TractSeg - Fast and accurate white matter tract segmentation

The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains. Diffusion-weighted MRI tractography in combination with region-based or clustering-based selection of streamlines is a unique combination of tools wh...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 183; pp. 239 - 253
Main Authors Wasserthal, Jakob, Neher, Peter, Maier-Hein, Klaus H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2018
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2018.07.070

Cover

Abstract The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains. Diffusion-weighted MRI tractography in combination with region-based or clustering-based selection of streamlines is a unique combination of tools which enables the in-vivo delineation and analysis of anatomically well-known tracts. This, however, currently requires complex, computationally intensive processing pipelines which take a lot of time to set up. TractSeg is a novel convolutional neural network-based approach that directly segments tracts in the field of fiber orientation distribution function (fODF) peaks without using tractography, image registration or parcellation. We demonstrate that the proposed approach is much faster than existing methods while providing unprecedented accuracy, using a population of 105 subjects from the Human Connectome Project. We also show initial evidence that TractSeg is able to generalize to differently acquired data sets for most of the bundles. The code and data are openly available at https://github.com/MIC-DKFZ/TractSeg/ and https://doi.org/10.5281/zenodo.1088277, respectively. •Fast white matter tract segmentation with high accuracy.•No need for additional techniques like registration, tractography or parcellation.•Extensive evaluation for 72 tracts with comparison to six other segmentation methods.•Openly available dataset of reference tract delineations.•Openly available code with pretrained model.
AbstractList The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains. Diffusion-weighted MRI tractography in combination with region-based or clustering-based selection of streamlines is a unique combination of tools which enables the in-vivo delineation and analysis of anatomically well-known tracts. This, however, currently requires complex, computationally intensive processing pipelines which take a lot of time to set up. TractSeg is a novel convolutional neural network-based approach that directly segments tracts in the field of fiber orientation distribution function (fODF) peaks without using tractography, image registration or parcellation. We demonstrate that the proposed approach is much faster than existing methods while providing unprecedented accuracy, using a population of 105 subjects from the Human Connectome Project. We also show initial evidence that TractSeg is able to generalize to differently acquired data sets for most of the bundles. The code and data are openly available at https://github.com/MIC-DKFZ/TractSeg/ and https://doi.org/10.5281/zenodo.1088277, respectively.The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains. Diffusion-weighted MRI tractography in combination with region-based or clustering-based selection of streamlines is a unique combination of tools which enables the in-vivo delineation and analysis of anatomically well-known tracts. This, however, currently requires complex, computationally intensive processing pipelines which take a lot of time to set up. TractSeg is a novel convolutional neural network-based approach that directly segments tracts in the field of fiber orientation distribution function (fODF) peaks without using tractography, image registration or parcellation. We demonstrate that the proposed approach is much faster than existing methods while providing unprecedented accuracy, using a population of 105 subjects from the Human Connectome Project. We also show initial evidence that TractSeg is able to generalize to differently acquired data sets for most of the bundles. The code and data are openly available at https://github.com/MIC-DKFZ/TractSeg/ and https://doi.org/10.5281/zenodo.1088277, respectively.
The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains. Diffusion-weighted MRI tractography in combination with region-based or clustering-based selection of streamlines is a unique combination of tools which enables the in-vivo delineation and analysis of anatomically well-known tracts. This, however, currently requires complex, computationally intensive processing pipelines which take a lot of time to set up. TractSeg is a novel convolutional neural network-based approach that directly segments tracts in the field of fiber orientation distribution function (fODF) peaks without using tractography, image registration or parcellation. We demonstrate that the proposed approach is much faster than existing methods while providing unprecedented accuracy, using a population of 105 subjects from the Human Connectome Project. We also show initial evidence that TractSeg is able to generalize to differently acquired data sets for most of the bundles. The code and data are openly available at https://github.com/MIC-DKFZ/TractSeg/ and https://doi.org/10.5281/zenodo.1088277, respectively.
The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains. Diffusion-weighted MRI tractography in combination with region-based or clustering-based selection of streamlines is a unique combination of tools which enables the in-vivo delineation and analysis of anatomically well-known tracts. This, however, currently requires complex, computationally intensive processing pipelines which take a lot of time to set up. TractSeg is a novel convolutional neural network-based approach that directly segments tracts in the field of fiber orientation distribution function (fODF) peaks without using tractography, image registration or parcellation. We demonstrate that the proposed approach is much faster than existing methods while providing unprecedented accuracy, using a population of 105 subjects from the Human Connectome Project. We also show initial evidence that TractSeg is able to generalize to differently acquired data sets for most of the bundles. The code and data are openly available at https://github.com/MIC-DKFZ/TractSeg/ and https://doi.org/10.5281/zenodo.1088277, respectively. •Fast white matter tract segmentation with high accuracy.•No need for additional techniques like registration, tractography or parcellation.•Extensive evaluation for 72 tracts with comparison to six other segmentation methods.•Openly available dataset of reference tract delineations.•Openly available code with pretrained model.
Author Neher, Peter
Wasserthal, Jakob
Maier-Hein, Klaus H.
Author_xml – sequence: 1
  givenname: Jakob
  surname: Wasserthal
  fullname: Wasserthal, Jakob
  email: j.wasserthal@dkfz.de
  organization: Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
– sequence: 2
  givenname: Peter
  surname: Neher
  fullname: Neher, Peter
  email: p.neher@dkfz.de
  organization: Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
– sequence: 3
  givenname: Klaus H.
  surname: Maier-Hein
  fullname: Maier-Hein, Klaus H.
  email: k.maier-hein@dkfz.de
  organization: Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30086412$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEUhoNU-mX_ggx4481sTzL5mAERtdgqFHrReh0yyZk160ymJhml_94sWxX2auGQhPCch8N7zshRmAMSUlFYUaDycrMKuMTZT2aNKwa0XYEqBS_IKYVO1J1Q7Gj7Fk3dUtqdkLOUNgDQUd4ek5MGoJWcslPy7iEam-9xXdXVtUm5MsFVxtolmozV7---nJPJGWOVt2SVcD1hyCb7ObwiLwczJrx4vs_Jt-vPD1df6tu7m69XH29rK5TItXSdFY0Cioy3vDeub3o2OCfLL1PUOtfwvgPTCabYIFRvFKMDRUk719MWm3Pydud9jPPPBVPWk08Wx9EEnJekGbRCCi6lLOibPXQzLzGU6TSjjHGqgPNCvX6mln5Cpx9jiTI-6b-5FKDdATbOKUUc_iEU9HYFeqP_r0BvV6BBlYLS-n6v1fpdXCVAPx4i-LQTYIn0l8eok_UYLDof0WbtZn-I5MOexI4-eGvGH_h0mOIPDhi9gQ
CitedBy_id crossref_primary_10_1016_j_cortex_2022_09_006
crossref_primary_10_3389_fnagi_2021_668559
crossref_primary_10_1016_j_pnpbp_2024_111083
crossref_primary_10_1002_jmri_28964
crossref_primary_10_1016_j_neuroimage_2020_116923
crossref_primary_10_1111_psyp_13871
crossref_primary_10_1038_s41598_021_95238_6
crossref_primary_10_1016_j_neuroimage_2021_118706
crossref_primary_10_1007_s11548_018_1883_7
crossref_primary_10_1016_j_dcn_2024_101341
crossref_primary_10_1016_j_neuroimage_2021_117986
crossref_primary_10_1016_j_nicl_2025_103758
crossref_primary_10_1016_j_mri_2018_11_014
crossref_primary_10_1016_j_bpsc_2023_03_008
crossref_primary_10_3389_fnins_2024_1333243
crossref_primary_10_1007_s00406_023_01598_7
crossref_primary_10_1016_j_neuroimage_2020_117583
crossref_primary_10_1016_j_bpsc_2022_09_013
crossref_primary_10_1016_j_neuroimage_2023_120004
crossref_primary_10_1016_j_jad_2022_03_039
crossref_primary_10_2463_mrms_rev_2024_0007
crossref_primary_10_1016_j_neurobiolaging_2024_09_013
crossref_primary_10_1007_s00429_024_02812_5
crossref_primary_10_1073_pnas_2219666120
crossref_primary_10_1186_s13229_022_00499_1
crossref_primary_10_1016_j_neuroimage_2020_117329
crossref_primary_10_1038_s41597_022_01833_1
crossref_primary_10_1016_j_media_2024_103297
crossref_primary_10_1007_s00429_024_02836_x
crossref_primary_10_1016_j_media_2019_101559
crossref_primary_10_1002_mrm_28730
crossref_primary_10_3389_fradi_2024_1416672
crossref_primary_10_1038_s41386_020_0691_2
crossref_primary_10_1186_s12883_023_03284_6
crossref_primary_10_1371_journal_pone_0282549
crossref_primary_10_1016_j_media_2020_101791
crossref_primary_10_1016_j_neuroimage_2019_116121
crossref_primary_10_1002_hbm_26662
crossref_primary_10_1007_s00429_022_02503_z
crossref_primary_10_1093_sleep_zsab007
crossref_primary_10_1002_hbm_25697
crossref_primary_10_1016_j_neuroimage_2023_120376
crossref_primary_10_1016_j_nicl_2024_103580
crossref_primary_10_1007_s10072_024_07951_5
crossref_primary_10_3389_fnsys_2021_692152
crossref_primary_10_1038_s41390_024_03463_2
crossref_primary_10_3390_s24216981
crossref_primary_10_1002_hbm_24917
crossref_primary_10_1016_j_media_2024_103165
crossref_primary_10_3389_fonc_2022_1008442
crossref_primary_10_1007_s00415_023_12086_2
crossref_primary_10_1016_j_dcn_2024_101440
crossref_primary_10_1016_j_neuroimage_2021_117967
crossref_primary_10_1016_j_brainres_2023_148289
crossref_primary_10_3390_children10010045
crossref_primary_10_1080_21678421_2020_1733020
crossref_primary_10_1016_j_nicl_2025_103738
crossref_primary_10_3389_fneur_2022_934650
crossref_primary_10_1016_j_biopsych_2022_09_011
crossref_primary_10_1016_j_media_2022_102431
crossref_primary_10_1016_j_neuroimage_2023_120248
crossref_primary_10_1016_j_neuroscience_2025_03_013
crossref_primary_10_1016_j_neuroimage_2024_120723
crossref_primary_10_1080_17474086_2021_1893687
crossref_primary_10_1016_j_media_2021_102129
crossref_primary_10_1016_j_media_2023_102968
crossref_primary_10_1093_braincomms_fcae295
crossref_primary_10_1016_j_media_2021_102126
crossref_primary_10_1007_s00429_024_02872_7
crossref_primary_10_1038_s42003_024_07274_3
crossref_primary_10_3389_fpsyt_2024_1244694
crossref_primary_10_7554_eLife_55444
crossref_primary_10_1002_jmri_26794
crossref_primary_10_1007_s10803_023_05980_1
crossref_primary_10_1016_j_mri_2025_110326
crossref_primary_10_1016_j_nicl_2020_102359
crossref_primary_10_1109_JBHI_2023_3273771
crossref_primary_10_1016_j_neuroimage_2021_118704
crossref_primary_10_1111_cgf_14724
crossref_primary_10_3389_fnins_2023_1191999
crossref_primary_10_1016_j_nicl_2022_103130
crossref_primary_10_1016_j_jns_2023_120726
crossref_primary_10_1038_s43588_021_00126_8
crossref_primary_10_1080_21678421_2021_1962353
crossref_primary_10_7554_eLife_82088
crossref_primary_10_1093_brain_awac203
crossref_primary_10_1016_j_zemedi_2021_11_004
crossref_primary_10_1002_hbm_25632
crossref_primary_10_1002_mrm_30187
crossref_primary_10_1016_j_neuroimage_2019_116439
crossref_primary_10_1016_j_neuroimage_2022_119168
crossref_primary_10_1016_j_biopsych_2025_01_005
crossref_primary_10_1016_j_neulet_2023_137574
crossref_primary_10_3389_fnimg_2023_1129587
crossref_primary_10_1016_j_nicl_2019_101883
crossref_primary_10_1002_mp_16478
crossref_primary_10_1016_j_euroneuro_2021_04_007
crossref_primary_10_1136_bmjopen_2020_044491
crossref_primary_10_1016_j_nicl_2024_103679
crossref_primary_10_1002_alz_14156
crossref_primary_10_3389_fninf_2022_859973
crossref_primary_10_1007_s10548_020_00771_8
crossref_primary_10_1162_nol_a_00153
crossref_primary_10_1016_j_nicl_2022_103284
crossref_primary_10_1016_j_mri_2021_10_017
crossref_primary_10_1016_j_media_2020_101761
crossref_primary_10_3389_fneur_2022_972590
crossref_primary_10_1016_j_neucom_2020_05_070
crossref_primary_10_1089_neu_2021_0447
crossref_primary_10_1016_j_jpedcp_2024_200101
crossref_primary_10_1109_TBME_2020_2977531
crossref_primary_10_1002_mp_15495
crossref_primary_10_1038_s41537_025_00586_1
crossref_primary_10_1016_j_pnpbp_2020_110125
crossref_primary_10_1002_hbm_26393
crossref_primary_10_1016_j_neuroimage_2020_117406
crossref_primary_10_1088_1361_6560_ac0d90
crossref_primary_10_1162_imag_a_00050
crossref_primary_10_1002_dmrr_3772
crossref_primary_10_1016_j_neuroimage_2021_118004
crossref_primary_10_1016_j_nicl_2022_103151
crossref_primary_10_1016_j_mri_2024_05_009
crossref_primary_10_1093_braincomms_fcac132
crossref_primary_10_1016_j_yfrne_2022_101031
crossref_primary_10_1136_jnnp_2023_331183
crossref_primary_10_1002_hbm_25859
crossref_primary_10_1002_hbm_26706
crossref_primary_10_1016_j_cortex_2023_01_006
crossref_primary_10_1016_j_jns_2021_117584
crossref_primary_10_1093_brain_awac265
crossref_primary_10_1089_neur_2023_0043
crossref_primary_10_1016_j_compbiomed_2024_109334
crossref_primary_10_1016_j_neuroimage_2020_117402
crossref_primary_10_1016_j_cortex_2023_11_006
crossref_primary_10_1016_j_zemedi_2018_11_002
crossref_primary_10_1016_j_brs_2024_07_019
crossref_primary_10_1093_cercor_bhab500
crossref_primary_10_1016_j_neuroimage_2021_118451
crossref_primary_10_1073_pnas_2217232120
crossref_primary_10_1007_s00429_023_02718_8
crossref_primary_10_1007_s12021_020_09497_1
crossref_primary_10_1093_cercor_bhad125
crossref_primary_10_1093_cercor_bhae457
crossref_primary_10_1007_s11682_024_00906_6
crossref_primary_10_1016_j_media_2025_103482
crossref_primary_10_1016_j_neuroimage_2024_120766
crossref_primary_10_1162_imag_a_00144
crossref_primary_10_1016_j_neuroimage_2020_117070
crossref_primary_10_1186_s13063_023_07234_y
crossref_primary_10_1089_neu_2019_6852
crossref_primary_10_1007_s00429_024_02813_4
crossref_primary_10_1016_j_nicl_2021_102696
crossref_primary_10_1016_j_neuroimage_2021_117927
crossref_primary_10_3389_fnins_2022_866312
crossref_primary_10_1002_nbm_4904
crossref_primary_10_1016_j_neuroimage_2021_117934
crossref_primary_10_1016_j_nicl_2022_103059
crossref_primary_10_1016_j_nicl_2022_103057
crossref_primary_10_1109_JBHI_2020_3016306
crossref_primary_10_1038_s41598_024_67535_3
crossref_primary_10_2139_ssrn_4098561
crossref_primary_10_1038_s41467_022_32595_4
crossref_primary_10_1093_brain_awac126
crossref_primary_10_3389_fpsyt_2024_1323786
crossref_primary_10_3390_diagnostics13050911
crossref_primary_10_1002_jmri_27911
crossref_primary_10_3389_fneur_2022_837385
crossref_primary_10_1016_j_neucom_2019_12_050
crossref_primary_10_3390_brainsci15010082
crossref_primary_10_1109_TNNLS_2022_3213581
crossref_primary_10_1016_j_neuri_2022_100099
crossref_primary_10_1016_j_mri_2024_03_033
crossref_primary_10_1016_j_nicl_2020_102541
crossref_primary_10_1002_nbm_5267
crossref_primary_10_1016_j_cortex_2021_02_015
crossref_primary_10_1016_j_neuroimage_2020_116889
crossref_primary_10_1016_j_media_2021_102094
crossref_primary_10_1016_j_media_2021_102093
crossref_primary_10_3389_fnhum_2022_944908
crossref_primary_10_1016_j_bandc_2024_106204
crossref_primary_10_1016_j_media_2023_102893
crossref_primary_10_1093_brain_awae255
crossref_primary_10_1002_hbm_70071
crossref_primary_10_1016_j_neuroimage_2023_120086
crossref_primary_10_1111_jon_12964
crossref_primary_10_1016_j_neuroimage_2022_119475
crossref_primary_10_1007_s11682_023_00818_x
crossref_primary_10_1007_s10334_022_01033_3
crossref_primary_10_3389_fradi_2023_1238566
crossref_primary_10_1002_hbm_25382
crossref_primary_10_1089_neu_2022_0276
crossref_primary_10_1007_s12021_023_09636_4
crossref_primary_10_1212_WNL_0000000000209695
crossref_primary_10_1038_s43588_022_00250_z
crossref_primary_10_1007_s00415_023_11994_7
crossref_primary_10_2139_ssrn_4186501
crossref_primary_10_1016_j_dcn_2023_101211
crossref_primary_10_3390_diagnostics13243679
crossref_primary_10_1002_hbm_24964
crossref_primary_10_1016_j_neuroimage_2021_118442
crossref_primary_10_1038_s41598_023_28210_1
crossref_primary_10_1016_j_nicl_2022_103191
crossref_primary_10_1162_imag_a_00012
crossref_primary_10_1016_j_nicl_2021_102929
crossref_primary_10_1016_j_wneu_2022_05_042
crossref_primary_10_1016_j_bandl_2025_105537
crossref_primary_10_1016_j_ejrad_2023_111207
crossref_primary_10_1038_s41380_023_02390_8
crossref_primary_10_1016_j_neuroimage_2022_119029
crossref_primary_10_1038_s41380_021_01153_7
crossref_primary_10_1016_j_neuroimage_2022_119824
crossref_primary_10_1007_s00429_021_02382_w
crossref_primary_10_1038_s41390_020_01134_6
crossref_primary_10_1038_s42003_023_04741_1
crossref_primary_10_1038_s41380_022_01641_4
crossref_primary_10_1088_1741_2552_ab6aad
crossref_primary_10_1038_s41398_022_02091_w
crossref_primary_10_1089_neu_2024_0064
crossref_primary_10_1016_j_neuroimage_2020_116993
crossref_primary_10_1016_j_neuroimage_2021_118651
crossref_primary_10_1117_1_JMI_9_6_064002
crossref_primary_10_1038_s41598_022_27233_4
crossref_primary_10_1089_neu_2023_0099
crossref_primary_10_25259_SNI_982_2024
crossref_primary_10_1093_braincomms_fcad352
crossref_primary_10_1016_j_jpain_2024_104536
crossref_primary_10_1002_hbm_26497
crossref_primary_10_3389_fnins_2024_1403804
crossref_primary_10_1038_s42003_025_07587_x
crossref_primary_10_1038_s42003_024_07414_9
crossref_primary_10_1016_j_pnpbp_2025_111297
crossref_primary_10_1002_mrm_30429
crossref_primary_10_1007_s12565_023_00715_9
crossref_primary_10_1001_jamanetworkopen_2021_0994
crossref_primary_10_1177_15330338221131387
crossref_primary_10_1038_s41598_022_05665_2
crossref_primary_10_1016_j_nicl_2022_103097
crossref_primary_10_1093_braincomms_fcab065
crossref_primary_10_1523_JNEUROSCI_0608_22_2023
crossref_primary_10_1002_hbm_26800
crossref_primary_10_1016_j_jneumeth_2023_109933
crossref_primary_10_1162_imag_a_00353
crossref_primary_10_1371_journal_pone_0244766
crossref_primary_10_1002_brb3_3250
crossref_primary_10_1002_hbm_25598
crossref_primary_10_3390_jpm12122024
crossref_primary_10_3389_fnins_2024_1376570
crossref_primary_10_1109_TMI_2020_3034038
crossref_primary_10_1111_cns_14322
crossref_primary_10_3389_fnins_2024_1385847
crossref_primary_10_1016_j_nicl_2024_103711
crossref_primary_10_1038_s41531_023_00565_2
crossref_primary_10_1038_s41386_021_01088_1
crossref_primary_10_1016_j_brainres_2024_149114
crossref_primary_10_1016_j_neuroimage_2022_118909
crossref_primary_10_1016_j_neuropsychologia_2023_108761
crossref_primary_10_1016_j_neuroimage_2020_117147
crossref_primary_10_1016_j_media_2022_102454
crossref_primary_10_1093_braincomms_fcae027
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1093_cercor_bhac415
crossref_primary_10_1016_j_bpsc_2024_04_002
crossref_primary_10_1093_cercor_bhad197
crossref_primary_10_1016_j_neuroimage_2022_119672
crossref_primary_10_1038_s41598_023_32924_7
crossref_primary_10_1016_j_neuroimage_2023_120288
crossref_primary_10_1016_j_nbas_2023_100067
crossref_primary_10_1016_j_brainres_2023_148440
crossref_primary_10_1016_j_neuroimage_2021_118519
crossref_primary_10_1038_s41597_024_03058_w
crossref_primary_10_1016_j_clineuro_2021_107001
crossref_primary_10_1002_jmri_29561
crossref_primary_10_1016_j_nicl_2022_103310
crossref_primary_10_1016_j_mri_2019_04_013
crossref_primary_10_1007_s00429_019_01907_8
crossref_primary_10_1016_j_dcn_2025_101537
crossref_primary_10_1002_hbm_70143
crossref_primary_10_1038_s41598_020_74054_4
crossref_primary_10_52294_e6198273_b8e3_4b63_babb_6e6b0da10669
crossref_primary_10_3389_fneur_2021_681467
crossref_primary_10_1002_hbm_26462
crossref_primary_10_1016_j_media_2023_102759
crossref_primary_10_2139_ssrn_4157505
crossref_primary_10_3389_fradi_2022_866974
crossref_primary_10_1016_j_msard_2025_106335
crossref_primary_10_1007_s00429_020_02129_z
crossref_primary_10_1007_s13760_024_02675_x
crossref_primary_10_1002_mrm_29496
crossref_primary_10_1016_j_neucom_2021_04_094
crossref_primary_10_1002_mp_17505
crossref_primary_10_1016_j_neuroimage_2020_116703
crossref_primary_10_1016_j_neuroimage_2022_118934
crossref_primary_10_1007_s11263_020_01384_1
crossref_primary_10_3389_fnagi_2021_760663
crossref_primary_10_1007_s13760_023_02170_9
crossref_primary_10_1038_s41380_024_02821_0
crossref_primary_10_1002_hbm_70132
crossref_primary_10_1007_s12021_022_09593_4
crossref_primary_10_1109_TMI_2021_3139507
crossref_primary_10_1016_j_bpsc_2020_07_007
crossref_primary_10_1093_braincomms_fcae130
crossref_primary_10_1177_08830738221083487
crossref_primary_10_1016_j_media_2023_102766
crossref_primary_10_1371_journal_pone_0304449
crossref_primary_10_1016_j_nicl_2022_103209
crossref_primary_10_3389_fpsyt_2024_1304528
crossref_primary_10_1016_j_molmet_2022_101527
crossref_primary_10_3389_fnins_2024_1394681
crossref_primary_10_1038_s41598_023_29205_8
crossref_primary_10_1097_j_pain_0000000000003069
crossref_primary_10_1097_RMR_0000000000000212
crossref_primary_10_1038_s41467_023_44591_3
crossref_primary_10_1016_j_compbiomed_2021_104643
crossref_primary_10_3389_fnimg_2024_1359589
crossref_primary_10_1007_s00259_023_06530_8
crossref_primary_10_1016_j_jadohealth_2024_10_007
crossref_primary_10_1126_sciadv_adi0616
crossref_primary_10_1002_hbm_70002
crossref_primary_10_1002_hbm_25359
crossref_primary_10_1002_hbm_70121
crossref_primary_10_1016_j_bpsc_2025_02_003
crossref_primary_10_3389_fnins_2022_986873
crossref_primary_10_1002_mds_29578
Cites_doi 10.1016/j.neuroimage.2013.04.127
10.2307/3001968
10.1109/TMI.2007.905826
10.3389/fninf.2011.00023
10.1016/j.neuroimage.2013.05.057
10.1016/j.neuroimage.2011.06.020
10.1016/j.neuroimage.2008.12.010
10.3389/fninf.2014.00008
10.1007/s00429-015-1179-4
10.1371/journal.pone.0049790
10.1038/s41467-017-01285-x
10.1016/j.neuroimage.2009.01.065
10.1016/j.media.2004.07.004
10.1016/j.neuroimage.2014.04.009
10.3389/fnins.2012.00175
10.1186/s12880-015-0068-x
10.1007/s12021-016-9316-7
10.1109/TMI.2007.906785
10.1016/j.neuroimage.2017.10.058
10.1002/hbm.23082
10.1002/hbm.23609
10.1371/journal.pone.0061892
10.1007/s10851-008-0071-8
10.1016/j.nicl.2016.11.023
10.1016/j.neuroimage.2014.04.048
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2014.07.061
10.1016/j.neuroimage.2010.07.055
10.1016/j.media.2007.06.004
10.1016/j.neuroimage.2007.02.016
10.1109/TMI.2006.873299
10.1016/j.neuroimage.2014.08.001
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
2018. The Authors
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2018. The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOI 10.1016/j.neuroimage.2018.07.070
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest One Psychology
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 253
ExternalDocumentID 30086412
10_1016_j_neuroimage_2018_07_070
S1053811918306864
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
ACLOT
CITATION
~HD
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c575t-6d9c53701e2484badb3b2fdd6c53271cdd34b90a95272f57ba721f1e619db18e3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Sun Sep 28 12:17:47 EDT 2025
Sat Aug 23 13:20:20 EDT 2025
Mon Jul 21 05:59:15 EDT 2025
Wed Oct 01 03:43:14 EDT 2025
Thu Apr 24 22:53:29 EDT 2025
Fri Feb 23 02:45:22 EST 2024
Tue Aug 26 20:08:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Diffusion-weighted imaging
Deep learning
Fiber tractography
Segmentation
Machine learning
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-6d9c53701e2484badb3b2fdd6c53271cdd34b90a95272f57ba721f1e619db18e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811918306864
PMID 30086412
PQID 2122417044
PQPubID 2031077
PageCount 15
ParticipantIDs proquest_miscellaneous_2085654666
proquest_journals_2122417044
pubmed_primary_30086412
crossref_primary_10_1016_j_neuroimage_2018_07_070
crossref_citationtrail_10_1016_j_neuroimage_2018_07_070
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_07_070
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_07_070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Dayan, Monohan, Pandya, Kuceyeski, Nguyen, Raj, Gauthier (bib10) 2016; 37
Garyfallidis, Côté, Rheault, Sidhu, Hau, Petit, Fortin, Cunanne, Descoteaux (bib17) 2017
Hirjak, Thomann, Wolf, Kubera, Goch, Hering, Maier-Hein (bib20) 2017
Bustillo (bib4) 2016
Wilcoxon (bib46) 1945; 1
Clayden, Storkey, Bastin (bib7) 2007; 26
Wang, Benner, Sorensen, Wedeen (bib44) 2007
O'Donnell, Westin (bib30) 2007; 26
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib6) 2016
Garyfallidis, Brett, Correia, Williams, Nimmo-Smith (bib15) 2012; 6
Jin, Shi, Zhan, Gutman, de Zubicaray, McMahon, Wright, Toga, Thompson (bib22) 2014; 100
Dumoulin, Visin (bib13) 2016
Jonasson, Bresson, Hagmann, Cuisenaire, Meuli, Thiran (bib2a) 2005; 9
Hernández, Guerrero, Cecilia, García, Inuggi, Jbabdi, Behrens, Sotiropoulos (bib19) 2013; 8
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib18) 2013; 80
O'Donnell, Suter, Rigolo, Kahali, Zhang, Norton, Albi, Olubiyi, Meola, Essayed, Unadkat, Ciris, Wells, Rathi, Westin, Golby (bib28) 2016; 13
Yendiki, Panneck, Srinivasan, Stevens, Zöllei, Augustinack, Wang, Salat, Ehrlich, Behrens, Jbabdi, Gollub, Fischl (bib48) 2011; 5
Bells, Cercignani, Deoni, Assaf, Pasternak, Evans, Leemans, Jones (bib3) 2011; vol. 678
Lenglet, Rousson, Deriche (bib25) 2006; 25
Rokem, Yeatman, Pestilli, Wandell (bib34) 2013
Tournier, Calamante, Connelly (bib41) 2010
Labra, Guevara, Duclap, Houenou, Poupon, Mangin, Figueroa (bib24) 2017; 15
Thiebaut de Schotten, ffytche, Bizzi, Dell'Acqua, Allin, Walshe, Murray, Williams, Murphy, Catani (bib40) 2011; 54
Stieltjes, Brunner, Maier-Hein, Laun (bib38) 2013
Bazin, Ye, Bogovic, Shiee, Reich, Prince, Pham (bib2) 2011; 58
Ratnarajah, Qiu (bib32) 2014; 102
O'Donnell, Wells, Golby, Westin (bib29) 2012; 15
Yeatman, Dougherty, Myall, Wandell, Feldman (bib47) 2012; 7
Taha, Hanbury (bib39) 2015; 15
Wassermann, Makris, Rathi, Shenton, Kikinis, Kubicki, Westin (bib45) 2016; 221
Jeurissen, Tournier, Dhollander, Connelly, Sijbers (bib21) 2014; 103
Avants, Epstein, Grossman, Gee (bib1) 2008; 12
Maier-Hein, Neher, Houde, Côté, Garyfallidis, Zhong, Chamberland, Yeh, Lin, Ji, Reddick, Glass, Chen, Feng, Gao, Wu, Ma, Renjie, Li, Westin, Deslauriers-Gauthier, González, Paquette, St-Jean, Girard, Rheault, Sidhu, Tax, Guo, Mesri, Dávid, Froeling, Heemskerk, Leemans, Boré, Pinsard, Bedetti, Desrosiers, Brambati, Doyon, Sarica, Vasta, Cerasa, Quattrone, Yeatman, Khan, Hodges, Alexander, Romascano, Barakovic, Auría, Esteban, Lemkaddem, Thiran, Cetingul, Odry, Mailhe, Nadar, Pizzagalli, Prasad, Villalon-Reina, Galvis, Thompson, Requejo, Laguna, Lacerda, Barrett, Dell'Acqua, Catani, Petit, Caruyer, Daducci, Dyrby, Holland-Letz, Hilgetag, Stieltjes, Descoteaux (bib26) 2017; 8
Zhang, Norton, Cai, Song, Wells, O'Donnell (bib49) 2017
Cook, Zhang, Avants, Yushkevich, Alexander, Gee, Ciccarelli, Thompson (bib9) 2005
Eckstein, Shattuck, Stein, McMahon, de Zubicaray, Wright, Thompson, Toga (bib14) 2009; 47
Çetin, Christensen, Abbott, Stephen, Mayer, Cañive, Bustillo, Pearlson, Calhoun (bib5) 2014; 97
Siless, Chang, Fischl, Yendiki (bib35) 2018; 166
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib37) 2014; 15
Tournier, Calamante, Connelly (bib42) 2007; 35
Clayden, Storkey, Maniega, Bastin (bib8) 2009; 45
Descoteaux, Deriche (bib11) 2009; 33
Kingma, Ba (bib23) 2014
Nair, Hinton (bib27) 2010
Guo, Chen, Zeng (bib1a) 2008; 366
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib43) 2013; 80
Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach, Glasser, Hernandez, Sapiro, Jenkinson, Feinberg, Yacoub, Lenglet, Van Essen, Ugurbil, Behrens (bib36) 2013; 80
Garyfallidis, Brett, Amirbekian, Rokem, Van Der Walt, Descoteaux, Nimmo-Smith (bib16) 2014; 8
Ronneberger, Fischer, Brox (bib33) 2015
Dieleman, Schlüter, Raffel, Olson, Sønderby, Nouri, Maturana, Thoma, Battenberg, Kelly, Fauw, Heilman, Almeida, McFee, Weideman, Takács, Rivaz, Crall, Sanders, Rasul, Liu, French, Degrave (bib12) 2015
Garyfallidis (10.1016/j.neuroimage.2018.07.070_bib15) 2012; 6
Çetin (10.1016/j.neuroimage.2018.07.070_bib5) 2014; 97
Hernández (10.1016/j.neuroimage.2018.07.070_bib19) 2013; 8
Guo (10.1016/j.neuroimage.2018.07.070_bib1a) 2008; 366
Kingma (10.1016/j.neuroimage.2018.07.070_bib23) 2014
Labra (10.1016/j.neuroimage.2018.07.070_bib24) 2017; 15
Garyfallidis (10.1016/j.neuroimage.2018.07.070_bib17) 2017
Jonasson (10.1016/j.neuroimage.2018.07.070_bib2a) 2005; 9
Dumoulin (10.1016/j.neuroimage.2018.07.070_bib13) 2016
Van Essen (10.1016/j.neuroimage.2018.07.070_bib43) 2013; 80
Sotiropoulos (10.1016/j.neuroimage.2018.07.070_bib36) 2013; 80
Jin (10.1016/j.neuroimage.2018.07.070_bib22) 2014; 100
Clayden (10.1016/j.neuroimage.2018.07.070_bib8) 2009; 45
Clayden (10.1016/j.neuroimage.2018.07.070_bib7) 2007; 26
Wang (10.1016/j.neuroimage.2018.07.070_bib44) 2007
Garyfallidis (10.1016/j.neuroimage.2018.07.070_bib16) 2014; 8
Thiebaut de Schotten (10.1016/j.neuroimage.2018.07.070_bib40) 2011; 54
Taha (10.1016/j.neuroimage.2018.07.070_bib39) 2015; 15
Maier-Hein (10.1016/j.neuroimage.2018.07.070_bib26) 2017; 8
Descoteaux (10.1016/j.neuroimage.2018.07.070_bib11) 2009; 33
Dieleman (10.1016/j.neuroimage.2018.07.070_bib12) 2015
Lenglet (10.1016/j.neuroimage.2018.07.070_bib25) 2006; 25
Dayan (10.1016/j.neuroimage.2018.07.070_bib10) 2016; 37
O'Donnell (10.1016/j.neuroimage.2018.07.070_bib29) 2012; 15
Ratnarajah (10.1016/j.neuroimage.2018.07.070_bib32) 2014; 102
Jeurissen (10.1016/j.neuroimage.2018.07.070_bib21) 2014; 103
Çiçek (10.1016/j.neuroimage.2018.07.070_bib6) 2016
Glasser (10.1016/j.neuroimage.2018.07.070_bib18) 2013; 80
O'Donnell (10.1016/j.neuroimage.2018.07.070_bib28) 2016; 13
Avants (10.1016/j.neuroimage.2018.07.070_bib1) 2008; 12
Tournier (10.1016/j.neuroimage.2018.07.070_bib41) 2010
Zhang (10.1016/j.neuroimage.2018.07.070_bib49) 2017
Nair (10.1016/j.neuroimage.2018.07.070_bib27) 2010
Wilcoxon (10.1016/j.neuroimage.2018.07.070_bib46) 1945; 1
Hirjak (10.1016/j.neuroimage.2018.07.070_bib20) 2017
Wassermann (10.1016/j.neuroimage.2018.07.070_bib45) 2016; 221
O'Donnell (10.1016/j.neuroimage.2018.07.070_bib30) 2007; 26
Tournier (10.1016/j.neuroimage.2018.07.070_bib42) 2007; 35
Eckstein (10.1016/j.neuroimage.2018.07.070_bib14) 2009; 47
Siless (10.1016/j.neuroimage.2018.07.070_bib35) 2018; 166
Cook (10.1016/j.neuroimage.2018.07.070_bib9) 2005
Srivastava (10.1016/j.neuroimage.2018.07.070_bib37) 2014; 15
Yeatman (10.1016/j.neuroimage.2018.07.070_bib47) 2012; 7
Bustillo (10.1016/j.neuroimage.2018.07.070_bib4) 2016
Rokem (10.1016/j.neuroimage.2018.07.070_bib34) 2013
Bazin (10.1016/j.neuroimage.2018.07.070_bib2) 2011; 58
Bells (10.1016/j.neuroimage.2018.07.070_bib3) 2011; vol. 678
Ronneberger (10.1016/j.neuroimage.2018.07.070_bib33) 2015
Stieltjes (10.1016/j.neuroimage.2018.07.070_bib38) 2013
Yendiki (10.1016/j.neuroimage.2018.07.070_bib48) 2011; 5
References_xml – volume: 35
  start-page: 1459
  year: 2007
  end-page: 1472
  ident: bib42
  article-title: Robust determination of the fiber orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: Neuroimage
– volume: 9
  start-page: 223
  year: 2005
  end-page: 236
  ident: bib2a
  article-title: White matter fiber tract segmentation in DT-MRI using geometric flows
  publication-title: Med. Image Anal.
– year: 2017
  ident: bib20
  article-title: White matter microstructure variations contribute to neurological soft signs in healthy adults
  publication-title: Hum. Brain Mapp.
– volume: 25
  start-page: 685
  year: 2006
  end-page: 700
  ident: bib25
  article-title: DTI segmentation by statistical surface evolution
  publication-title: IEEE Trans. Med. Imag.
– volume: 37
  start-page: 989
  year: 2016
  end-page: 1004
  ident: bib10
  article-title: Profilometry: a new statistical framework for the characterization of white matter pathways, with application to multiple sclerosis
  publication-title: Hum. Brain Mapp.
– volume: 8
  year: 2014
  ident: bib16
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front. Neuroinf.
– volume: 13
  start-page: 138
  year: 2016
  end-page: 153
  ident: bib28
  article-title: Automated white matter fiber tract identification in patients with brain tumors
  publication-title: Neuroimage Clin.
– year: 2015
  ident: bib33
  article-title: U-net: Convolutional Networks for Biomedical Image Segmentation
– volume: 47
  start-page: T82
  year: 2009
  end-page: T89
  ident: bib14
  article-title: Active fibers: matching deformable tract templates to diffusion tensor images
  publication-title: Neuroimage
– year: 2015
  ident: bib12
  article-title: Lasagne
– volume: 58
  start-page: 458
  year: 2011
  end-page: 468
  ident: bib2
  article-title: Direct segmentation of the major white matter tracts in diffusion tensor images
  publication-title: Neuroimage
– start-page: 15
  year: 2007
  ident: bib44
  article-title: Diffusion toolkit: a software package for diffusion imaging data processing and tractography
  publication-title: Proc Intl Soc Mag Reson Med
– volume: 5
  year: 2011
  ident: bib48
  article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy
  publication-title: Front. Neuroinf.
– start-page: 424
  year: 2016
  end-page: 432
  ident: bib6
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
  publication-title: Medical Image Computing and Computer-assisted Intervention – MICCAI 2016, Lecture Notes in Computer Science. Presented at the International Conference on Medical Image Computing and Computer-assisted Intervention
– volume: 33
  start-page: 239
  year: 2009
  end-page: 252
  ident: bib11
  article-title: High angular resolution diffusion MRI segmentation using region-based statistical surface evolution
  publication-title: J. Math. Imag. Vis.
– volume: 8
  start-page: 1349
  year: 2017
  ident: bib26
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun.
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  ident: bib1
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
– start-page: 18
  year: 2010
  ident: bib41
  article-title: Improved probabilistic streamlines tractography by 2nd order integration over fiber orientation distributions
  publication-title: Proc Intl Soc Mag Reson Med ISMRM
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib37
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2014
  ident: bib23
  article-title: Adam: a Method for Stochastic Optimization
– year: 2010
  ident: bib27
  article-title: Rectified Linear Units Improve Restricted Boltzmann Machines
– volume: 166
  start-page: 32
  year: 2018
  end-page: 45
  ident: bib35
  article-title: AnatomiCuts: hierarchical clustering of tractography streamlines based on anatomical similarity
  publication-title: Neuroimage
– volume: 102
  start-page: 913
  year: 2014
  end-page: 922
  ident: bib32
  article-title: Multi-label segmentation of white matter structures: application to neonatal brains
  publication-title: Neuroimage
– volume: 45
  start-page: 377
  year: 2009
  end-page: 385
  ident: bib8
  article-title: Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach
  publication-title: Neuroimage
– volume: 15
  year: 2015
  ident: bib39
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med. Imag.
– volume: 8
  year: 2013
  ident: bib19
  article-title: Accelerating fiber orientation estimation from diffusion weighted magnetic resonance imaging using GPUs
  publication-title: PLoS One
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib18
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
– volume: 7
  year: 2012
  ident: bib47
  article-title: Tract profiles of white matter properties: automating fiber-tract quantification
  publication-title: PLoS One
– volume: 26
  start-page: 1562
  year: 2007
  end-page: 1575
  ident: bib30
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE Trans. Med. Imag.
– volume: 103
  start-page: 411
  year: 2014
  end-page: 426
  ident: bib21
  article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
  publication-title: Neuroimage
– volume: 15
  start-page: 123
  year: 2012
  end-page: 130
  ident: bib29
  article-title: Unbiased groupwise registration of white matter tractography
  publication-title: Med. Image Comput. Comput.-Assist. Interv. MICCAI Int. Conf. Med. Image Comput. Comput.-Assist. Interv.
– volume: 80
  start-page: 125
  year: 2013
  end-page: 143
  ident: bib36
  article-title: Advances in diffusion MRI acquisition and processing in the human connectome project
  publication-title: Neuroimage, Mapp. Connectome
– volume: 54
  start-page: 49
  year: 2011
  end-page: 59
  ident: bib40
  article-title: Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography
  publication-title: Neuroimage
– year: 2013
  ident: bib38
  article-title: Diffusion Tensor Imaging: Introduction and Atlas
– start-page: 164
  year: 2005
  end-page: 171
  ident: bib9
  article-title: An automated approach to connectivity-based partitioning of brain structures
  publication-title: Medical Image Computing and Computer-assisted Intervention – MICCAI 2005, Lecture Notes in Computer Science. Presented at the International Conference on Medical Image Computing and Computer-assisted Intervention
– year: 2016
  ident: bib4
  article-title: Glutamatergic and Neuronal Dysfunction in gray and white Matter: a Spectroscopic Imaging Study in a Large Schizophrenia Sample Schizophr Bull
– year: 2013
  ident: bib34
  article-title: High Angular Resolution Diffusion MRI. Stanford Digital Repository
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib43
  article-title: The WU-minn human connectome project: an overview
  publication-title: Neuroimage, Mapp. Connectome
– year: 2016
  ident: bib13
  article-title: A Guide to Convolution Arithmetic for Deep Learning
– volume: vol. 678
  year: 2011
  ident: bib3
  article-title: Tractometry–comprehensive multi-modal quantitative assessment of white matter along specific tracts
  publication-title: Proc. ISMRM
– volume: 6
  year: 2012
  ident: bib15
  article-title: QuickBundles, a method for tractography simplification
  publication-title: Front. Neurosci.
– volume: 97
  start-page: 117
  year: 2014
  end-page: 126
  ident: bib5
  article-title: Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia
  publication-title: Neuroimage
– volume: 100
  start-page: 75
  year: 2014
  end-page: 90
  ident: bib22
  article-title: Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics
  publication-title: Neuroimage
– volume: 26
  start-page: 1555
  year: 2007
  end-page: 1561
  ident: bib7
  article-title: A probabilistic model-based approach to consistent white matter tract segmentation
  publication-title: IEEE Trans. Med. Imag.
– year: 2017
  ident: bib17
  article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering
  publication-title: Neuroimage
– start-page: 796
  year: 2017
  end-page: 799
  ident: bib49
  article-title: Comparison between two white matter segmentation strategies: an investigation into white matter segmentation consistency
  publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
– volume: 15
  start-page: 71
  year: 2017
  end-page: 86
  ident: bib24
  article-title: Fast automatic segmentation of white matter streamlines based on a multi-subject bundle atlas
  publication-title: Neuroinformatics
– volume: 221
  start-page: 4705
  year: 2016
  end-page: 4721
  ident: bib45
  article-title: The white matter query language: a novel approach for describing human white matter anatomy
  publication-title: Brain Struct. Funct.
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: bib46
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics Bull.
– volume: 366
  start-page: 2279
  year: 2008
  end-page: 2292
  ident: bib1a
  article-title: A geometric flow-based approach for diffusion tensor image segmentation
  publication-title: Philos. Trans. A Math Phys. Eng. Sci.
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2018.07.070_bib18
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 366
  start-page: 2279
  year: 2008
  ident: 10.1016/j.neuroimage.2018.07.070_bib1a
  article-title: A geometric flow-based approach for diffusion tensor image segmentation
  publication-title: Philos. Trans. A Math Phys. Eng. Sci.
– year: 2013
  ident: 10.1016/j.neuroimage.2018.07.070_bib34
– volume: 1
  start-page: 80
  year: 1945
  ident: 10.1016/j.neuroimage.2018.07.070_bib46
  article-title: Individual comparisons by ranking methods
  publication-title: Biometrics Bull.
  doi: 10.2307/3001968
– volume: 26
  start-page: 1555
  year: 2007
  ident: 10.1016/j.neuroimage.2018.07.070_bib7
  article-title: A probabilistic model-based approach to consistent white matter tract segmentation
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2007.905826
– volume: 5
  year: 2011
  ident: 10.1016/j.neuroimage.2018.07.070_bib48
  article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2011.00023
– volume: 80
  start-page: 125
  year: 2013
  ident: 10.1016/j.neuroimage.2018.07.070_bib36
  article-title: Advances in diffusion MRI acquisition and processing in the human connectome project
  publication-title: Neuroimage, Mapp. Connectome
  doi: 10.1016/j.neuroimage.2013.05.057
– volume: 58
  start-page: 458
  year: 2011
  ident: 10.1016/j.neuroimage.2018.07.070_bib2
  article-title: Direct segmentation of the major white matter tracts in diffusion tensor images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.020
– volume: 45
  start-page: 377
  year: 2009
  ident: 10.1016/j.neuroimage.2018.07.070_bib8
  article-title: Reproducibility of tract segmentation between sessions using an unsupervised modelling-based approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.010
– year: 2015
  ident: 10.1016/j.neuroimage.2018.07.070_bib12
– volume: 8
  year: 2014
  ident: 10.1016/j.neuroimage.2018.07.070_bib16
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2014.00008
– year: 2014
  ident: 10.1016/j.neuroimage.2018.07.070_bib23
– start-page: 164
  year: 2005
  ident: 10.1016/j.neuroimage.2018.07.070_bib9
  article-title: An automated approach to connectivity-based partitioning of brain structures
– start-page: 18
  year: 2010
  ident: 10.1016/j.neuroimage.2018.07.070_bib41
  article-title: Improved probabilistic streamlines tractography by 2nd order integration over fiber orientation distributions
– year: 2017
  ident: 10.1016/j.neuroimage.2018.07.070_bib17
  article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering
  publication-title: Neuroimage
– volume: 221
  start-page: 4705
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.070_bib45
  article-title: The white matter query language: a novel approach for describing human white matter anatomy
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-015-1179-4
– volume: 7
  year: 2012
  ident: 10.1016/j.neuroimage.2018.07.070_bib47
  article-title: Tract profiles of white matter properties: automating fiber-tract quantification
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049790
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.neuroimage.2018.07.070_bib37
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2016
  ident: 10.1016/j.neuroimage.2018.07.070_bib13
– volume: 8
  start-page: 1349
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.070_bib26
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01285-x
– start-page: 796
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.070_bib49
  article-title: Comparison between two white matter segmentation strategies: an investigation into white matter segmentation consistency
– volume: 47
  start-page: T82
  issue: Suppl. 2
  year: 2009
  ident: 10.1016/j.neuroimage.2018.07.070_bib14
  article-title: Active fibers: matching deformable tract templates to diffusion tensor images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.065
– volume: 9
  start-page: 223
  year: 2005
  ident: 10.1016/j.neuroimage.2018.07.070_bib2a
  article-title: White matter fiber tract segmentation in DT-MRI using geometric flows
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.07.004
– volume: 97
  start-page: 117
  year: 2014
  ident: 10.1016/j.neuroimage.2018.07.070_bib5
  article-title: Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.04.009
– volume: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2018.07.070_bib15
  article-title: QuickBundles, a method for tractography simplification
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00175
– volume: 15
  start-page: 123
  year: 2012
  ident: 10.1016/j.neuroimage.2018.07.070_bib29
  article-title: Unbiased groupwise registration of white matter tractography
– volume: vol. 678
  year: 2011
  ident: 10.1016/j.neuroimage.2018.07.070_bib3
  article-title: Tractometry–comprehensive multi-modal quantitative assessment of white matter along specific tracts
– year: 2016
  ident: 10.1016/j.neuroimage.2018.07.070_bib4
– volume: 15
  year: 2015
  ident: 10.1016/j.neuroimage.2018.07.070_bib39
  article-title: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med. Imag.
  doi: 10.1186/s12880-015-0068-x
– volume: 15
  start-page: 71
  year: 2017
  ident: 10.1016/j.neuroimage.2018.07.070_bib24
  article-title: Fast automatic segmentation of white matter streamlines based on a multi-subject bundle atlas
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-016-9316-7
– start-page: 424
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.070_bib6
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
– volume: 26
  start-page: 1562
  year: 2007
  ident: 10.1016/j.neuroimage.2018.07.070_bib30
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2007.906785
– volume: 166
  start-page: 32
  year: 2018
  ident: 10.1016/j.neuroimage.2018.07.070_bib35
  article-title: AnatomiCuts: hierarchical clustering of tractography streamlines based on anatomical similarity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.10.058
– year: 2013
  ident: 10.1016/j.neuroimage.2018.07.070_bib38
– volume: 37
  start-page: 989
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.070_bib10
  article-title: Profilometry: a new statistical framework for the characterization of white matter pathways, with application to multiple sclerosis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23082
– year: 2010
  ident: 10.1016/j.neuroimage.2018.07.070_bib27
– year: 2017
  ident: 10.1016/j.neuroimage.2018.07.070_bib20
  article-title: White matter microstructure variations contribute to neurological soft signs in healthy adults
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23609
– year: 2015
  ident: 10.1016/j.neuroimage.2018.07.070_bib33
– volume: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2018.07.070_bib19
  article-title: Accelerating fiber orientation estimation from diffusion weighted magnetic resonance imaging using GPUs
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061892
– volume: 33
  start-page: 239
  year: 2009
  ident: 10.1016/j.neuroimage.2018.07.070_bib11
  article-title: High angular resolution diffusion MRI segmentation using region-based statistical surface evolution
  publication-title: J. Math. Imag. Vis.
  doi: 10.1007/s10851-008-0071-8
– volume: 13
  start-page: 138
  year: 2016
  ident: 10.1016/j.neuroimage.2018.07.070_bib28
  article-title: Automated white matter fiber tract identification in patients with brain tumors
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2016.11.023
– volume: 100
  start-page: 75
  year: 2014
  ident: 10.1016/j.neuroimage.2018.07.070_bib22
  article-title: Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.04.048
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2018.07.070_bib43
  article-title: The WU-minn human connectome project: an overview
  publication-title: Neuroimage, Mapp. Connectome
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 103
  start-page: 411
  year: 2014
  ident: 10.1016/j.neuroimage.2018.07.070_bib21
  article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.07.061
– volume: 54
  start-page: 49
  year: 2011
  ident: 10.1016/j.neuroimage.2018.07.070_bib40
  article-title: Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.055
– volume: 12
  start-page: 26
  year: 2008
  ident: 10.1016/j.neuroimage.2018.07.070_bib1
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.06.004
– volume: 35
  start-page: 1459
  year: 2007
  ident: 10.1016/j.neuroimage.2018.07.070_bib42
  article-title: Robust determination of the fiber orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.016
– start-page: 15
  year: 2007
  ident: 10.1016/j.neuroimage.2018.07.070_bib44
  article-title: Diffusion toolkit: a software package for diffusion imaging data processing and tractography
– volume: 25
  start-page: 685
  year: 2006
  ident: 10.1016/j.neuroimage.2018.07.070_bib25
  article-title: DTI segmentation by statistical surface evolution
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2006.873299
– volume: 102
  start-page: 913
  issue: Pt 2
  year: 2014
  ident: 10.1016/j.neuroimage.2018.07.070_bib32
  article-title: Multi-label segmentation of white matter structures: application to neonatal brains
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.08.001
SSID ssj0009148
Score 2.6922274
Snippet The individual course of white matter fiber tracts is an important factor for analysis of white matter characteristics in healthy and diseased brains....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 239
SubjectTerms Adult
Autism
Collaboration
Connectome
Data collection
Data exchange
Datasets
Deep Learning
Diffusion Tensor Imaging - methods
Diffusion-weighted imaging
Fiber tractography
Humans
Image processing
Informatics
Machine learning
Magnetic resonance imaging
Medical imaging
Methods
Morphology
Nerve Net - anatomy & histology
Nerve Net - diagnostic imaging
Neural networks
Neuroimaging - methods
Neurosciences
Registration
Schizophrenia
Segmentation
Substantia alba
White Matter - anatomy & histology
White Matter - diagnostic imaging
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZ5QMilpHk026RFhVxFrIetFS2EELqEQnNpAnsTem1IyHqTrJf-_c7Y8u4lKQs-2Rpjj2Y0nzQvQs4A1YJdNp6hfWdg8UGlShVYIUNEg1mq2Fb7vKmu79SvcTnOB27zHFbZr4ntQh1nAc_Iz0XrAtKFUhfPLwy7RqF3NbfQ2CTbHKAKSrUe61XRXa66VLhSsiEMyJE8XXxXWy_yYQpaiwFew7aEJ7Ysfts8vQc_WzM02iMfMn6kl92EfyQbqd4nO7-zh_yA_LjFtKc_6Z4yOnLzhro6UhfCAktC0L_oNKDTtqYmbXAknaf7ac4_qg_J3ejn7dU1yx0SWACY1bAqmlBKXfAk1FB5F730YhJjBXeF5iFGqbwpnCmFFpNSewcbvglPsGuKng-TPCJb9axOx4QaLkOQPiRMfYNXuMIkUwkThKuAOg6I7hljQy4fjl0snmwfJ_ZoVyy1yFJbaLiKAeFLyueuhMYaNKbnve1TRGFRs7DOr0H7fUmbYUQHD9akPu2n2mZ1ntuV8A3It-VjUET0rrg6zRYwBsArZoZV1YB86kRk-bsSd46Ki8__f_kJ2cUv6aJlTslW87pIXwDzNP5rK9j_AJfQ_iQ
  priority: 102
  providerName: ProQuest
Title TractSeg - Fast and accurate white matter tract segmentation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918306864
https://dx.doi.org/10.1016/j.neuroimage.2018.07.070
https://www.ncbi.nlm.nih.gov/pubmed/30086412
https://www.proquest.com/docview/2122417044
https://www.proquest.com/docview/2085654666
Volume 183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED9KB2Nfxt7L2hUN9tWLLclWxPalCw3ZK5Q-IN-EXikZi1sah33b3747W04ZbBAYGBvLOiOf7yV09xPAW4xq0S9rl5F_z9Djo0qV0me58IEcZilDi_Y5q6aX8vO8nO_BuK-FobTKZPs7m95a69QyTNwc3iyXw3OMDNDd4HxjJKjOgTBBCf0LZfrdr7s0D13IrhyuFBn1Ttk8XY5Xixm5XKHmUpLXqIXxpG2L_-6i_hWCtq5o8ggephiSHXfDfAx7sX4C97-lVfKn8OGCSp_O4xXL2MSuG2brwKz3G4KFYD9p4YCtWlxN1lBPto5Xq1SDVD-Dy8nJxXiapV0SMo-hVpNVQftSqLyIXI6ks8EJxxchVNjKVeFDENLp3OqSK74olbM46VsUEWdOwRWjKJ7Dfn1dx5fAdCG8F85HKn_DV9hcR11x7bmtkDoMQPWMMT5BiNNOFj9Mnyv23dyx1BBLTa7wyAdQbClvOhiNHWh0z3vTl4miYTNo63egfb-l_UOcdqQ-7H-1SSq9Nrxdg1S5lAN4s32MykgrLLaO1xvsgwEsVYdV1QBedCKy_VxBs0dZ8Ff_NbQDeEB3XULNIew3t5v4GsOixh21co9nNVdHcO94fPb1lK6fvkxneP14Mjs9-w2G8Q9i
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNA9KkUCbgg1hIoMEhwHOFZ7MkIEEJAlNLlQirlNniWVCDiFOKo4qf4Rt7zklwA5VLJJ3veyH7zVr8N4DlataiXreek3zlqfGSpXAeeqRBJYeY6Nt0-T4rxqf40zac78LuvhaG0yl4mNoI6LgL9I38pmxCQybR-e_6D09Qoiq72IzRasjhMvy7QZVu-OfiA5_tCytHHyfsx76YK8ICmSc2LaEOuTCaS1EPty-iVl7MYC7wrjQgxKu1tVtpcGjnLjS_RSZqJhJ5G9GKYFO57Ba5qha-C_GOmZtPkV-i29C5XfCiE7TKH2nyypj_l1zlKCUooGzYtQ2lE8t_V4b_M3UbtjW7Bzc5eZe9aArsNO6m6A9eOu4j8XXg9oTKrz-mMcTYqlzUrq8jKEFbUgoJdUJCCzZsenqymlWyZzuZdvVN1D04vBXf3YbdaVOkBMCtUCMqHRKV2uEWZ2WQLaYMsC4SOAzA9Ylzo2pXT1Izvrs9L--Y2KHWEUpcZvLIBiDXkeduyYwsY2-Pe9SWpKEQd6pUtYF-tYTuzpTVHtoTe74_adeJj6TbEPoBn68fI-BTNKau0WOEaNJapEq0oBrDXksj6cxV5qlrIh__f_ClcH0-Oj9zRwcnhI7hBb9Vm6uzDbv1zlR6jvVX7Jw2RM_hy2Vz1B2SYOy0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGkCZeJr45GBAkeKzWfLS5aCCEGKeNwYTEJt1bSJPcxMT1BtfTtH-Nvw67Te9eAN3LpD61cdQ6ju3UP9sAL9GrRbtsqozse4YWH7dUoXyWSx_IYBYqtNU-j8uDU_VxXIw34HefC0Owyl4ntoo6zDz9I98VbQhI50rtThIs4sv-6O3Fz4w6SFGktW-n0YnIUby6xOPb_M3hPq71KyFGH07eH2Spw0Dm0U1psjIYX0id8yjUUFUuVLISkxBKvCs09yFIVZncmUJoMSl05fDANOERTx2h4sMocd4bcFNLJQlOpsd6VfCXqy4Nr5DZkHOTUEQdtqytVfl9ihqDwGXDtnwotUv-u2n8l-vbmsDRbdhOvit71wnbHdiI9V3Y-pyi8_fg9QmlXH2NZyxjIzdvmKsDc94vqBwFu6SABZu29TxZQyPZPJ5NU-5TfR9Or4V3D2CzntXxETDDpfey8pHS7nAKl5toSmG8cCVShwHonjHWp9Ll1EHjh-0xaud2xVJLLLW5xisfAF9SXnTlO9agMT3vbZ-eigrVoo1Zg3ZvSZtcmM41WZN6p19qm1TJ3K4EfwAvlo9RCVBkx9VxtsAx6DhTVlpZDuBhJyLLz5V0alVcPP7_5M9hC_eT_XR4fPQEbtFLdaCdHdhsfi3iU3S9mupZK-MMvl33pvoDF9w_aA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TractSeg+-+Fast+and+accurate+white+matter+tract+segmentation&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wasserthal%2C+Jakob&rft.au=Neher%2C+Peter&rft.au=Maier-Hein%2C+Klaus+H&rft.date=2018-12-01&rft.eissn=1095-9572&rft.volume=183&rft.spage=239&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.07.070&rft_id=info%3Apmid%2F30086412&rft.externalDocID=30086412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon