A Simple Explanation of the Electrostatics of the B-to-Z Transition of DNA
Whereas the phosphates of B-DNA jut out into the solution, those of Z-DNA, being closer to DNA matter, are less subject to electrostatic screening by counterions. We present simple planar models of B- and Z-DNA that reflect these geometric features. The ionic strength dependence of the difference in...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 89; no. 13; pp. 5740 - 5743 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
National Academy of Sciences of the United States of America
01.07.1992
National Acad Sciences National Academy of Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 |
DOI | 10.1073/pnas.89.13.5740 |
Cover
Summary: | Whereas the phosphates of B-DNA jut out into the solution, those of Z-DNA, being closer to DNA matter, are less subject to electrostatic screening by counterions. We present simple planar models of B- and Z-DNA that reflect these geometric features. The ionic strength dependence of the difference in the Poisson-Boltzmann electrostatic free energy of the models agrees with that measured by Pohl [Pohl, F. M. (1983) Cold Spring Harbor Symp. Quant. Biol. 47, 113-118]. This indicates that the electrostatics of the B-to-Z transition are primarily controlled by a qualitative geometrical difference and not by details of the DNA geometry or by complex electrostatic properties of the ionic solution. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.89.13.5740 |