005 ident: 10.1016/j.neuroimage.2018.07.070_bib9 article-title: An automated approach to connectivity-based partitioning of brain structures – start-page: 18 year: 2010 ident: 10.1016/j.neuroimage.2018.07.070_bib41 article-title: Improved probabilistic streamlines tractography by 2nd order integration over fiber orientation distributions – year: 2017 ident: 10.1016/j.neuroimage.2018.07.070_bib17 article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering publication-title: Neuroimage – volume: 221 start-page: 4705 year: 2016 ident: 10.1016/j.neuroimage.2018.07.070_bib45 article-title: The white matter query language: a novel approach for describing human white matter anatomy publication-title: Brain Struct. Funct. doi: 10.1007/s00429-015-1179-4 – volume: 7 year: 2012 ident: 10.1016/j.neuroimage.2018.07.070_bib47 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PLoS One doi: 10.1371/journal.pone.0049790 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.neuroimage.2018.07.070_bib37 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – year: 2016 ident: 10.1016/j.neuroimage.2018.07.070_bib13 – volume: 8 start-page: 1349 year: 2017 ident: 10.1016/j.neuroimage.2018.07.070_bib26 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun. doi: 10.1038/s41467-017-01285-x – start-page: 796 year: 2017 ident: 10.1016/j.neuroimage.2018.07.070_bib49 article-title: Comparison between two white matter segmentation strategies: an investigation into white matter segmentation consistency – volume: 47 start-page: T82 issue: Suppl. 2 year: 2009 ident: 10.1016/j.neuroimage.2018.07.070_bib14 article-title: Active fibers: matching deformable tract templates to diffusion tensor images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.065 – volume: 9 start-page: 223 year: 2005 ident: 10.1016/j.neuroimage.2018.07.070_bib2a article-title: White matter fiber tract segmentation in DT-MRI using geometric flows publication-title: Med. Image Anal. doi: 10.1016/j.media.2004.07.004 – volume: 97 start-page: 117 year: 2014 ident: 10.1016/j.neuroimage.2018.07.070_bib5 article-title: Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.04.009 – volume: 6 year: 2012 ident: 10.1016/j.neuroimage.2018.07.070_bib15 article-title: QuickBundles, a method for tractography simplification publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00175 – volume: 15 start-page: 123 year: 2012 ident: 10.1016/j.neuroimage.2018.07.070_bib29 article-title: Unbiased groupwise registration of white matter tractography – volume: vol. 678 year: 2011 ident: 10.1016/j.neuroimage.2018.07.070_bib3 article-title: Tractometry–comprehensive multi-modal quantitative assessment of white matter along specific tracts – year: 2016 ident: 10.1016/j.neuroimage.2018.07.070_bib4 – volume: 15 year: 2015 ident: 10.1016/j.neuroimage.2018.07.070_bib39 article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool publication-title: BMC Med. Imag. doi: 10.1186/s12880-015-0068-x – volume: 15 start-page: 71 year: 2017 ident: 10.1016/j.neuroimage.2018.07.070_bib24 article-title: Fast automatic segmentation of white matter streamlines based on a multi-subject bundle atlas publication-title: Neuroinformatics doi: 10.1007/s12021-016-9316-7 – start-page: 424 year: 2016 ident: 10.1016/j.neuroimage.2018.07.070_bib6 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation – volume: 26 start-page: 1562 year: 2007 ident: 10.1016/j.neuroimage.2018.07.070_bib30 article-title: Automatic tractography segmentation using a high-dimensional white matter atlas publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2007.906785 – volume: 166 start-page: 32 year: 2018 ident: 10.1016/j.neuroimage.2018.07.070_bib35 article-title: AnatomiCuts: hierarchical clustering of tractography streamlines based on anatomical similarity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.10.058 – year: 2013 ident: 10.1016/j.neuroimage.2018.07.070_bib38 – volume: 37 start-page: 989 issue: 3 year: 2016 ident: 10.1016/j.neuroimage.2018.07.070_bib10 article-title: Profilometry: a new statistical framework for the characterization of white matter pathways, with application to multiple sclerosis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23082 – year: 2010 ident: 10.1016/j.neuroimage.2018.07.070_bib27 – year: 2017 ident: 10.1016/j.neuroimage.2018.07.070_bib20 article-title: White matter microstructure variations contribute to neurological soft signs in healthy adults publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23609 – year: 2015 ident: 10.1016/j.neuroimage.2018.07.070_bib33 – volume: 8 year: 2013 ident: 10.1016/j.neuroimage.2018.07.070_bib19 article-title: Accelerating fiber orientation estimation from diffusion weighted magnetic resonance imaging using GPUs publication-title: PLoS One doi: 10.1371/journal.pone.0061892 – volume: 33 start-page: 239 year: 2009 ident: 10.1016/j.neuroimage.2018.07.070_bib11 article-title: High angular resolution diffusion MRI segmentation using region-based statistical surface evolution publication-title: J. Math. Imag. Vis. doi: 10.1007/s10851-008-0071-8 – volume: 13 start-page: 138 year: 2016 ident: 10.1016/j.neuroimage.2018.07.070_bib28 article-title: Automated white matter fiber tract identification in patients with brain tumors publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2016.11.023 – volume: 100 start-page: 75 year: 2014 ident: 10.1016/j.neuroimage.2018.07.070_bib22 article-title: Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.04.048 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2018.07.070_bib43 article-title: The WU-minn human connectome project: an overview publication-title: Neuroimage, Mapp. Connectome doi: 10.1016/j.neuroimage.2013.05.041 – volume: 103 start-page: 411 year: 2014 ident: 10.1016/j.neuroimage.2018.07.070_bib21 article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.07.061 – volume: 54 start-page: 49 year: 2011 ident: 10.1016/j.neuroimage.2018.07.070_bib40 article-title: Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.055 – volume: 12 start-page: 26 year: 2008 ident: 10.1016/j.neuroimage.2018.07.070_bib1 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – volume: 35 start-page: 1459 year: 2007 ident: 10.1016/j.neuroimage.2018.07.070_bib42 article-title: Robust determination of the fiber orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.016 – start-page: 15 year: 2007 ident: 10.1016/j.neuroimage.2018.07.070_bib44 article-title: Diffusion toolkit: a software package for diffusion imaging data processing and tractography – volume: 25 start-page: 685 year: 2006 ident: 10.1016/j.neuroimage.2018.07.070_bib25 article-title: DTI segmentation by statistical surface evolution publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2006.873299 – volume: 102 start-page: 913 issue: Pt 2 year: 2014 ident: 10.1016/j.neuroimage.2018.07.070_bib32 article-title: Multi-label segmentation of white matter structures: application to neonatal brains publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.08.001 |
SSID | ssj0009148 |
Score | 2.6922274 |
Snippet | The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 239 |
SubjectTerms | Adult Autism Collaboration Connectome Data collection Data exchange Datasets Deep Learning Diffusion Tensor Imaging - methods Diffusion-weighted imaging Fiber tractography Humans Image processing Informatics Machine learning Magnetic resonance imaging Medical imaging Methods Morphology Nerve Net - anatomy & histology Nerve Net - diagnostic imaging Neural networks Neuroimaging - methods Neurosciences Registration Schizophrenia Segmentation Substantia alba White Matter - anatomy & histology White Matter - diagnostic imaging |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZ5QMilpHk026RFhVxFrIetFS2EELqEQnNpAnsTem1IyHqTrJf-_c7Y8u4lKQs-2Rpjj2Y0nzQvQs4A1YJdNp6hfWdg8UGlShVYIUNEg1mq2Fb7vKmu79SvcTnOB27zHFbZr4ntQh1nAc_Iz0XrAtKFUhfPLwy7RqF3NbfQ2CTbHKAKSrUe61XRXa66VLhSsiEMyJE8XXxXWy_yYQpaiwFew7aEJ7Ysfts8vQc_WzM02iMfMn6kl92EfyQbqd4nO7-zh_yA_LjFtKc_6Z4yOnLzhro6UhfCAktC0L_oNKDTtqYmbXAknaf7ac4_qg_J3ejn7dU1yx0SWACY1bAqmlBKXfAk1FB5F730YhJjBXeF5iFGqbwpnCmFFpNSewcbvglPsGuKng-TPCJb9axOx4QaLkOQPiRMfYNXuMIkUwkThKuAOg6I7hljQy4fjl0snmwfJ_ZoVyy1yFJbaLiKAeFLyueuhMYaNKbnve1TRGFRs7DOr0H7fUmbYUQHD9akPu2n2mZ1ntuV8A3It-VjUET0rrg6zRYwBsArZoZV1YB86kRk-bsSd46Ki8__f_kJ2cUv6aJlTslW87pIXwDzNP5rK9j_AJfQ_iQ priority: 102 providerName: ProQuest |
Title | TractSeg - Fast and accurate white matter tract segmentation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918306864 https://dx.doi.org/10.1016/j.neuroimage.2018.07.070 https://www.ncbi.nlm.nih.gov/pubmed/30086412 https://www.proquest.com/docview/2122417044 https://www.proquest.com/docview/2085654666 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED9KB2Nfxt7L2hUN9tWLLclWxPalCw3ZK5Q-IN-EXikZi1sah33b3747W04ZbBAYGBvLOiOf7yV09xPAW4xq0S9rl5F_z9Djo0qV0me58IEcZilDi_Y5q6aX8vO8nO_BuK-FobTKZPs7m95a69QyTNwc3iyXw3OMDNDd4HxjJKjOgTBBCf0LZfrdr7s0D13IrhyuFBn1Ttk8XY5Xixm5XKHmUpLXqIXxpG2L_-6i_hWCtq5o8ggephiSHXfDfAx7sX4C97-lVfKn8OGCSp_O4xXL2MSuG2brwKz3G4KFYD9p4YCtWlxN1lBPto5Xq1SDVD-Dy8nJxXiapV0SMo-hVpNVQftSqLyIXI6ks8EJxxchVNjKVeFDENLp3OqSK74olbM46VsUEWdOwRWjKJ7Dfn1dx5fAdCG8F85HKn_DV9hcR11x7bmtkDoMQPWMMT5BiNNOFj9Mnyv23dyx1BBLTa7wyAdQbClvOhiNHWh0z3vTl4miYTNo63egfb-l_UOcdqQ-7H-1SSq9Nrxdg1S5lAN4s32MykgrLLaO1xvsgwEsVYdV1QBedCKy_VxBs0dZ8Ff_NbQDeEB3XULNIew3t5v4GsOixh21co9nNVdHcO94fPb1lK6fvkxneP14Mjs9-w2G8Q9i |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNA9KkUCbgg1hIoMEhwHOFZ7MkIEEJAlNLlQirlNniWVCDiFOKo4qf4Rt7zklwA5VLJJ3veyH7zVr8N4DlataiXreek3zlqfGSpXAeeqRBJYeY6Nt0-T4rxqf40zac78LuvhaG0yl4mNoI6LgL9I38pmxCQybR-e_6D09Qoiq72IzRasjhMvy7QZVu-OfiA5_tCytHHyfsx76YK8ICmSc2LaEOuTCaS1EPty-iVl7MYC7wrjQgxKu1tVtpcGjnLjS_RSZqJhJ5G9GKYFO57Ba5qha-C_GOmZtPkV-i29C5XfCiE7TKH2nyypj_l1zlKCUooGzYtQ2lE8t_V4b_M3UbtjW7Bzc5eZe9aArsNO6m6A9eOu4j8XXg9oTKrz-mMcTYqlzUrq8jKEFbUgoJdUJCCzZsenqymlWyZzuZdvVN1D04vBXf3YbdaVOkBMCtUCMqHRKV2uEWZ2WQLaYMsC4SOAzA9Ylzo2pXT1Izvrs9L--Y2KHWEUpcZvLIBiDXkeduyYwsY2-Pe9SWpKEQd6pUtYF-tYTuzpTVHtoTe74_adeJj6TbEPoBn68fI-BTNKau0WOEaNJapEq0oBrDXksj6cxV5qlrIh__f_ClcH0-Oj9zRwcnhI7hBb9Vm6uzDbv1zlR6jvVX7Jw2RM_hy2Vz1B2SYOy0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGkCZeJr45GBAkeKzWfLS5aCCEGKeNwYTEJt1bSJPcxMT1BtfTtH-Nvw67Te9eAN3LpD61cdQ6ju3UP9sAL9GrRbtsqozse4YWH7dUoXyWSx_IYBYqtNU-j8uDU_VxXIw34HefC0Owyl4ntoo6zDz9I98VbQhI50rtThIs4sv-6O3Fz4w6SFGktW-n0YnIUby6xOPb_M3hPq71KyFGH07eH2Spw0Dm0U1psjIYX0id8yjUUFUuVLISkxBKvCs09yFIVZncmUJoMSl05fDANOERTx2h4sMocd4bcFNLJQlOpsd6VfCXqy4Nr5DZkHOTUEQdtqytVfl9ihqDwGXDtnwotUv-u2n8l-vbmsDRbdhOvit71wnbHdiI9V3Y-pyi8_fg9QmlXH2NZyxjIzdvmKsDc94vqBwFu6SABZu29TxZQyPZPJ5NU-5TfR9Or4V3D2CzntXxETDDpfey8pHS7nAKl5toSmG8cCVShwHonjHWp9Ll1EHjh-0xaud2xVJLLLW5xisfAF9SXnTlO9agMT3vbZ-eigrVoo1Zg3ZvSZtcmM41WZN6p19qm1TJ3K4EfwAvlo9RCVBkx9VxtsAx6DhTVlpZDuBhJyLLz5V0alVcPP7_5M9hC_eT_XR4fPQEbtFLdaCdHdhsfi3iU3S9mupZK-MMvl33pvoDF9w_aA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TractSeg+-+Fast+and+accurate+white+matter+tract+segmentation&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wasserthal%2C+Jakob&rft.au=Neher%2C+Peter&rft.au=Maier-Hein%2C+Klaus+H&rft.date=2018-12-01&rft.eissn=1095-9572&rft.volume=183&rft.spage=239&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.07.070&rft_id=info%3Apmid%2F30086412&rft.externalDocID=30086412 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |