Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion
Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabol...
Saved in:
Published in | Nature immunology Vol. 22; no. 2; pp. 205 - 215 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.02.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1529-2908 1529-2916 1529-2916 |
DOI | 10.1038/s41590-020-00834-9 |
Cover
Abstract | Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8
+
T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell–intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates.
Delgoffe and colleagues show that continuous TCR signaling and hypoxia increase Blimp-1, which suppresses PGC-1α-dependent mitochondrial reprogramming and increases reactive oxygen species generation. Such conditions promote T cell exhaustion. |
---|---|
AbstractList | Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates.Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates. Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell–intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates.Delgoffe and colleagues show that continuous TCR signaling and hypoxia increase Blimp-1, which suppresses PGC-1α-dependent mitochondrial reprogramming and increases reactive oxygen species generation. Such conditions promote T cell exhaustion. Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8.sup.+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1[alpha]-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates. Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8.sup.+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1[alpha]-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates. Delgoffe and colleagues show that continuous TCR signaling and hypoxia increase Blimp-1, which suppresses PGC-1[alpha]-dependent mitochondrial reprogramming and increases reactive oxygen species generation. Such conditions promote T cell exhaustion. Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8 + T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell–intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates. Delgoffe and colleagues show that continuous TCR signaling and hypoxia increase Blimp-1, which suppresses PGC-1α-dependent mitochondrial reprogramming and increases reactive oxygen species generation. Such conditions promote T cell exhaustion. Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8 T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates. Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic, and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized metabolic stress alters their responses to other signals, specifically persistent antigenic stimulation. In vitro , while CD8 + T cells experiencing continuous stimulation or hypoxia alone differentiate into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of ROS, sufficient to promote exhausted-like states, in part through phosphatase inhibition and consequent NFAT activity. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates. |
Audience | Academic |
Author | Wang, Yiyang DePeaux, Kristin Rittenhouse, Natalie L. Poholek, Amanda C. Scharping, Nicole E. Rivadeneira, Dayana B. Peralta, Ronal Vignali, Paolo D. A. Wang, Yupeng Delgoffe, Greg M. Ford, B. Rhodes Menk, Ashley V. |
AuthorAffiliation | 3 School of Medicine, Tsinghua University, Beijing, China 2 Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh 1 Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh |
AuthorAffiliation_xml | – name: 2 Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh – name: 1 Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh – name: 3 School of Medicine, Tsinghua University, Beijing, China |
Author_xml | – sequence: 1 givenname: Nicole E. orcidid: 0000-0001-9373-4617 surname: Scharping fullname: Scharping, Nicole E. organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh – sequence: 2 givenname: Dayana B. surname: Rivadeneira fullname: Rivadeneira, Dayana B. organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh – sequence: 3 givenname: Ashley V. surname: Menk fullname: Menk, Ashley V. organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh – sequence: 4 givenname: Paolo D. A. surname: Vignali fullname: Vignali, Paolo D. A. organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh – sequence: 5 givenname: B. Rhodes surname: Ford fullname: Ford, B. Rhodes organization: Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh – sequence: 6 givenname: Natalie L. surname: Rittenhouse fullname: Rittenhouse, Natalie L. organization: Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh – sequence: 7 givenname: Ronal surname: Peralta fullname: Peralta, Ronal organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh – sequence: 8 givenname: Yiyang surname: Wang fullname: Wang, Yiyang organization: School of Medicine, Tsinghua University – sequence: 9 givenname: Yupeng surname: Wang fullname: Wang, Yupeng organization: School of Medicine, Tsinghua University – sequence: 10 givenname: Kristin orcidid: 0000-0001-8460-727X surname: DePeaux fullname: DePeaux, Kristin organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh – sequence: 11 givenname: Amanda C. surname: Poholek fullname: Poholek, Amanda C. organization: Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh – sequence: 12 givenname: Greg M. orcidid: 0000-0002-2957-8135 surname: Delgoffe fullname: Delgoffe, Greg M. email: gdelgoffe@pitt.edu organization: Tumor Microenvironment Center, Department of Immunology, UPMC Hillman Cancer Center and University of Pittsburgh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33398183$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3DAUhUVJaR7tH-iiCLpJF071sCxrUwihTQIphTZdC410PaPgkaaSHWb-feVMHp1QgjEW1neOrXPPIdoLMQBC7yk5oYS3n3NNhSIVYeUmLa8r9QodUMFUxRRt9h7XpN1HhznfEEJr2dRv0D7nXLW05QcIvvsh2kUMLnnT4zwkyBn74EYLDs822MYw-DDGMZdNvxx7M_gY8BgcJLzYrOLaG5zMyrt-g4vJLWR8jS30PYb1wox5wt-i153pM7y7fx6h39--Xp9dVFc_zi_PTq8qK6QYKiaso0QSkKx2THatUY2RTDkDxjXWUs4FtR1VVnHREdIBb2WRzoSjM8MVP0Jftr6rcbYEZyEMyfR6lfzSpI2OxuvdneAXeh5vtVSSEkWKwfG9QYp_RsiDXvo8HcYEKBFoVktRkxJ7XdCPz9CbOKZQjleolohaCNU8UXPTg_ahi-W7djLVp40QkkrZsEKd_Icql4OlLxOAzpf3O4JPO4JpSrAe5iXvrC9__dxlP_wbymMaDyUoQLsFbIo5J-i09cPdmMtf-F5Toqe-6W3fdOmbvuubngJnz6QP7i-K-FaUCxzmkJ6Se0H1F_5D57k |
CitedBy_id | crossref_primary_10_1016_j_autrev_2024_103579 crossref_primary_10_1182_bloodadvances_2023009890 crossref_primary_10_3389_fimmu_2023_1204363 crossref_primary_10_1002_advs_202403158 crossref_primary_10_1038_s41586_021_03442_1 crossref_primary_10_1172_JCI148549 crossref_primary_10_1038_s41568_024_00781_9 crossref_primary_10_1172_JCI148546 crossref_primary_10_1016_j_cmet_2022_02_003 crossref_primary_10_70322_immune_2025_10005 crossref_primary_10_1080_14712598_2022_2064711 crossref_primary_10_3389_fonc_2023_1107484 crossref_primary_10_1111_cas_15331 crossref_primary_10_1016_j_cmet_2023_12_009 crossref_primary_10_1038_s42255_021_00387_7 crossref_primary_10_18203_2349_3933_ijam20250722 crossref_primary_10_1038_s41568_021_00378_6 crossref_primary_10_1124_jpet_123_001898 crossref_primary_10_1186_s12929_023_00956_w crossref_primary_10_1126_sciadv_adi2414 crossref_primary_10_1186_s12929_022_00894_z crossref_primary_10_1172_jci_insight_177141 crossref_primary_10_3390_md21120600 crossref_primary_10_1016_j_ccr_2024_216109 crossref_primary_10_1016_j_ccell_2024_12_001 crossref_primary_10_18632_aging_205838 crossref_primary_10_1016_j_it_2021_09_002 crossref_primary_10_1146_annurev_med_060619_022830 crossref_primary_10_1016_j_copbio_2021_02_003 crossref_primary_10_1038_s41467_023_38933_4 crossref_primary_10_1089_ars_2023_0491 crossref_primary_10_1016_j_immuni_2022_12_008 crossref_primary_10_1089_ars_2023_0253 crossref_primary_10_3390_nu16213577 crossref_primary_10_1016_j_trecan_2024_03_010 crossref_primary_10_1016_j_xcrm_2024_101686 crossref_primary_10_2139_ssrn_3942126 crossref_primary_10_1186_s13045_023_01492_8 crossref_primary_10_1186_s12964_024_01848_8 crossref_primary_10_1186_s13045_025_01684_4 crossref_primary_10_1002_adtp_202300094 crossref_primary_10_1016_j_drup_2024_101197 crossref_primary_10_3390_cancers14010183 crossref_primary_10_1158_2326_6066_CIR_21_0813 crossref_primary_10_1038_s41577_023_00884_8 crossref_primary_10_1002_ange_202300356 crossref_primary_10_1007_s13402_024_01000_1 crossref_primary_10_3389_fcell_2021_762478 crossref_primary_10_1016_j_celrep_2025_115430 crossref_primary_10_1002_hep_32419 crossref_primary_10_1038_s43018_024_00738_9 crossref_primary_10_3389_fimmu_2024_1356369 crossref_primary_10_3390_cells11193103 crossref_primary_10_1016_j_celrep_2025_115432 crossref_primary_10_3390_biomedicines11010125 crossref_primary_10_1016_j_ymthe_2023_09_021 crossref_primary_10_1016_j_tcb_2022_05_007 crossref_primary_10_1038_s41573_024_00979_4 crossref_primary_10_3390_ijms252212223 crossref_primary_10_1016_j_colsurfb_2024_114074 crossref_primary_10_3390_cancers15041106 crossref_primary_10_1111_cns_14315 crossref_primary_10_1038_s41423_021_00750_4 crossref_primary_10_1038_s41598_025_93584_3 crossref_primary_10_1073_pnas_2315989121 crossref_primary_10_3389_fimmu_2023_1160340 crossref_primary_10_3390_cancers13236131 crossref_primary_10_1038_s41590_024_01999_3 crossref_primary_10_1016_j_cmet_2023_12_010 crossref_primary_10_1016_j_ijbiomac_2025_139829 crossref_primary_10_1002_anie_202300356 crossref_primary_10_4049_immunohorizons_2000103 crossref_primary_10_3390_cancers13133327 crossref_primary_10_1016_j_immuni_2024_07_003 crossref_primary_10_1158_2326_6066_CIR_22_0685 crossref_primary_10_3389_fonc_2022_1046102 crossref_primary_10_1038_s41423_024_01133_1 crossref_primary_10_1038_s41565_022_01261_7 crossref_primary_10_1016_j_cmet_2023_11_005 crossref_primary_10_3724_zdxbyxb_2023_0484 crossref_primary_10_1002_adfm_202010777 crossref_primary_10_1016_j_it_2021_03_006 crossref_primary_10_1016_j_soc_2023_02_009 crossref_primary_10_1186_s12885_022_10313_z crossref_primary_10_1016_j_coi_2022_102245 crossref_primary_10_1016_j_jbc_2023_105488 crossref_primary_10_1097_CJI_0000000000000503 crossref_primary_10_3390_v16020219 crossref_primary_10_1016_j_chembiol_2024_02_001 crossref_primary_10_1038_s41423_021_00709_5 crossref_primary_10_1126_sciimmunol_abj9123 crossref_primary_10_1210_endocr_bqac124 crossref_primary_10_1038_s41571_021_00552_7 crossref_primary_10_1021_acsnano_5c00691 crossref_primary_10_1146_annurev_cancerbio_061421_042605 crossref_primary_10_1111_cas_16206 crossref_primary_10_1186_s13020_023_00785_x crossref_primary_10_1002_acr2_11668 crossref_primary_10_3324_haematol_2020_267914 crossref_primary_10_1371_journal_pone_0272703 crossref_primary_10_1007_s00432_024_05685_7 crossref_primary_10_7554_eLife_84280 crossref_primary_10_1007_s10555_023_10165_4 crossref_primary_10_3389_fonc_2023_1200387 crossref_primary_10_1186_s13287_025_04224_6 crossref_primary_10_1146_annurev_immunol_090222_110914 crossref_primary_10_1016_j_ccell_2023_01_009 crossref_primary_10_3389_fimmu_2024_1490845 crossref_primary_10_1038_s41467_024_54132_1 crossref_primary_10_3389_fsysb_2022_910243 crossref_primary_10_1186_s12920_023_01613_9 crossref_primary_10_1038_s41571_021_00564_3 crossref_primary_10_1186_s13287_022_02769_4 crossref_primary_10_1182_bloodadvances_2023010305 crossref_primary_10_3389_fimmu_2021_669456 crossref_primary_10_1016_j_neo_2024_101117 crossref_primary_10_1016_j_immuni_2021_12_012 crossref_primary_10_1016_j_tube_2022_102220 crossref_primary_10_1016_j_ymthe_2024_03_033 crossref_primary_10_1007_s12032_022_01842_5 crossref_primary_10_1038_s41590_022_01379_9 crossref_primary_10_2174_1389203723666220620161742 crossref_primary_10_3389_fonc_2024_1364577 crossref_primary_10_1016_j_intimp_2023_111026 crossref_primary_10_1002_jcp_31520 crossref_primary_10_1038_s41590_022_01224_z crossref_primary_10_1158_0008_5472_CAN_21_3155 crossref_primary_10_1073_pnas_2317735121 crossref_primary_10_1021_acsnano_3c11260 crossref_primary_10_1186_s12967_024_05674_x crossref_primary_10_1155_2022_3667417 crossref_primary_10_3389_fimmu_2023_1200941 crossref_primary_10_1016_j_xcrm_2024_101626 crossref_primary_10_1016_j_heliyon_2024_e33144 crossref_primary_10_1111_cas_15261 crossref_primary_10_1016_j_cell_2024_03_037 crossref_primary_10_1158_2326_6066_CIR_23_0092 crossref_primary_10_3389_fimmu_2024_1336023 crossref_primary_10_1038_s41590_023_01675_y crossref_primary_10_1016_j_celrep_2023_113518 crossref_primary_10_3389_fimmu_2023_1230490 crossref_primary_10_1136_jitc_2023_008367 crossref_primary_10_1016_j_coi_2021_10_001 crossref_primary_10_3390_biology12040541 crossref_primary_10_1007_s00210_024_03469_x crossref_primary_10_1186_s12859_023_05268_2 crossref_primary_10_3389_fimmu_2023_1198551 crossref_primary_10_1007_s00210_023_02689_x crossref_primary_10_1016_j_cmet_2024_12_007 crossref_primary_10_3389_fgene_2022_922074 crossref_primary_10_1002_2056_4538_12390 crossref_primary_10_1126_sciimmunol_ade3369 crossref_primary_10_1038_s41590_024_02020_7 crossref_primary_10_1016_j_coi_2024_102463 crossref_primary_10_1158_0008_5472_CAN_23_3204 crossref_primary_10_1038_s41590_020_00861_6 crossref_primary_10_3389_fimmu_2021_777073 crossref_primary_10_1038_s41467_024_46377_7 crossref_primary_10_1038_s41423_023_01031_y crossref_primary_10_3390_ijms22094460 crossref_primary_10_1126_scitranslmed_adg6752 crossref_primary_10_1136_jitc_2022_004712 crossref_primary_10_1016_j_semcancer_2024_07_001 crossref_primary_10_1038_s41423_023_01064_3 crossref_primary_10_1007_s00262_023_03614_0 crossref_primary_10_1084_jem_20201599 crossref_primary_10_1038_s41577_023_00973_8 crossref_primary_10_1002_adma_202305140 crossref_primary_10_1038_s41401_024_01304_w crossref_primary_10_1007_s10555_024_10211_9 crossref_primary_10_1186_s13045_024_01600_2 crossref_primary_10_1016_j_isci_2024_110710 crossref_primary_10_1136_jitc_2022_005719 crossref_primary_10_1016_j_canlet_2023_216267 crossref_primary_10_3390_cells10030678 crossref_primary_10_1097_CM9_0000000000002989 crossref_primary_10_1002_smll_202406860 crossref_primary_10_1158_2326_6066_CIR_20_0445 crossref_primary_10_1186_s13071_024_06573_2 crossref_primary_10_1038_s41467_022_35583_w crossref_primary_10_1186_s13045_022_01255_x crossref_primary_10_1016_j_ejca_2025_115332 crossref_primary_10_1016_j_clml_2024_04_006 crossref_primary_10_1038_s41571_023_00782_x crossref_primary_10_1038_s41590_021_00927_z crossref_primary_10_1002_cac2_12250 crossref_primary_10_1016_j_intimp_2024_112571 crossref_primary_10_1016_j_bbcan_2024_189137 crossref_primary_10_3390_cimb45020094 crossref_primary_10_1016_j_biomaterials_2024_122773 crossref_primary_10_1159_000539278 crossref_primary_10_3389_fonc_2024_1350426 crossref_primary_10_1038_s41388_022_02562_w crossref_primary_10_3389_fonc_2025_1549237 crossref_primary_10_3390_microorganisms11112640 crossref_primary_10_3389_fimmu_2022_977394 crossref_primary_10_1038_s41577_021_00541_y crossref_primary_10_1186_s13046_022_02439_6 crossref_primary_10_1126_sciadv_adl0479 crossref_primary_10_1016_j_tem_2024_05_010 crossref_primary_10_1083_jcb_202205118 crossref_primary_10_1038_s41590_023_01687_8 crossref_primary_10_1016_j_canlet_2024_216675 crossref_primary_10_1038_s42255_022_00730_6 crossref_primary_10_1136_jitc_2024_009409 crossref_primary_10_1089_ars_2022_0040 crossref_primary_10_1016_j_nantod_2022_101696 crossref_primary_10_1016_j_tice_2022_101964 crossref_primary_10_4110_in_2023_23_e9 crossref_primary_10_1016_j_canlet_2022_216043 crossref_primary_10_1136_gutjnl_2022_328734 crossref_primary_10_3389_fimmu_2022_960738 crossref_primary_10_3390_ijms26051953 crossref_primary_10_1007_s12640_024_00691_6 crossref_primary_10_1186_s12943_023_01831_w crossref_primary_10_1016_j_xcrm_2023_101287 crossref_primary_10_4049_jimmunol_2300334 crossref_primary_10_1016_j_canlet_2023_216223 crossref_primary_10_1136_jitc_2023_008226 crossref_primary_10_3389_fimmu_2024_1347181 crossref_primary_10_3390_biology13050307 crossref_primary_10_1038_s41571_022_00689_z crossref_primary_10_3389_fimmu_2022_1090429 crossref_primary_10_3390_cancers16193273 crossref_primary_10_1007_s00432_022_04164_1 crossref_primary_10_1016_j_it_2023_08_008 crossref_primary_10_1097_JS9_0000000000001011 crossref_primary_10_1038_s41388_024_03191_1 crossref_primary_10_1038_s41568_021_00435_0 crossref_primary_10_1016_j_xcrm_2023_101052 crossref_primary_10_1016_j_bbcan_2024_189209 crossref_primary_10_1016_j_chembiol_2021_11_002 crossref_primary_10_1016_j_metabol_2023_155747 crossref_primary_10_3389_fimmu_2021_666231 crossref_primary_10_1038_s41571_024_00913_y crossref_primary_10_1210_clinem_dgad149 crossref_primary_10_1007_s12672_025_01897_6 crossref_primary_10_54097_hset_v54i_9775 crossref_primary_10_1039_D2CC04112J crossref_primary_10_3389_fimmu_2022_845923 crossref_primary_10_1126_scitranslmed_adl1535 crossref_primary_10_3390_cells11223626 crossref_primary_10_1016_j_ebiom_2022_104216 crossref_primary_10_1016_j_cmet_2024_02_009 crossref_primary_10_1038_s41587_023_02060_8 crossref_primary_10_1126_science_adl4100 crossref_primary_10_1186_s12951_022_01699_w crossref_primary_10_1126_sciimmunol_adf6717 crossref_primary_10_38124_ijisrt_25mar497 crossref_primary_10_1016_j_smim_2023_101808 crossref_primary_10_1038_s41467_024_53997_6 crossref_primary_10_1016_j_biomaterials_2022_121635 crossref_primary_10_1177_03946320231215219 crossref_primary_10_1016_j_jhep_2022_06_014 crossref_primary_10_1038_s41577_025_01158_1 crossref_primary_10_1371_journal_pone_0298472 crossref_primary_10_1016_j_phrs_2024_107499 crossref_primary_10_1016_j_cell_2024_08_029 crossref_primary_10_3389_fphar_2023_1156538 crossref_primary_10_3390_cancers16040695 crossref_primary_10_3389_fimmu_2022_1061411 crossref_primary_10_3389_fphys_2024_1415037 crossref_primary_10_1038_s41598_023_30655_3 crossref_primary_10_3390_antiox10050723 crossref_primary_10_3389_fonc_2022_993437 crossref_primary_10_3389_fcell_2022_814722 crossref_primary_10_3389_fnmol_2024_1324458 crossref_primary_10_1186_s40164_024_00519_1 crossref_primary_10_1007_s00432_022_04326_1 crossref_primary_10_1016_j_bioactmat_2025_03_003 crossref_primary_10_1016_j_molcel_2023_02_026 crossref_primary_10_1016_j_jaci_2022_10_011 crossref_primary_10_1038_s41435_023_00233_8 crossref_primary_10_1002_advs_202309885 crossref_primary_10_1016_j_freeradbiomed_2024_01_049 crossref_primary_10_1136_jitc_2022_006522 crossref_primary_10_1016_j_isci_2023_106531 crossref_primary_10_1186_s12967_024_05391_5 crossref_primary_10_3390_sports11020030 crossref_primary_10_1007_s00395_024_01092_8 crossref_primary_10_1038_s41577_024_01061_1 crossref_primary_10_1016_j_xcrm_2025_102021 crossref_primary_10_1172_JCI153110 crossref_primary_10_26508_lsa_202302200 crossref_primary_10_1021_acs_molpharmaceut_3c00045 crossref_primary_10_1097_TP_0000000000005285 crossref_primary_10_14791_btrt_2022_0043 crossref_primary_10_1016_j_smim_2021_101485 crossref_primary_10_1021_acsnano_3c07885 crossref_primary_10_3389_fphar_2021_711772 crossref_primary_10_1038_s41423_021_00833_2 crossref_primary_10_1016_j_radonc_2024_110592 crossref_primary_10_1038_s43018_024_00775_4 crossref_primary_10_1155_2022_6284124 crossref_primary_10_3389_fimmu_2025_1529847 crossref_primary_10_1002_advs_202101672 crossref_primary_10_1016_j_biopha_2023_115036 crossref_primary_10_1016_j_jbo_2024_100635 crossref_primary_10_3390_ijms22136779 crossref_primary_10_1007_s00432_024_06017_5 crossref_primary_10_1016_j_trecan_2022_12_008 crossref_primary_10_1186_s40779_023_00496_2 crossref_primary_10_3389_fonc_2022_1006322 crossref_primary_10_1016_j_immuni_2023_09_005 crossref_primary_10_1016_j_intimp_2024_113090 crossref_primary_10_1038_s41598_022_26395_5 crossref_primary_10_1016_j_coph_2021_07_018 crossref_primary_10_3390_cancers14020323 crossref_primary_10_1111_imm_13575 crossref_primary_10_1038_s41422_022_00766_z crossref_primary_10_1016_j_cmet_2022_07_012 crossref_primary_10_1016_j_ccell_2022_05_004 crossref_primary_10_1158_1078_0432_CCR_23_3736 crossref_primary_10_1186_s12943_024_02175_9 crossref_primary_10_1002_adma_202206370 crossref_primary_10_1007_s00262_023_03582_5 crossref_primary_10_1016_j_mcpro_2022_100217 crossref_primary_10_3389_fimmu_2022_909580 crossref_primary_10_1126_sciimmunol_adl3604 crossref_primary_10_1186_s12943_022_01500_4 crossref_primary_10_1158_2326_6066_CIR_21_0691 crossref_primary_10_1084_jem_20202084 crossref_primary_10_3389_fcvm_2023_1112222 crossref_primary_10_1016_j_ccell_2025_01_005 crossref_primary_10_1186_s12951_021_01034_9 crossref_primary_10_1080_15384101_2023_2289753 crossref_primary_10_3389_fimmu_2022_843242 crossref_primary_10_1016_j_cell_2021_12_043 crossref_primary_10_1134_S0006297923110159 crossref_primary_10_4049_jimmunol_2400236 crossref_primary_10_1038_s41568_023_00615_0 crossref_primary_10_1016_j_biopha_2023_115131 crossref_primary_10_3390_cancers14051176 crossref_primary_10_1007_s12672_024_01117_7 crossref_primary_10_1172_jci_insight_169150 crossref_primary_10_3390_ijms251910365 crossref_primary_10_1007_s12032_022_01782_0 crossref_primary_10_1097_IN9_0000000000000059 crossref_primary_10_3390_ijms25137487 crossref_primary_10_1126_sciadv_adp1152 crossref_primary_10_1016_j_canlet_2023_216511 crossref_primary_10_1016_j_immuni_2021_06_007 crossref_primary_10_1016_j_bbadis_2024_167646 crossref_primary_10_1016_j_jcis_2023_12_189 crossref_primary_10_1007_s10238_024_01501_1 crossref_primary_10_1038_s41467_022_31764_9 crossref_primary_10_1021_acssynbio_3c00569 crossref_primary_10_1002_1873_3468_15097 crossref_primary_10_1158_2326_6066_CIR_21_0110 crossref_primary_10_1136_ard_2023_224689 crossref_primary_10_1172_JCI155224 crossref_primary_10_1016_j_celrep_2024_114632 crossref_primary_10_1002_bit_28389 crossref_primary_10_1016_j_bbcan_2022_188848 crossref_primary_10_3389_fimmu_2025_1553477 crossref_primary_10_1042_EBC20220248 crossref_primary_10_3390_cancers13164148 crossref_primary_10_1093_lifemeta_loac038 crossref_primary_10_3389_fphar_2023_1110922 crossref_primary_10_3390_ijms25031396 crossref_primary_10_4049_jimmunol_2100829 crossref_primary_10_1155_2023_5867047 crossref_primary_10_3390_ijms241511937 crossref_primary_10_1007_s43032_023_01304_x crossref_primary_10_1038_s41571_021_00539_4 crossref_primary_10_3390_antib10020017 crossref_primary_10_1016_j_cmet_2021_02_010 crossref_primary_10_1016_j_biopha_2022_114150 crossref_primary_10_1038_s41590_024_01896_9 crossref_primary_10_1093_intimm_dxad035 crossref_primary_10_3389_fimmu_2022_873834 crossref_primary_10_1016_j_bbadis_2024_167623 crossref_primary_10_1515_oncologie_2024_0596 crossref_primary_10_4049_jimmunol_2200681 crossref_primary_10_1038_s41577_024_01087_5 crossref_primary_10_1016_j_jcyt_2022_06_006 crossref_primary_10_3389_fimmu_2022_959114 crossref_primary_10_1186_s12943_024_02007_w crossref_primary_10_1073_pnas_2415119121 crossref_primary_10_1038_s41590_022_01210_5 crossref_primary_10_3389_fimmu_2024_1498808 crossref_primary_10_3390_ijms232214052 crossref_primary_10_3389_fimmu_2023_1125874 crossref_primary_10_1002_adhm_202402973 crossref_primary_10_1016_j_biopha_2023_114646 crossref_primary_10_3390_ijms24032606 crossref_primary_10_3390_genes13071193 crossref_primary_10_1016_j_isci_2022_104347 crossref_primary_10_3389_fgene_2022_908104 crossref_primary_10_3389_fimmu_2024_1428596 crossref_primary_10_1016_j_ymthe_2022_01_022 crossref_primary_10_3390_genes13020273 crossref_primary_10_1038_s41590_021_00940_2 crossref_primary_10_1038_s41392_024_02118_2 crossref_primary_10_1038_s41423_021_00727_3 crossref_primary_10_1186_s12915_022_01386_0 crossref_primary_10_3389_fimmu_2023_1166052 crossref_primary_10_1038_s41577_023_00937_y crossref_primary_10_1016_j_jep_2023_116276 crossref_primary_10_1007_s12672_024_01255_y crossref_primary_10_1172_jci_insight_156048 crossref_primary_10_1016_j_lfs_2021_120057 crossref_primary_10_1038_s41590_022_01141_1 crossref_primary_10_1016_j_isci_2023_106822 crossref_primary_10_1016_j_ctro_2024_100875 crossref_primary_10_1038_s41467_025_57819_1 crossref_primary_10_1093_carcin_bgae012 crossref_primary_10_3390_ijms22083906 crossref_primary_10_1111_jcmm_18208 crossref_primary_10_3389_fcimb_2023_1206720 crossref_primary_10_1016_j_celrep_2022_111647 crossref_primary_10_3389_fcell_2022_1013885 crossref_primary_10_3390_cancers13205250 crossref_primary_10_1038_s41577_021_00537_8 crossref_primary_10_1080_08830185_2024_2401352 crossref_primary_10_1186_s12964_024_01493_1 crossref_primary_10_1002_1878_0261_13691 crossref_primary_10_1038_s41590_022_01409_6 crossref_primary_10_3390_antiox11050853 crossref_primary_10_1172_JCI167826 crossref_primary_10_1371_journal_pbio_3002943 crossref_primary_10_1002_adbi_202101320 crossref_primary_10_1158_2159_8290_CD_20_0569 crossref_primary_10_1158_2326_6066_CIR_23_0851 crossref_primary_10_1016_j_bbadis_2022_166565 crossref_primary_10_1186_s40164_024_00543_1 crossref_primary_10_1021_acsnano_2c00192 crossref_primary_10_1080_21645515_2023_2219191 crossref_primary_10_1158_1078_0432_CCR_22_2181 crossref_primary_10_3389_fcvm_2022_854421 crossref_primary_10_1002_smll_202202663 crossref_primary_10_1016_j_molmed_2023_11_002 crossref_primary_10_1038_s41556_022_01002_x crossref_primary_10_3389_fimmu_2024_1472430 crossref_primary_10_1002_ctm2_492 crossref_primary_10_1038_s41598_023_28167_1 crossref_primary_10_1080_2162402X_2024_2344905 crossref_primary_10_1016_j_cels_2024_11_010 crossref_primary_10_3389_fonc_2024_1383809 crossref_primary_10_3389_fimmu_2023_1172931 crossref_primary_10_1038_s43018_023_00636_6 crossref_primary_10_3389_fonc_2022_992387 crossref_primary_10_1038_s42255_023_00856_1 crossref_primary_10_1007_s12672_025_02109_x crossref_primary_10_1016_j_tibs_2023_03_004 crossref_primary_10_1016_j_colsurfb_2022_112616 crossref_primary_10_1073_pnas_2305245120 crossref_primary_10_31857_S0320972523110167 crossref_primary_10_3389_fcell_2022_913684 crossref_primary_10_1016_j_canlet_2022_01_006 crossref_primary_10_1021_acsnano_4c04553 crossref_primary_10_2174_1871527322666230406094257 crossref_primary_10_1002_cnr2_2146 crossref_primary_10_3892_or_2021_8159 crossref_primary_10_3389_fimmu_2023_1247268 crossref_primary_10_1172_jci_insight_138970 crossref_primary_10_1136_jitc_2024_010153 crossref_primary_10_1038_s41392_023_01332_8 crossref_primary_10_1111_imm_13832 crossref_primary_10_2174_1574892817666220623154831 crossref_primary_10_3389_fimmu_2021_712402 crossref_primary_10_3390_ijms232214094 crossref_primary_10_1038_s41375_022_01676_0 crossref_primary_10_3389_fimmu_2022_932715 crossref_primary_10_1016_j_yexmp_2024_104932 crossref_primary_10_1002_eji_202149486 crossref_primary_10_1093_oxfimm_iqad006 crossref_primary_10_1038_s41467_023_42634_3 crossref_primary_10_1126_sciadv_adn1849 crossref_primary_10_1126_scitranslmed_adh1315 crossref_primary_10_1038_s41573_024_01098_w crossref_primary_10_1136_jitc_2024_009062 crossref_primary_10_1172_JCI177992 |
Cites_doi | 10.1158/2326-6066.CIR-18-0182 10.1016/j.immuni.2015.01.006 10.1084/jem.20140559 10.1084/jem.20171068 10.1158/2326-6066.CIR-16-0103 10.1073/pnas.95.20.11715 10.1158/2326-6066.CIR-17-0249 10.1016/j.cmet.2015.07.020 10.1016/j.ccell.2017.10.003 10.1016/S1097-2765(00)00031-9 10.1002/jnr.23196 10.1038/nri.2017.66 10.1126/science.aae0491 10.1038/s41586-018-0206-z 10.1016/j.immuni.2012.10.020 10.1038/s41590-019-0478-y 10.1016/j.molcel.2010.10.004 10.3390/vaccines4040046 10.1038/s41590-019-0346-9 10.1172/jci.insight.93411 10.1146/annurev-immunol-041015-055318 10.1038/ni.2714 10.1126/science.1229620 10.1016/j.cell.2015.08.016 10.1016/j.cell.2006.09.024 10.1016/j.tcb.2015.12.002 10.1016/j.immuni.2016.07.008 10.1016/j.cell.2015.08.012 10.1126/sciimmunol.aaf8612 10.1172/jci.insight.124989 10.1038/s41590-019-0312-6 10.1016/j.immuni.2016.10.017 10.1016/j.cell.2018.10.038 10.1016/j.cub.2014.03.034 10.1016/j.cmet.2015.11.002 10.1016/j.immuni.2009.04.014 10.1038/nature22367 10.1016/j.immuni.2009.06.019 10.3389/fimmu.2018.01591 10.4049/jimmunol.152.2.381 10.1126/science.aaf2807 10.1074/jbc.M210432200 10.1038/s41419-017-0061-0 10.1074/jbc.M803236200 10.1038/ni.3031 10.1056/NEJMoa1816047 10.1016/j.immuni.2016.07.009 10.1016/j.immuni.2014.01.005 10.1016/j.celrep.2017.08.071 10.1146/annurev-immunol-042617-053411 10.1038/s41590-020-0725-2 10.1038/s41577-019-0221-9 10.1038/nrclinonc.2016.60 10.1126/science.aav2588 10.1038/s41590-020-0733-2 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 COPYRIGHT 2021 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 – notice: COPYRIGHT 2021 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7T5 7TK 7TM 7U9 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/s41590-020-00834-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1529-2916 |
EndPage | 215 |
ExternalDocumentID | PMC7971090 A655717762 33398183 10_1038_s41590_020_00834_9 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: T32CA082084; F99CA222711; T32CA082084; F30CA247034; T32CA082084; F31CA247129; T32CA082084 funderid: https://doi.org/10.13039/100000054 – fundername: SU2C-AACR Innovative Research Grant (SU2C-AACR-IRG-04-16), the Alliance for Cancer Gene Therapy, the Mark Foundation for Cancer Research Emerging Leader Award, the Cancer Research Institute Lloyd J. Old STAR Award, and the Sy Holzer Endowed Cancer Immunotherapy Fund – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: DP2AI136598; R21AI135367; T32AI089443 funderid: https://doi.org/10.13039/100000060 – fundername: United States Department of Defense | U.S. Army (United States Army) grantid: CA170483 funderid: https://doi.org/10.13039/100006751 – fundername: NCI NIH HHS grantid: K00 CA222711 – fundername: NCI NIH HHS grantid: P50 CA097190 – fundername: NIAID NIH HHS grantid: R21 AI135367 – fundername: NCI NIH HHS grantid: T32 CA082084 – fundername: NCI NIH HHS grantid: F30 CA247034 – fundername: NIAID NIH HHS grantid: DP2 AI136598 – fundername: NCI NIH HHS grantid: P50 CA121973 – fundername: NCI NIH HHS grantid: P30 CA047904 – fundername: NIAID NIH HHS grantid: T32 AI089443 – fundername: NCI NIH HHS grantid: F31 CA247129 |
GroupedDBID | --- .55 0R~ 123 29M 2FS 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABNNU ABOCM ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACUHS ADBBV ADNMO AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EAS EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ISR ITC L-9 LK8 M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WH7 X7M Y6R ZXP AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM AEIIB PMFND 7QP 7QR 7T5 7TK 7TM 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c575t-25cd1070e724d27f8a96a729daead6cc13351cf19c935f00fe387c57b5d1ba393 |
IEDL.DBID | 7X7 |
ISSN | 1529-2908 1529-2916 |
IngestDate | Thu Aug 21 13:28:05 EDT 2025 Fri Sep 05 03:16:51 EDT 2025 Fri Jul 25 09:01:37 EDT 2025 Tue Jun 17 21:42:55 EDT 2025 Tue Jun 10 20:40:31 EDT 2025 Fri Jun 27 04:00:25 EDT 2025 Thu Apr 03 07:06:49 EDT 2025 Tue Jul 01 01:02:32 EDT 2025 Thu Apr 24 22:54:04 EDT 2025 Fri Feb 21 02:39:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c575t-25cd1070e724d27f8a96a729daead6cc13351cf19c935f00fe387c57b5d1ba393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AUTHOR CONTRIBUTIONS N.E.S. designed and performed experiments, analyzed data, and helped write the manuscript, D.B.R., A.V.M., and P.D.A.V. designed and performed experiments, and analyzed data. B.R.F and N.L.R. analyzed transcriptomic data. R.P. imaged microscopy experiments. Yiyang W. cloned overexpression plasmids. Yupeng W. aided Rho0 experiments. K.D. performed critical mouse experiments. A.C.P. oversaw bioinformatics research and provided crucial insight into Blimp-1-deficient experiments. G.M.D. conceived of, oversaw, and directed the research, performed initial experiments, analyzed data, obtained research funding, and wrote the manuscript. these authors contributed equally |
ORCID | 0000-0001-9373-4617 0000-0002-2957-8135 0000-0001-8460-727X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7971090 |
PMID | 33398183 |
PQID | 2480545596 |
PQPubID | 45782 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7971090 proquest_miscellaneous_2475401594 proquest_journals_2480545596 gale_infotracmisc_A655717762 gale_infotracacademiconefile_A655717762 gale_incontextgauss_ISR_A655717762 pubmed_primary_33398183 crossref_citationtrail_10_1038_s41590_020_00834_9 crossref_primary_10_1038_s41590_020_00834_9 springer_journals_10_1038_s41590_020_00834_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature immunology |
PublicationTitleAbbrev | Nat Immunol |
PublicationTitleAlternate | Nat Immunol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Ho (CR44) 2015; 162 Sen (CR9) 2016; 354 Mehta, Weinberg, Chandel (CR46) 2017; 17 McLane, Abdel-Hakeem, Wherry (CR3) 2019; 37 Dröse, Brandt (CR34) 2008; 283 Schaaf, Garg, Agostinis (CR41) 2018; 9 Blaser, Dostert, Mak, Brenner (CR48) 2016; 26 Najjar (CR18) 2019; 4 Doedens (CR23) 2013; 14 Li (CR35) 2003; 278 Chandel (CR36) 1998; 95 Palazon (CR52) 2017; 32 Motzer (CR42) 2019; 380 Wellen, Thompson (CR49) 2010; 40 Chihara (CR6) 2018; 558 Poholek (CR56) 2016; 1 Chang (CR19) 2015; 162 Martinez (CR7) 2015; 42 Sawant (CR28) 2019; 20 Monsalve (CR55) 2000; 6 Siska (CR32) 2017; 2 Menk (CR17) 2018; 215 Horton, Williams, Cabanov, Spranger, Gajewski (CR26) 2018; 6 Miller (CR21) 2019; 20 Voron (CR51) 2015; 212 Scharping (CR15) 2016; 45 CR14 Delgoffe (CR54) 2009; 30 CR12 Phan (CR45) 2016; 45 Scharping, Menk, Whetstone, Zeng, Delgoffe (CR16) 2017; 5 CR50 Shin (CR5) 2009; 31 Scharping, Delgoffe (CR13) 2016; 4 Bengsch (CR43) 2016; 45 Sade-Feldman (CR22) 2018; 175 Acín-Pérez (CR37) 2015; 22 St-Pierre (CR40) 2006; 127 Paley (CR4) 2012; 338 Chinopoulos (CR30) 2013; 91 Philip (CR11) 2017; 545 Bacik, Cox, Anderson, Yewdell, Bennink (CR53) 1994; 152 Pauken (CR10) 2016; 354 Chang, Wherry, Goldrath (CR2) 2014; 15 CR29 Li, Patel, Roszik, Qin (CR25) 2018; 9 Sukumar (CR31) 2016; 23 Mann, Kaech (CR8) 2019; 20 Crawford (CR27) 2014; 40 Sena (CR39) 2013; 38 Mach, Thimmesch, Pierce, Pierce (CR47) 2011; 2011 CR20 Schieber, Chandel (CR38) 2014; 24 Hurst (CR33) 2019; 7 Taniuchi (CR1) 2018; 36 Gropper (CR24) 2017; 20 834_CR12 S Dröse (834_CR34) 2008; 283 PJ Siska (834_CR32) 2017; 2 M Monsalve (834_CR55) 2000; 6 834_CR50 BL Horton (834_CR26) 2018; 6 H Shin (834_CR5) 2009; 31 N Chihara (834_CR6) 2018; 558 AT Phan (834_CR45) 2016; 45 M Sukumar (834_CR31) 2016; 23 LM McLane (834_CR3) 2019; 37 834_CR14 I Taniuchi (834_CR1) 2018; 36 GM Delgoffe (834_CR54) 2009; 30 J St-Pierre (834_CR40) 2006; 127 AC Poholek (834_CR56) 2016; 1 B Bengsch (834_CR43) 2016; 45 CH Chang (834_CR19) 2015; 162 NE Scharping (834_CR16) 2017; 5 NE Scharping (834_CR15) 2016; 45 A Palazon (834_CR52) 2017; 32 Y Li (834_CR25) 2018; 9 KE Hurst (834_CR33) 2019; 7 N Li (834_CR35) 2003; 278 T Voron (834_CR51) 2015; 212 DR Sen (834_CR9) 2016; 354 M Philip (834_CR11) 2017; 545 H Blaser (834_CR48) 2016; 26 MB Schaaf (834_CR41) 2018; 9 NS Chandel (834_CR36) 1998; 95 BC Miller (834_CR21) 2019; 20 PC Ho (834_CR44) 2015; 162 LA Sena (834_CR39) 2013; 38 YG Najjar (834_CR18) 2019; 4 MM Mehta (834_CR46) 2017; 17 GJ Martinez (834_CR7) 2015; 42 AL Doedens (834_CR23) 2013; 14 Y Gropper (834_CR24) 2017; 20 834_CR20 RJ Motzer (834_CR42) 2019; 380 JT Chang (834_CR2) 2014; 15 C Chinopoulos (834_CR30) 2013; 91 KE Wellen (834_CR49) 2010; 40 834_CR29 WJ Mach (834_CR47) 2011; 2011 MA Paley (834_CR4) 2012; 338 AV Menk (834_CR17) 2018; 215 M Schieber (834_CR38) 2014; 24 TH Mann (834_CR8) 2019; 20 A Crawford (834_CR27) 2014; 40 R Acín-Pérez (834_CR37) 2015; 22 KE Pauken (834_CR10) 2016; 354 M Sade-Feldman (834_CR22) 2018; 175 DV Sawant (834_CR28) 2019; 20 I Bacik (834_CR53) 1994; 152 N Scharping (834_CR13) 2016; 4 34099891 - Cell Mol Immunol. 2021 Jul;18(7):1634-1637 33495653 - Nat Immunol. 2021 Mar;22(3):276-278 33657392 - Cell Metab. 2021 Mar 2;33(3):470-472 |
References_xml | – volume: 7 start-page: 476 year: 2019 end-page: 486 ident: CR33 article-title: Endoplasmic reticulum stress contributes to mitochondrial exhaustion of CD8 T cells publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0182 – volume: 42 start-page: 265 year: 2015 end-page: 278 ident: CR7 article-title: The transcription factor NFAT promotes exhaustion of activated CD8 T cells publication-title: Immunity doi: 10.1016/j.immuni.2015.01.006 – volume: 212 start-page: 139 year: 2015 end-page: 148 ident: CR51 article-title: VEGF-A modulates expression of inhibitory checkpoints on CD8 T cells in tumors publication-title: J. Exp. Med. doi: 10.1084/jem.20140559 – volume: 215 start-page: 1091 year: 2018 end-page: 1100 ident: CR17 article-title: 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses publication-title: J. Exp. Med. doi: 10.1084/jem.20171068 – ident: CR12 – volume: 5 start-page: 9 year: 2017 end-page: 16 ident: CR16 article-title: Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-16-0103 – volume: 95 start-page: 11715 year: 1998 end-page: 11720 ident: CR36 article-title: Mitochondrial reactive oxygen species trigger hypoxia-induced transcription publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.95.20.11715 – volume: 6 start-page: 14 year: 2018 end-page: 24 ident: CR26 article-title: Intratumoral CD8 T-cell apoptosis is a major component of T-cell dysfunction and impedes antitumor immunity publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-17-0249 – ident: CR29 – volume: 22 start-page: 485 year: 2015 end-page: 498 ident: CR37 article-title: Mitochondrial respiration controls lysosomal function during inflammatory T cell responses publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.07.020 – volume: 32 start-page: 669 year: 2017 end-page: 683.e5 ident: CR52 article-title: An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.10.003 – volume: 6 start-page: 307 year: 2000 end-page: 316 ident: CR55 article-title: Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1 publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)00031-9 – volume: 91 start-page: 1030 year: 2013 end-page: 1043 ident: CR30 article-title: Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex publication-title: J. Neurosci. Res. doi: 10.1002/jnr.23196 – volume: 17 start-page: 608 year: 2017 end-page: 620 ident: CR46 article-title: Mitochondrial control of immunity: beyond ATP publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.66 – ident: CR50 – volume: 354 start-page: 1165 year: 2016 end-page: 1169 ident: CR9 article-title: The epigenetic landscape of T cell exhaustion publication-title: Science doi: 10.1126/science.aae0491 – volume: 558 start-page: 454 year: 2018 end-page: 459 ident: CR6 article-title: Induction and transcriptional regulation of the co-inhibitory gene module in T cells publication-title: Nature doi: 10.1038/s41586-018-0206-z – volume: 38 start-page: 225 year: 2013 end-page: 236 ident: CR39 article-title: Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling publication-title: Immunity doi: 10.1016/j.immuni.2012.10.020 – volume: 20 start-page: 1092 year: 2019 end-page: 1094 ident: CR8 article-title: Tick-TOX, it’s time for T cell exhaustion publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0478-y – volume: 40 start-page: 323 year: 2010 end-page: 332 ident: CR49 article-title: Cellular metabolic stress: considering how cells respond to nutrient excess publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.10.004 – volume: 4 start-page: 46 year: 2016 ident: CR13 article-title: Tumor microenvironment metabolism: a new checkpoint for anti-tumor immunity publication-title: Vaccines doi: 10.3390/vaccines4040046 – volume: 20 start-page: 724 year: 2019 end-page: 735 ident: CR28 article-title: Adaptive plasticity of IL-10 and IL-35 T cells cooperatively promotes tumor T cell exhaustion publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0346-9 – volume: 2 start-page: e93411 year: 2017 ident: CR32 article-title: Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma publication-title: JCI Insight doi: 10.1172/jci.insight.93411 – volume: 37 start-page: 457 year: 2019 end-page: 495 ident: CR3 article-title: CD8 T cell exhaustion during chronic viral infection and cancer publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-041015-055318 – volume: 14 start-page: 1173 year: 2013 end-page: 1182 ident: CR23 article-title: Hypoxia-inducible factors enhance the effector responses of CD8 T cells to persistent antigen publication-title: Nat. Immunol. doi: 10.1038/ni.2714 – volume: 338 start-page: 1220 year: 2012 end-page: 1225 ident: CR4 article-title: Progenitor and terminal subsets of CD8 T cells cooperate to contain chronic viral infection publication-title: Science doi: 10.1126/science.1229620 – volume: 162 start-page: 1229 year: 2015 end-page: 1241 ident: CR19 article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression publication-title: Cell doi: 10.1016/j.cell.2015.08.016 – volume: 127 start-page: 397 year: 2006 end-page: 408 ident: CR40 article-title: Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators publication-title: Cell doi: 10.1016/j.cell.2006.09.024 – volume: 26 start-page: 249 year: 2016 end-page: 261 ident: CR48 article-title: TNF and ROS crosstalk in inflammation publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.12.002 – volume: 45 start-page: 358 year: 2016 end-page: 373 ident: CR43 article-title: Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8 T cell exhaustion publication-title: Immunity doi: 10.1016/j.immuni.2016.07.008 – volume: 162 start-page: 1217 year: 2015 end-page: 1228 ident: CR44 article-title: Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses publication-title: Cell doi: 10.1016/j.cell.2015.08.012 – volume: 1 start-page: eaaf8612 year: 2016 ident: CR56 article-title: IL-10 induces a STAT3-dependent autoregulatory loop in T 2 cells that promotes Blimp-1 restriction of cell expansion via antagonism of STAT5 target genes publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aaf8612 – ident: CR14 – volume: 4 start-page: e124989 year: 2019 ident: CR18 article-title: Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma publication-title: JCI Insight doi: 10.1172/jci.insight.124989 – volume: 20 start-page: 326 year: 2019 end-page: 336 ident: CR21 article-title: Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0312-6 – volume: 45 start-page: 1024 year: 2016 end-page: 1037 ident: CR45 article-title: Constitutive glycolytic metabolism supports CD8 T cell effector memory differentiation during viral infection publication-title: Immunity doi: 10.1016/j.immuni.2016.10.017 – volume: 175 start-page: 998 year: 2018 end-page: 1013.e20 ident: CR22 article-title: Defining T cell states associated with response to checkpoint immunotherapy in melanoma publication-title: Cell doi: 10.1016/j.cell.2018.10.038 – volume: 24 start-page: R453 year: 2014 end-page: R462 ident: CR38 article-title: ROS function in redox signaling and oxidative stress publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.03.034 – volume: 23 start-page: 63 year: 2016 end-page: 76 ident: CR31 article-title: Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.11.002 – volume: 30 start-page: 832 year: 2009 end-page: 844 ident: CR54 article-title: The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment publication-title: Immunity doi: 10.1016/j.immuni.2009.04.014 – volume: 545 start-page: 452 year: 2017 end-page: 456 ident: CR11 article-title: Chromatin states define tumour-specific T cell dysfunction and reprogramming publication-title: Nature doi: 10.1038/nature22367 – volume: 31 start-page: 309 year: 2009 end-page: 320 ident: CR5 article-title: A role for the transcriptional repressor Blimp-1 in CD8 T cell exhaustion during chronic viral infection publication-title: Immunity doi: 10.1016/j.immuni.2009.06.019 – volume: 9 start-page: 1591 year: 2018 ident: CR25 article-title: Hypoxia-driven immunosuppressive metabolites in the tumor microenvironment: new approaches for combinational immunotherapy publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01591 – volume: 152 start-page: 381 year: 1994 end-page: 387 ident: CR53 article-title: TAP (transporter associated with antigen processing)-independent presentation of endogenously synthesized peptides is enhanced by endoplasmic reticulum insertion sequences located at the amino- but not carboxyl-terminus of the peptide publication-title: J. Immunol. doi: 10.4049/jimmunol.152.2.381 – volume: 2011 start-page: 260482 year: 2011 ident: CR47 article-title: Consequences of hyperoxia and the toxicity of oxygen in the lung publication-title: Nurs. Res. Pract. – volume: 354 start-page: 1160 year: 2016 end-page: 1165 ident: CR10 article-title: Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade publication-title: Science doi: 10.1126/science.aaf2807 – volume: 278 start-page: 8516 year: 2003 end-page: 8525 ident: CR35 article-title: Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210432200 – volume: 9 year: 2018 ident: CR41 article-title: Defining the role of the tumor vasculature in antitumor immunity and immunotherapy publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0061-0 – volume: 283 start-page: 21649 year: 2008 end-page: 21654 ident: CR34 article-title: The mechanism of mitochondrial superoxide production by the cytochrome complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M803236200 – volume: 15 start-page: 1104 year: 2014 end-page: 1115 ident: CR2 article-title: Molecular regulation of effector and memory T cell differentiation publication-title: Nat. Rev. Immunol. doi: 10.1038/ni.3031 – volume: 380 start-page: 1103 year: 2019 end-page: 1115 ident: CR42 article-title: Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1816047 – volume: 45 start-page: 374 year: 2016 end-page: 388 ident: CR15 article-title: The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction publication-title: Immunity doi: 10.1016/j.immuni.2016.07.009 – volume: 40 start-page: 289 year: 2014 end-page: 302 ident: CR27 article-title: Molecular and transcriptional basis of CD4 T cell dysfunction during chronic infection publication-title: Immunity doi: 10.1016/j.immuni.2014.01.005 – volume: 20 start-page: 2547 year: 2017 end-page: 2555 ident: CR24 article-title: Culturing CTLs under hypoxic conditions enhances their cytolysis and improves their anti-tumor function publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.08.071 – volume: 36 start-page: 579 year: 2018 end-page: 601 ident: CR1 article-title: CD4 helper and CD8 cytotoxic T cell differentiation publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-042617-053411 – ident: CR20 – volume: 162 start-page: 1229 year: 2015 ident: 834_CR19 publication-title: Cell doi: 10.1016/j.cell.2015.08.016 – volume: 40 start-page: 323 year: 2010 ident: 834_CR49 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.10.004 – volume: 4 start-page: 46 year: 2016 ident: 834_CR13 publication-title: Vaccines doi: 10.3390/vaccines4040046 – volume: 162 start-page: 1217 year: 2015 ident: 834_CR44 publication-title: Cell doi: 10.1016/j.cell.2015.08.012 – volume: 38 start-page: 225 year: 2013 ident: 834_CR39 publication-title: Immunity doi: 10.1016/j.immuni.2012.10.020 – volume: 32 start-page: 669 year: 2017 ident: 834_CR52 publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.10.003 – volume: 36 start-page: 579 year: 2018 ident: 834_CR1 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-042617-053411 – volume: 7 start-page: 476 year: 2019 ident: 834_CR33 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0182 – ident: 834_CR50 doi: 10.1038/s41590-020-0725-2 – volume: 2011 start-page: 260482 year: 2011 ident: 834_CR47 publication-title: Nurs. Res. Pract. – volume: 6 start-page: 14 year: 2018 ident: 834_CR26 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-17-0249 – volume: 545 start-page: 452 year: 2017 ident: 834_CR11 publication-title: Nature doi: 10.1038/nature22367 – ident: 834_CR12 doi: 10.1038/s41577-019-0221-9 – volume: 4 start-page: e124989 year: 2019 ident: 834_CR18 publication-title: JCI Insight doi: 10.1172/jci.insight.124989 – volume: 95 start-page: 11715 year: 1998 ident: 834_CR36 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.95.20.11715 – volume: 91 start-page: 1030 year: 2013 ident: 834_CR30 publication-title: J. Neurosci. Res. doi: 10.1002/jnr.23196 – volume: 338 start-page: 1220 year: 2012 ident: 834_CR4 publication-title: Science doi: 10.1126/science.1229620 – volume: 6 start-page: 307 year: 2000 ident: 834_CR55 publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)00031-9 – volume: 42 start-page: 265 year: 2015 ident: 834_CR7 publication-title: Immunity doi: 10.1016/j.immuni.2015.01.006 – volume: 24 start-page: R453 year: 2014 ident: 834_CR38 publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.03.034 – volume: 152 start-page: 381 year: 1994 ident: 834_CR53 publication-title: J. Immunol. doi: 10.4049/jimmunol.152.2.381 – volume: 558 start-page: 454 year: 2018 ident: 834_CR6 publication-title: Nature doi: 10.1038/s41586-018-0206-z – volume: 215 start-page: 1091 year: 2018 ident: 834_CR17 publication-title: J. Exp. Med. doi: 10.1084/jem.20171068 – ident: 834_CR14 doi: 10.1038/nrclinonc.2016.60 – volume: 31 start-page: 309 year: 2009 ident: 834_CR5 publication-title: Immunity doi: 10.1016/j.immuni.2009.06.019 – volume: 212 start-page: 139 year: 2015 ident: 834_CR51 publication-title: J. Exp. Med. doi: 10.1084/jem.20140559 – volume: 2 start-page: e93411 year: 2017 ident: 834_CR32 publication-title: JCI Insight doi: 10.1172/jci.insight.93411 – volume: 22 start-page: 485 year: 2015 ident: 834_CR37 publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.07.020 – volume: 20 start-page: 2547 year: 2017 ident: 834_CR24 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.08.071 – volume: 380 start-page: 1103 year: 2019 ident: 834_CR42 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1816047 – volume: 20 start-page: 724 year: 2019 ident: 834_CR28 publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0346-9 – ident: 834_CR20 doi: 10.1126/science.aav2588 – volume: 45 start-page: 358 year: 2016 ident: 834_CR43 publication-title: Immunity doi: 10.1016/j.immuni.2016.07.008 – volume: 26 start-page: 249 year: 2016 ident: 834_CR48 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.12.002 – volume: 37 start-page: 457 year: 2019 ident: 834_CR3 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-041015-055318 – volume: 45 start-page: 374 year: 2016 ident: 834_CR15 publication-title: Immunity doi: 10.1016/j.immuni.2016.07.009 – volume: 17 start-page: 608 year: 2017 ident: 834_CR46 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.66 – volume: 14 start-page: 1173 year: 2013 ident: 834_CR23 publication-title: Nat. Immunol. doi: 10.1038/ni.2714 – volume: 278 start-page: 8516 year: 2003 ident: 834_CR35 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210432200 – volume: 354 start-page: 1160 year: 2016 ident: 834_CR10 publication-title: Science doi: 10.1126/science.aaf2807 – volume: 127 start-page: 397 year: 2006 ident: 834_CR40 publication-title: Cell doi: 10.1016/j.cell.2006.09.024 – volume: 20 start-page: 326 year: 2019 ident: 834_CR21 publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0312-6 – volume: 40 start-page: 289 year: 2014 ident: 834_CR27 publication-title: Immunity doi: 10.1016/j.immuni.2014.01.005 – volume: 20 start-page: 1092 year: 2019 ident: 834_CR8 publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0478-y – volume: 23 start-page: 63 year: 2016 ident: 834_CR31 publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.11.002 – volume: 15 start-page: 1104 year: 2014 ident: 834_CR2 publication-title: Nat. Rev. Immunol. doi: 10.1038/ni.3031 – volume: 354 start-page: 1165 year: 2016 ident: 834_CR9 publication-title: Science doi: 10.1126/science.aae0491 – volume: 175 start-page: 998 year: 2018 ident: 834_CR22 publication-title: Cell doi: 10.1016/j.cell.2018.10.038 – volume: 9 year: 2018 ident: 834_CR41 publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0061-0 – volume: 30 start-page: 832 year: 2009 ident: 834_CR54 publication-title: Immunity doi: 10.1016/j.immuni.2009.04.014 – volume: 1 start-page: eaaf8612 year: 2016 ident: 834_CR56 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aaf8612 – volume: 45 start-page: 1024 year: 2016 ident: 834_CR45 publication-title: Immunity doi: 10.1016/j.immuni.2016.10.017 – ident: 834_CR29 doi: 10.1038/s41590-020-0733-2 – volume: 9 start-page: 1591 year: 2018 ident: 834_CR25 publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01591 – volume: 5 start-page: 9 year: 2017 ident: 834_CR16 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-16-0103 – volume: 283 start-page: 21649 year: 2008 ident: 834_CR34 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M803236200 – reference: 33657392 - Cell Metab. 2021 Mar 2;33(3):470-472 – reference: 33495653 - Nat Immunol. 2021 Mar;22(3):276-278 – reference: 34099891 - Cell Mol Immunol. 2021 Jul;18(7):1634-1637 |
SSID | ssj0014764 |
Score | 2.7240615 |
Snippet | Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics.... Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic, and metabolic characteristics.... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 205 |
SubjectTerms | 631/250/1619/554/1834/1269 631/250/2152/569/2495 631/250/2502 631/250/580 Animals Biomedical and Life Sciences Biomedicine CD8 antigen CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - metabolism Cell differentiation Cell Line, Tumor Cell metabolism Coculture Techniques Energy Metabolism Epigenetics Female Health aspects HEK293 Cells Humans Hypoxia Immunological research Immunology Immunotherapy Infectious Diseases Lymphocyte Activation Lymphocytes Lymphocytes, Tumor-Infiltrating - immunology Lymphocytes, Tumor-Infiltrating - metabolism Male Melanoma, Experimental - genetics Melanoma, Experimental - immunology Melanoma, Experimental - metabolism Melanoma, Experimental - pathology Metabolism Mice Mice, Inbred C57BL Mice, Transgenic Mitochondria Mitochondria - immunology Mitochondria - metabolism NF-AT protein Oxidative stress Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - genetics Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism Physiological aspects Positive Regulatory Domain I-Binding Factor 1 - genetics Positive Regulatory Domain I-Binding Factor 1 - metabolism Reactive oxygen species Reactive Oxygen Species - metabolism Signal Transduction T cell receptors T cells Transcription factors Tumor Hypoxia Tumor Microenvironment |
Title | Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion |
URI | https://link.springer.com/article/10.1038/s41590-020-00834-9 https://www.ncbi.nlm.nih.gov/pubmed/33398183 https://www.proquest.com/docview/2480545596 https://www.proquest.com/docview/2475401594 https://pubmed.ncbi.nlm.nih.gov/PMC7971090 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgE2gvCMZXYEwGIfEA1pI4ie0n1E6rBlIrNDapb5FjO7TSSLumRet_z13idqQSe2kefE5j3_nud_b5jpCPCjC8TS1nWirLEpdETMdGMxHZVAF-zWKHjuJwlJ1fJd_H6dhvuNU-rHKjExtFbWcG98hP4kQCugD8m32d3zCsGoWnq76ExkOyHwESwdINYrx1uKJENOmjwEQpFqtQ-kszIZcnNRguFTJ0nhCFJEx1DNOuev7HPu3GTu4coDZ2afCUPPGAkvZaCXhGHrjqkDxqS0yuD8njoT88f07cEFYvaLvKotDR9pYIBZ8cuGtpsaYYtj6tVrNVDY3T376wF8VrZgs6Wc9nt1NNF3o-tddrCi_542p6SXHrn7rbCSYQAvIX5Gpwdnl6znyVBWYAqi1ZnBoLPmDoRJzYWJRSq0wD5LYahCwzBpzYNDJlpIziaRmGpeNSQNcitVGhueIvyV41q9xrQnVWmELLTMdOJMBqJSMuSp4UJjXwDheQaDPFufEpyLESxnXeHIVzmbdsyYEtecOWXAXk87bPvE3AcS_1B-RcjpktKgyd-QWDr_NvPy_yXpam4LuC8g_IJ09UzuDvjfY3EWAQmAyrQ3nUoYSlZ7rNGwHJ_dKv8ztBDcj7bTP2xHC2ygETgUYAUoaPTwLyqpWn7eA45zBvkgdEdCRtS4AJwbst1XTSJAYXCiNrw4B82cjk3Wf9f87e3D-Kt-QgxjieJlL9iOwtFyv3DoDYsjhuVhv8ytPomOz3Bv3-CJ79s9GPi7-LgzJM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KqKeFwQlFeggEEgDmA1ifPyAaEKqHZptwfYSntzHdthI5Vk2exC96f4Rmby2JKV6K1nj5N4ZjyPzIuQVwJseBMazlQiDAts4DHla8Viz4QC7NfIt-gojo6jwUnwZRJOtsifrhYG0yo7mVgLalNq_Ee-5wcJWBdg_0YfZj8ZTo3C6Go3QqNhi0O7-g0uW_V--Ano-9r3Dz6PPw5YO1WAaTBNFswPtQGfx7WxHxg_zhIlIgUmplGA1EhrcNpCT2ee0IKHmetmlicxbE1D46WKY_MlEPnXAgwxwv2JJ2sHzwviul0VqETBfOEmbZGOy5O9ChSlcBk6a2j1BEz0FOGmOvhHH27mam4EbGs9eHCH3G4NWLrfcNxdsmWLHXK9GWm52iE3Rm2w_h6xI5AWIF0Lg0xOm6oUmhcGuMnQdEUxTT4vluWygsX8RztIjGJZ25xOV7PyPFd0rma5OVtReMgvW9ExxVADtedTbFgE4PfJyZXg_wHZLsrCPiJURalOVRIp38YBsJZIPB5nPEh1qOEZ1iFeh2Kp25bnOHnjTNahd57IhiwSyCJrskjhkLfrPbOm4cel0C-RchI7aRSYqvMdDl_J4bevcj8KQ_CVQdk45E0LlJXweq3aygc4BDbf6kHu9iDhquv-cscgshU1lby4GA55sV7GnZg-V1ggIsDEYJnDxwcOedjw0_pwnHPAW8IdEvc4bQ2ADcj7K0U-rRuRxwIzeV2HvOt48uKz_o-zx5ef4jm5ORiPjuTR8PjwCbnlYw5RnSW_S7YX86V9CkbgIn1W3zxKTq_6qv8FfJlreA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1Jo2MfGCYNwCAwwC8QBRkzg3P0xosFUro9U0NmlvxrEdGmmkpWlh_UW-inMSpyOT2NuefZzEPvecGyGvOdjwOtLMlSnXbmhC35WBkm7i64iD_RoHBh3F4Sg-OA0_n0Vna-RPWwuDaZWtTKwFtZ4o_EfeC8IUrAuwf-NebtMijvb6H6Y_XZwghZHWdpyGtGMW9E7dbswWeRya5W9w56qdwR7g_k0Q9PdPPh24duKAq8BsmbtBpDT4Q55JglAHSZ5KHkswP7WEC4-VAocu8lXuc8VZlHtebliawNYs0n4mGTZmAnWwkYDWB0dw4-P-6Oh4FdMIk7qZFShM7gbcS20Jj8fSXgVqlHsuunJoE4Uu76jJq8riH215NZPzSji31pL9u-SONW_pbkOP98iaKbfIrWbg5XKLbA5tKP8-MUOQJSB7S40sQJuaFVqUGmhN02xJMYm-KBeTRQWLxQ87Zoxi0duMjpfTyUUh6UxOC32-pPCQX6aiJxQDEdRcjLGdEYA_IKc3goGHZL2clOYxoTLOVCbTWAYmCYHweOqzJGdhpiIFzzAO8dsrFso2RMe5HOeiDsyzVDRoEYAWUaNFcIe8W-2ZNu1AroV-hZgT2GejRIr9DoevxODrsdiNowg8aVBFDnlrgfIJvF5JWxcBh8DWXB3I7Q4kCALVXW4JRFhBVIlLtnHIy9Uy7sTkutIAEgEmAbsdPj50yKOGnlaHY4zBvaXMIUmH0lYA2J68u1IW47pNecIxz9dzyPuWJi8_6_939uT6U7wgm8D24stgdPiU3A4wwahOod8m6_PZwjwDC3GePbesR8m3m-b2v3NxdlM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+stress+induced+by+continuous+stimulation+under+hypoxia+rapidly+drives+T+cell+exhaustion&rft.jtitle=Nature+immunology&rft.au=Scharping%2C+Nicole+E&rft.au=Rivadeneira%2C+Dayana+B&rft.au=Menk%2C+Ashley+V&rft.au=Vignali%2C+Paolo+D.+A&rft.date=2021-02-01&rft.pub=Nature+Publishing+Group&rft.issn=1529-2908&rft.eissn=1529-2916&rft.volume=22&rft.issue=2&rft.spage=205&rft.epage=215&rft_id=info:doi/10.1038%2Fs41590-020-00834-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon |