Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion

Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabol...

Full description

Saved in:
Bibliographic Details
Published inNature immunology Vol. 22; no. 2; pp. 205 - 215
Main Authors Scharping, Nicole E., Rivadeneira, Dayana B., Menk, Ashley V., Vignali, Paolo D. A., Ford, B. Rhodes, Rittenhouse, Natalie L., Peralta, Ronal, Wang, Yiyang, Wang, Yupeng, DePeaux, Kristin, Poholek, Amanda C., Delgoffe, Greg M.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.02.2021
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1529-2908
1529-2916
1529-2916
DOI10.1038/s41590-020-00834-9

Cover

Abstract Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8 + T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell–intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates. Delgoffe and colleagues show that continuous TCR signaling and hypoxia increase Blimp-1, which suppresses PGC-1α-dependent mitochondrial reprogramming and increases reactive oxygen species generation. Such conditions promote T cell exhaustion.
AbstractList Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates.Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates.
Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell–intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates.Delgoffe and colleagues show that continuous TCR signaling and hypoxia increase Blimp-1, which suppresses PGC-1α-dependent mitochondrial reprogramming and increases reactive oxygen species generation. Such conditions promote T cell exhaustion.
Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8.sup.+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1[alpha]-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates.
Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8.sup.+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1[alpha]-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates. Delgoffe and colleagues show that continuous TCR signaling and hypoxia increase Blimp-1, which suppresses PGC-1[alpha]-dependent mitochondrial reprogramming and increases reactive oxygen species generation. Such conditions promote T cell exhaustion.
Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8 + T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell–intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates. Delgoffe and colleagues show that continuous TCR signaling and hypoxia increase Blimp-1, which suppresses PGC-1α-dependent mitochondrial reprogramming and increases reactive oxygen species generation. Such conditions promote T cell exhaustion.
Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8 T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates.
Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic, and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized metabolic stress alters their responses to other signals, specifically persistent antigenic stimulation. In vitro , while CD8 + T cells experiencing continuous stimulation or hypoxia alone differentiate into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of ROS, sufficient to promote exhausted-like states, in part through phosphatase inhibition and consequent NFAT activity. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates.
Audience Academic
Author Wang, Yiyang
DePeaux, Kristin
Rittenhouse, Natalie L.
Poholek, Amanda C.
Scharping, Nicole E.
Rivadeneira, Dayana B.
Peralta, Ronal
Vignali, Paolo D. A.
Wang, Yupeng
Delgoffe, Greg M.
Ford, B. Rhodes
Menk, Ashley V.
AuthorAffiliation 3 School of Medicine, Tsinghua University, Beijing, China
2 Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh
1 Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh
AuthorAffiliation_xml – name: 2 Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh
– name: 1 Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh
– name: 3 School of Medicine, Tsinghua University, Beijing, China
Author_xml – sequence: 1
  givenname: Nicole E.
  orcidid: 0000-0001-9373-4617
  surname: Scharping
  fullname: Scharping, Nicole E.
  organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh
– sequence: 2
  givenname: Dayana B.
  surname: Rivadeneira
  fullname: Rivadeneira, Dayana B.
  organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh
– sequence: 3
  givenname: Ashley V.
  surname: Menk
  fullname: Menk, Ashley V.
  organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh
– sequence: 4
  givenname: Paolo D. A.
  surname: Vignali
  fullname: Vignali, Paolo D. A.
  organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh
– sequence: 5
  givenname: B. Rhodes
  surname: Ford
  fullname: Ford, B. Rhodes
  organization: Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh
– sequence: 6
  givenname: Natalie L.
  surname: Rittenhouse
  fullname: Rittenhouse, Natalie L.
  organization: Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh
– sequence: 7
  givenname: Ronal
  surname: Peralta
  fullname: Peralta, Ronal
  organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh
– sequence: 8
  givenname: Yiyang
  surname: Wang
  fullname: Wang, Yiyang
  organization: School of Medicine, Tsinghua University
– sequence: 9
  givenname: Yupeng
  surname: Wang
  fullname: Wang, Yupeng
  organization: School of Medicine, Tsinghua University
– sequence: 10
  givenname: Kristin
  orcidid: 0000-0001-8460-727X
  surname: DePeaux
  fullname: DePeaux, Kristin
  organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh
– sequence: 11
  givenname: Amanda C.
  surname: Poholek
  fullname: Poholek, Amanda C.
  organization: Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh
– sequence: 12
  givenname: Greg M.
  orcidid: 0000-0002-2957-8135
  surname: Delgoffe
  fullname: Delgoffe, Greg M.
  email: gdelgoffe@pitt.edu
  organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33398183$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAUhUVJaR7tH-iiCLpJF071sCxrUwihTQIphTZdC410PaPgkaaSHWb-feVMHp1QgjEW1neOrXPPIdoLMQBC7yk5oYS3n3NNhSIVYeUmLa8r9QodUMFUxRRt9h7XpN1HhznfEEJr2dRv0D7nXLW05QcIvvsh2kUMLnnT4zwkyBn74EYLDs822MYw-DDGMZdNvxx7M_gY8BgcJLzYrOLaG5zMyrt-g4vJLWR8jS30PYb1wox5wt-i153pM7y7fx6h39--Xp9dVFc_zi_PTq8qK6QYKiaso0QSkKx2THatUY2RTDkDxjXWUs4FtR1VVnHREdIBb2WRzoSjM8MVP0Jftr6rcbYEZyEMyfR6lfzSpI2OxuvdneAXeh5vtVSSEkWKwfG9QYp_RsiDXvo8HcYEKBFoVktRkxJ7XdCPz9CbOKZQjleolohaCNU8UXPTg_ahi-W7djLVp40QkkrZsEKd_Icql4OlLxOAzpf3O4JPO4JpSrAe5iXvrC9__dxlP_wbymMaDyUoQLsFbIo5J-i09cPdmMtf-F5Toqe-6W3fdOmbvuubngJnz6QP7i-K-FaUCxzmkJ6Se0H1F_5D57k
CitedBy_id crossref_primary_10_1016_j_autrev_2024_103579
crossref_primary_10_1182_bloodadvances_2023009890
crossref_primary_10_3389_fimmu_2023_1204363
crossref_primary_10_1002_advs_202403158
crossref_primary_10_1038_s41586_021_03442_1
crossref_primary_10_1172_JCI148549
crossref_primary_10_1038_s41568_024_00781_9
crossref_primary_10_1172_JCI148546
crossref_primary_10_1016_j_cmet_2022_02_003
crossref_primary_10_70322_immune_2025_10005
crossref_primary_10_1080_14712598_2022_2064711
crossref_primary_10_3389_fonc_2023_1107484
crossref_primary_10_1111_cas_15331
crossref_primary_10_1016_j_cmet_2023_12_009
crossref_primary_10_1038_s42255_021_00387_7
crossref_primary_10_18203_2349_3933_ijam20250722
crossref_primary_10_1038_s41568_021_00378_6
crossref_primary_10_1124_jpet_123_001898
crossref_primary_10_1186_s12929_023_00956_w
crossref_primary_10_1126_sciadv_adi2414
crossref_primary_10_1186_s12929_022_00894_z
crossref_primary_10_1172_jci_insight_177141
crossref_primary_10_3390_md21120600
crossref_primary_10_1016_j_ccr_2024_216109
crossref_primary_10_1016_j_ccell_2024_12_001
crossref_primary_10_18632_aging_205838
crossref_primary_10_1016_j_it_2021_09_002
crossref_primary_10_1146_annurev_med_060619_022830
crossref_primary_10_1016_j_copbio_2021_02_003
crossref_primary_10_1038_s41467_023_38933_4
crossref_primary_10_1089_ars_2023_0491
crossref_primary_10_1016_j_immuni_2022_12_008
crossref_primary_10_1089_ars_2023_0253
crossref_primary_10_3390_nu16213577
crossref_primary_10_1016_j_trecan_2024_03_010
crossref_primary_10_1016_j_xcrm_2024_101686
crossref_primary_10_2139_ssrn_3942126
crossref_primary_10_1186_s13045_023_01492_8
crossref_primary_10_1186_s12964_024_01848_8
crossref_primary_10_1186_s13045_025_01684_4
crossref_primary_10_1002_adtp_202300094
crossref_primary_10_1016_j_drup_2024_101197
crossref_primary_10_3390_cancers14010183
crossref_primary_10_1158_2326_6066_CIR_21_0813
crossref_primary_10_1038_s41577_023_00884_8
crossref_primary_10_1002_ange_202300356
crossref_primary_10_1007_s13402_024_01000_1
crossref_primary_10_3389_fcell_2021_762478
crossref_primary_10_1016_j_celrep_2025_115430
crossref_primary_10_1002_hep_32419
crossref_primary_10_1038_s43018_024_00738_9
crossref_primary_10_3389_fimmu_2024_1356369
crossref_primary_10_3390_cells11193103
crossref_primary_10_1016_j_celrep_2025_115432
crossref_primary_10_3390_biomedicines11010125
crossref_primary_10_1016_j_ymthe_2023_09_021
crossref_primary_10_1016_j_tcb_2022_05_007
crossref_primary_10_1038_s41573_024_00979_4
crossref_primary_10_3390_ijms252212223
crossref_primary_10_1016_j_colsurfb_2024_114074
crossref_primary_10_3390_cancers15041106
crossref_primary_10_1111_cns_14315
crossref_primary_10_1038_s41423_021_00750_4
crossref_primary_10_1038_s41598_025_93584_3
crossref_primary_10_1073_pnas_2315989121
crossref_primary_10_3389_fimmu_2023_1160340
crossref_primary_10_3390_cancers13236131
crossref_primary_10_1038_s41590_024_01999_3
crossref_primary_10_1016_j_cmet_2023_12_010
crossref_primary_10_1016_j_ijbiomac_2025_139829
crossref_primary_10_1002_anie_202300356
crossref_primary_10_4049_immunohorizons_2000103
crossref_primary_10_3390_cancers13133327
crossref_primary_10_1016_j_immuni_2024_07_003
crossref_primary_10_1158_2326_6066_CIR_22_0685
crossref_primary_10_3389_fonc_2022_1046102
crossref_primary_10_1038_s41423_024_01133_1
crossref_primary_10_1038_s41565_022_01261_7
crossref_primary_10_1016_j_cmet_2023_11_005
crossref_primary_10_3724_zdxbyxb_2023_0484
crossref_primary_10_1002_adfm_202010777
crossref_primary_10_1016_j_it_2021_03_006
crossref_primary_10_1016_j_soc_2023_02_009
crossref_primary_10_1186_s12885_022_10313_z
crossref_primary_10_1016_j_coi_2022_102245
crossref_primary_10_1016_j_jbc_2023_105488
crossref_primary_10_1097_CJI_0000000000000503
crossref_primary_10_3390_v16020219
crossref_primary_10_1016_j_chembiol_2024_02_001
crossref_primary_10_1038_s41423_021_00709_5
crossref_primary_10_1126_sciimmunol_abj9123
crossref_primary_10_1210_endocr_bqac124
crossref_primary_10_1038_s41571_021_00552_7
crossref_primary_10_1021_acsnano_5c00691
crossref_primary_10_1146_annurev_cancerbio_061421_042605
crossref_primary_10_1111_cas_16206
crossref_primary_10_1186_s13020_023_00785_x
crossref_primary_10_1002_acr2_11668
crossref_primary_10_3324_haematol_2020_267914
crossref_primary_10_1371_journal_pone_0272703
crossref_primary_10_1007_s00432_024_05685_7
crossref_primary_10_7554_eLife_84280
crossref_primary_10_1007_s10555_023_10165_4
crossref_primary_10_3389_fonc_2023_1200387
crossref_primary_10_1186_s13287_025_04224_6
crossref_primary_10_1146_annurev_immunol_090222_110914
crossref_primary_10_1016_j_ccell_2023_01_009
crossref_primary_10_3389_fimmu_2024_1490845
crossref_primary_10_1038_s41467_024_54132_1
crossref_primary_10_3389_fsysb_2022_910243
crossref_primary_10_1186_s12920_023_01613_9
crossref_primary_10_1038_s41571_021_00564_3
crossref_primary_10_1186_s13287_022_02769_4
crossref_primary_10_1182_bloodadvances_2023010305
crossref_primary_10_3389_fimmu_2021_669456
crossref_primary_10_1016_j_neo_2024_101117
crossref_primary_10_1016_j_immuni_2021_12_012
crossref_primary_10_1016_j_tube_2022_102220
crossref_primary_10_1016_j_ymthe_2024_03_033
crossref_primary_10_1007_s12032_022_01842_5
crossref_primary_10_1038_s41590_022_01379_9
crossref_primary_10_2174_1389203723666220620161742
crossref_primary_10_3389_fonc_2024_1364577
crossref_primary_10_1016_j_intimp_2023_111026
crossref_primary_10_1002_jcp_31520
crossref_primary_10_1038_s41590_022_01224_z
crossref_primary_10_1158_0008_5472_CAN_21_3155
crossref_primary_10_1073_pnas_2317735121
crossref_primary_10_1021_acsnano_3c11260
crossref_primary_10_1186_s12967_024_05674_x
crossref_primary_10_1155_2022_3667417
crossref_primary_10_3389_fimmu_2023_1200941
crossref_primary_10_1016_j_xcrm_2024_101626
crossref_primary_10_1016_j_heliyon_2024_e33144
crossref_primary_10_1111_cas_15261
crossref_primary_10_1016_j_cell_2024_03_037
crossref_primary_10_1158_2326_6066_CIR_23_0092
crossref_primary_10_3389_fimmu_2024_1336023
crossref_primary_10_1038_s41590_023_01675_y
crossref_primary_10_1016_j_celrep_2023_113518
crossref_primary_10_3389_fimmu_2023_1230490
crossref_primary_10_1136_jitc_2023_008367
crossref_primary_10_1016_j_coi_2021_10_001
crossref_primary_10_3390_biology12040541
crossref_primary_10_1007_s00210_024_03469_x
crossref_primary_10_1186_s12859_023_05268_2
crossref_primary_10_3389_fimmu_2023_1198551
crossref_primary_10_1007_s00210_023_02689_x
crossref_primary_10_1016_j_cmet_2024_12_007
crossref_primary_10_3389_fgene_2022_922074
crossref_primary_10_1002_2056_4538_12390
crossref_primary_10_1126_sciimmunol_ade3369
crossref_primary_10_1038_s41590_024_02020_7
crossref_primary_10_1016_j_coi_2024_102463
crossref_primary_10_1158_0008_5472_CAN_23_3204
crossref_primary_10_1038_s41590_020_00861_6
crossref_primary_10_3389_fimmu_2021_777073
crossref_primary_10_1038_s41467_024_46377_7
crossref_primary_10_1038_s41423_023_01031_y
crossref_primary_10_3390_ijms22094460
crossref_primary_10_1126_scitranslmed_adg6752
crossref_primary_10_1136_jitc_2022_004712
crossref_primary_10_1016_j_semcancer_2024_07_001
crossref_primary_10_1038_s41423_023_01064_3
crossref_primary_10_1007_s00262_023_03614_0
crossref_primary_10_1084_jem_20201599
crossref_primary_10_1038_s41577_023_00973_8
crossref_primary_10_1002_adma_202305140
crossref_primary_10_1038_s41401_024_01304_w
crossref_primary_10_1007_s10555_024_10211_9
crossref_primary_10_1186_s13045_024_01600_2
crossref_primary_10_1016_j_isci_2024_110710
crossref_primary_10_1136_jitc_2022_005719
crossref_primary_10_1016_j_canlet_2023_216267
crossref_primary_10_3390_cells10030678
crossref_primary_10_1097_CM9_0000000000002989
crossref_primary_10_1002_smll_202406860
crossref_primary_10_1158_2326_6066_CIR_20_0445
crossref_primary_10_1186_s13071_024_06573_2
crossref_primary_10_1038_s41467_022_35583_w
crossref_primary_10_1186_s13045_022_01255_x
crossref_primary_10_1016_j_ejca_2025_115332
crossref_primary_10_1016_j_clml_2024_04_006
crossref_primary_10_1038_s41571_023_00782_x
crossref_primary_10_1038_s41590_021_00927_z
crossref_primary_10_1002_cac2_12250
crossref_primary_10_1016_j_intimp_2024_112571
crossref_primary_10_1016_j_bbcan_2024_189137
crossref_primary_10_3390_cimb45020094
crossref_primary_10_1016_j_biomaterials_2024_122773
crossref_primary_10_1159_000539278
crossref_primary_10_3389_fonc_2024_1350426
crossref_primary_10_1038_s41388_022_02562_w
crossref_primary_10_3389_fonc_2025_1549237
crossref_primary_10_3390_microorganisms11112640
crossref_primary_10_3389_fimmu_2022_977394
crossref_primary_10_1038_s41577_021_00541_y
crossref_primary_10_1186_s13046_022_02439_6
crossref_primary_10_1126_sciadv_adl0479
crossref_primary_10_1016_j_tem_2024_05_010
crossref_primary_10_1083_jcb_202205118
crossref_primary_10_1038_s41590_023_01687_8
crossref_primary_10_1016_j_canlet_2024_216675
crossref_primary_10_1038_s42255_022_00730_6
crossref_primary_10_1136_jitc_2024_009409
crossref_primary_10_1089_ars_2022_0040
crossref_primary_10_1016_j_nantod_2022_101696
crossref_primary_10_1016_j_tice_2022_101964
crossref_primary_10_4110_in_2023_23_e9
crossref_primary_10_1016_j_canlet_2022_216043
crossref_primary_10_1136_gutjnl_2022_328734
crossref_primary_10_3389_fimmu_2022_960738
crossref_primary_10_3390_ijms26051953
crossref_primary_10_1007_s12640_024_00691_6
crossref_primary_10_1186_s12943_023_01831_w
crossref_primary_10_1016_j_xcrm_2023_101287
crossref_primary_10_4049_jimmunol_2300334
crossref_primary_10_1016_j_canlet_2023_216223
crossref_primary_10_1136_jitc_2023_008226
crossref_primary_10_3389_fimmu_2024_1347181
crossref_primary_10_3390_biology13050307
crossref_primary_10_1038_s41571_022_00689_z
crossref_primary_10_3389_fimmu_2022_1090429
crossref_primary_10_3390_cancers16193273
crossref_primary_10_1007_s00432_022_04164_1
crossref_primary_10_1016_j_it_2023_08_008
crossref_primary_10_1097_JS9_0000000000001011
crossref_primary_10_1038_s41388_024_03191_1
crossref_primary_10_1038_s41568_021_00435_0
crossref_primary_10_1016_j_xcrm_2023_101052
crossref_primary_10_1016_j_bbcan_2024_189209
crossref_primary_10_1016_j_chembiol_2021_11_002
crossref_primary_10_1016_j_metabol_2023_155747
crossref_primary_10_3389_fimmu_2021_666231
crossref_primary_10_1038_s41571_024_00913_y
crossref_primary_10_1210_clinem_dgad149
crossref_primary_10_1007_s12672_025_01897_6
crossref_primary_10_54097_hset_v54i_9775
crossref_primary_10_1039_D2CC04112J
crossref_primary_10_3389_fimmu_2022_845923
crossref_primary_10_1126_scitranslmed_adl1535
crossref_primary_10_3390_cells11223626
crossref_primary_10_1016_j_ebiom_2022_104216
crossref_primary_10_1016_j_cmet_2024_02_009
crossref_primary_10_1038_s41587_023_02060_8
crossref_primary_10_1126_science_adl4100
crossref_primary_10_1186_s12951_022_01699_w
crossref_primary_10_1126_sciimmunol_adf6717
crossref_primary_10_38124_ijisrt_25mar497
crossref_primary_10_1016_j_smim_2023_101808
crossref_primary_10_1038_s41467_024_53997_6
crossref_primary_10_1016_j_biomaterials_2022_121635
crossref_primary_10_1177_03946320231215219
crossref_primary_10_1016_j_jhep_2022_06_014
crossref_primary_10_1038_s41577_025_01158_1
crossref_primary_10_1371_journal_pone_0298472
crossref_primary_10_1016_j_phrs_2024_107499
crossref_primary_10_1016_j_cell_2024_08_029
crossref_primary_10_3389_fphar_2023_1156538
crossref_primary_10_3390_cancers16040695
crossref_primary_10_3389_fimmu_2022_1061411
crossref_primary_10_3389_fphys_2024_1415037
crossref_primary_10_1038_s41598_023_30655_3
crossref_primary_10_3390_antiox10050723
crossref_primary_10_3389_fonc_2022_993437
crossref_primary_10_3389_fcell_2022_814722
crossref_primary_10_3389_fnmol_2024_1324458
crossref_primary_10_1186_s40164_024_00519_1
crossref_primary_10_1007_s00432_022_04326_1
crossref_primary_10_1016_j_bioactmat_2025_03_003
crossref_primary_10_1016_j_molcel_2023_02_026
crossref_primary_10_1016_j_jaci_2022_10_011
crossref_primary_10_1038_s41435_023_00233_8
crossref_primary_10_1002_advs_202309885
crossref_primary_10_1016_j_freeradbiomed_2024_01_049
crossref_primary_10_1136_jitc_2022_006522
crossref_primary_10_1016_j_isci_2023_106531
crossref_primary_10_1186_s12967_024_05391_5
crossref_primary_10_3390_sports11020030
crossref_primary_10_1007_s00395_024_01092_8
crossref_primary_10_1038_s41577_024_01061_1
crossref_primary_10_1016_j_xcrm_2025_102021
crossref_primary_10_1172_JCI153110
crossref_primary_10_26508_lsa_202302200
crossref_primary_10_1021_acs_molpharmaceut_3c00045
crossref_primary_10_1097_TP_0000000000005285
crossref_primary_10_14791_btrt_2022_0043
crossref_primary_10_1016_j_smim_2021_101485
crossref_primary_10_1021_acsnano_3c07885
crossref_primary_10_3389_fphar_2021_711772
crossref_primary_10_1038_s41423_021_00833_2
crossref_primary_10_1016_j_radonc_2024_110592
crossref_primary_10_1038_s43018_024_00775_4
crossref_primary_10_1155_2022_6284124
crossref_primary_10_3389_fimmu_2025_1529847
crossref_primary_10_1002_advs_202101672
crossref_primary_10_1016_j_biopha_2023_115036
crossref_primary_10_1016_j_jbo_2024_100635
crossref_primary_10_3390_ijms22136779
crossref_primary_10_1007_s00432_024_06017_5
crossref_primary_10_1016_j_trecan_2022_12_008
crossref_primary_10_1186_s40779_023_00496_2
crossref_primary_10_3389_fonc_2022_1006322
crossref_primary_10_1016_j_immuni_2023_09_005
crossref_primary_10_1016_j_intimp_2024_113090
crossref_primary_10_1038_s41598_022_26395_5
crossref_primary_10_1016_j_coph_2021_07_018
crossref_primary_10_3390_cancers14020323
crossref_primary_10_1111_imm_13575
crossref_primary_10_1038_s41422_022_00766_z
crossref_primary_10_1016_j_cmet_2022_07_012
crossref_primary_10_1016_j_ccell_2022_05_004
crossref_primary_10_1158_1078_0432_CCR_23_3736
crossref_primary_10_1186_s12943_024_02175_9
crossref_primary_10_1002_adma_202206370
crossref_primary_10_1007_s00262_023_03582_5
crossref_primary_10_1016_j_mcpro_2022_100217
crossref_primary_10_3389_fimmu_2022_909580
crossref_primary_10_1126_sciimmunol_adl3604
crossref_primary_10_1186_s12943_022_01500_4
crossref_primary_10_1158_2326_6066_CIR_21_0691
crossref_primary_10_1084_jem_20202084
crossref_primary_10_3389_fcvm_2023_1112222
crossref_primary_10_1016_j_ccell_2025_01_005
crossref_primary_10_1186_s12951_021_01034_9
crossref_primary_10_1080_15384101_2023_2289753
crossref_primary_10_3389_fimmu_2022_843242
crossref_primary_10_1016_j_cell_2021_12_043
crossref_primary_10_1134_S0006297923110159
crossref_primary_10_4049_jimmunol_2400236
crossref_primary_10_1038_s41568_023_00615_0
crossref_primary_10_1016_j_biopha_2023_115131
crossref_primary_10_3390_cancers14051176
crossref_primary_10_1007_s12672_024_01117_7
crossref_primary_10_1172_jci_insight_169150
crossref_primary_10_3390_ijms251910365
crossref_primary_10_1007_s12032_022_01782_0
crossref_primary_10_1097_IN9_0000000000000059
crossref_primary_10_3390_ijms25137487
crossref_primary_10_1126_sciadv_adp1152
crossref_primary_10_1016_j_canlet_2023_216511
crossref_primary_10_1016_j_immuni_2021_06_007
crossref_primary_10_1016_j_bbadis_2024_167646
crossref_primary_10_1016_j_jcis_2023_12_189
crossref_primary_10_1007_s10238_024_01501_1
crossref_primary_10_1038_s41467_022_31764_9
crossref_primary_10_1021_acssynbio_3c00569
crossref_primary_10_1002_1873_3468_15097
crossref_primary_10_1158_2326_6066_CIR_21_0110
crossref_primary_10_1136_ard_2023_224689
crossref_primary_10_1172_JCI155224
crossref_primary_10_1016_j_celrep_2024_114632
crossref_primary_10_1002_bit_28389
crossref_primary_10_1016_j_bbcan_2022_188848
crossref_primary_10_3389_fimmu_2025_1553477
crossref_primary_10_1042_EBC20220248
crossref_primary_10_3390_cancers13164148
crossref_primary_10_1093_lifemeta_loac038
crossref_primary_10_3389_fphar_2023_1110922
crossref_primary_10_3390_ijms25031396
crossref_primary_10_4049_jimmunol_2100829
crossref_primary_10_1155_2023_5867047
crossref_primary_10_3390_ijms241511937
crossref_primary_10_1007_s43032_023_01304_x
crossref_primary_10_1038_s41571_021_00539_4
crossref_primary_10_3390_antib10020017
crossref_primary_10_1016_j_cmet_2021_02_010
crossref_primary_10_1016_j_biopha_2022_114150
crossref_primary_10_1038_s41590_024_01896_9
crossref_primary_10_1093_intimm_dxad035
crossref_primary_10_3389_fimmu_2022_873834
crossref_primary_10_1016_j_bbadis_2024_167623
crossref_primary_10_1515_oncologie_2024_0596
crossref_primary_10_4049_jimmunol_2200681
crossref_primary_10_1038_s41577_024_01087_5
crossref_primary_10_1016_j_jcyt_2022_06_006
crossref_primary_10_3389_fimmu_2022_959114
crossref_primary_10_1186_s12943_024_02007_w
crossref_primary_10_1073_pnas_2415119121
crossref_primary_10_1038_s41590_022_01210_5
crossref_primary_10_3389_fimmu_2024_1498808
crossref_primary_10_3390_ijms232214052
crossref_primary_10_3389_fimmu_2023_1125874
crossref_primary_10_1002_adhm_202402973
crossref_primary_10_1016_j_biopha_2023_114646
crossref_primary_10_3390_ijms24032606
crossref_primary_10_3390_genes13071193
crossref_primary_10_1016_j_isci_2022_104347
crossref_primary_10_3389_fgene_2022_908104
crossref_primary_10_3389_fimmu_2024_1428596
crossref_primary_10_1016_j_ymthe_2022_01_022
crossref_primary_10_3390_genes13020273
crossref_primary_10_1038_s41590_021_00940_2
crossref_primary_10_1038_s41392_024_02118_2
crossref_primary_10_1038_s41423_021_00727_3
crossref_primary_10_1186_s12915_022_01386_0
crossref_primary_10_3389_fimmu_2023_1166052
crossref_primary_10_1038_s41577_023_00937_y
crossref_primary_10_1016_j_jep_2023_116276
crossref_primary_10_1007_s12672_024_01255_y
crossref_primary_10_1172_jci_insight_156048
crossref_primary_10_1016_j_lfs_2021_120057
crossref_primary_10_1038_s41590_022_01141_1
crossref_primary_10_1016_j_isci_2023_106822
crossref_primary_10_1016_j_ctro_2024_100875
crossref_primary_10_1038_s41467_025_57819_1
crossref_primary_10_1093_carcin_bgae012
crossref_primary_10_3390_ijms22083906
crossref_primary_10_1111_jcmm_18208
crossref_primary_10_3389_fcimb_2023_1206720
crossref_primary_10_1016_j_celrep_2022_111647
crossref_primary_10_3389_fcell_2022_1013885
crossref_primary_10_3390_cancers13205250
crossref_primary_10_1038_s41577_021_00537_8
crossref_primary_10_1080_08830185_2024_2401352
crossref_primary_10_1186_s12964_024_01493_1
crossref_primary_10_1002_1878_0261_13691
crossref_primary_10_1038_s41590_022_01409_6
crossref_primary_10_3390_antiox11050853
crossref_primary_10_1172_JCI167826
crossref_primary_10_1371_journal_pbio_3002943
crossref_primary_10_1002_adbi_202101320
crossref_primary_10_1158_2159_8290_CD_20_0569
crossref_primary_10_1158_2326_6066_CIR_23_0851
crossref_primary_10_1016_j_bbadis_2022_166565
crossref_primary_10_1186_s40164_024_00543_1
crossref_primary_10_1021_acsnano_2c00192
crossref_primary_10_1080_21645515_2023_2219191
crossref_primary_10_1158_1078_0432_CCR_22_2181
crossref_primary_10_3389_fcvm_2022_854421
crossref_primary_10_1002_smll_202202663
crossref_primary_10_1016_j_molmed_2023_11_002
crossref_primary_10_1038_s41556_022_01002_x
crossref_primary_10_3389_fimmu_2024_1472430
crossref_primary_10_1002_ctm2_492
crossref_primary_10_1038_s41598_023_28167_1
crossref_primary_10_1080_2162402X_2024_2344905
crossref_primary_10_1016_j_cels_2024_11_010
crossref_primary_10_3389_fonc_2024_1383809
crossref_primary_10_3389_fimmu_2023_1172931
crossref_primary_10_1038_s43018_023_00636_6
crossref_primary_10_3389_fonc_2022_992387
crossref_primary_10_1038_s42255_023_00856_1
crossref_primary_10_1007_s12672_025_02109_x
crossref_primary_10_1016_j_tibs_2023_03_004
crossref_primary_10_1016_j_colsurfb_2022_112616
crossref_primary_10_1073_pnas_2305245120
crossref_primary_10_31857_S0320972523110167
crossref_primary_10_3389_fcell_2022_913684
crossref_primary_10_1016_j_canlet_2022_01_006
crossref_primary_10_1021_acsnano_4c04553
crossref_primary_10_2174_1871527322666230406094257
crossref_primary_10_1002_cnr2_2146
crossref_primary_10_3892_or_2021_8159
crossref_primary_10_3389_fimmu_2023_1247268
crossref_primary_10_1172_jci_insight_138970
crossref_primary_10_1136_jitc_2024_010153
crossref_primary_10_1038_s41392_023_01332_8
crossref_primary_10_1111_imm_13832
crossref_primary_10_2174_1574892817666220623154831
crossref_primary_10_3389_fimmu_2021_712402
crossref_primary_10_3390_ijms232214094
crossref_primary_10_1038_s41375_022_01676_0
crossref_primary_10_3389_fimmu_2022_932715
crossref_primary_10_1016_j_yexmp_2024_104932
crossref_primary_10_1002_eji_202149486
crossref_primary_10_1093_oxfimm_iqad006
crossref_primary_10_1038_s41467_023_42634_3
crossref_primary_10_1126_sciadv_adn1849
crossref_primary_10_1126_scitranslmed_adh1315
crossref_primary_10_1038_s41573_024_01098_w
crossref_primary_10_1136_jitc_2024_009062
crossref_primary_10_1172_JCI177992
Cites_doi 10.1158/2326-6066.CIR-18-0182
10.1016/j.immuni.2015.01.006
10.1084/jem.20140559
10.1084/jem.20171068
10.1158/2326-6066.CIR-16-0103
10.1073/pnas.95.20.11715
10.1158/2326-6066.CIR-17-0249
10.1016/j.cmet.2015.07.020
10.1016/j.ccell.2017.10.003
10.1016/S1097-2765(00)00031-9
10.1002/jnr.23196
10.1038/nri.2017.66
10.1126/science.aae0491
10.1038/s41586-018-0206-z
10.1016/j.immuni.2012.10.020
10.1038/s41590-019-0478-y
10.1016/j.molcel.2010.10.004
10.3390/vaccines4040046
10.1038/s41590-019-0346-9
10.1172/jci.insight.93411
10.1146/annurev-immunol-041015-055318
10.1038/ni.2714
10.1126/science.1229620
10.1016/j.cell.2015.08.016
10.1016/j.cell.2006.09.024
10.1016/j.tcb.2015.12.002
10.1016/j.immuni.2016.07.008
10.1016/j.cell.2015.08.012
10.1126/sciimmunol.aaf8612
10.1172/jci.insight.124989
10.1038/s41590-019-0312-6
10.1016/j.immuni.2016.10.017
10.1016/j.cell.2018.10.038
10.1016/j.cub.2014.03.034
10.1016/j.cmet.2015.11.002
10.1016/j.immuni.2009.04.014
10.1038/nature22367
10.1016/j.immuni.2009.06.019
10.3389/fimmu.2018.01591
10.4049/jimmunol.152.2.381
10.1126/science.aaf2807
10.1074/jbc.M210432200
10.1038/s41419-017-0061-0
10.1074/jbc.M803236200
10.1038/ni.3031
10.1056/NEJMoa1816047
10.1016/j.immuni.2016.07.009
10.1016/j.immuni.2014.01.005
10.1016/j.celrep.2017.08.071
10.1146/annurev-immunol-042617-053411
10.1038/s41590-020-0725-2
10.1038/s41577-019-0221-9
10.1038/nrclinonc.2016.60
10.1126/science.aav2588
10.1038/s41590-020-0733-2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
COPYRIGHT 2021 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7T5
7TK
7TM
7U9
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/s41590-020-00834-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student




MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1529-2916
EndPage 215
ExternalDocumentID PMC7971090
A655717762
33398183
10_1038_s41590_020_00834_9
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: T32CA082084; F99CA222711; T32CA082084; F30CA247034; T32CA082084; F31CA247129; T32CA082084
  funderid: https://doi.org/10.13039/100000054
– fundername: SU2C-AACR Innovative Research Grant (SU2C-AACR-IRG-04-16), the Alliance for Cancer Gene Therapy, the Mark Foundation for Cancer Research Emerging Leader Award, the Cancer Research Institute Lloyd J. Old STAR Award, and the Sy Holzer Endowed Cancer Immunotherapy Fund
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: DP2AI136598; R21AI135367; T32AI089443
  funderid: https://doi.org/10.13039/100000060
– fundername: United States Department of Defense | U.S. Army (United States Army)
  grantid: CA170483
  funderid: https://doi.org/10.13039/100006751
– fundername: NCI NIH HHS
  grantid: K00 CA222711
– fundername: NCI NIH HHS
  grantid: P50 CA097190
– fundername: NIAID NIH HHS
  grantid: R21 AI135367
– fundername: NCI NIH HHS
  grantid: T32 CA082084
– fundername: NCI NIH HHS
  grantid: F30 CA247034
– fundername: NIAID NIH HHS
  grantid: DP2 AI136598
– fundername: NCI NIH HHS
  grantid: P50 CA121973
– fundername: NCI NIH HHS
  grantid: P30 CA047904
– fundername: NIAID NIH HHS
  grantid: T32 AI089443
– fundername: NCI NIH HHS
  grantid: F31 CA247129
GroupedDBID ---
.55
0R~
123
29M
2FS
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABNNU
ABOCM
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EAS
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ISR
ITC
L-9
LK8
M1P
M7P
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WH7
X7M
Y6R
ZXP
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
AEIIB
PMFND
7QP
7QR
7T5
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c575t-25cd1070e724d27f8a96a729daead6cc13351cf19c935f00fe387c57b5d1ba393
IEDL.DBID 7X7
ISSN 1529-2908
1529-2916
IngestDate Thu Aug 21 13:28:05 EDT 2025
Fri Sep 05 03:16:51 EDT 2025
Fri Jul 25 09:01:37 EDT 2025
Tue Jun 17 21:42:55 EDT 2025
Tue Jun 10 20:40:31 EDT 2025
Fri Jun 27 04:00:25 EDT 2025
Thu Apr 03 07:06:49 EDT 2025
Tue Jul 01 01:02:32 EDT 2025
Thu Apr 24 22:54:04 EDT 2025
Fri Feb 21 02:39:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-25cd1070e724d27f8a96a729daead6cc13351cf19c935f00fe387c57b5d1ba393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AUTHOR CONTRIBUTIONS
N.E.S. designed and performed experiments, analyzed data, and helped write the manuscript, D.B.R., A.V.M., and P.D.A.V. designed and performed experiments, and analyzed data. B.R.F and N.L.R. analyzed transcriptomic data. R.P. imaged microscopy experiments. Yiyang W. cloned overexpression plasmids. Yupeng W. aided Rho0 experiments. K.D. performed critical mouse experiments. A.C.P. oversaw bioinformatics research and provided crucial insight into Blimp-1-deficient experiments. G.M.D. conceived of, oversaw, and directed the research, performed initial experiments, analyzed data, obtained research funding, and wrote the manuscript.
these authors contributed equally
ORCID 0000-0001-9373-4617
0000-0002-2957-8135
0000-0001-8460-727X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7971090
PMID 33398183
PQID 2480545596
PQPubID 45782
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7971090
proquest_miscellaneous_2475401594
proquest_journals_2480545596
gale_infotracmisc_A655717762
gale_infotracacademiconefile_A655717762
gale_incontextgauss_ISR_A655717762
pubmed_primary_33398183
crossref_citationtrail_10_1038_s41590_020_00834_9
crossref_primary_10_1038_s41590_020_00834_9
springer_journals_10_1038_s41590_020_00834_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature immunology
PublicationTitleAbbrev Nat Immunol
PublicationTitleAlternate Nat Immunol
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Ho (CR44) 2015; 162
Sen (CR9) 2016; 354
Mehta, Weinberg, Chandel (CR46) 2017; 17
McLane, Abdel-Hakeem, Wherry (CR3) 2019; 37
Dröse, Brandt (CR34) 2008; 283
Schaaf, Garg, Agostinis (CR41) 2018; 9
Blaser, Dostert, Mak, Brenner (CR48) 2016; 26
Najjar (CR18) 2019; 4
Doedens (CR23) 2013; 14
Li (CR35) 2003; 278
Chandel (CR36) 1998; 95
Palazon (CR52) 2017; 32
Motzer (CR42) 2019; 380
Wellen, Thompson (CR49) 2010; 40
Chihara (CR6) 2018; 558
Poholek (CR56) 2016; 1
Chang (CR19) 2015; 162
Martinez (CR7) 2015; 42
Sawant (CR28) 2019; 20
Monsalve (CR55) 2000; 6
Siska (CR32) 2017; 2
Menk (CR17) 2018; 215
Horton, Williams, Cabanov, Spranger, Gajewski (CR26) 2018; 6
Miller (CR21) 2019; 20
Voron (CR51) 2015; 212
Scharping (CR15) 2016; 45
CR14
Delgoffe (CR54) 2009; 30
CR12
Phan (CR45) 2016; 45
Scharping, Menk, Whetstone, Zeng, Delgoffe (CR16) 2017; 5
CR50
Shin (CR5) 2009; 31
Scharping, Delgoffe (CR13) 2016; 4
Bengsch (CR43) 2016; 45
Sade-Feldman (CR22) 2018; 175
Acín-Pérez (CR37) 2015; 22
St-Pierre (CR40) 2006; 127
Paley (CR4) 2012; 338
Chinopoulos (CR30) 2013; 91
Philip (CR11) 2017; 545
Bacik, Cox, Anderson, Yewdell, Bennink (CR53) 1994; 152
Pauken (CR10) 2016; 354
Chang, Wherry, Goldrath (CR2) 2014; 15
CR29
Li, Patel, Roszik, Qin (CR25) 2018; 9
Sukumar (CR31) 2016; 23
Mann, Kaech (CR8) 2019; 20
Crawford (CR27) 2014; 40
Sena (CR39) 2013; 38
Mach, Thimmesch, Pierce, Pierce (CR47) 2011; 2011
CR20
Schieber, Chandel (CR38) 2014; 24
Hurst (CR33) 2019; 7
Taniuchi (CR1) 2018; 36
Gropper (CR24) 2017; 20
834_CR12
S Dröse (834_CR34) 2008; 283
PJ Siska (834_CR32) 2017; 2
M Monsalve (834_CR55) 2000; 6
834_CR50
BL Horton (834_CR26) 2018; 6
H Shin (834_CR5) 2009; 31
N Chihara (834_CR6) 2018; 558
AT Phan (834_CR45) 2016; 45
M Sukumar (834_CR31) 2016; 23
LM McLane (834_CR3) 2019; 37
834_CR14
I Taniuchi (834_CR1) 2018; 36
GM Delgoffe (834_CR54) 2009; 30
J St-Pierre (834_CR40) 2006; 127
AC Poholek (834_CR56) 2016; 1
B Bengsch (834_CR43) 2016; 45
CH Chang (834_CR19) 2015; 162
NE Scharping (834_CR16) 2017; 5
NE Scharping (834_CR15) 2016; 45
A Palazon (834_CR52) 2017; 32
Y Li (834_CR25) 2018; 9
KE Hurst (834_CR33) 2019; 7
N Li (834_CR35) 2003; 278
T Voron (834_CR51) 2015; 212
DR Sen (834_CR9) 2016; 354
M Philip (834_CR11) 2017; 545
H Blaser (834_CR48) 2016; 26
MB Schaaf (834_CR41) 2018; 9
NS Chandel (834_CR36) 1998; 95
BC Miller (834_CR21) 2019; 20
PC Ho (834_CR44) 2015; 162
LA Sena (834_CR39) 2013; 38
YG Najjar (834_CR18) 2019; 4
MM Mehta (834_CR46) 2017; 17
GJ Martinez (834_CR7) 2015; 42
AL Doedens (834_CR23) 2013; 14
Y Gropper (834_CR24) 2017; 20
834_CR20
RJ Motzer (834_CR42) 2019; 380
JT Chang (834_CR2) 2014; 15
C Chinopoulos (834_CR30) 2013; 91
KE Wellen (834_CR49) 2010; 40
834_CR29
WJ Mach (834_CR47) 2011; 2011
MA Paley (834_CR4) 2012; 338
AV Menk (834_CR17) 2018; 215
M Schieber (834_CR38) 2014; 24
TH Mann (834_CR8) 2019; 20
A Crawford (834_CR27) 2014; 40
R Acín-Pérez (834_CR37) 2015; 22
KE Pauken (834_CR10) 2016; 354
M Sade-Feldman (834_CR22) 2018; 175
DV Sawant (834_CR28) 2019; 20
I Bacik (834_CR53) 1994; 152
N Scharping (834_CR13) 2016; 4
34099891 - Cell Mol Immunol. 2021 Jul;18(7):1634-1637
33495653 - Nat Immunol. 2021 Mar;22(3):276-278
33657392 - Cell Metab. 2021 Mar 2;33(3):470-472
References_xml – volume: 7
  start-page: 476
  year: 2019
  end-page: 486
  ident: CR33
  article-title: Endoplasmic reticulum stress contributes to mitochondrial exhaustion of CD8 T cells
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0182
– volume: 42
  start-page: 265
  year: 2015
  end-page: 278
  ident: CR7
  article-title: The transcription factor NFAT promotes exhaustion of activated CD8 T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.01.006
– volume: 212
  start-page: 139
  year: 2015
  end-page: 148
  ident: CR51
  article-title: VEGF-A modulates expression of inhibitory checkpoints on CD8 T cells in tumors
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20140559
– volume: 215
  start-page: 1091
  year: 2018
  end-page: 1100
  ident: CR17
  article-title: 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20171068
– ident: CR12
– volume: 5
  start-page: 9
  year: 2017
  end-page: 16
  ident: CR16
  article-title: Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-16-0103
– volume: 95
  start-page: 11715
  year: 1998
  end-page: 11720
  ident: CR36
  article-title: Mitochondrial reactive oxygen species trigger hypoxia-induced transcription
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.95.20.11715
– volume: 6
  start-page: 14
  year: 2018
  end-page: 24
  ident: CR26
  article-title: Intratumoral CD8 T-cell apoptosis is a major component of T-cell dysfunction and impedes antitumor immunity
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-17-0249
– ident: CR29
– volume: 22
  start-page: 485
  year: 2015
  end-page: 498
  ident: CR37
  article-title: Mitochondrial respiration controls lysosomal function during inflammatory T cell responses
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.07.020
– volume: 32
  start-page: 669
  year: 2017
  end-page: 683.e5
  ident: CR52
  article-title: An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.10.003
– volume: 6
  start-page: 307
  year: 2000
  end-page: 316
  ident: CR55
  article-title: Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)00031-9
– volume: 91
  start-page: 1030
  year: 2013
  end-page: 1043
  ident: CR30
  article-title: Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.23196
– volume: 17
  start-page: 608
  year: 2017
  end-page: 620
  ident: CR46
  article-title: Mitochondrial control of immunity: beyond ATP
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.66
– ident: CR50
– volume: 354
  start-page: 1165
  year: 2016
  end-page: 1169
  ident: CR9
  article-title: The epigenetic landscape of T cell exhaustion
  publication-title: Science
  doi: 10.1126/science.aae0491
– volume: 558
  start-page: 454
  year: 2018
  end-page: 459
  ident: CR6
  article-title: Induction and transcriptional regulation of the co-inhibitory gene module in T cells
  publication-title: Nature
  doi: 10.1038/s41586-018-0206-z
– volume: 38
  start-page: 225
  year: 2013
  end-page: 236
  ident: CR39
  article-title: Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.10.020
– volume: 20
  start-page: 1092
  year: 2019
  end-page: 1094
  ident: CR8
  article-title: Tick-TOX, it’s time for T cell exhaustion
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0478-y
– volume: 40
  start-page: 323
  year: 2010
  end-page: 332
  ident: CR49
  article-title: Cellular metabolic stress: considering how cells respond to nutrient excess
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.10.004
– volume: 4
  start-page: 46
  year: 2016
  ident: CR13
  article-title: Tumor microenvironment metabolism: a new checkpoint for anti-tumor immunity
  publication-title: Vaccines
  doi: 10.3390/vaccines4040046
– volume: 20
  start-page: 724
  year: 2019
  end-page: 735
  ident: CR28
  article-title: Adaptive plasticity of IL-10 and IL-35 T cells cooperatively promotes tumor T cell exhaustion
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0346-9
– volume: 2
  start-page: e93411
  year: 2017
  ident: CR32
  article-title: Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.93411
– volume: 37
  start-page: 457
  year: 2019
  end-page: 495
  ident: CR3
  article-title: CD8 T cell exhaustion during chronic viral infection and cancer
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-041015-055318
– volume: 14
  start-page: 1173
  year: 2013
  end-page: 1182
  ident: CR23
  article-title: Hypoxia-inducible factors enhance the effector responses of CD8 T cells to persistent antigen
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2714
– volume: 338
  start-page: 1220
  year: 2012
  end-page: 1225
  ident: CR4
  article-title: Progenitor and terminal subsets of CD8 T cells cooperate to contain chronic viral infection
  publication-title: Science
  doi: 10.1126/science.1229620
– volume: 162
  start-page: 1229
  year: 2015
  end-page: 1241
  ident: CR19
  article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.016
– volume: 127
  start-page: 397
  year: 2006
  end-page: 408
  ident: CR40
  article-title: Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators
  publication-title: Cell
  doi: 10.1016/j.cell.2006.09.024
– volume: 26
  start-page: 249
  year: 2016
  end-page: 261
  ident: CR48
  article-title: TNF and ROS crosstalk in inflammation
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2015.12.002
– volume: 45
  start-page: 358
  year: 2016
  end-page: 373
  ident: CR43
  article-title: Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8 T cell exhaustion
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.07.008
– volume: 162
  start-page: 1217
  year: 2015
  end-page: 1228
  ident: CR44
  article-title: Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.012
– volume: 1
  start-page: eaaf8612
  year: 2016
  ident: CR56
  article-title: IL-10 induces a STAT3-dependent autoregulatory loop in T 2 cells that promotes Blimp-1 restriction of cell expansion via antagonism of STAT5 target genes
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aaf8612
– ident: CR14
– volume: 4
  start-page: e124989
  year: 2019
  ident: CR18
  article-title: Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.124989
– volume: 20
  start-page: 326
  year: 2019
  end-page: 336
  ident: CR21
  article-title: Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0312-6
– volume: 45
  start-page: 1024
  year: 2016
  end-page: 1037
  ident: CR45
  article-title: Constitutive glycolytic metabolism supports CD8 T cell effector memory differentiation during viral infection
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.10.017
– volume: 175
  start-page: 998
  year: 2018
  end-page: 1013.e20
  ident: CR22
  article-title: Defining T cell states associated with response to checkpoint immunotherapy in melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.038
– volume: 24
  start-page: R453
  year: 2014
  end-page: R462
  ident: CR38
  article-title: ROS function in redox signaling and oxidative stress
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.03.034
– volume: 23
  start-page: 63
  year: 2016
  end-page: 76
  ident: CR31
  article-title: Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.11.002
– volume: 30
  start-page: 832
  year: 2009
  end-page: 844
  ident: CR54
  article-title: The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.04.014
– volume: 545
  start-page: 452
  year: 2017
  end-page: 456
  ident: CR11
  article-title: Chromatin states define tumour-specific T cell dysfunction and reprogramming
  publication-title: Nature
  doi: 10.1038/nature22367
– volume: 31
  start-page: 309
  year: 2009
  end-page: 320
  ident: CR5
  article-title: A role for the transcriptional repressor Blimp-1 in CD8 T cell exhaustion during chronic viral infection
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.06.019
– volume: 9
  start-page: 1591
  year: 2018
  ident: CR25
  article-title: Hypoxia-driven immunosuppressive metabolites in the tumor microenvironment: new approaches for combinational immunotherapy
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01591
– volume: 152
  start-page: 381
  year: 1994
  end-page: 387
  ident: CR53
  article-title: TAP (transporter associated with antigen processing)-independent presentation of endogenously synthesized peptides is enhanced by endoplasmic reticulum insertion sequences located at the amino- but not carboxyl-terminus of the peptide
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.152.2.381
– volume: 2011
  start-page: 260482
  year: 2011
  ident: CR47
  article-title: Consequences of hyperoxia and the toxicity of oxygen in the lung
  publication-title: Nurs. Res. Pract.
– volume: 354
  start-page: 1160
  year: 2016
  end-page: 1165
  ident: CR10
  article-title: Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade
  publication-title: Science
  doi: 10.1126/science.aaf2807
– volume: 278
  start-page: 8516
  year: 2003
  end-page: 8525
  ident: CR35
  article-title: Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210432200
– volume: 9
  year: 2018
  ident: CR41
  article-title: Defining the role of the tumor vasculature in antitumor immunity and immunotherapy
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-017-0061-0
– volume: 283
  start-page: 21649
  year: 2008
  end-page: 21654
  ident: CR34
  article-title: The mechanism of mitochondrial superoxide production by the cytochrome complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M803236200
– volume: 15
  start-page: 1104
  year: 2014
  end-page: 1115
  ident: CR2
  article-title: Molecular regulation of effector and memory T cell differentiation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/ni.3031
– volume: 380
  start-page: 1103
  year: 2019
  end-page: 1115
  ident: CR42
  article-title: Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1816047
– volume: 45
  start-page: 374
  year: 2016
  end-page: 388
  ident: CR15
  article-title: The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.07.009
– volume: 40
  start-page: 289
  year: 2014
  end-page: 302
  ident: CR27
  article-title: Molecular and transcriptional basis of CD4 T cell dysfunction during chronic infection
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.01.005
– volume: 20
  start-page: 2547
  year: 2017
  end-page: 2555
  ident: CR24
  article-title: Culturing CTLs under hypoxic conditions enhances their cytolysis and improves their anti-tumor function
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.08.071
– volume: 36
  start-page: 579
  year: 2018
  end-page: 601
  ident: CR1
  article-title: CD4 helper and CD8 cytotoxic T cell differentiation
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-042617-053411
– ident: CR20
– volume: 162
  start-page: 1229
  year: 2015
  ident: 834_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.016
– volume: 40
  start-page: 323
  year: 2010
  ident: 834_CR49
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.10.004
– volume: 4
  start-page: 46
  year: 2016
  ident: 834_CR13
  publication-title: Vaccines
  doi: 10.3390/vaccines4040046
– volume: 162
  start-page: 1217
  year: 2015
  ident: 834_CR44
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.012
– volume: 38
  start-page: 225
  year: 2013
  ident: 834_CR39
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.10.020
– volume: 32
  start-page: 669
  year: 2017
  ident: 834_CR52
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.10.003
– volume: 36
  start-page: 579
  year: 2018
  ident: 834_CR1
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-042617-053411
– volume: 7
  start-page: 476
  year: 2019
  ident: 834_CR33
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0182
– ident: 834_CR50
  doi: 10.1038/s41590-020-0725-2
– volume: 2011
  start-page: 260482
  year: 2011
  ident: 834_CR47
  publication-title: Nurs. Res. Pract.
– volume: 6
  start-page: 14
  year: 2018
  ident: 834_CR26
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-17-0249
– volume: 545
  start-page: 452
  year: 2017
  ident: 834_CR11
  publication-title: Nature
  doi: 10.1038/nature22367
– ident: 834_CR12
  doi: 10.1038/s41577-019-0221-9
– volume: 4
  start-page: e124989
  year: 2019
  ident: 834_CR18
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.124989
– volume: 95
  start-page: 11715
  year: 1998
  ident: 834_CR36
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.95.20.11715
– volume: 91
  start-page: 1030
  year: 2013
  ident: 834_CR30
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.23196
– volume: 338
  start-page: 1220
  year: 2012
  ident: 834_CR4
  publication-title: Science
  doi: 10.1126/science.1229620
– volume: 6
  start-page: 307
  year: 2000
  ident: 834_CR55
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)00031-9
– volume: 42
  start-page: 265
  year: 2015
  ident: 834_CR7
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.01.006
– volume: 24
  start-page: R453
  year: 2014
  ident: 834_CR38
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.03.034
– volume: 152
  start-page: 381
  year: 1994
  ident: 834_CR53
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.152.2.381
– volume: 558
  start-page: 454
  year: 2018
  ident: 834_CR6
  publication-title: Nature
  doi: 10.1038/s41586-018-0206-z
– volume: 215
  start-page: 1091
  year: 2018
  ident: 834_CR17
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20171068
– ident: 834_CR14
  doi: 10.1038/nrclinonc.2016.60
– volume: 31
  start-page: 309
  year: 2009
  ident: 834_CR5
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.06.019
– volume: 212
  start-page: 139
  year: 2015
  ident: 834_CR51
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20140559
– volume: 2
  start-page: e93411
  year: 2017
  ident: 834_CR32
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.93411
– volume: 22
  start-page: 485
  year: 2015
  ident: 834_CR37
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.07.020
– volume: 20
  start-page: 2547
  year: 2017
  ident: 834_CR24
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.08.071
– volume: 380
  start-page: 1103
  year: 2019
  ident: 834_CR42
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1816047
– volume: 20
  start-page: 724
  year: 2019
  ident: 834_CR28
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0346-9
– ident: 834_CR20
  doi: 10.1126/science.aav2588
– volume: 45
  start-page: 358
  year: 2016
  ident: 834_CR43
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.07.008
– volume: 26
  start-page: 249
  year: 2016
  ident: 834_CR48
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2015.12.002
– volume: 37
  start-page: 457
  year: 2019
  ident: 834_CR3
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-041015-055318
– volume: 45
  start-page: 374
  year: 2016
  ident: 834_CR15
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.07.009
– volume: 17
  start-page: 608
  year: 2017
  ident: 834_CR46
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.66
– volume: 14
  start-page: 1173
  year: 2013
  ident: 834_CR23
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2714
– volume: 278
  start-page: 8516
  year: 2003
  ident: 834_CR35
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210432200
– volume: 354
  start-page: 1160
  year: 2016
  ident: 834_CR10
  publication-title: Science
  doi: 10.1126/science.aaf2807
– volume: 127
  start-page: 397
  year: 2006
  ident: 834_CR40
  publication-title: Cell
  doi: 10.1016/j.cell.2006.09.024
– volume: 20
  start-page: 326
  year: 2019
  ident: 834_CR21
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0312-6
– volume: 40
  start-page: 289
  year: 2014
  ident: 834_CR27
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.01.005
– volume: 20
  start-page: 1092
  year: 2019
  ident: 834_CR8
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0478-y
– volume: 23
  start-page: 63
  year: 2016
  ident: 834_CR31
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.11.002
– volume: 15
  start-page: 1104
  year: 2014
  ident: 834_CR2
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/ni.3031
– volume: 354
  start-page: 1165
  year: 2016
  ident: 834_CR9
  publication-title: Science
  doi: 10.1126/science.aae0491
– volume: 175
  start-page: 998
  year: 2018
  ident: 834_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.038
– volume: 9
  year: 2018
  ident: 834_CR41
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-017-0061-0
– volume: 30
  start-page: 832
  year: 2009
  ident: 834_CR54
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.04.014
– volume: 1
  start-page: eaaf8612
  year: 2016
  ident: 834_CR56
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aaf8612
– volume: 45
  start-page: 1024
  year: 2016
  ident: 834_CR45
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.10.017
– ident: 834_CR29
  doi: 10.1038/s41590-020-0733-2
– volume: 9
  start-page: 1591
  year: 2018
  ident: 834_CR25
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01591
– volume: 5
  start-page: 9
  year: 2017
  ident: 834_CR16
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-16-0103
– volume: 283
  start-page: 21649
  year: 2008
  ident: 834_CR34
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M803236200
– reference: 33657392 - Cell Metab. 2021 Mar 2;33(3):470-472
– reference: 33495653 - Nat Immunol. 2021 Mar;22(3):276-278
– reference: 34099891 - Cell Mol Immunol. 2021 Jul;18(7):1634-1637
SSID ssj0014764
Score 2.7240615
Snippet Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics....
Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic, and metabolic characteristics....
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 205
SubjectTerms 631/250/1619/554/1834/1269
631/250/2152/569/2495
631/250/2502
631/250/580
Animals
Biomedical and Life Sciences
Biomedicine
CD8 antigen
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
Cell differentiation
Cell Line, Tumor
Cell metabolism
Coculture Techniques
Energy Metabolism
Epigenetics
Female
Health aspects
HEK293 Cells
Humans
Hypoxia
Immunological research
Immunology
Immunotherapy
Infectious Diseases
Lymphocyte Activation
Lymphocytes
Lymphocytes, Tumor-Infiltrating - immunology
Lymphocytes, Tumor-Infiltrating - metabolism
Male
Melanoma, Experimental - genetics
Melanoma, Experimental - immunology
Melanoma, Experimental - metabolism
Melanoma, Experimental - pathology
Metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Mitochondria
Mitochondria - immunology
Mitochondria - metabolism
NF-AT protein
Oxidative stress
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism
Physiological aspects
Positive Regulatory Domain I-Binding Factor 1 - genetics
Positive Regulatory Domain I-Binding Factor 1 - metabolism
Reactive oxygen species
Reactive Oxygen Species - metabolism
Signal Transduction
T cell receptors
T cells
Transcription factors
Tumor Hypoxia
Tumor Microenvironment
Title Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion
URI https://link.springer.com/article/10.1038/s41590-020-00834-9
https://www.ncbi.nlm.nih.gov/pubmed/33398183
https://www.proquest.com/docview/2480545596
https://www.proquest.com/docview/2475401594
https://pubmed.ncbi.nlm.nih.gov/PMC7971090
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgE2gvCMZXYEwGIfEA1pI4ie0n1E6rBlIrNDapb5FjO7TSSLumRet_z13idqQSe2kefE5j3_nud_b5jpCPCjC8TS1nWirLEpdETMdGMxHZVAF-zWKHjuJwlJ1fJd_H6dhvuNU-rHKjExtFbWcG98hP4kQCugD8m32d3zCsGoWnq76ExkOyHwESwdINYrx1uKJENOmjwEQpFqtQ-kszIZcnNRguFTJ0nhCFJEx1DNOuev7HPu3GTu4coDZ2afCUPPGAkvZaCXhGHrjqkDxqS0yuD8njoT88f07cEFYvaLvKotDR9pYIBZ8cuGtpsaYYtj6tVrNVDY3T376wF8VrZgs6Wc9nt1NNF3o-tddrCi_542p6SXHrn7rbCSYQAvIX5Gpwdnl6znyVBWYAqi1ZnBoLPmDoRJzYWJRSq0wD5LYahCwzBpzYNDJlpIziaRmGpeNSQNcitVGhueIvyV41q9xrQnVWmELLTMdOJMBqJSMuSp4UJjXwDheQaDPFufEpyLESxnXeHIVzmbdsyYEtecOWXAXk87bPvE3AcS_1B-RcjpktKgyd-QWDr_NvPy_yXpam4LuC8g_IJ09UzuDvjfY3EWAQmAyrQ3nUoYSlZ7rNGwHJ_dKv8ztBDcj7bTP2xHC2ygETgUYAUoaPTwLyqpWn7eA45zBvkgdEdCRtS4AJwbst1XTSJAYXCiNrw4B82cjk3Wf9f87e3D-Kt-QgxjieJlL9iOwtFyv3DoDYsjhuVhv8ytPomOz3Bv3-CJ79s9GPi7-LgzJM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KqKeFwQlFeggEEgDmA1ifPyAaEKqHZptwfYSntzHdthI5Vk2exC96f4Rmby2JKV6K1nj5N4ZjyPzIuQVwJseBMazlQiDAts4DHla8Viz4QC7NfIt-gojo6jwUnwZRJOtsifrhYG0yo7mVgLalNq_Ee-5wcJWBdg_0YfZj8ZTo3C6Go3QqNhi0O7-g0uW_V--Ano-9r3Dz6PPw5YO1WAaTBNFswPtQGfx7WxHxg_zhIlIgUmplGA1EhrcNpCT2ee0IKHmetmlicxbE1D46WKY_MlEPnXAgwxwv2JJ2sHzwviul0VqETBfOEmbZGOy5O9ChSlcBk6a2j1BEz0FOGmOvhHH27mam4EbGs9eHCH3G4NWLrfcNxdsmWLHXK9GWm52iE3Rm2w_h6xI5AWIF0Lg0xOm6oUmhcGuMnQdEUxTT4vluWygsX8RztIjGJZ25xOV7PyPFd0rma5OVtReMgvW9ExxVADtedTbFgE4PfJyZXg_wHZLsrCPiJURalOVRIp38YBsJZIPB5nPEh1qOEZ1iFeh2Kp25bnOHnjTNahd57IhiwSyCJrskjhkLfrPbOm4cel0C-RchI7aRSYqvMdDl_J4bevcj8KQ_CVQdk45E0LlJXweq3aygc4BDbf6kHu9iDhquv-cscgshU1lby4GA55sV7GnZg-V1ggIsDEYJnDxwcOedjw0_pwnHPAW8IdEvc4bQ2ADcj7K0U-rRuRxwIzeV2HvOt48uKz_o-zx5ef4jm5ORiPjuTR8PjwCbnlYw5RnSW_S7YX86V9CkbgIn1W3zxKTq_6qv8FfJlreA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1Jo2MfGCYNwCAwwC8QBRkzg3P0xosFUro9U0NmlvxrEdGmmkpWlh_UW-inMSpyOT2NuefZzEPvecGyGvOdjwOtLMlSnXbmhC35WBkm7i64iD_RoHBh3F4Sg-OA0_n0Vna-RPWwuDaZWtTKwFtZ4o_EfeC8IUrAuwf-NebtMijvb6H6Y_XZwghZHWdpyGtGMW9E7dbswWeRya5W9w56qdwR7g_k0Q9PdPPh24duKAq8BsmbtBpDT4Q55JglAHSZ5KHkswP7WEC4-VAocu8lXuc8VZlHtebliawNYs0n4mGTZmAnWwkYDWB0dw4-P-6Oh4FdMIk7qZFShM7gbcS20Jj8fSXgVqlHsuunJoE4Uu76jJq8riH215NZPzSji31pL9u-SONW_pbkOP98iaKbfIrWbg5XKLbA5tKP8-MUOQJSB7S40sQJuaFVqUGmhN02xJMYm-KBeTRQWLxQ87Zoxi0duMjpfTyUUh6UxOC32-pPCQX6aiJxQDEdRcjLGdEYA_IKc3goGHZL2clOYxoTLOVCbTWAYmCYHweOqzJGdhpiIFzzAO8dsrFso2RMe5HOeiDsyzVDRoEYAWUaNFcIe8W-2ZNu1AroV-hZgT2GejRIr9DoevxODrsdiNowg8aVBFDnlrgfIJvF5JWxcBh8DWXB3I7Q4kCALVXW4JRFhBVIlLtnHIy9Uy7sTkutIAEgEmAbsdPj50yKOGnlaHY4zBvaXMIUmH0lYA2J68u1IW47pNecIxz9dzyPuWJi8_6_939uT6U7wgm8D24stgdPiU3A4wwahOod8m6_PZwjwDC3GePbesR8m3m-b2v3NxdlM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+stress+induced+by+continuous+stimulation+under+hypoxia+rapidly+drives+T+cell+exhaustion&rft.jtitle=Nature+immunology&rft.au=Scharping%2C+Nicole+E&rft.au=Rivadeneira%2C+Dayana+B&rft.au=Menk%2C+Ashley+V&rft.au=Vignali%2C+Paolo+D.+A&rft.date=2021-02-01&rft.pub=Nature+Publishing+Group&rft.issn=1529-2908&rft.eissn=1529-2916&rft.volume=22&rft.issue=2&rft.spage=205&rft.epage=215&rft_id=info:doi/10.1038%2Fs41590-020-00834-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon