Circadian clocks guide dendritic cells into skin lymphatics
Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses 1 , 2 . Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood 3 , 4 . Here, we demonstrate that dendritic cells (DCs...
Saved in:
Published in | Nature immunology Vol. 22; no. 11; pp. 1375 - 1381 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.11.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1529-2908 1529-2916 1529-2916 |
DOI | 10.1038/s41590-021-01040-x |
Cover
Abstract | Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses
1
,
2
. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood
3
,
4
. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies.
Scheiermann and colleagues show that circadian clocks control the infiltration of dendritic cells into skin lymphatics in mice and humans, with a peak migration to the lymph nodes during the rest phase. |
---|---|
AbstractList | Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses
1,2
. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood
3,4
. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies. Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses.sup.1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood.sup.3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies. Scheiermann and colleagues show that circadian clocks control the infiltration of dendritic cells into skin lymphatics in mice and humans, with a peak migration to the lymph nodes during the rest phase. Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses 1 , 2 . Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood 3 , 4 . Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies. Scheiermann and colleagues show that circadian clocks control the infiltration of dendritic cells into skin lymphatics in mice and humans, with a peak migration to the lymph nodes during the rest phase. Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies.Scheiermann and colleagues show that circadian clocks control the infiltration of dendritic cells into skin lymphatics in mice and humans, with a peak migration to the lymph nodes during the rest phase. Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies.Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies. Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses.sup.1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood.sup.3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies. Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses . Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood . Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies. |
Audience | Academic |
Author | Weber, Jasmin Boehncke, Wolf-Henning Ince, Louise M. Schmitt, Madeleine T. Scheiermann, Christoph Schraml, Barbara U. Barnoud, Coline Mühlstädt, Michael Dibner, Charna Halin, Cornelia Renkawitz, Jörg Chen, Chien-Sin Sinturel, Flore Pick, Robert Vestweber, Dietmar Sperandio, Markus Holtermann, Leonie Philippou-Massier, Julia Jemelin, Stéphane Laubender, David Pilorz, Violetta Holtkamp, Stephan J. Oster, Henrik |
Author_xml | – sequence: 1 givenname: Stephan J. surname: Holtkamp fullname: Holtkamp, Stephan J. organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich – sequence: 2 givenname: Louise M. orcidid: 0000-0002-2093-0876 surname: Ince fullname: Ince, Louise M. organization: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva – sequence: 3 givenname: Coline orcidid: 0000-0001-5500-0217 surname: Barnoud fullname: Barnoud, Coline organization: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva – sequence: 4 givenname: Madeleine T. surname: Schmitt fullname: Schmitt, Madeleine T. organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Laboratory ‘Cell Biology of the Immune System’, Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich – sequence: 5 givenname: Flore surname: Sinturel fullname: Sinturel, Flore organization: Department of Medicine, Division of Endocrinology, Diabetes, Nutrition and Patient Education, University Hospitals of Geneva, Department of Cell Physiology and Metabolism, University of Geneva, Diabetes Center, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva – sequence: 6 givenname: Violetta surname: Pilorz fullname: Pilorz, Violetta organization: Institute of Neurobiology, University of Lübeck – sequence: 7 givenname: Robert orcidid: 0000-0001-9785-8481 surname: Pick fullname: Pick, Robert organization: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva – sequence: 8 givenname: Stéphane surname: Jemelin fullname: Jemelin, Stéphane organization: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva – sequence: 9 givenname: Michael surname: Mühlstädt fullname: Mühlstädt, Michael organization: Division of Dermatology and Venereology, Department of Medicine, University Hospitals of Geneva – sequence: 10 givenname: Wolf-Henning surname: Boehncke fullname: Boehncke, Wolf-Henning organization: Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Division of Dermatology and Venereology, Department of Medicine, University Hospitals of Geneva – sequence: 11 givenname: Jasmin surname: Weber fullname: Weber, Jasmin organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich – sequence: 12 givenname: David surname: Laubender fullname: Laubender, David organization: Max Planck Institute of Neurobiology – sequence: 13 givenname: Julia surname: Philippou-Massier fullname: Philippou-Massier, Julia organization: Laboratory for Functional Genome Analysis, Gene Center Munich, Ludwig-Maximilians-Universität Munich – sequence: 14 givenname: Chien-Sin orcidid: 0000-0002-5847-1441 surname: Chen fullname: Chen, Chien-Sin organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich – sequence: 15 givenname: Leonie surname: Holtermann fullname: Holtermann, Leonie organization: Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine – sequence: 16 givenname: Dietmar orcidid: 0000-0002-3517-732X surname: Vestweber fullname: Vestweber, Dietmar organization: Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine – sequence: 17 givenname: Markus orcidid: 0000-0002-7689-3613 surname: Sperandio fullname: Sperandio, Markus organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich – sequence: 18 givenname: Barbara U. orcidid: 0000-0002-5801-0151 surname: Schraml fullname: Schraml, Barbara U. organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich – sequence: 19 givenname: Cornelia orcidid: 0000-0002-7899-2850 surname: Halin fullname: Halin, Cornelia organization: Institute of Pharmaceutical Sciences, ETH Zurich – sequence: 20 givenname: Charna surname: Dibner fullname: Dibner, Charna organization: Department of Medicine, Division of Endocrinology, Diabetes, Nutrition and Patient Education, University Hospitals of Geneva, Department of Cell Physiology and Metabolism, University of Geneva, Diabetes Center, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva – sequence: 21 givenname: Henrik surname: Oster fullname: Oster, Henrik organization: Institute of Neurobiology, University of Lübeck – sequence: 22 givenname: Jörg orcidid: 0000-0003-2856-3369 surname: Renkawitz fullname: Renkawitz, Jörg organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Laboratory ‘Cell Biology of the Immune System’, Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich – sequence: 23 givenname: Christoph orcidid: 0000-0002-9212-0995 surname: Scheiermann fullname: Scheiermann, Christoph email: christoph.scheiermann@unige.ch organization: Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34663979$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ktlq3DAUhkVJaZb2BXpRDL1pL5xqsyxTCIShSyBQ6HItZPnIUWJLU8kuk7ev3EknnVCCLiR0vv8_nOUYHfjgAaGXBJ8SzOS7xEnV4BJTUmKCOS43T9ARqWhT0oaIg90by0N0nNI1xoTXgj9Dh4wLwZq6OULvVy4a3TntCzMEc5OKfnYdFB34LrrJmcLAMKTC-SkU6cb5Yrgd11c6R9Jz9NTqIcGLu_sE_fj44fvqc3n55dPF6vyyNFVdTSXXppMYYyYaQQwwLrm2FfBOSMltK6uKt9ICJVC3jQQpjLG2rqylmrFatuwEnW1913M7QmfAT1EPah3dqOOtCtqp_Yh3V6oPv1S2ZoLybPDmziCGnzOkSY0uLXVpD2FOilaScc5FTTL6-gF6Heboc3kLVXNJKZX3VK8HUM7bkPOaxVSdC4kFFbhZqNP_UPl0MDqTZ2ld_t8TvN0TZGaCzdTrOSV18e3rPvvq36bsuvF3tBmgW8DEkFIEu0MIVsv-qO3-qLw_6s_-qE0WyQci46Y87LA01g2PS9lWmnIe30O879wjqt_R5dfp |
CitedBy_id | crossref_primary_10_1016_j_ajt_2023_12_022 crossref_primary_10_1146_annurev_immunol_090122_050842 crossref_primary_10_1007_s00281_021_00903_7 crossref_primary_10_1007_s00281_021_00905_5 crossref_primary_10_1016_j_bbih_2021_100394 crossref_primary_10_1038_s41467_022_34897_z crossref_primary_10_3390_cancers17050732 crossref_primary_10_1038_s41467_025_57866_8 crossref_primary_10_1111_jpi_12899 crossref_primary_10_1111_pim_12903 crossref_primary_10_1007_s10585_023_10229_3 crossref_primary_10_1002_mco2_504 crossref_primary_10_1016_j_pbiomolbio_2025_01_003 crossref_primary_10_1016_j_smim_2022_101657 crossref_primary_10_1007_s00281_022_00957_1 crossref_primary_10_1172_JCI167339 crossref_primary_10_1371_journal_ppat_1012157 crossref_primary_10_1084_jem_20222008 crossref_primary_10_3389_fimmu_2022_1000951 crossref_primary_10_4049_immunohorizons_2400021 crossref_primary_10_1186_s40001_023_01158_8 crossref_primary_10_1177_07487304241232447 crossref_primary_10_1016_j_celrep_2023_112375 crossref_primary_10_1038_s41467_023_35979_2 crossref_primary_10_1016_j_ebiom_2024_105395 crossref_primary_10_1038_s41551_024_01209_3 crossref_primary_10_3389_fimmu_2022_977525 crossref_primary_10_3390_biom14030356 crossref_primary_10_1093_jleuko_qiad038 crossref_primary_10_1371_journal_pone_0291254 crossref_primary_10_1089_derm_2023_0074 crossref_primary_10_1038_s41586_022_05605_0 crossref_primary_10_37349_en_2023_00017 crossref_primary_10_1172_JCI175706 crossref_primary_10_1016_j_healun_2024_01_017 crossref_primary_10_1016_j_clp_2024_10_012 crossref_primary_10_1161_CIRCRESAHA_123_323619 crossref_primary_10_1016_j_jid_2025_01_001 crossref_primary_10_3390_vaccines10030443 crossref_primary_10_2217_fon_2022_1292 crossref_primary_10_1093_stmcls_sxad013 crossref_primary_10_1038_s41423_023_01032_x crossref_primary_10_1172_jci_insight_184452 crossref_primary_10_3390_cells11111824 crossref_primary_10_1016_j_biopha_2024_117803 crossref_primary_10_1021_acsnano_4c09653 crossref_primary_10_1126_sciimmunol_abm2465 crossref_primary_10_3390_ijms252010926 crossref_primary_10_3389_fimmu_2025_1556057 crossref_primary_10_1016_j_esmoop_2023_102220 crossref_primary_10_1167_iovs_63_5_23 crossref_primary_10_1016_j_ajt_2024_03_004 crossref_primary_10_1016_j_cell_2024_04_015 crossref_primary_10_1111_imm_13747 crossref_primary_10_1161_CIRCRESAHA_123_322136 crossref_primary_10_1038_s41420_024_01960_1 crossref_primary_10_1007_s10753_024_02120_4 crossref_primary_10_1038_s41568_024_00681_y crossref_primary_10_1007_s13346_024_01539_4 crossref_primary_10_1136_jitc_2024_010644 |
Cites_doi | 10.1016/j.celrep.2016.01.048 10.1038/s41586-019-1087-5 10.1038/jid.2011.420 10.1016/j.immuni.2016.12.011 10.1093/intimm/dxq435 10.1126/science.1228456 10.1038/s41467-019-09234-6 10.1172/JCI21231 10.1073/pnas.0308709101 10.1038/s41467-017-02111-0 10.1016/S0092-8674(00)80059-8 10.1016/j.immuni.2004.06.014 10.1016/S0092-8674(00)81199-X 10.1038/s41577-018-0008-4 10.1073/pnas.1314066111 10.1038/ni.3750 10.1126/science.aad0512 10.1038/ni.2889 10.1016/j.immuni.2018.10.007 10.3389/fimmu.2019.00471 10.1073/pnas.1800431115 10.1007/978-1-61779-207-6_11 10.1016/j.immuni.2018.01.004 10.1084/jem.20091739 10.1016/j.cell.2013.07.014 10.1038/s41598-018-22021-5 10.1038/nm.3599 10.1084/jem.180.6.2089 10.1038/nri3386 10.1073/pnas.1905080116 10.1084/jem.20160723 10.1084/jem.20200798 10.4049/jimmunol.162.5.2472 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). COPYRIGHT 2021 Nature Publishing Group The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: COPYRIGHT 2021 Nature Publishing Group – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7T5 7TK 7TM 7U9 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM |
DOI | 10.1038/s41590-021-01040-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1529-2916 |
EndPage | 1381 |
ExternalDocumentID | PMC8553624 A680626098 34663979 10_1038_s41590_021_01040_x |
Genre | Letter Research Support, Non-U.S. Gov't |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: ERC, SNSF, DFG – fundername: ; |
GroupedDBID | --- .55 0R~ 123 29M 2FS 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABNNU ABOCM ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACUHS ADBBV ADNMO AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C6C CCPQU CS3 DB5 DU5 EAD EAP EAS EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ISR ITC L-9 LK8 M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WH7 X7M Y6R ZXP AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM AEIIB PMFND 7QP 7QR 7T5 7TK 7TM 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c575t-4acd800036961ce3484af5e4d6884fb8554b8fe21e7b98e86ccff75ff2a3378b3 |
IEDL.DBID | 7X7 |
ISSN | 1529-2908 1529-2916 |
IngestDate | Thu Aug 21 17:49:42 EDT 2025 Thu Sep 04 21:26:35 EDT 2025 Sat Aug 23 13:33:30 EDT 2025 Tue Jun 17 21:00:24 EDT 2025 Tue Jun 10 20:33:58 EDT 2025 Fri Jun 27 05:02:07 EDT 2025 Thu Apr 03 07:00:34 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 Tue Jul 01 01:02:33 EDT 2025 Fri Feb 21 02:39:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-4acd800036961ce3484af5e4d6884fb8554b8fe21e7b98e86ccff75ff2a3378b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Correspondence-1 content type line 23 |
ORCID | 0000-0002-2093-0876 0000-0002-7899-2850 0000-0002-5847-1441 0000-0001-9785-8481 0000-0002-5801-0151 0000-0002-9212-0995 0000-0001-5500-0217 0000-0002-7689-3613 0000-0002-3517-732X 0000-0003-2856-3369 |
OpenAccessLink | https://www.nature.com/articles/s41590-021-01040-x |
PMID | 34663979 |
PQID | 2587482228 |
PQPubID | 45782 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8553624 proquest_miscellaneous_2583444671 proquest_journals_2587482228 gale_infotracmisc_A680626098 gale_infotracacademiconefile_A680626098 gale_incontextgauss_ISR_A680626098 pubmed_primary_34663979 crossref_primary_10_1038_s41590_021_01040_x crossref_citationtrail_10_1038_s41590_021_01040_x springer_journals_10_1038_s41590_021_01040_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature immunology |
PublicationTitleAbbrev | Nat Immunol |
PublicationTitleAlternate | Nat Immunol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Forster (CR1) 1999; 99 Nobis (CR20) 2019; 116 Sutton (CR27) 2017; 8 Weber (CR8) 2013; 339 Druzd (CR13) 2017; 46 Torzicky (CR11) 2012; 132 Ohl (CR5) 2004; 21 Saeki, Moore, Brown, Hwang (CR6) 1999; 162 Hopwood (CR21) 2018; 8 Johnson, Jackson (CR7) 2010; 22 Mauvoisin (CR24) 2014; 111 Shimba (CR16) 2018; 48 Scheiermann, Kunisaki, Frenette (CR15) 2013; 13 He (CR26) 2018; 49 Kiermaier (CR32) 2016; 351 Balsalobre, Damiola, Schibler (CR18) 1998; 93 Russo (CR9) 2016; 14 Yoo (CR19) 2004; 101 Zhou (CR33) 2019; 10 CR3 Suzuki, Hayano, Nakai, Furuta, Noda (CR14) 2016; 213 Pflicke, Sixt (CR17) 2009; 206 Cera (CR12) 2004; 114 Gibbs (CR25) 2014; 20 Johnson (CR10) 2017; 18 Scheiermann, Gibbs, Ince, Loudon (CR4) 2018; 18 Sixt, Lämmermann (CR31) 2011; 769 Schraml (CR28) 2013; 154 Ulvmar (CR2) 2014; 15 Early (CR22) 2018; 115 Zal, Volkmann, Stockinger (CR29) 1994; 180 Renkawitz (CR30) 2019; 568 Jackson (CR23) 2019; 10 J Gibbs (1040_CR25) 2014; 20 C Scheiermann (1040_CR15) 2013; 13 M Sixt (1040_CR31) 2011; 769 JO Early (1040_CR22) 2018; 115 T Zal (1040_CR29) 1994; 180 LA Johnson (1040_CR10) 2017; 18 1040_CR3 D Druzd (1040_CR13) 2017; 46 M Weber (1040_CR8) 2013; 339 Y Zhou (1040_CR33) 2019; 10 LA Johnson (1040_CR7) 2010; 22 BU Schraml (1040_CR28) 2013; 154 MH Ulvmar (1040_CR2) 2014; 15 M Torzicky (1040_CR11) 2012; 132 J Renkawitz (1040_CR30) 2019; 568 H Pflicke (1040_CR17) 2009; 206 C Scheiermann (1040_CR4) 2018; 18 MR Cera (1040_CR12) 2004; 114 E Kiermaier (1040_CR32) 2016; 351 L Ohl (1040_CR5) 2004; 21 H Saeki (1040_CR6) 1999; 162 CC Nobis (1040_CR20) 2019; 116 DG Jackson (1040_CR23) 2019; 10 CE Sutton (1040_CR27) 2017; 8 D Mauvoisin (1040_CR24) 2014; 111 K Suzuki (1040_CR14) 2016; 213 A Balsalobre (1040_CR18) 1998; 93 TW Hopwood (1040_CR21) 2018; 8 R Forster (1040_CR1) 1999; 99 A Shimba (1040_CR16) 2018; 48 E Russo (1040_CR9) 2016; 14 SH Yoo (1040_CR19) 2004; 101 W He (1040_CR26) 2018; 49 |
References_xml | – volume: 14 start-page: 1723 year: 2016 end-page: 1734 ident: CR9 article-title: Intralymphatic CCL21 promotes tissue egress of dendritic cells through afferent lymphatic vessels publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.01.048 – volume: 568 start-page: 546 year: 2019 end-page: 550 ident: CR30 article-title: Nuclear positioning facilitates amoeboid migration along the path of least resistance publication-title: Nature doi: 10.1038/s41586-019-1087-5 – volume: 132 start-page: 1149 year: 2012 end-page: 1157 ident: CR11 article-title: Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) and CD99 are critical in lymphatic transmigration of human dendritic cells publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2011.420 – volume: 46 start-page: 120 year: 2017 end-page: 132 ident: CR13 article-title: Lymphocyte circadian clocks control lymph node trafficking and adaptive immune responses publication-title: Immunity doi: 10.1016/j.immuni.2016.12.011 – volume: 22 start-page: 839 year: 2010 end-page: 849 ident: CR7 article-title: Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration publication-title: Int. Immunol. doi: 10.1093/intimm/dxq435 – volume: 339 start-page: 328 year: 2013 end-page: 332 ident: CR8 article-title: Interstitial dendritic cell guidance by haptotactic chemokine gradients publication-title: Science doi: 10.1126/science.1228456 – volume: 10 year: 2019 ident: CR33 article-title: Metascape provides a biologist-oriented resource for the analysis of systems-level datasets publication-title: Nat. Commun. doi: 10.1038/s41467-019-09234-6 – volume: 114 start-page: 729 year: 2004 end-page: 738 ident: CR12 article-title: Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice publication-title: J. Clin. Invest. doi: 10.1172/JCI21231 – volume: 101 start-page: 5339 year: 2004 end-page: 5346 ident: CR19 article-title: PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0308709101 – volume: 8 year: 2017 ident: CR27 article-title: Loss of the molecular clock in myeloid cells exacerbates T cell-mediated CNS autoimmune disease publication-title: Nat. Commun. doi: 10.1038/s41467-017-02111-0 – volume: 99 start-page: 23 year: 1999 end-page: 33 ident: CR1 article-title: CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs publication-title: Cell doi: 10.1016/S0092-8674(00)80059-8 – volume: 21 start-page: 279 year: 2004 end-page: 288 ident: CR5 article-title: CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions publication-title: Immunity doi: 10.1016/j.immuni.2004.06.014 – volume: 93 start-page: 929 year: 1998 end-page: 937 ident: CR18 article-title: A serum shock induces circadian gene expression in mammalian tissue culture cells publication-title: Cell doi: 10.1016/S0092-8674(00)81199-X – volume: 18 start-page: 423 year: 2018 end-page: 437 ident: CR4 article-title: Clocking in to immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-018-0008-4 – volume: 111 start-page: 167 year: 2014 end-page: 172 ident: CR24 article-title: Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1314066111 – volume: 18 start-page: 762 year: 2017 end-page: 770 ident: CR10 article-title: Dendritic cells enter lymph vessels by hyaluronan-mediated docking to the endothelial receptor LYVE-1 publication-title: Nat. Immunol. doi: 10.1038/ni.3750 – volume: 351 start-page: 186 year: 2016 end-page: 190 ident: CR32 article-title: Polysialylation controls dendritic cell trafficking by regulating chemokine recognition publication-title: Science doi: 10.1126/science.aad0512 – volume: 15 start-page: 623 year: 2014 end-page: 630 ident: CR2 article-title: The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes publication-title: Nat. Immunol. doi: 10.1038/ni.2889 – volume: 49 start-page: 1175 year: 2018 end-page: 1190 ident: CR26 article-title: Circadian expression of migratory factors establishes lineage-specific signatures that guide the homing of leukocyte subsets to tissues publication-title: Immunity doi: 10.1016/j.immuni.2018.10.007 – volume: 10 start-page: 471 year: 2019 ident: CR23 article-title: Leucocyte trafficking via the lymphatic vasculature—mechanisms and consequences publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00471 – volume: 115 start-page: E8460 year: 2018 end-page: E8468 ident: CR22 article-title: Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1800431115 – volume: 769 start-page: 149 year: 2011 end-page: 165 ident: CR31 article-title: In vitro analysis of chemotactic leukocyte migration in 3D environments publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-207-6_11 – volume: 48 start-page: 286 year: 2018 end-page: 298 ident: CR16 article-title: Glucocorticoids drive diurnal oscillations in T cell distribution and responses by inducing interleukin-7 receptor and CXCR4 publication-title: Immunity doi: 10.1016/j.immuni.2018.01.004 – volume: 206 start-page: 2925 year: 2009 end-page: 2935 ident: CR17 article-title: Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels publication-title: J. Exp. Med. doi: 10.1084/jem.20091739 – ident: CR3 – volume: 162 start-page: 2472 year: 1999 end-page: 2475 ident: CR6 article-title: Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes publication-title: J. Immunol. – volume: 154 start-page: 843 year: 2013 end-page: 858 ident: CR28 article-title: Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage publication-title: Cell doi: 10.1016/j.cell.2013.07.014 – volume: 8 year: 2018 ident: CR21 article-title: The circadian regulator BMAL1 programmes responses to parasitic worm infection via a dendritic cell clock publication-title: Sci. Rep. doi: 10.1038/s41598-018-22021-5 – volume: 20 start-page: 919 year: 2014 end-page: 926 ident: CR25 article-title: An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action publication-title: Nat. Med. doi: 10.1038/nm.3599 – volume: 180 start-page: 2089 year: 1994 end-page: 2099 ident: CR29 article-title: Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen publication-title: J. Exp. Med. doi: 10.1084/jem.180.6.2089 – volume: 13 start-page: 190 year: 2013 end-page: 198 ident: CR15 article-title: Circadian control of the immune system publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3386 – volume: 116 start-page: 20077 year: 2019 end-page: 20086 ident: CR20 article-title: The circadian clock of CD8 T cells modulates their early response to vaccination and the rhythmicity of related signaling pathways publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1905080116 – volume: 213 start-page: 2567 year: 2016 end-page: 2574 ident: CR14 article-title: Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes publication-title: J. Exp. Med. doi: 10.1084/jem.20160723 – volume: 339 start-page: 328 year: 2013 ident: 1040_CR8 publication-title: Science doi: 10.1126/science.1228456 – volume: 49 start-page: 1175 year: 2018 ident: 1040_CR26 publication-title: Immunity doi: 10.1016/j.immuni.2018.10.007 – volume: 114 start-page: 729 year: 2004 ident: 1040_CR12 publication-title: J. Clin. Invest. doi: 10.1172/JCI21231 – volume: 14 start-page: 1723 year: 2016 ident: 1040_CR9 publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.01.048 – volume: 21 start-page: 279 year: 2004 ident: 1040_CR5 publication-title: Immunity doi: 10.1016/j.immuni.2004.06.014 – volume: 93 start-page: 929 year: 1998 ident: 1040_CR18 publication-title: Cell doi: 10.1016/S0092-8674(00)81199-X – volume: 351 start-page: 186 year: 2016 ident: 1040_CR32 publication-title: Science doi: 10.1126/science.aad0512 – volume: 116 start-page: 20077 year: 2019 ident: 1040_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1905080116 – volume: 8 year: 2018 ident: 1040_CR21 publication-title: Sci. Rep. doi: 10.1038/s41598-018-22021-5 – volume: 20 start-page: 919 year: 2014 ident: 1040_CR25 publication-title: Nat. Med. doi: 10.1038/nm.3599 – volume: 115 start-page: E8460 year: 2018 ident: 1040_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1800431115 – ident: 1040_CR3 doi: 10.1084/jem.20200798 – volume: 101 start-page: 5339 year: 2004 ident: 1040_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0308709101 – volume: 568 start-page: 546 year: 2019 ident: 1040_CR30 publication-title: Nature doi: 10.1038/s41586-019-1087-5 – volume: 10 year: 2019 ident: 1040_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09234-6 – volume: 10 start-page: 471 year: 2019 ident: 1040_CR23 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00471 – volume: 15 start-page: 623 year: 2014 ident: 1040_CR2 publication-title: Nat. Immunol. doi: 10.1038/ni.2889 – volume: 180 start-page: 2089 year: 1994 ident: 1040_CR29 publication-title: J. Exp. Med. doi: 10.1084/jem.180.6.2089 – volume: 213 start-page: 2567 year: 2016 ident: 1040_CR14 publication-title: J. Exp. Med. doi: 10.1084/jem.20160723 – volume: 206 start-page: 2925 year: 2009 ident: 1040_CR17 publication-title: J. Exp. Med. doi: 10.1084/jem.20091739 – volume: 154 start-page: 843 year: 2013 ident: 1040_CR28 publication-title: Cell doi: 10.1016/j.cell.2013.07.014 – volume: 99 start-page: 23 year: 1999 ident: 1040_CR1 publication-title: Cell doi: 10.1016/S0092-8674(00)80059-8 – volume: 13 start-page: 190 year: 2013 ident: 1040_CR15 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3386 – volume: 18 start-page: 762 year: 2017 ident: 1040_CR10 publication-title: Nat. Immunol. doi: 10.1038/ni.3750 – volume: 48 start-page: 286 year: 2018 ident: 1040_CR16 publication-title: Immunity doi: 10.1016/j.immuni.2018.01.004 – volume: 769 start-page: 149 year: 2011 ident: 1040_CR31 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-207-6_11 – volume: 111 start-page: 167 year: 2014 ident: 1040_CR24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1314066111 – volume: 22 start-page: 839 year: 2010 ident: 1040_CR7 publication-title: Int. Immunol. doi: 10.1093/intimm/dxq435 – volume: 8 year: 2017 ident: 1040_CR27 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02111-0 – volume: 132 start-page: 1149 year: 2012 ident: 1040_CR11 publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2011.420 – volume: 18 start-page: 423 year: 2018 ident: 1040_CR4 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-018-0008-4 – volume: 162 start-page: 2472 year: 1999 ident: 1040_CR6 publication-title: J. Immunol. doi: 10.4049/jimmunol.162.5.2472 – volume: 46 start-page: 120 year: 2017 ident: 1040_CR13 publication-title: Immunity doi: 10.1016/j.immuni.2016.12.011 |
SSID | ssj0014764 |
Score | 2.6019146 |
Snippet | Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses
1
,
2
. Circadian... Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses 1,2 . Circadian... Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses . Circadian rhythms... Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses.sup.1,2. Circadian... Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses1,2. Circadian rhythms... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1375 |
SubjectTerms | 631/250/1617/2069 631/250/2152 Adaptive Immunity Aged Animals Biomedical and Life Sciences Biomedicine CCL21 protein Cell Adhesion Molecules - genetics Cell Adhesion Molecules - metabolism Cells Cells, Cultured Chemokine CCL21 - genetics Chemokine CCL21 - metabolism Chemokines Chemotaxis Circadian Clocks Circadian rhythm Circadian Rhythm Signaling Peptides and Proteins - genetics Circadian Rhythm Signaling Peptides and Proteins - metabolism Circadian rhythms Dendritic cells Dendritic Cells - immunology Dendritic Cells - metabolism Endothelial cells Female Health aspects Humans Immunological research Immunology Immunotherapy Infectious Diseases Infiltration Letter Leukocyte migration Lymph nodes Lymph Nodes - immunology Lymph Nodes - metabolism Lymphatic system Lymphatic Vessels - immunology Lymphatic Vessels - metabolism Male Mice Mice, Inbred C57BL Mice, Transgenic Motility Oscillations Physiological aspects Sensory neurons Skin Skin - immunology Skin - metabolism Time Factors Vaccination |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-loniRtn6trRJF8KDB3SS7SfBUHi1VqAe10FtIskm7tOyT7ntg_3sn2Q_dhwqeM7ubTCaZmZ2Z3yD0urDWFsY54lTlCafeEKucIkYZ5T011NNYjXz6uTo545_Oy_MtRMdamJS0nyAt0zU9Zoe970DRqJzEhILoQeQE7MY7UrAySvWiWkyRAy4SZBSoJUWoyuVQKJMz-Yd3zJTR5pX8m07azJfcCJomXXS8gx4MRiQ-7Ke9i7Z8u4fu9m0lb_fQvdMhYP4QfVg0Ny7BD2AHauuqwxfrpvYYbps6NTnA8c99h5t2tcTdVdPi61vY3wjj2j1CZ8dH3xYnZOiXQBwYXSvCjatlQphRVeE845KbUHpeV1LyYGNCmpXB08ILq6SXlXMhiDIEahgT0rLHaLtdtv4pwtKKPBTG1hbcv9J6KbjnTjCXG2vBZctQMTJOuwFMPPa0uNYpqM2k7pmtgdk6MVv_yNDb6ZnvPZTGP6lfxf3QEaOijUkwF2bddfrj1y_6sJJ59MOUzNCbgSgs4fPODDUFsIgIazWjPJhRwiFy8-Fx2_VwiDtNS1h2NKBg-OU0HJ-MiWmtX64TDePgUosiQ096KZkWx3iVwqYZEjP5mQgitPd8pG0uE8Q37BVYFsDmd6Ok_ZrW33n27P_I99F9Gg9Dqqw8QNurm7V_DibWyr5IZ-onkz4eXg priority: 102 providerName: Springer Nature |
Title | Circadian clocks guide dendritic cells into skin lymphatics |
URI | https://link.springer.com/article/10.1038/s41590-021-01040-x https://www.ncbi.nlm.nih.gov/pubmed/34663979 https://www.proquest.com/docview/2587482228 https://www.proquest.com/docview/2583444671 https://pubmed.ncbi.nlm.nih.gov/PMC8553624 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby8ZextZ9ueuKNwZ72EQtW7El9jCS0NANGka3Qt6EJMudabHbOoH2v9-doqRzYH1JIDoT6-6ku9OdfkfIR2aMYdpaamXuKE-dpkZaSbXU0rlUpy7F28jH0_zolP-YDWbhwK0LZZWrPdFv1GVr8Yz8IB2IgqM1E98uryh2jcLsamih8ZBsM_BEsHVDMVsHXIwXHj4KTJSkqUxEuDSTZOKgA8MlE4oFChiRJPSmZ5g2t-d_7NNm7eRGAtXbpckz8jQ4lPFwqQHPyQPX7JBHyxaTtzvk8XFInr8gX8f1tfVQBLEFE3bexWeLunQx7Dylb3gQ4yl-F9fNvI2787qJL25B1gjp2r0kp5PD3-MjGnonUAsO2JxybUvh0WZkzqzLuOC6Gjhe5kLwymBxmhGVS5krjBRO5NZWVTGoqlRnWSFM9opsNW3j3pBYmCKpmDalgVBwYBzIwXFbZDbRxkD4FhG2YpyyAVgc-1tcKJ_gzoRaMlsBs5VntrqJyOf1M5dLWI17qT-gPBTiVTRYEHOmF12nvv86UcNcJBiTSRGRT4GoauHvrQ73C2ASCHHVo9zrUcKCsv3hldhVWNCdulO_iLxfD-OTWKTWuHbhaTIO4XXBIvJ6qSXryWU89ynUiBQ9_VkTIMx3f6Sp_3i4b5AVeBnA5i8rTbt7rf_zbPf-WbwlT1JUfn-rco9sza8X7h24V3Oz79cQfIox2yfbw8loNIXv0eH05wn8Os7HfwGu_iT6 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NIRgvCAaMwICAQDyAtcRxE1sIoakwtWzdA2zS3oztOKPalI6lFeuf4jfic5KOVGJve_Y5ie_OPl_u7juA17HWOlbGECNSSxi1imhhBFFCCWupopZiNfJoPx0csq9HvaMV-NPWwmBaZXsm-oM6nxj8R75FezxjaM34p7NfBLtGYXS1baFRq8Wunf92Llv1cfjZyfcNpTtfDvoD0nQVIMZdTaaEKZNzj8Mi0tjYhHGmip5leco5KzSmbWleWBrbTAtueWpMUWS9oqAqSTKuE_fcG3ATK40Qq5_3FyklMcs8XJUziYJQEfGmSCdK-FblDKWICCZEoAcUkYuOIVw2B__Yw-VczaWArbeDO_fgbnOBDbdrjbsPK7Zch1t1S8v5OtweNcH6B_ChPz43HvogNM5knlTh8Wyc29CddLlvsBBi1KAKx-V0ElYn4zI8nTvdQgjZ6iEcXgtXH8FqOSntYwi5zqIiVjrXzvXsaevkbpnJEhMprZ27GEDcMk6aBsgc-2mcSh9QT7ismS0ds6VntrwI4N1izlkN43El9SuUh0R8jBITcI7VrKrk8Ps3uZ3yCH1AwQN42xAVE_d6o5p6BrcIhNTqUG52KN0GNt3hVuyyOUAqeanuAbxcDONMTIor7WTmaRLm3PksDmCj1pLF4hKW-pBtAFlHfxYECCveHSnHPz28uJOVu9U4Nr9vNe3ys_7PsydXr-IFrA0ORntyb7i_-xTuUNwIvqJzE1an5zP7zF3tpvq5308h_LjuDfwXU4FdXg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTUy8IBhfgQEBgXgAq_lwE1toQmNbtTJWTYNJezO244xqUzqWVqz_In8VZ9fpSCX2tmefk_h85_Pl7n4H8CZWSsVSa6J5ZghNjCSKa04kl9yYRCYmsdXI-4Ns94h-Oe4eL8GfphbGplU2Z6I7qIuRtv_IO0mX5dRaM9YpfVrEwXbv0_kvYjtI2Uhr005D-jYLxYaDG_NFHntm-hvduXqjv417_zZJejvft3aJ7zhANF5bxoRKXTCH0cKzWJuUMirLrqFFxhgtlU3pUqw0SWxyxZlhmdZlmXfLMpFpmjOV4nNvwUqOVh8dwZXPO4ODw3lMg-YOzAoNJicJj5gv4YlS1qnRjPKI2HQJ6x9F5LJlJheNxT_WcjGTcyGc66xk7x7c9dfbcHMmj_dhyVRrcHvW8HK6Bqv7PpT_AD5uDS-0A0YINRrU0zo8mQwLE-I5WLj2C6GNKdThsBqPwvp0WIVnU5Q8CzBbP4SjG-HrI1iuRpV5AiFTeVTGUhUKHdOuMigVhuo81ZFUCp3JAOKGcUJ7mHPbbeNMuHB7ysSM2QKZLRyzxWUA7-dzzmcgH9dSv7b7ISx6RmXl8ERO6lr0vx2KzYxF1kPkLIB3nqgc4eu19NUOuAgLuNWiXG9Ronrr9nCz7cIfL7W4UoYAXs2H7UybMleZ0cTRpBSd_TwO4PFMSuaLS2nmAroB5C35mRNY0PH2SDX86cDHca_wzoNs_tBI2tVn_Z9nT69fxUtYRWUWX_uDvWdwJ7F64Mo912F5fDExz_HeN1YvvEKF8OOmdfgvH3lobg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circadian+clocks+guide+dendritic+cells+into+skin+lymphatics&rft.jtitle=Nature+immunology&rft.au=Holtkamp%2C+Stephan+J&rft.au=Ince%2C+Louise+M&rft.au=Coline%2C+Barnoud&rft.au=Schmitt%2C+Madeleine+T&rft.date=2021-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1529-2908&rft.eissn=1529-2916&rft.volume=22&rft.issue=11&rft.spage=1375&rft.epage=1381&rft_id=info:doi/10.1038%2Fs41590-021-01040-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon |