Circadian clocks guide dendritic cells into skin lymphatics

Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses 1 , 2 . Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood 3 , 4 . Here, we demonstrate that dendritic cells (DCs...

Full description

Saved in:
Bibliographic Details
Published inNature immunology Vol. 22; no. 11; pp. 1375 - 1381
Main Authors Holtkamp, Stephan J., Ince, Louise M., Barnoud, Coline, Schmitt, Madeleine T., Sinturel, Flore, Pilorz, Violetta, Pick, Robert, Jemelin, Stéphane, Mühlstädt, Michael, Boehncke, Wolf-Henning, Weber, Jasmin, Laubender, David, Philippou-Massier, Julia, Chen, Chien-Sin, Holtermann, Leonie, Vestweber, Dietmar, Sperandio, Markus, Schraml, Barbara U., Halin, Cornelia, Dibner, Charna, Oster, Henrik, Renkawitz, Jörg, Scheiermann, Christoph
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.11.2021
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1529-2908
1529-2916
1529-2916
DOI10.1038/s41590-021-01040-x

Cover

Abstract Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses 1 , 2 . Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood 3 , 4 . Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies. Scheiermann and colleagues show that circadian clocks control the infiltration of dendritic cells into skin lymphatics in mice and humans, with a peak migration to the lymph nodes during the rest phase.
AbstractList Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses 1,2 . Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood 3,4 . Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies.
Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses.sup.1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood.sup.3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies. Scheiermann and colleagues show that circadian clocks control the infiltration of dendritic cells into skin lymphatics in mice and humans, with a peak migration to the lymph nodes during the rest phase.
Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses 1 , 2 . Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood 3 , 4 . Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies. Scheiermann and colleagues show that circadian clocks control the infiltration of dendritic cells into skin lymphatics in mice and humans, with a peak migration to the lymph nodes during the rest phase.
Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies.Scheiermann and colleagues show that circadian clocks control the infiltration of dendritic cells into skin lymphatics in mice and humans, with a peak migration to the lymph nodes during the rest phase.
Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies.Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies.
Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses.sup.1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood.sup.3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies.
Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses . Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood . Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies.
Audience Academic
Author Weber, Jasmin
Boehncke, Wolf-Henning
Ince, Louise M.
Schmitt, Madeleine T.
Scheiermann, Christoph
Schraml, Barbara U.
Barnoud, Coline
Mühlstädt, Michael
Dibner, Charna
Halin, Cornelia
Renkawitz, Jörg
Chen, Chien-Sin
Sinturel, Flore
Pick, Robert
Vestweber, Dietmar
Sperandio, Markus
Holtermann, Leonie
Philippou-Massier, Julia
Jemelin, Stéphane
Laubender, David
Pilorz, Violetta
Holtkamp, Stephan J.
Oster, Henrik
Author_xml – sequence: 1
  givenname: Stephan J.
  surname: Holtkamp
  fullname: Holtkamp, Stephan J.
  organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich
– sequence: 2
  givenname: Louise M.
  orcidid: 0000-0002-2093-0876
  surname: Ince
  fullname: Ince, Louise M.
  organization: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva
– sequence: 3
  givenname: Coline
  orcidid: 0000-0001-5500-0217
  surname: Barnoud
  fullname: Barnoud, Coline
  organization: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva
– sequence: 4
  givenname: Madeleine T.
  surname: Schmitt
  fullname: Schmitt, Madeleine T.
  organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Laboratory ‘Cell Biology of the Immune System’, Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich
– sequence: 5
  givenname: Flore
  surname: Sinturel
  fullname: Sinturel, Flore
  organization: Department of Medicine, Division of Endocrinology, Diabetes, Nutrition and Patient Education, University Hospitals of Geneva, Department of Cell Physiology and Metabolism, University of Geneva, Diabetes Center, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva
– sequence: 6
  givenname: Violetta
  surname: Pilorz
  fullname: Pilorz, Violetta
  organization: Institute of Neurobiology, University of Lübeck
– sequence: 7
  givenname: Robert
  orcidid: 0000-0001-9785-8481
  surname: Pick
  fullname: Pick, Robert
  organization: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva
– sequence: 8
  givenname: Stéphane
  surname: Jemelin
  fullname: Jemelin, Stéphane
  organization: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva
– sequence: 9
  givenname: Michael
  surname: Mühlstädt
  fullname: Mühlstädt, Michael
  organization: Division of Dermatology and Venereology, Department of Medicine, University Hospitals of Geneva
– sequence: 10
  givenname: Wolf-Henning
  surname: Boehncke
  fullname: Boehncke, Wolf-Henning
  organization: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Division of Dermatology and Venereology, Department of Medicine, University Hospitals of Geneva
– sequence: 11
  givenname: Jasmin
  surname: Weber
  fullname: Weber, Jasmin
  organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich
– sequence: 12
  givenname: David
  surname: Laubender
  fullname: Laubender, David
  organization: Max Planck Institute of Neurobiology
– sequence: 13
  givenname: Julia
  surname: Philippou-Massier
  fullname: Philippou-Massier, Julia
  organization: Laboratory for Functional Genome Analysis, Gene Center Munich, Ludwig-Maximilians-Universität Munich
– sequence: 14
  givenname: Chien-Sin
  orcidid: 0000-0002-5847-1441
  surname: Chen
  fullname: Chen, Chien-Sin
  organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich
– sequence: 15
  givenname: Leonie
  surname: Holtermann
  fullname: Holtermann, Leonie
  organization: Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine
– sequence: 16
  givenname: Dietmar
  orcidid: 0000-0002-3517-732X
  surname: Vestweber
  fullname: Vestweber, Dietmar
  organization: Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine
– sequence: 17
  givenname: Markus
  orcidid: 0000-0002-7689-3613
  surname: Sperandio
  fullname: Sperandio, Markus
  organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich
– sequence: 18
  givenname: Barbara U.
  orcidid: 0000-0002-5801-0151
  surname: Schraml
  fullname: Schraml, Barbara U.
  organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich
– sequence: 19
  givenname: Cornelia
  orcidid: 0000-0002-7899-2850
  surname: Halin
  fullname: Halin, Cornelia
  organization: Institute of Pharmaceutical Sciences, ETH Zurich
– sequence: 20
  givenname: Charna
  surname: Dibner
  fullname: Dibner, Charna
  organization: Department of Medicine, Division of Endocrinology, Diabetes, Nutrition and Patient Education, University Hospitals of Geneva, Department of Cell Physiology and Metabolism, University of Geneva, Diabetes Center, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva
– sequence: 21
  givenname: Henrik
  surname: Oster
  fullname: Oster, Henrik
  organization: Institute of Neurobiology, University of Lübeck
– sequence: 22
  givenname: Jörg
  orcidid: 0000-0003-2856-3369
  surname: Renkawitz
  fullname: Renkawitz, Jörg
  organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Laboratory ‘Cell Biology of the Immune System’, Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich
– sequence: 23
  givenname: Christoph
  orcidid: 0000-0002-9212-0995
  surname: Scheiermann
  fullname: Scheiermann, Christoph
  email: christoph.scheiermann@unige.ch
  organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34663979$$D View this record in MEDLINE/PubMed
BookMark eNp9ktlq3DAUhkVJaZb2BXpRDL1pL5xqsyxTCIShSyBQ6HItZPnIUWJLU8kuk7ev3EknnVCCLiR0vv8_nOUYHfjgAaGXBJ8SzOS7xEnV4BJTUmKCOS43T9ARqWhT0oaIg90by0N0nNI1xoTXgj9Dh4wLwZq6OULvVy4a3TntCzMEc5OKfnYdFB34LrrJmcLAMKTC-SkU6cb5Yrgd11c6R9Jz9NTqIcGLu_sE_fj44fvqc3n55dPF6vyyNFVdTSXXppMYYyYaQQwwLrm2FfBOSMltK6uKt9ICJVC3jQQpjLG2rqylmrFatuwEnW1913M7QmfAT1EPah3dqOOtCtqp_Yh3V6oPv1S2ZoLybPDmziCGnzOkSY0uLXVpD2FOilaScc5FTTL6-gF6Heboc3kLVXNJKZX3VK8HUM7bkPOaxVSdC4kFFbhZqNP_UPl0MDqTZ2ld_t8TvN0TZGaCzdTrOSV18e3rPvvq36bsuvF3tBmgW8DEkFIEu0MIVsv-qO3-qLw_6s_-qE0WyQci46Y87LA01g2PS9lWmnIe30O879wjqt_R5dfp
CitedBy_id crossref_primary_10_1016_j_ajt_2023_12_022
crossref_primary_10_1146_annurev_immunol_090122_050842
crossref_primary_10_1007_s00281_021_00903_7
crossref_primary_10_1007_s00281_021_00905_5
crossref_primary_10_1016_j_bbih_2021_100394
crossref_primary_10_1038_s41467_022_34897_z
crossref_primary_10_3390_cancers17050732
crossref_primary_10_1038_s41467_025_57866_8
crossref_primary_10_1111_jpi_12899
crossref_primary_10_1111_pim_12903
crossref_primary_10_1007_s10585_023_10229_3
crossref_primary_10_1002_mco2_504
crossref_primary_10_1016_j_pbiomolbio_2025_01_003
crossref_primary_10_1016_j_smim_2022_101657
crossref_primary_10_1007_s00281_022_00957_1
crossref_primary_10_1172_JCI167339
crossref_primary_10_1371_journal_ppat_1012157
crossref_primary_10_1084_jem_20222008
crossref_primary_10_3389_fimmu_2022_1000951
crossref_primary_10_4049_immunohorizons_2400021
crossref_primary_10_1186_s40001_023_01158_8
crossref_primary_10_1177_07487304241232447
crossref_primary_10_1016_j_celrep_2023_112375
crossref_primary_10_1038_s41467_023_35979_2
crossref_primary_10_1016_j_ebiom_2024_105395
crossref_primary_10_1038_s41551_024_01209_3
crossref_primary_10_3389_fimmu_2022_977525
crossref_primary_10_3390_biom14030356
crossref_primary_10_1093_jleuko_qiad038
crossref_primary_10_1371_journal_pone_0291254
crossref_primary_10_1089_derm_2023_0074
crossref_primary_10_1038_s41586_022_05605_0
crossref_primary_10_37349_en_2023_00017
crossref_primary_10_1172_JCI175706
crossref_primary_10_1016_j_healun_2024_01_017
crossref_primary_10_1016_j_clp_2024_10_012
crossref_primary_10_1161_CIRCRESAHA_123_323619
crossref_primary_10_1016_j_jid_2025_01_001
crossref_primary_10_3390_vaccines10030443
crossref_primary_10_2217_fon_2022_1292
crossref_primary_10_1093_stmcls_sxad013
crossref_primary_10_1038_s41423_023_01032_x
crossref_primary_10_1172_jci_insight_184452
crossref_primary_10_3390_cells11111824
crossref_primary_10_1016_j_biopha_2024_117803
crossref_primary_10_1021_acsnano_4c09653
crossref_primary_10_1126_sciimmunol_abm2465
crossref_primary_10_3390_ijms252010926
crossref_primary_10_3389_fimmu_2025_1556057
crossref_primary_10_1016_j_esmoop_2023_102220
crossref_primary_10_1167_iovs_63_5_23
crossref_primary_10_1016_j_ajt_2024_03_004
crossref_primary_10_1016_j_cell_2024_04_015
crossref_primary_10_1111_imm_13747
crossref_primary_10_1161_CIRCRESAHA_123_322136
crossref_primary_10_1038_s41420_024_01960_1
crossref_primary_10_1007_s10753_024_02120_4
crossref_primary_10_1038_s41568_024_00681_y
crossref_primary_10_1007_s13346_024_01539_4
crossref_primary_10_1136_jitc_2024_010644
Cites_doi 10.1016/j.celrep.2016.01.048
10.1038/s41586-019-1087-5
10.1038/jid.2011.420
10.1016/j.immuni.2016.12.011
10.1093/intimm/dxq435
10.1126/science.1228456
10.1038/s41467-019-09234-6
10.1172/JCI21231
10.1073/pnas.0308709101
10.1038/s41467-017-02111-0
10.1016/S0092-8674(00)80059-8
10.1016/j.immuni.2004.06.014
10.1016/S0092-8674(00)81199-X
10.1038/s41577-018-0008-4
10.1073/pnas.1314066111
10.1038/ni.3750
10.1126/science.aad0512
10.1038/ni.2889
10.1016/j.immuni.2018.10.007
10.3389/fimmu.2019.00471
10.1073/pnas.1800431115
10.1007/978-1-61779-207-6_11
10.1016/j.immuni.2018.01.004
10.1084/jem.20091739
10.1016/j.cell.2013.07.014
10.1038/s41598-018-22021-5
10.1038/nm.3599
10.1084/jem.180.6.2089
10.1038/nri3386
10.1073/pnas.1905080116
10.1084/jem.20160723
10.1084/jem.20200798
10.4049/jimmunol.162.5.2472
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
COPYRIGHT 2021 Nature Publishing Group
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7T5
7TK
7TM
7U9
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
5PM
DOI 10.1038/s41590-021-01040-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


ProQuest Central Student
MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1529-2916
EndPage 1381
ExternalDocumentID PMC8553624
A680626098
34663979
10_1038_s41590_021_01040_x
Genre Letter
Research Support, Non-U.S. Gov't
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: ERC, SNSF, DFG
– fundername: ;
GroupedDBID ---
.55
0R~
123
29M
2FS
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABNNU
ABOCM
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C6C
CCPQU
CS3
DB5
DU5
EAD
EAP
EAS
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ISR
ITC
L-9
LK8
M1P
M7P
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WH7
X7M
Y6R
ZXP
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
AEIIB
PMFND
7QP
7QR
7T5
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c575t-4acd800036961ce3484af5e4d6884fb8554b8fe21e7b98e86ccff75ff2a3378b3
IEDL.DBID 7X7
ISSN 1529-2908
1529-2916
IngestDate Thu Aug 21 17:49:42 EDT 2025
Thu Sep 04 21:26:35 EDT 2025
Sat Aug 23 13:33:30 EDT 2025
Tue Jun 17 21:00:24 EDT 2025
Tue Jun 10 20:33:58 EDT 2025
Fri Jun 27 05:02:07 EDT 2025
Thu Apr 03 07:00:34 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
Tue Jul 01 01:02:33 EDT 2025
Fri Feb 21 02:39:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-4acd800036961ce3484af5e4d6884fb8554b8fe21e7b98e86ccff75ff2a3378b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Correspondence-1
content type line 23
ORCID 0000-0002-2093-0876
0000-0002-7899-2850
0000-0002-5847-1441
0000-0001-9785-8481
0000-0002-5801-0151
0000-0002-9212-0995
0000-0001-5500-0217
0000-0002-7689-3613
0000-0002-3517-732X
0000-0003-2856-3369
OpenAccessLink https://www.nature.com/articles/s41590-021-01040-x
PMID 34663979
PQID 2587482228
PQPubID 45782
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8553624
proquest_miscellaneous_2583444671
proquest_journals_2587482228
gale_infotracmisc_A680626098
gale_infotracacademiconefile_A680626098
gale_incontextgauss_ISR_A680626098
pubmed_primary_34663979
crossref_primary_10_1038_s41590_021_01040_x
crossref_citationtrail_10_1038_s41590_021_01040_x
springer_journals_10_1038_s41590_021_01040_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature immunology
PublicationTitleAbbrev Nat Immunol
PublicationTitleAlternate Nat Immunol
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Forster (CR1) 1999; 99
Nobis (CR20) 2019; 116
Sutton (CR27) 2017; 8
Weber (CR8) 2013; 339
Druzd (CR13) 2017; 46
Torzicky (CR11) 2012; 132
Ohl (CR5) 2004; 21
Saeki, Moore, Brown, Hwang (CR6) 1999; 162
Hopwood (CR21) 2018; 8
Johnson, Jackson (CR7) 2010; 22
Mauvoisin (CR24) 2014; 111
Shimba (CR16) 2018; 48
Scheiermann, Kunisaki, Frenette (CR15) 2013; 13
He (CR26) 2018; 49
Kiermaier (CR32) 2016; 351
Balsalobre, Damiola, Schibler (CR18) 1998; 93
Russo (CR9) 2016; 14
Yoo (CR19) 2004; 101
Zhou (CR33) 2019; 10
CR3
Suzuki, Hayano, Nakai, Furuta, Noda (CR14) 2016; 213
Pflicke, Sixt (CR17) 2009; 206
Cera (CR12) 2004; 114
Gibbs (CR25) 2014; 20
Johnson (CR10) 2017; 18
Scheiermann, Gibbs, Ince, Loudon (CR4) 2018; 18
Sixt, Lämmermann (CR31) 2011; 769
Schraml (CR28) 2013; 154
Ulvmar (CR2) 2014; 15
Early (CR22) 2018; 115
Zal, Volkmann, Stockinger (CR29) 1994; 180
Renkawitz (CR30) 2019; 568
Jackson (CR23) 2019; 10
J Gibbs (1040_CR25) 2014; 20
C Scheiermann (1040_CR15) 2013; 13
M Sixt (1040_CR31) 2011; 769
JO Early (1040_CR22) 2018; 115
T Zal (1040_CR29) 1994; 180
LA Johnson (1040_CR10) 2017; 18
1040_CR3
D Druzd (1040_CR13) 2017; 46
M Weber (1040_CR8) 2013; 339
Y Zhou (1040_CR33) 2019; 10
LA Johnson (1040_CR7) 2010; 22
BU Schraml (1040_CR28) 2013; 154
MH Ulvmar (1040_CR2) 2014; 15
M Torzicky (1040_CR11) 2012; 132
J Renkawitz (1040_CR30) 2019; 568
H Pflicke (1040_CR17) 2009; 206
C Scheiermann (1040_CR4) 2018; 18
MR Cera (1040_CR12) 2004; 114
E Kiermaier (1040_CR32) 2016; 351
L Ohl (1040_CR5) 2004; 21
H Saeki (1040_CR6) 1999; 162
CC Nobis (1040_CR20) 2019; 116
DG Jackson (1040_CR23) 2019; 10
CE Sutton (1040_CR27) 2017; 8
D Mauvoisin (1040_CR24) 2014; 111
K Suzuki (1040_CR14) 2016; 213
A Balsalobre (1040_CR18) 1998; 93
TW Hopwood (1040_CR21) 2018; 8
R Forster (1040_CR1) 1999; 99
A Shimba (1040_CR16) 2018; 48
E Russo (1040_CR9) 2016; 14
SH Yoo (1040_CR19) 2004; 101
W He (1040_CR26) 2018; 49
References_xml – volume: 14
  start-page: 1723
  year: 2016
  end-page: 1734
  ident: CR9
  article-title: Intralymphatic CCL21 promotes tissue egress of dendritic cells through afferent lymphatic vessels
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.01.048
– volume: 568
  start-page: 546
  year: 2019
  end-page: 550
  ident: CR30
  article-title: Nuclear positioning facilitates amoeboid migration along the path of least resistance
  publication-title: Nature
  doi: 10.1038/s41586-019-1087-5
– volume: 132
  start-page: 1149
  year: 2012
  end-page: 1157
  ident: CR11
  article-title: Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) and CD99 are critical in lymphatic transmigration of human dendritic cells
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2011.420
– volume: 46
  start-page: 120
  year: 2017
  end-page: 132
  ident: CR13
  article-title: Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.12.011
– volume: 22
  start-page: 839
  year: 2010
  end-page: 849
  ident: CR7
  article-title: Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/dxq435
– volume: 339
  start-page: 328
  year: 2013
  end-page: 332
  ident: CR8
  article-title: Interstitial dendritic cell guidance by haptotactic chemokine gradients
  publication-title: Science
  doi: 10.1126/science.1228456
– volume: 10
  year: 2019
  ident: CR33
  article-title: Metascape provides a biologist-oriented resource for the analysis of systems-level datasets
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09234-6
– volume: 114
  start-page: 729
  year: 2004
  end-page: 738
  ident: CR12
  article-title: Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI21231
– volume: 101
  start-page: 5339
  year: 2004
  end-page: 5346
  ident: CR19
  article-title: PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0308709101
– volume: 8
  year: 2017
  ident: CR27
  article-title: Loss of the molecular clock in myeloid cells exacerbates T cell-mediated CNS autoimmune disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02111-0
– volume: 99
  start-page: 23
  year: 1999
  end-page: 33
  ident: CR1
  article-title: CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80059-8
– volume: 21
  start-page: 279
  year: 2004
  end-page: 288
  ident: CR5
  article-title: CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions
  publication-title: Immunity
  doi: 10.1016/j.immuni.2004.06.014
– volume: 93
  start-page: 929
  year: 1998
  end-page: 937
  ident: CR18
  article-title: A serum shock induces circadian gene expression in mammalian tissue culture cells
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81199-X
– volume: 18
  start-page: 423
  year: 2018
  end-page: 437
  ident: CR4
  article-title: Clocking in to immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-018-0008-4
– volume: 111
  start-page: 167
  year: 2014
  end-page: 172
  ident: CR24
  article-title: Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1314066111
– volume: 18
  start-page: 762
  year: 2017
  end-page: 770
  ident: CR10
  article-title: Dendritic cells enter lymph vessels by hyaluronan-mediated docking to the endothelial receptor LYVE-1
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3750
– volume: 351
  start-page: 186
  year: 2016
  end-page: 190
  ident: CR32
  article-title: Polysialylation controls dendritic cell trafficking by regulating chemokine recognition
  publication-title: Science
  doi: 10.1126/science.aad0512
– volume: 15
  start-page: 623
  year: 2014
  end-page: 630
  ident: CR2
  article-title: The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2889
– volume: 49
  start-page: 1175
  year: 2018
  end-page: 1190
  ident: CR26
  article-title: Circadian expression of migratory factors establishes lineage-specific signatures that guide the homing of leukocyte subsets to tissues
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.10.007
– volume: 10
  start-page: 471
  year: 2019
  ident: CR23
  article-title: Leucocyte trafficking via the lymphatic vasculature—mechanisms and consequences
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00471
– volume: 115
  start-page: E8460
  year: 2018
  end-page: E8468
  ident: CR22
  article-title: Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1800431115
– volume: 769
  start-page: 149
  year: 2011
  end-page: 165
  ident: CR31
  article-title: In vitro analysis of chemotactic leukocyte migration in 3D environments
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-207-6_11
– volume: 48
  start-page: 286
  year: 2018
  end-page: 298
  ident: CR16
  article-title: Glucocorticoids drive diurnal oscillations in T cell distribution and responses by inducing interleukin-7 receptor and CXCR4
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.01.004
– volume: 206
  start-page: 2925
  year: 2009
  end-page: 2935
  ident: CR17
  article-title: Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20091739
– ident: CR3
– volume: 162
  start-page: 2472
  year: 1999
  end-page: 2475
  ident: CR6
  article-title: Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes
  publication-title: J. Immunol.
– volume: 154
  start-page: 843
  year: 2013
  end-page: 858
  ident: CR28
  article-title: Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.014
– volume: 8
  year: 2018
  ident: CR21
  article-title: The circadian regulator BMAL1 programmes responses to parasitic worm infection via a dendritic cell clock
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22021-5
– volume: 20
  start-page: 919
  year: 2014
  end-page: 926
  ident: CR25
  article-title: An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action
  publication-title: Nat. Med.
  doi: 10.1038/nm.3599
– volume: 180
  start-page: 2089
  year: 1994
  end-page: 2099
  ident: CR29
  article-title: Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.180.6.2089
– volume: 13
  start-page: 190
  year: 2013
  end-page: 198
  ident: CR15
  article-title: Circadian control of the immune system
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3386
– volume: 116
  start-page: 20077
  year: 2019
  end-page: 20086
  ident: CR20
  article-title: The circadian clock of CD8 T cells modulates their early response to vaccination and the rhythmicity of related signaling pathways
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1905080116
– volume: 213
  start-page: 2567
  year: 2016
  end-page: 2574
  ident: CR14
  article-title: Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20160723
– volume: 339
  start-page: 328
  year: 2013
  ident: 1040_CR8
  publication-title: Science
  doi: 10.1126/science.1228456
– volume: 49
  start-page: 1175
  year: 2018
  ident: 1040_CR26
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.10.007
– volume: 114
  start-page: 729
  year: 2004
  ident: 1040_CR12
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI21231
– volume: 14
  start-page: 1723
  year: 2016
  ident: 1040_CR9
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.01.048
– volume: 21
  start-page: 279
  year: 2004
  ident: 1040_CR5
  publication-title: Immunity
  doi: 10.1016/j.immuni.2004.06.014
– volume: 93
  start-page: 929
  year: 1998
  ident: 1040_CR18
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81199-X
– volume: 351
  start-page: 186
  year: 2016
  ident: 1040_CR32
  publication-title: Science
  doi: 10.1126/science.aad0512
– volume: 116
  start-page: 20077
  year: 2019
  ident: 1040_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1905080116
– volume: 8
  year: 2018
  ident: 1040_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22021-5
– volume: 20
  start-page: 919
  year: 2014
  ident: 1040_CR25
  publication-title: Nat. Med.
  doi: 10.1038/nm.3599
– volume: 115
  start-page: E8460
  year: 2018
  ident: 1040_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1800431115
– ident: 1040_CR3
  doi: 10.1084/jem.20200798
– volume: 101
  start-page: 5339
  year: 2004
  ident: 1040_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0308709101
– volume: 568
  start-page: 546
  year: 2019
  ident: 1040_CR30
  publication-title: Nature
  doi: 10.1038/s41586-019-1087-5
– volume: 10
  year: 2019
  ident: 1040_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09234-6
– volume: 10
  start-page: 471
  year: 2019
  ident: 1040_CR23
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00471
– volume: 15
  start-page: 623
  year: 2014
  ident: 1040_CR2
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2889
– volume: 180
  start-page: 2089
  year: 1994
  ident: 1040_CR29
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.180.6.2089
– volume: 213
  start-page: 2567
  year: 2016
  ident: 1040_CR14
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20160723
– volume: 206
  start-page: 2925
  year: 2009
  ident: 1040_CR17
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20091739
– volume: 154
  start-page: 843
  year: 2013
  ident: 1040_CR28
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.014
– volume: 99
  start-page: 23
  year: 1999
  ident: 1040_CR1
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80059-8
– volume: 13
  start-page: 190
  year: 2013
  ident: 1040_CR15
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3386
– volume: 18
  start-page: 762
  year: 2017
  ident: 1040_CR10
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3750
– volume: 48
  start-page: 286
  year: 2018
  ident: 1040_CR16
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.01.004
– volume: 769
  start-page: 149
  year: 2011
  ident: 1040_CR31
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-207-6_11
– volume: 111
  start-page: 167
  year: 2014
  ident: 1040_CR24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1314066111
– volume: 22
  start-page: 839
  year: 2010
  ident: 1040_CR7
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/dxq435
– volume: 8
  year: 2017
  ident: 1040_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02111-0
– volume: 132
  start-page: 1149
  year: 2012
  ident: 1040_CR11
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2011.420
– volume: 18
  start-page: 423
  year: 2018
  ident: 1040_CR4
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-018-0008-4
– volume: 162
  start-page: 2472
  year: 1999
  ident: 1040_CR6
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.162.5.2472
– volume: 46
  start-page: 120
  year: 2017
  ident: 1040_CR13
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.12.011
SSID ssj0014764
Score 2.6019146
Snippet Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses 1 , 2 . Circadian...
Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses 1,2 . Circadian...
Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses . Circadian rhythms...
Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses.sup.1,2. Circadian...
Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses1,2. Circadian rhythms...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1375
SubjectTerms 631/250/1617/2069
631/250/2152
Adaptive Immunity
Aged
Animals
Biomedical and Life Sciences
Biomedicine
CCL21 protein
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
Cells
Cells, Cultured
Chemokine CCL21 - genetics
Chemokine CCL21 - metabolism
Chemokines
Chemotaxis
Circadian Clocks
Circadian rhythm
Circadian Rhythm Signaling Peptides and Proteins - genetics
Circadian Rhythm Signaling Peptides and Proteins - metabolism
Circadian rhythms
Dendritic cells
Dendritic Cells - immunology
Dendritic Cells - metabolism
Endothelial cells
Female
Health aspects
Humans
Immunological research
Immunology
Immunotherapy
Infectious Diseases
Infiltration
Letter
Leukocyte migration
Lymph nodes
Lymph Nodes - immunology
Lymph Nodes - metabolism
Lymphatic system
Lymphatic Vessels - immunology
Lymphatic Vessels - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Motility
Oscillations
Physiological aspects
Sensory neurons
Skin
Skin - immunology
Skin - metabolism
Time Factors
Vaccination
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-loniRtn6trRJF8KDB3SS7SfBUHi1VqAe10FtIskm7tOyT7ntg_3sn2Q_dhwqeM7ubTCaZmZ2Z3yD0urDWFsY54lTlCafeEKucIkYZ5T011NNYjXz6uTo545_Oy_MtRMdamJS0nyAt0zU9Zoe970DRqJzEhILoQeQE7MY7UrAySvWiWkyRAy4SZBSoJUWoyuVQKJMz-Yd3zJTR5pX8m07azJfcCJomXXS8gx4MRiQ-7Ke9i7Z8u4fu9m0lb_fQvdMhYP4QfVg0Ny7BD2AHauuqwxfrpvYYbps6NTnA8c99h5t2tcTdVdPi61vY3wjj2j1CZ8dH3xYnZOiXQBwYXSvCjatlQphRVeE845KbUHpeV1LyYGNCmpXB08ILq6SXlXMhiDIEahgT0rLHaLtdtv4pwtKKPBTG1hbcv9J6KbjnTjCXG2vBZctQMTJOuwFMPPa0uNYpqM2k7pmtgdk6MVv_yNDb6ZnvPZTGP6lfxf3QEaOijUkwF2bddfrj1y_6sJJ59MOUzNCbgSgs4fPODDUFsIgIazWjPJhRwiFy8-Fx2_VwiDtNS1h2NKBg-OU0HJ-MiWmtX64TDePgUosiQ096KZkWx3iVwqYZEjP5mQgitPd8pG0uE8Q37BVYFsDmd6Ok_ZrW33n27P_I99F9Gg9Dqqw8QNurm7V_DibWyr5IZ-onkz4eXg
  priority: 102
  providerName: Springer Nature
Title Circadian clocks guide dendritic cells into skin lymphatics
URI https://link.springer.com/article/10.1038/s41590-021-01040-x
https://www.ncbi.nlm.nih.gov/pubmed/34663979
https://www.proquest.com/docview/2587482228
https://www.proquest.com/docview/2583444671
https://pubmed.ncbi.nlm.nih.gov/PMC8553624
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby8ZextZ9ueuKNwZ72EQtW7El9jCS0NANGka3Qt6EJMudabHbOoH2v9-doqRzYH1JIDoT6-6ku9OdfkfIR2aMYdpaamXuKE-dpkZaSbXU0rlUpy7F28jH0_zolP-YDWbhwK0LZZWrPdFv1GVr8Yz8IB2IgqM1E98uryh2jcLsamih8ZBsM_BEsHVDMVsHXIwXHj4KTJSkqUxEuDSTZOKgA8MlE4oFChiRJPSmZ5g2t-d_7NNm7eRGAtXbpckz8jQ4lPFwqQHPyQPX7JBHyxaTtzvk8XFInr8gX8f1tfVQBLEFE3bexWeLunQx7Dylb3gQ4yl-F9fNvI2787qJL25B1gjp2r0kp5PD3-MjGnonUAsO2JxybUvh0WZkzqzLuOC6Gjhe5kLwymBxmhGVS5krjBRO5NZWVTGoqlRnWSFM9opsNW3j3pBYmCKpmDalgVBwYBzIwXFbZDbRxkD4FhG2YpyyAVgc-1tcKJ_gzoRaMlsBs5VntrqJyOf1M5dLWI17qT-gPBTiVTRYEHOmF12nvv86UcNcJBiTSRGRT4GoauHvrQ73C2ASCHHVo9zrUcKCsv3hldhVWNCdulO_iLxfD-OTWKTWuHbhaTIO4XXBIvJ6qSXryWU89ynUiBQ9_VkTIMx3f6Sp_3i4b5AVeBnA5i8rTbt7rf_zbPf-WbwlT1JUfn-rco9sza8X7h24V3Oz79cQfIox2yfbw8loNIXv0eH05wn8Os7HfwGu_iT6
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NIRgvCAaMwICAQDyAtcRxE1sIoakwtWzdA2zS3oztOKPalI6lFeuf4jfic5KOVGJve_Y5ie_OPl_u7juA17HWOlbGECNSSxi1imhhBFFCCWupopZiNfJoPx0csq9HvaMV-NPWwmBaZXsm-oM6nxj8R75FezxjaM34p7NfBLtGYXS1baFRq8Wunf92Llv1cfjZyfcNpTtfDvoD0nQVIMZdTaaEKZNzj8Mi0tjYhHGmip5leco5KzSmbWleWBrbTAtueWpMUWS9oqAqSTKuE_fcG3ATK40Qq5_3FyklMcs8XJUziYJQEfGmSCdK-FblDKWICCZEoAcUkYuOIVw2B__Yw-VczaWArbeDO_fgbnOBDbdrjbsPK7Zch1t1S8v5OtweNcH6B_ChPz43HvogNM5knlTh8Wyc29CddLlvsBBi1KAKx-V0ElYn4zI8nTvdQgjZ6iEcXgtXH8FqOSntYwi5zqIiVjrXzvXsaevkbpnJEhMprZ27GEDcMk6aBsgc-2mcSh9QT7ismS0ds6VntrwI4N1izlkN43El9SuUh0R8jBITcI7VrKrk8Ps3uZ3yCH1AwQN42xAVE_d6o5p6BrcIhNTqUG52KN0GNt3hVuyyOUAqeanuAbxcDONMTIor7WTmaRLm3PksDmCj1pLF4hKW-pBtAFlHfxYECCveHSnHPz28uJOVu9U4Nr9vNe3ys_7PsydXr-IFrA0ORntyb7i_-xTuUNwIvqJzE1an5zP7zF3tpvq5308h_LjuDfwXU4FdXg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTUy8IBhfgQEBgXgAq_lwE1toQmNbtTJWTYNJezO244xqUzqWVqz_In8VZ9fpSCX2tmefk_h85_Pl7n4H8CZWSsVSa6J5ZghNjCSKa04kl9yYRCYmsdXI-4Ns94h-Oe4eL8GfphbGplU2Z6I7qIuRtv_IO0mX5dRaM9YpfVrEwXbv0_kvYjtI2Uhr005D-jYLxYaDG_NFHntm-hvduXqjv417_zZJejvft3aJ7zhANF5bxoRKXTCH0cKzWJuUMirLrqFFxhgtlU3pUqw0SWxyxZlhmdZlmXfLMpFpmjOV4nNvwUqOVh8dwZXPO4ODw3lMg-YOzAoNJicJj5gv4YlS1qnRjPKI2HQJ6x9F5LJlJheNxT_WcjGTcyGc66xk7x7c9dfbcHMmj_dhyVRrcHvW8HK6Bqv7PpT_AD5uDS-0A0YINRrU0zo8mQwLE-I5WLj2C6GNKdThsBqPwvp0WIVnU5Q8CzBbP4SjG-HrI1iuRpV5AiFTeVTGUhUKHdOuMigVhuo81ZFUCp3JAOKGcUJ7mHPbbeNMuHB7ysSM2QKZLRyzxWUA7-dzzmcgH9dSv7b7ISx6RmXl8ERO6lr0vx2KzYxF1kPkLIB3nqgc4eu19NUOuAgLuNWiXG9Ronrr9nCz7cIfL7W4UoYAXs2H7UybMleZ0cTRpBSd_TwO4PFMSuaLS2nmAroB5C35mRNY0PH2SDX86cDHca_wzoNs_tBI2tVn_Z9nT69fxUtYRWUWX_uDvWdwJ7F64Mo912F5fDExz_HeN1YvvEKF8OOmdfgvH3lobg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circadian+clocks+guide+dendritic+cells+into+skin+lymphatics&rft.jtitle=Nature+immunology&rft.au=Holtkamp%2C+Stephan+J&rft.au=Ince%2C+Louise+M&rft.au=Coline%2C+Barnoud&rft.au=Schmitt%2C+Madeleine+T&rft.date=2021-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1529-2908&rft.eissn=1529-2916&rft.volume=22&rft.issue=11&rft.spage=1375&rft.epage=1381&rft_id=info:doi/10.1038%2Fs41590-021-01040-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon