Prediction of skin color, tanning and freckling from DNA in Polish population: linear regression, random forest and neural network approaches
Predicting phenotypes from DNA has recently become extensively studied field in forensic research and is referred to as Forensic DNA Phenotyping. Systems based on single nucleotide polymorphisms for accurate prediction of iris, hair and skin color in global population, independent of bio-geographica...
        Saved in:
      
    
          | Published in | Human genetics Vol. 138; no. 6; pp. 635 - 647 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.06.2019
     Springer Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0340-6717 1432-1203 1432-1203  | 
| DOI | 10.1007/s00439-019-02012-w | 
Cover
| Abstract | Predicting phenotypes from DNA has recently become extensively studied field in forensic research and is referred to as Forensic DNA Phenotyping. Systems based on single nucleotide polymorphisms for accurate prediction of iris, hair and skin color in global population, independent of bio-geographical ancestry, have recently been introduced. Here, we analyzed 14 SNPs for distinct skin pigmentation traits in a homogeneous cohort of 222 Polish subjects. We compared three different algorithms: General Linear Model based on logistic regression, Random Forest and Neural Network in 18 developed prediction models. We demonstrate Random Forest to be the most accurate algorithm for 3- and 4-category estimations (total of 58.3% correct calls for skin color prediction, 47.2% for tanning prediction, 50% for freckling prediction). Binomial Logistic Regression was the best approach in 2-category estimations (total of 69.4% correct calls, AUC = 0.673 for tanning prediction; total of 52.8% correct calls, AUC = 0.537 for freckling prediction). Our study confirms the association of rs12913832 (
HERC2
) with all three skin pigmentation traits, but also variants associated solely with certain pigmentation traits, namely rs6058017 and rs4911414 (
ASIP
) with skin sensitivity to sun and tanning abilities, rs12203592 (
IRF4
) with freckling and rs4778241 and rs4778138 (
OCA2
) with skin color and tanning. Finally, we assessed significant differences in allele frequencies in comparison with CEU data and our study provides a starting point for the development of prediction models for homogeneous populations with less internal differentiation than in the global predictive testing. | 
    
|---|---|
| AbstractList | Predicting phenotypes from DNA has recently become extensively studied field in forensic research and is referred to as Forensic DNA Phenotyping. Systems based on single nucleotide polymorphisms for accurate prediction of iris, hair and skin color in global population, independent of bio-geographical ancestry, have recently been introduced. Here, we analyzed 14 SNPs for distinct skin pigmentation traits in a homogeneous cohort of 222 Polish subjects. We compared three different algorithms: General Linear Model based on logistic regression, Random Forest and Neural Network in 18 developed prediction models. We demonstrate Random Forest to be the most accurate algorithm for 3- and 4-category estimations (total of 58.3% correct calls for skin color prediction, 47.2% for tanning prediction, 50% for freckling prediction). Binomial Logistic Regression was the best approach in 2-category estimations (total of 69.4% correct calls, AUC = 0.673 for tanning prediction; total of 52.8% correct calls, AUC = 0.537 for freckling prediction). Our study confirms the association of rs12913832 (HERC2) with all three skin pigmentation traits, but also variants associated solely with certain pigmentation traits, namely rs6058017 and rs4911414 (ASIP) with skin sensitivity to sun and tanning abilities, rs12203592 (IRF4) with freckling and rs4778241 and rs4778138 (OCA2) with skin color and tanning. Finally, we assessed significant differences in allele frequencies in comparison with CEU data and our study provides a starting point for the development of prediction models for homogeneous populations with less internal differentiation than in the global predictive testing. Predicting phenotypes from DNA has recently become extensively studied field in forensic research and is referred to as Forensic DNA Phenotyping. Systems based on single nucleotide polymorphisms for accurate prediction of iris, hair and skin color in global population, independent of bio-geographical ancestry, have recently been introduced. Here, we analyzed 14 SNPs for distinct skin pigmentation traits in a homogeneous cohort of 222 Polish subjects. We compared three different algorithms: General Linear Model based on logistic regression, Random Forest and Neural Network in 18 developed prediction models. We demonstrate Random Forest to be the most accurate algorithm for 3- and 4-category estimations (total of 58.3% correct calls for skin color prediction, 47.2% for tanning prediction, 50% for freckling prediction). Binomial Logistic Regression was the best approach in 2-category estimations (total of 69.4% correct calls, AUC = 0.673 for tanning prediction; total of 52.8% correct calls, AUC = 0.537 for freckling prediction). Our study confirms the association of rs12913832 ( HERC2 ) with all three skin pigmentation traits, but also variants associated solely with certain pigmentation traits, namely rs6058017 and rs4911414 ( ASIP ) with skin sensitivity to sun and tanning abilities, rs12203592 ( IRF4 ) with freckling and rs4778241 and rs4778138 ( OCA2 ) with skin color and tanning. Finally, we assessed significant differences in allele frequencies in comparison with CEU data and our study provides a starting point for the development of prediction models for homogeneous populations with less internal differentiation than in the global predictive testing. Predicting phenotypes from DNA has recently become extensively studied field in forensic research and is referred to as Forensic DNA Phenotyping. Systems based on single nucleotide polymorphisms for accurate prediction of iris, hair and skin color in global population, independent of bio-geographical ancestry, have recently been introduced. Here, we analyzed 14 SNPs for distinct skin pigmentation traits in a homogeneous cohort of 222 Polish subjects. We compared three different algorithms: General Linear Model based on logistic regression, Random Forest and Neural Network in 18 developed prediction models. We demonstrate Random Forest to be the most accurate algorithm for 3- and 4-category estimations (total of 58.3% correct calls for skin color prediction, 47.2% for tanning prediction, 50% for freckling prediction). Binomial Logistic Regression was the best approach in 2-category estimations (total of 69.4% correct calls, AUC = 0.673 for tanning prediction; total of 52.8% correct calls, AUC = 0.537 for freckling prediction). Our study confirms the association of rs12913832 (HERC2) with all three skin pigmentation traits, but also variants associated solely with certain pigmentation traits, namely rs6058017 and rs4911414 (ASIP) with skin sensitivity to sun and tanning abilities, rs12203592 (IRF4) with freckling and rs4778241 and rs4778138 (OCA2) with skin color and tanning. Finally, we assessed significant differences in allele frequencies in comparison with CEU data and our study provides a starting point for the development of prediction models for homogeneous populations with less internal differentiation than in the global predictive testing.Predicting phenotypes from DNA has recently become extensively studied field in forensic research and is referred to as Forensic DNA Phenotyping. Systems based on single nucleotide polymorphisms for accurate prediction of iris, hair and skin color in global population, independent of bio-geographical ancestry, have recently been introduced. Here, we analyzed 14 SNPs for distinct skin pigmentation traits in a homogeneous cohort of 222 Polish subjects. We compared three different algorithms: General Linear Model based on logistic regression, Random Forest and Neural Network in 18 developed prediction models. We demonstrate Random Forest to be the most accurate algorithm for 3- and 4-category estimations (total of 58.3% correct calls for skin color prediction, 47.2% for tanning prediction, 50% for freckling prediction). Binomial Logistic Regression was the best approach in 2-category estimations (total of 69.4% correct calls, AUC = 0.673 for tanning prediction; total of 52.8% correct calls, AUC = 0.537 for freckling prediction). Our study confirms the association of rs12913832 (HERC2) with all three skin pigmentation traits, but also variants associated solely with certain pigmentation traits, namely rs6058017 and rs4911414 (ASIP) with skin sensitivity to sun and tanning abilities, rs12203592 (IRF4) with freckling and rs4778241 and rs4778138 (OCA2) with skin color and tanning. Finally, we assessed significant differences in allele frequencies in comparison with CEU data and our study provides a starting point for the development of prediction models for homogeneous populations with less internal differentiation than in the global predictive testing.  | 
    
| Audience | Academic | 
    
| Author | Nowicki, Michał Zawierucha, Piotr Zaorska, Katarzyna  | 
    
| Author_xml | – sequence: 1 givenname: Katarzyna orcidid: 0000-0002-3894-781X surname: Zaorska fullname: Zaorska, Katarzyna email: katarzyna.zaorska@gmail.com organization: Department of Histology and Embryology, University of Medical Sciences – sequence: 2 givenname: Piotr orcidid: 0000-0001-9087-3080 surname: Zawierucha fullname: Zawierucha, Piotr organization: Department of Anatomy, University of Medical Sciences – sequence: 3 givenname: Michał orcidid: 0000-0002-7265-8181 surname: Nowicki fullname: Nowicki, Michał organization: Department of Histology and Embryology, University of Medical Sciences  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30980179$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkl1v0zAUhiM0xD7gD3CBLHED0jJsx26SXSBV42vSBBMf15bj2K1X1w52QtmP4D9z0paxTmhCVmTl-Hnfk7w-h9meD15n2VOCTwjG5auEMSvqHBN4KCY0Xz3IDggraE4oLvayA1wwnE9KUu5nhyldYUx4TfmjbL_AdYVJWR9kvy6jbq3qbfAoGJQW1iMVXIjHqJfeWz9D0rfIRK0WbnwzMSzRm49TBOBlcDbNURe6wcnR4hQBo2VEUc-iTglKxyiCAWhMgEq_dvN6iNLB1q9CXCDZdTFINdfpcfbQSJf0k-1-lH179_br2Yf84tP787PpRa54yfu8YBPTNljzQheUKqYMLU1FJ6TElWIMa1brQte0aavGmIbjstSGMtkoSY1isjjKio3v4Dt5vZLOiS7apYzXgmAxhis24QoIV6zDFStQvd6ouqFZ6lZp38Nv3CiDtGL3xNu5mIUfYsI5o7wEgxdbgxi-D5CGWNqktHPS6zAkQSmuJwQuqQb0-R30KgzRQygjVXHCSn6LmkmnhfUmQF81moopryqMK0ZH6uQfFKxWL62CmTIW6juClzsCYHr9s5_JISVx_uXzLvvsdig3afwZMQDoBlAxpBS1-b-oqzsiZfv1iMGnW3e_dHu3Cfr4mY5_k7tH9Rv2MgaQ | 
    
| CitedBy_id | crossref_primary_10_1111_exd_14260 crossref_primary_10_1016_j_forsciint_2023_111906 crossref_primary_10_3390_genes14010136 crossref_primary_10_1093_fsr_owae013 crossref_primary_10_1042_ETLS20200304 crossref_primary_10_5558_tfc2022_009 crossref_primary_10_1016_j_fsigen_2021_102517 crossref_primary_10_29235_1561_8323_2021_65_2_199_206 crossref_primary_10_1016_j_fsigen_2023_102994 crossref_primary_10_1016_j_fsigen_2024_103124 crossref_primary_10_1038_s41398_024_03196_0 crossref_primary_10_1016_j_fsisyn_2019_12_002 crossref_primary_10_52586_4991  | 
    
| Cites_doi | 10.1038/ng.2007.13 10.1016/j.ajhg.2010.05.017 10.1093/nar/gkg267 10.1016/j.fsigen.2014.01.012 10.1111/pcmr.12653 10.1371/journal.pgen.1000993 10.1016/j.fsigen.2007.02.009 10.1086/522235 10.1007/s00439-007-0401-8 10.1007/s00439-002-0896-y 10.1371/journal.pgen.1000934 10.1016/j.fsigen.2011.07.009 10.1016/j.fsigen.2009.01.012 10.1126/science.1147417 10.1093/bioinformatics/bth457 10.1111/j.1469-1809.2006.00341.x 10.1007/s00439-017-1808-5 10.1016/j.fsigen.2012.07.005 10.1038/nrg2952 10.1371/journal.pgen.1000074 10.3325/cmj.2014.55.10 10.1101/gr.128652.111 10.1086/510885 10.1016/j.forsciint.2016.08.030 10.1038/ng.160 10.1016/j.fsigen.2014.06.017 10.1038/ejhg.2015.167 10.1002/ajpa.23737 10.1016/j.fsigen.2010.09.008 10.1007/s00439-011-1110-x 10.1126/science.aan8433 10.1371/journal.pgen.1002932 10.1016/j.fsigen.2010.10.005 10.1007/s00414-009-0348-5 10.1007/s00414-015-1248-5 10.1007/s00439-015-1559-0 10.1111/j.1469-1809.2009.00504.x 10.1111/j.1556-4029.2009.01317.x 10.1186/2041-2223-2-6 10.2144/04372ST03 10.1038/nature15393 10.3325/cmj.2012.53.401 10.1007/s00439-006-0256-4 10.1016/j.fsigen.2015.09.004 10.1126/science.1069424 10.1016/j.legalmed.2011.12.005 10.1093/genetics/165.4.2071  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2019 COPYRIGHT 2019 Springer Human Genetics is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2019 – notice: COPYRIGHT 2019 Springer – notice: Human Genetics is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION NPM ISR 3V. 7QP 7TK 7TM 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s00439-019-02012-w | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Central Student  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1432-1203 | 
    
| EndPage | 647 | 
    
| ExternalDocumentID | 10.1007/s00439-019-02012-w PMC6554257 A588008429 30980179 10_1007_s00439_019_02012_w  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu grantid: 205-14-02229373-09513 funderid: http://dx.doi.org/10.13039/501100010438 – fundername: Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu grantid: 205-14-02229373-09513 – fundername: ; grantid: 205-14-02229373-09513  | 
    
| GroupedDBID | --- --Z -4W -56 -5G -BR -EM -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 29I 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 409 40D 40E 53G 5GY 5VS 67N 67Z 6NX 78A 7X7 85S 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI C6C CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IJ- IKXTQ INH INR ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH L7B LAS LK8 LLZTM M0L M1P M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RNS ROL RPX RRX RSV S16 S27 S3A S3B SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX VC2 W23 W48 WH7 WJK WK8 YLTOR Z45 Z7U Z7W Z81 Z82 Z83 Z87 Z8O Z8Q Z8U Z8V Z8W Z91 ZMTXR ZOVNA ~EX ~KM -Y2 .55 .GJ 1SB 2.D 28- 2P1 2VQ 3O- 3SX 5QI AANXM AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADYPR AEBTG AEFIE AEKMD AEZWR AFDYV AFDZB AFEXP AFFNX AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF EN4 H13 KOW N2Q NDZJH O9- PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO RNI RZK S1Z S26 S28 SBY SCLPG T16 UZXMN VFIZW WK6 X7J X7M ZGI 3V. NPM RIG 7QP 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c575t-346fdb0e53e322c4cf27f8261708c440e49e3e92bd8bffb5077ef24abca2fc4a3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0340-6717 1432-1203  | 
    
| IngestDate | Sun Oct 26 04:14:53 EDT 2025 Tue Sep 30 16:58:47 EDT 2025 Wed Oct 01 14:05:08 EDT 2025 Mon Oct 06 18:17:08 EDT 2025 Mon Oct 20 22:33:49 EDT 2025 Mon Oct 20 16:23:38 EDT 2025 Thu Oct 16 14:49:55 EDT 2025 Wed Feb 19 02:36:13 EST 2025 Thu Apr 24 23:06:31 EDT 2025 Wed Oct 01 01:47:04 EDT 2025 Fri Feb 21 02:33:39 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c575t-346fdb0e53e322c4cf27f8261708c440e49e3e92bd8bffb5077ef24abca2fc4a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-3894-781X 0000-0002-7265-8181 0000-0001-9087-3080  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s00439-019-02012-w.pdf | 
    
| PMID | 30980179 | 
    
| PQID | 2208514759 | 
    
| PQPubID | 47178 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s00439_019_02012_w pubmedcentral_primary_oai_pubmedcentral_nih_gov_6554257 proquest_miscellaneous_2209611599 proquest_journals_2208514759 gale_infotracmisc_A588008429 gale_infotracacademiconefile_A588008429 gale_incontextgauss_ISR_A588008429 pubmed_primary_30980179 crossref_primary_10_1007_s00439_019_02012_w crossref_citationtrail_10_1007_s00439_019_02012_w springer_journals_10_1007_s00439_019_02012_w  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-06-01 | 
    
| PublicationDateYYYYMMDD | 2019-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg  | 
    
| PublicationTitle | Human genetics | 
    
| PublicationTitleAbbrev | Hum Genet | 
    
| PublicationTitleAlternate | Hum Genet | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V  | 
    
| References | Caliebe, Harder, Schuett, Krawczak, Nebel, von Wurmb-Schwark (CR4) 2016; 24 Lalueza-Fox, Römpler, Caramelli, Stäubert, Catalano, Hughes, Rohland, Pilli, Longo, Condemi, de la RasillaM, Rosas, Stoneking, Schöneberg, Bertranpetit, Hofreiter (CR20) 2007; 318 Liu, Wollstein, Hysi, Ankra-Badu, Spector, Park (CR22) 2010; 6 Valenzuela, Henderson, Walsh, Garrison, Kelch, Cohen-Barak, Erickson, John Meaney, Bruce Walsh, Cheng, Ito, Wakamatsu, Frudakis, Thomas, Brilliant (CR39) 2010; 55 Pulker, Lareu, Phillips, Carracedo (CR31) 2007; 1 Vallone, Butler (CR40) 2004; 37 Walsh, Wollstein, Liu, Chakravarthy, Rahu, Seland, Soubrane, Tomazzoli, Topouzis, Vingerling, Vioque, Fletcher, Ballantyne, Kayser (CR44) 2012; 6 Kastelic, Drobnič (CR17) 2012; 53 Bouakaze, Keyser, Crubézy, Montagnon, Ludes (CR2) 2009; 123 Shriver, Parra, Dios, Bonilla, Norton, Jovel, Pfaff, Jones, Massac, Cameron, Baron, Jackson, Argyropoulos, Jin, Hoggart, McKeigue, Kittles (CR33) 2003; 112 Lao, de Gruijter, van Dujin, Navarro, Kayser (CR21) 2007; 71 Walsh, Liu, Wollstein, Kovatsi, Ralf, Kosiniak-Kamysz, Branicki, Kayser (CR45) 2013; 7 van Oven, Vermuelen, Kayser (CR41) 2011; 2 Frudakis, Terravainen, Thomas (CR12) 2007; 123 Kayser, Schneider (CR19) 2009; 3 Branicki, Brudnik, Wojas-Pelc (CR3) 2009; 73 Pośpiech, Wojas-Pelc, Walsh, Liu, Maeda, Ishikawa, Skowron, Kayser, Branicki (CR29) 2014; 11 Liu, Visser, Duffy, Hysi, Jacobs, Lao (CR24) 2015; 134 Kaderali, Deshpande, Nolan, White (CR16) 2003; 31 Wei, Qin, Liu, Jia, Hu, Li (CR47) 2014; 55 Sulem, Gudbjartsson, Stacey, Helgason, Rafnar, Magnusson (CR37) 2007; 39 Walsh, Lindenbergh, Zuniga, Sijen, de Knijff, Kayser, Ballantyne (CR43) 2011; 5 Myles, Somel, Tang, Kelso, Stoneking (CR26) 2007; 120 Gabriel (CR13) 2002; 296 (CR14) 2015; 526 Spichenok, Budimlija, Mitchell, Jenny, Kovacevic, Marjanovic, Caragine, Prinz, Wurmbach (CR34) 2011; 5 Visser, Kayser, Palstra (CR42) 2012; 22 Stokowski, Pant, Dadd, Fereday, Hinds, Jarman, Filsell, Ginger, Green, van der Ouderaa, Cox (CR36) 2007; 81 Han, Kraft, Nan, Guo, Chen, Quereshi (CR15) 2008; 4 Sulem, Gudbjartsson, Stacey, Helgason, Rafnar, Jakobsdottir (CR38) 2008; 40 Liu, van der Lijn, Schurmann, Zhu, Chakravarty, Hysi, Wollstein, Lao, de Bruijne, Ikram (CR23) 2012; 8 Duffy, Iles, Glass, Zhu, Barrett, Höiom (CR9) 2010; 87 Maroñas, Phillips, Söchtig, Gomez-Tato, Cruz, Alvarez-Dios, de Cal, Ruiz, Fondevila, Carracedo, Lareu (CR25) 2014; 13 Pneuman, Budimlija, Caragine, Prinz, Wurmbach (CR28) 2012; 14 Quillen, Norton, Parra, Lona-Durazo, Ang, Illiescu, Pearson, Shriver, Lasisi, Gokcumen, Starr, Lin, Martin, Jablonski (CR32) 2019; 168 Walsh, Chaitanya, Breslin, Muralidharan, Bronikowska, Pośpiech, Koller, Kovatsi, Wollstein, Branicki, Liu, Kayser (CR46) 2017; 136 Donnelly, Paschou, Grigorienko, Gurwitz, Barta, Lu (CR7) 2012; 131 Crawford, Kelly, Hansen, Beltrame, Fan, Bowman (CR5) 2017; 358 Duffy, Montgomery, Chen, Zhao, Le, James, Hayward, Martin, Sturm (CR8) 2007; 80 Eriksson, Macpherson, Tung, Hon, Naughton, Saxonov, Avey, Wojcicki, Mountain (CR10) 2010; 6 Pośpiech, Karłowska-Pik, Marcińska, Abidi, Andersen, Berge (CR30) 2015; 19 Orlow, Shi, Kanetsky, Thomas, Luo, Corrales-Guerrero (CR27) 2017; 31 Dario, Mouriño, Oliveira, Lucas, Ribeiro, Porto, Costa Santos, Dias, Corte Real (CR6) 2015; 129 Frudakis, Thomas, Gaskin, Venkateswarlu, Chandra, Ginjupalli, Gunturi, Natrajan, Ponnuswamy, Ponnuswamy (CR11) 2003; 165 Srettabunjong, Patompakdeesakul, Limawongpranee (CR35) 2016; 267 Barrett, Fry, Maller, Daly (CR1) 2005; 21 Kayser, de Kniff (CR18) 2011; 12 DL Duffy (2012_CR9) 2010; 87 S Walsh (2012_CR45) 2013; 7 A Pneuman (2012_CR28) 2012; 14 L Kaderali (2012_CR16) 2003; 31 O Spichenok (2012_CR34) 2011; 5 MD Shriver (2012_CR33) 2003; 112 P Dario (2012_CR6) 2015; 129 J Han (2012_CR15) 2008; 4 S Myles (2012_CR26) 2007; 120 EE Quillen (2012_CR32) 2019; 168 S Walsh (2012_CR44) 2012; 6 S Walsh (2012_CR46) 2017; 136 A Caliebe (2012_CR4) 2016; 24 NG Crawford (2012_CR5) 2017; 358 M Kayser (2012_CR18) 2011; 12 W Branicki (2012_CR3) 2009; 73 SB Gabriel (2012_CR13) 2002; 296 P Sulem (2012_CR38) 2008; 40 MP Donnelly (2012_CR7) 2012; 131 E Pośpiech (2012_CR30) 2015; 19 S Walsh (2012_CR43) 2011; 5 F Liu (2012_CR23) 2012; 8 T Frudakis (2012_CR12) 2007; 123 P Sulem (2012_CR37) 2007; 39 Genomes Project Consortium (2012_CR14) 2015; 526 DL Duffy (2012_CR8) 2007; 80 PM Vallone (2012_CR40) 2004; 37 M Kayser (2012_CR19) 2009; 3 N Eriksson (2012_CR10) 2010; 6 JC Barrett (2012_CR1) 2005; 21 M Oven van (2012_CR41) 2011; 2 H Pulker (2012_CR31) 2007; 1 RK Valenzuela (2012_CR39) 2010; 55 E Pośpiech (2012_CR29) 2014; 11 C Bouakaze (2012_CR2) 2009; 123 F Liu (2012_CR24) 2015; 134 O Lao (2012_CR21) 2007; 71 O Maroñas (2012_CR25) 2014; 13 C Lalueza-Fox (2012_CR20) 2007; 318 F Liu (2012_CR22) 2010; 6 S Srettabunjong (2012_CR35) 2016; 267 RP Stokowski (2012_CR36) 2007; 81 V Kastelic (2012_CR17) 2012; 53 I Orlow (2012_CR27) 2017; 31 M Visser (2012_CR42) 2012; 22 T Frudakis (2012_CR11) 2003; 165 Y-L Wei (2012_CR47) 2014; 55  | 
    
| References_xml | – volume: 39 start-page: 1443 issue: 12 year: 2007 end-page: 1452 ident: CR37 article-title: Genetic determinants of hair, eye and skin pigmentation in Europeans publication-title: Nat Genet doi: 10.1038/ng.2007.13 – volume: 87 start-page: 6 year: 2010 end-page: 16 ident: CR9 article-title: IRF4 variants have age-specific effects on nevus count and predispose to melanoma publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2010.05.017 – volume: 31 start-page: 1796 issue: 6 year: 2003 end-page: 1802 ident: CR16 article-title: Primer-design for multiplexed genotyping publication-title: Nucleic Acid Res doi: 10.1093/nar/gkg267 – volume: 11 start-page: 64 year: 2014 end-page: 72 ident: CR29 article-title: The common occurrence of epistasis in the determination of human pigmentation and its impact on DNA-based pigmentation phenotype prediction publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2014.01.012 – volume: 31 start-page: 287 issue: 2 year: 2017 end-page: 296 ident: CR27 article-title: The interaction between vitamin D receptor polymorphisms and sun exposure around time of diagnosis influences melanoma survival publication-title: Pigment Cell Melanoma Res doi: 10.1111/pcmr.12653 – volume: 6 start-page: e1000993 issue: 6 year: 2010 ident: CR10 article-title: Web-based, participant-driven studies yield novel genetic associations for common traits publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000993 – volume: 1 start-page: 100 year: 2007 end-page: 104 ident: CR31 article-title: Finding genes that underlie physical traits of forensic interest using genetic tools publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2007.02.009 – volume: 81 start-page: 1119 year: 2007 end-page: 1132 ident: CR36 article-title: A genomwide association study of skin pigmentation in a South Asian population publication-title: Am J Hum Genet doi: 10.1086/522235 – volume: 123 start-page: 311 issue: 3–4 year: 2007 end-page: 326 ident: CR12 article-title: Multilocus OCA2 genotypes specify human iris colors publication-title: Hum Genet doi: 10.1007/s00439-007-0401-8 – volume: 112 start-page: 387 year: 2003 end-page: 399 ident: CR33 article-title: Skin pigmentation, biogeographical ancestry and admixture mapping publication-title: Hum Genet doi: 10.1007/s00439-002-0896-y – volume: 6 start-page: e1000934 year: 2010 ident: CR22 article-title: Digital quantification of human eye color highlights genetic association of three new loci publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000934 – volume: 6 start-page: 330 issue: 3 year: 2012 end-page: 340 ident: CR44 article-title: DNA-based eye color prediction across Europe with the IrisPlex system publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2011.07.009 – volume: 3 start-page: 154 year: 2009 end-page: 161 ident: CR19 article-title: DNA-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2009.01.012 – volume: 318 start-page: 1453 year: 2007 end-page: 1454 ident: CR20 article-title: A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals publication-title: Science doi: 10.1126/science.1147417 – volume: 21 start-page: 263 issue: 5576 year: 2005 end-page: 265 ident: CR1 article-title: Haploview: analysis and visualization of LD and haplotype maps publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth457 – volume: 71 start-page: 354 issue: Pt3 year: 2007 end-page: 369 ident: CR21 article-title: Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms publication-title: Ann Hum Genet doi: 10.1111/j.1469-1809.2006.00341.x – volume: 136 start-page: 847 year: 2017 end-page: 863 ident: CR46 article-title: Global skin colour prediction from DNA publication-title: Hum Genet doi: 10.1007/s00439-017-1808-5 – volume: 7 start-page: 98 year: 2013 end-page: 115 ident: CR45 article-title: The HIrisPlex system for simultaneous prediction of hair and eye color from DNA publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2012.07.005 – volume: 12 start-page: 179 year: 2011 end-page: 192 ident: CR18 article-title: Improving human forensics through advances in genetics, genomics and molecular biology publication-title: Nat Rev Genet doi: 10.1038/nrg2952 – volume: 4 start-page: e1000074 issue: 5 year: 2008 ident: CR15 article-title: A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000074 – volume: 55 start-page: 10 year: 2014 end-page: 13 ident: CR47 article-title: Validation of 58 autosomal individual identification SNPs in three Chinese populations publication-title: Croat Med J doi: 10.3325/cmj.2014.55.10 – volume: 22 start-page: 446 issue: 3 year: 2012 end-page: 455 ident: CR42 article-title: HERC2 rs12913832 modulates human pigmentation by attenuating chromatin-loop formation between a long-range enhancer and the OCA2 promoter publication-title: Genome Res doi: 10.1101/gr.128652.111 – volume: 80 start-page: 241 year: 2007 end-page: 252 ident: CR8 article-title: A three-single nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation publication-title: Am J Hum Genet doi: 10.1086/510885 – volume: 267 start-page: 196 year: 2016 end-page: 203 ident: CR35 article-title: Relative studies between hair index, hair area, and medullary index with age and sex in Thai scalp hair publication-title: Forensic Sci Int doi: 10.1016/j.forsciint.2016.08.030 – volume: 40 start-page: 835 issue: 7 year: 2008 end-page: 837 ident: CR38 article-title: Two newly identified genetic determinants of pigmentation in Europeans publication-title: Nat Genet doi: 10.1038/ng.160 – volume: 13 start-page: 34 year: 2014 end-page: 44 ident: CR25 article-title: Development of a forensic skin colour predictive test publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2014.06.017 – volume: 24 start-page: 739 year: 2016 end-page: 747 ident: CR4 article-title: The more the merrier? How a few SNPs predict pigmentation phenotypes in the Northern German population publication-title: Eur J Hum Genet doi: 10.1038/ejhg.2015.167 – volume: 168 start-page: 4 issue: S67 year: 2019 end-page: 26 ident: CR32 article-title: Shades of complexity: new perspectives on the evolution and genetic architecture of human skin publication-title: Am J Phys Anthropol doi: 10.1002/ajpa.23737 – volume: 5 start-page: 464 year: 2011 end-page: 471 ident: CR43 article-title: Developmental validation of the IrisPlex system: determination of blue and brown iris color for forensic intelligence publication-title: Forensic Sci Int doi: 10.1016/j.fsigen.2010.09.008 – volume: 131 start-page: 683 year: 2012 end-page: 696 ident: CR7 article-title: A global view of OCA2-HERC2 region and pigmentation publication-title: Hum Genet doi: 10.1007/s00439-011-1110-x – volume: 358 start-page: eaan8433 issue: 6365 year: 2017 ident: CR5 article-title: Loci associated with skin pigmentation identified in African populations publication-title: Science doi: 10.1126/science.aan8433 – volume: 8 start-page: e1002932 issue: 9 year: 2012 ident: CR23 article-title: A genome-wide association study identifies five loci influencing facial morphology in Europeans publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002932 – volume: 5 start-page: 472 year: 2011 end-page: 478 ident: CR34 article-title: Prediction of eye and skin color in diverse populations using seven SNPs publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2010.10.005 – volume: 123 start-page: 315 year: 2009 end-page: 325 ident: CR2 article-title: Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis publication-title: Int J Legal Med doi: 10.1007/s00414-009-0348-5 – volume: 129 start-page: 1191 issue: 6 year: 2015 end-page: 1200 ident: CR6 article-title: Assessment of IrisPlex-based multiplex for eye and skin color prediction with application to a Portuguese population publication-title: Int J Legal Med doi: 10.1007/s00414-015-1248-5 – volume: 134 start-page: 823 year: 2015 end-page: 835 ident: CR24 article-title: Genetics of skin color variation in Europeans: genome-wide association studies with functional follow-up publication-title: Hum Genet doi: 10.1007/s00439-015-1559-0 – volume: 73 start-page: 160 issue: 2 year: 2009 end-page: 170 ident: CR3 article-title: Interactions between HERC2, OCA2 and MC1R may influence human pigmentation phenotype publication-title: Ann Hum Genet doi: 10.1111/j.1469-1809.2009.00504.x – volume: 55 start-page: 315 issue: 2 year: 2010 end-page: 322 ident: CR39 article-title: Predicting phenotype from genotype: normal pigmentation publication-title: J Forensic Sci doi: 10.1111/j.1556-4029.2009.01317.x – volume: 165 start-page: 2071 year: 2003 end-page: 2083 ident: CR11 article-title: Sequences associated with human iris pigmentation publication-title: Genetics – volume: 2 start-page: 6 year: 2011 ident: CR41 article-title: Multiplex genotyping system for ancient inference of matrilineal genetic ancestry with continental resolution publication-title: Invest Genet doi: 10.1186/2041-2223-2-6 – volume: 37 start-page: 226 issue: 2 year: 2004 end-page: 231 ident: CR40 article-title: AutoDimer: a screening tool for primer-dimer and hairpin structures publication-title: BioTechnics doi: 10.2144/04372ST03 – volume: 526 start-page: 68 issue: 7571 year: 2015 end-page: 74 ident: CR14 article-title: A global reference for human genetic variation publication-title: Nature doi: 10.1038/nature15393 – volume: 53 start-page: 401 year: 2012 end-page: 408 ident: CR17 article-title: A single-nucleotide polymorphism (SNP) multiplex system: the association of five SNPs with human eye and hair color in the Slovenian population and comparison using a Bayesian network and logistic regression model publication-title: Croat Med J doi: 10.3325/cmj.2012.53.401 – volume: 120 start-page: 613 year: 2007 end-page: 621 ident: CR26 article-title: Identifying genes underlying skin pigmentation differences among human populations publication-title: Hum Genet doi: 10.1007/s00439-006-0256-4 – volume: 19 start-page: 280 year: 2015 end-page: 288 ident: CR30 article-title: Evaluation of the predictive capacity of DNA variants associated with straight hair in Europeans publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2015.09.004 – volume: 296 start-page: 2225 year: 2002 end-page: 2229 ident: CR13 article-title: The structure of haplotype blocks in the human genome publication-title: Science doi: 10.1126/science.1069424 – volume: 14 start-page: 78 year: 2012 end-page: 83 ident: CR28 article-title: Verification of eye and skin color predictors in various populations publication-title: Leg Med (Tokyo) doi: 10.1016/j.legalmed.2011.12.005 – volume: 39 start-page: 1443 issue: 12 year: 2007 ident: 2012_CR37 publication-title: Nat Genet doi: 10.1038/ng.2007.13 – volume: 296 start-page: 2225 year: 2002 ident: 2012_CR13 publication-title: Science doi: 10.1126/science.1069424 – volume: 6 start-page: e1000993 issue: 6 year: 2010 ident: 2012_CR10 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000993 – volume: 131 start-page: 683 year: 2012 ident: 2012_CR7 publication-title: Hum Genet doi: 10.1007/s00439-011-1110-x – volume: 12 start-page: 179 year: 2011 ident: 2012_CR18 publication-title: Nat Rev Genet doi: 10.1038/nrg2952 – volume: 123 start-page: 315 year: 2009 ident: 2012_CR2 publication-title: Int J Legal Med doi: 10.1007/s00414-009-0348-5 – volume: 358 start-page: eaan8433 issue: 6365 year: 2017 ident: 2012_CR5 publication-title: Science doi: 10.1126/science.aan8433 – volume: 129 start-page: 1191 issue: 6 year: 2015 ident: 2012_CR6 publication-title: Int J Legal Med doi: 10.1007/s00414-015-1248-5 – volume: 2 start-page: 6 year: 2011 ident: 2012_CR41 publication-title: Invest Genet doi: 10.1186/2041-2223-2-6 – volume: 22 start-page: 446 issue: 3 year: 2012 ident: 2012_CR42 publication-title: Genome Res doi: 10.1101/gr.128652.111 – volume: 31 start-page: 1796 issue: 6 year: 2003 ident: 2012_CR16 publication-title: Nucleic Acid Res doi: 10.1093/nar/gkg267 – volume: 14 start-page: 78 year: 2012 ident: 2012_CR28 publication-title: Leg Med (Tokyo) doi: 10.1016/j.legalmed.2011.12.005 – volume: 73 start-page: 160 issue: 2 year: 2009 ident: 2012_CR3 publication-title: Ann Hum Genet doi: 10.1111/j.1469-1809.2009.00504.x – volume: 37 start-page: 226 issue: 2 year: 2004 ident: 2012_CR40 publication-title: BioTechnics doi: 10.2144/04372ST03 – volume: 55 start-page: 10 year: 2014 ident: 2012_CR47 publication-title: Croat Med J doi: 10.3325/cmj.2014.55.10 – volume: 87 start-page: 6 year: 2010 ident: 2012_CR9 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2010.05.017 – volume: 24 start-page: 739 year: 2016 ident: 2012_CR4 publication-title: Eur J Hum Genet doi: 10.1038/ejhg.2015.167 – volume: 8 start-page: e1002932 issue: 9 year: 2012 ident: 2012_CR23 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002932 – volume: 81 start-page: 1119 year: 2007 ident: 2012_CR36 publication-title: Am J Hum Genet doi: 10.1086/522235 – volume: 526 start-page: 68 issue: 7571 year: 2015 ident: 2012_CR14 publication-title: Nature doi: 10.1038/nature15393 – volume: 21 start-page: 263 issue: 5576 year: 2005 ident: 2012_CR1 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth457 – volume: 5 start-page: 464 year: 2011 ident: 2012_CR43 publication-title: Forensic Sci Int doi: 10.1016/j.fsigen.2010.09.008 – volume: 7 start-page: 98 year: 2013 ident: 2012_CR45 publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2012.07.005 – volume: 136 start-page: 847 year: 2017 ident: 2012_CR46 publication-title: Hum Genet doi: 10.1007/s00439-017-1808-5 – volume: 71 start-page: 354 issue: Pt3 year: 2007 ident: 2012_CR21 publication-title: Ann Hum Genet doi: 10.1111/j.1469-1809.2006.00341.x – volume: 19 start-page: 280 year: 2015 ident: 2012_CR30 publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2015.09.004 – volume: 13 start-page: 34 year: 2014 ident: 2012_CR25 publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2014.06.017 – volume: 80 start-page: 241 year: 2007 ident: 2012_CR8 publication-title: Am J Hum Genet doi: 10.1086/510885 – volume: 134 start-page: 823 year: 2015 ident: 2012_CR24 publication-title: Hum Genet doi: 10.1007/s00439-015-1559-0 – volume: 6 start-page: 330 issue: 3 year: 2012 ident: 2012_CR44 publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2011.07.009 – volume: 112 start-page: 387 year: 2003 ident: 2012_CR33 publication-title: Hum Genet doi: 10.1007/s00439-002-0896-y – volume: 6 start-page: e1000934 year: 2010 ident: 2012_CR22 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000934 – volume: 120 start-page: 613 year: 2007 ident: 2012_CR26 publication-title: Hum Genet doi: 10.1007/s00439-006-0256-4 – volume: 267 start-page: 196 year: 2016 ident: 2012_CR35 publication-title: Forensic Sci Int doi: 10.1016/j.forsciint.2016.08.030 – volume: 165 start-page: 2071 year: 2003 ident: 2012_CR11 publication-title: Genetics doi: 10.1093/genetics/165.4.2071 – volume: 4 start-page: e1000074 issue: 5 year: 2008 ident: 2012_CR15 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000074 – volume: 3 start-page: 154 year: 2009 ident: 2012_CR19 publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2009.01.012 – volume: 5 start-page: 472 year: 2011 ident: 2012_CR34 publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2010.10.005 – volume: 40 start-page: 835 issue: 7 year: 2008 ident: 2012_CR38 publication-title: Nat Genet doi: 10.1038/ng.160 – volume: 55 start-page: 315 issue: 2 year: 2010 ident: 2012_CR39 publication-title: J Forensic Sci doi: 10.1111/j.1556-4029.2009.01317.x – volume: 318 start-page: 1453 year: 2007 ident: 2012_CR20 publication-title: Science doi: 10.1126/science.1147417 – volume: 11 start-page: 64 year: 2014 ident: 2012_CR29 publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2014.01.012 – volume: 53 start-page: 401 year: 2012 ident: 2012_CR17 publication-title: Croat Med J doi: 10.3325/cmj.2012.53.401 – volume: 123 start-page: 311 issue: 3–4 year: 2007 ident: 2012_CR12 publication-title: Hum Genet doi: 10.1007/s00439-007-0401-8 – volume: 168 start-page: 4 issue: S67 year: 2019 ident: 2012_CR32 publication-title: Am J Phys Anthropol doi: 10.1002/ajpa.23737 – volume: 31 start-page: 287 issue: 2 year: 2017 ident: 2012_CR27 publication-title: Pigment Cell Melanoma Res doi: 10.1111/pcmr.12653 – volume: 1 start-page: 100 year: 2007 ident: 2012_CR31 publication-title: Forensic Sci Int Genet doi: 10.1016/j.fsigen.2007.02.009  | 
    
| SSID | ssj0015925 | 
    
| Score | 2.362342 | 
    
| Snippet | Predicting phenotypes from DNA has recently become extensively studied field in forensic research and is referred to as Forensic DNA Phenotyping. Systems based... | 
    
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 635 | 
    
| SubjectTerms | Algorithms Analysis Animal models Biomedical and Life Sciences Biomedicine Chromosomes Color Deoxyribonucleic acid DNA DNA testing Forensic science Gene frequency Gene Function Genetic research Human Genetics Interferon regulatory factor 4 Metabolic Diseases Molecular Medicine Neural networks Original Investigation Phenotypes Phenotyping Prediction models Single nucleotide polymorphisms Single-nucleotide polymorphism Skin Skin pigmentation Tanning  | 
    
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA96IuqD-G31TqIIPriFtsn2w7flPjgFD1EP7i3kc-9wyS7tLsv9Ef7PzqTd3nWRQx_6lEnaZCYzQ2fmN4S8dyavCpnquLCMx5yzIlaGJbEtmLMyz51jWDv89SQ_PuVfzsZnHUwO1sJsxe8D2CfDjB54wFZl8fo2uQNGKg-B2Xy_jxiMq9BgNWEhnT0tugKZv68xMELbqviaLdrOk-yDpQ_IvZVfyMu1nM2u2aOjR-Rh50jSScv5x-SW9U_I3ba15OVT8vtbjSEYPHY6d7T5deEpAlTXI7ps2xRR6Q11oPCwZ_uUYp0JPTiZUCDEpLjmnC765l6fKHqjsqa1nbaJs35EwcoZmANeL2wnrIbgmPBNvk0tpxu8cts8I6dHhz_3j-Ou9UKswX9bxoznzqjEjpmFG6-5dlnhyoDeXmrOE8sry2yVKVMq5xQ4lYV1GZdKy8xpLtlzsuPn3r4k1Mik0EqnRivFuQLJBbfOZJk11jhTqYikG14I3eGSY3uMmegRlQP_BPBPBP6JdUQ-9nMWLSrHjdTvkMUC4S485tNM5appxOcf38VkDPorKcEoR-RDR-Tm8Hotu_IE2AQiZA0odweUcB_1cHgjSaLTB43IsBVqitiKEXnbD-NMzHHzdr4KNFUODnoFNC9awes3x5KqRN0ZkWIgkj0BooQPR_zFeUALz8FhBL0ckdFGeK8-66YzG_UC_g9H_Or_Vn9N7mfhOuLfrF2ys6xXdg-cu6V6E271HzDjR4s priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6VVAg48H4YCloQEgfi1LE3fnCLKFVBIqqASOVk7TOtGm2i2FFU_gP_mZn1gzpCFYiDTztre8ezM1-yM98Q8tqoOEv4UPqJjpjPWJT4QkWBr5PIaB7HxkRYO_x5Eh9N2aeT0ckOOWhqYVy2e3MkWdU0IEuTLfeXyuy3hW94gIV5PnBBBAv9zQCGr5HdeASIvEd2p5Pj8Xd3gOCy213jXUAG2McjiOramT_fqBOftr30pTC1nULZnqPeIjfWdskvNnw-vxSqDu8Q3SyyylA5H6xLMZA_tvgf_1cLd8ntGsvScWV898iOtvfJ9aq75cUD8vN4hadA-OXpwtDi_MxS5Mhe9WlZdUqi3CpqwOdi2_gZxVIXejAZUxDEvLzilC7b_mLvKAJivqIrPatyd22fQqBVMAeAN6jN3Q35OeGdbJXdThvKdF08JNPDD9_eH_l19wdfAoQs_YjFRolAjyINTkcyacLEpI5APpWMBZplOtJZKFQqjBGAaxNtQsaF5KGRjEePSM8urH5CqOJBIoUcKikEYwI2DyBLFYZaaWVUJjwybL55LmtqdOzQMc9bUmen6hxUnTtV5xuPvG3nLCtikCulX6Ep5ci4YTGlZ8bXRZF__PolH4_AhQYp4AKPvKmFzAIeL3ldIQGLQJKujuReRxJcguwONxab1y6pyEPsxjpEekePvGyHcSam2Vm9WDuZLIbfCBnIPK4MvF1cFGQpum-PJB3TbwWQqLw7Ys9OHWF5DJgVQoNH-o1N_36tq3TWbzfSX6j46b-JPyM3Q7dz8A-1PdIrV2v9HPBlKV7U7uMX_6J0RA priority: 102 providerName: Unpaywall  | 
    
| Title | Prediction of skin color, tanning and freckling from DNA in Polish population: linear regression, random forest and neural network approaches | 
    
| URI | https://link.springer.com/article/10.1007/s00439-019-02012-w https://www.ncbi.nlm.nih.gov/pubmed/30980179 https://www.proquest.com/docview/2208514759 https://www.proquest.com/docview/2209611599 https://pubmed.ncbi.nlm.nih.gov/PMC6554257 https://link.springer.com/content/pdf/10.1007/s00439-019-02012-w.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 138 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015925 issn: 0340-6717 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1432-1203 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0015925 issn: 0340-6717 databaseCode: 7X7 dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-1203 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0015925 issn: 0340-6717 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015925 issn: 0340-6717 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015925 issn: 0340-6717 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF61iRBwQLwxlGhBSByIVT82fiAhZEJKARFVhUjpydpnWhE5IU4U9Ufwn5nxq3UPEYf44J2NvZ7xzMg7832EvDEqiEPuSjvUPrMZ80NbKN-xdegbzYPAGB97h3-Mg-MJ-zYdTPfIuO6FwbLK2icWjlotJH4jP_SQTNJFdLqPyz82skbh7mpNocEragX1oYAY2yddD5GxOqT7aTQ-OW32FQZxQcPq-EXRuxtWbTRFMx1uimHtEPwgKnr2thWqbjrsaxHrZjVls6V6l9zeZEt-ueXz-bWodXSf3KvSTZqU9vGA7OnsIblVElBePiJ_T1a4UYPKoQtD898XGUUY61WfrksyI8ozRQ24RWR2n1HsRqGfxwkFQSydy8_psqEAe08xZ-UrutKzsrw261OIhQrmQG4Myyn-DSE04Z6ysgCd1qjmOn9MJkejX8NjuyJosCVkeWvbZ4FRwtEDX4NfkEwaLzRRgfEeScYczWLt69gTKhLGCEg9Q208xoXknpGM-09IJ1tk-hmhijuhFNJVUgjGBNg3JH_K87TSyqhYWMStdZHKCr0cSTTmaYO7XOgvBf2lhf7SrUXeNXOWJXbHTunXqOIUQTEyrLqZ8U2ep19_nqbJALycE0HotsjbSsgs4PKSV00MsAjE0WpJHrQk4a2V7eHaktLKa-TplY1b5FUzjDOxEi7Ti00hEweQxscg87Q0vGZxvhNH6GEtErZMshFALPH2SHZxXmCKB5BWgve2SL823qvb2vXM-o2B_8cjfr570S_IHa94_fAb1wHprFcb_RJSvrXokf1wGsIxGro90k2-nH0f9ap3G84OgyEcJ14C5ybjk-TsH4oVW5k | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlQ4IN4YCiwIxKGxcNYbP5AQilqqhLYRglbqzewzrYicECeK8iP4K_xGZtaPNj1EXHrIaWcdr2d25rN35htC3lodpbFoKz82Ifc5D2Nf6jDwTRxaI6LI2hBrh48GUe-Efz3tnG6Qv3UtDKZV1j7ROWo9VviN_APDZpJtZKf7PPntY9coPF2tW2iUZnFglgt4ZSs-9fdAv-8Y2_9yvNvzq64CvgJoMvNDHlktA9MJDRiz4sqy2CaOmDxRnAeGpyY0KZM6kdZKwEuxsYwLqQSziosQrnuD3OQhi9ERJLtNSgkgA9fkNQhdSn07rop0XKkeHrlhZhL8IOYyf7ESCK-Gg0vx8GquZnNge4dszfOJWC7EaHQpJu7fI3crMEu7pfXdJxsmf0Bule0tlw_Jn29TPAZC1dOxpcWv85wiSfa0RWdlqyQqck0tOF3sGz-kWOtC9wZdCoKYmFec0UnTYOwjRUQspnRqhmXybt6iEGk1zAHkDctxV0OCTrinvExvpzVnuikekZNrUdRjspmPc_OUUC2CWEnV1kpKziXsHoCWmjGjjbY6lR5p17rIVMWNji06RlnD6uz0l4H-Mqe_bOGRnWbOpGQGWSv9BlWcIeVGjjk9QzEviqz_43vW7YAPDRIABh55XwnZMfy9ElWJBCwCWbpWJLdXJMEnqNXh2pKyyicV2cUO8sjrZhhnYp5dbsZzJ5NG8JKQgsyT0vCaxYVBmqD_9ki8YpKNADKVr47k52eOsTwC0AqxwSOt2ngvbmvdM2s1Bv4fj_jZ-kW_Ilu946PD7LA_OHhObjO3FfFr2jbZnE3n5gWAy5l86XY0JT-v24X8Ay43jEI | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIl4HxBtDgQWBOBCrjndjx0gIRYSooRBVlEq5mX2mFZET4kRRfgR_iF_HzPrRuoeKSw85edbxemZnZr3ffEPIa6ujJBZt5ceGcZ9zFvtSs8A3MbNGRJG1DGuHv42ivSP-ZdwZb5G_VS0Mwiorn-gctZ4p_Ea-G2IzyTay0-3aEhZx0B98nP_2sYMUnrRW7TQKE9k3mzVs3_IPwz7o-k0YDj7_-LTnlx0GfAVpytJnPLJaBqbDDBi24sqGse06kvKu4jwwPDHMJKHUXWmthNwpNjbkQioRWsUFg_teIVdjxhKEE8bjerMHWYJr-BowB69vx2XBjivbw-M3RCnBD-Jv6K8bQfF8aDgTG8_jNuvD21vkxiqbi81aTKdn4uPgDrldJra0V1jiXbJlsnvkWtHqcnOf_DlY4JEQmgGdWZr_OskoEmYvWnRZtE2iItPUggPGHvITinUvtD_qURBEkF5-TOd1s7H3FLNjsaALMymAvFmLQtTVMAaycJiOuxuSdcIzZQXUnVb86SZ_QI4uRVEPyXY2y8xjQrUIYiVVWyspOZewkiDN1GFotNFWJ9Ij7UoXqSp50rFdxzStGZ6d_lLQX-r0l6498q4eMy9YQi6UfoUqTpF-I0NDnohVnqfDw-9prwP-NOhCkuCRt6WQncHfK1GWS8AkkLGrIbnTkAT_oJqXK0tKS_-Up6erySMv68s4EjF3mZmtnEwSwYYhAZlHheHVk2NB0kVf7pG4YZK1ALKWN69kJ8eOvTyCBBbihEdalfGePtZF76xVG_h_vOInF0_6BbkOziP9OhztPyU3Q7cS8cPaDtleLlbmGeSZS_ncLWhKfl62B_kHXieQsQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6VVAg48H4YCloQEgfi1LE3fnCLKFVBIqqASOVk7TOtGm2i2FFU_gP_mZn1gzpCFYiDTztre8ezM1-yM98Q8tqoOEv4UPqJjpjPWJT4QkWBr5PIaB7HxkRYO_x5Eh9N2aeT0ckOOWhqYVy2e3MkWdU0IEuTLfeXyuy3hW94gIV5PnBBBAv9zQCGr5HdeASIvEd2p5Pj8Xd3gOCy213jXUAG2McjiOramT_fqBOftr30pTC1nULZnqPeIjfWdskvNnw-vxSqDu8Q3SyyylA5H6xLMZA_tvgf_1cLd8ntGsvScWV898iOtvfJ9aq75cUD8vN4hadA-OXpwtDi_MxS5Mhe9WlZdUqi3CpqwOdi2_gZxVIXejAZUxDEvLzilC7b_mLvKAJivqIrPatyd22fQqBVMAeAN6jN3Q35OeGdbJXdThvKdF08JNPDD9_eH_l19wdfAoQs_YjFRolAjyINTkcyacLEpI5APpWMBZplOtJZKFQqjBGAaxNtQsaF5KGRjEePSM8urH5CqOJBIoUcKikEYwI2DyBLFYZaaWVUJjwybL55LmtqdOzQMc9bUmen6hxUnTtV5xuPvG3nLCtikCulX6Ep5ci4YTGlZ8bXRZF__PolH4_AhQYp4AKPvKmFzAIeL3ldIQGLQJKujuReRxJcguwONxab1y6pyEPsxjpEekePvGyHcSam2Vm9WDuZLIbfCBnIPK4MvF1cFGQpum-PJB3TbwWQqLw7Ys9OHWF5DJgVQoNH-o1N_36tq3TWbzfSX6j46b-JPyM3Q7dz8A-1PdIrV2v9HPBlKV7U7uMX_6J0RA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+skin+color%2C+tanning+and+freckling+from+DNA+in+Polish+population%3A+linear+regression%2C+random+forest+and+neural+network+approaches&rft.jtitle=Human+genetics&rft.au=Zaorska%2C+Katarzyna&rft.au=Zawierucha%2C+Piotr&rft.au=Nowicki%2C+Micha%C5%82&rft.date=2019-06-01&rft.eissn=1432-1203&rft.volume=138&rft.issue=6&rft.spage=635&rft_id=info:doi/10.1007%2Fs00439-019-02012-w&rft_id=info%3Apmid%2F30980179&rft.externalDocID=30980179 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-6717&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-6717&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-6717&client=summon |