Functional Expression of Brain Neuronal CB2 Cannabinoid Receptors Are Involved in the Effects of Drugs of Abuse and in Depression
Major depression and addiction are mental health problems associated with stressful events in life with high relapse and recurrence even after treatment. Many laboratories were not able to detect the presence of CB2 cannabinoid receptors (CB2‐Rs) in healthy brains, but CB2‐R expression has been demo...
Saved in:
Published in | Annals of the New York Academy of Sciences Vol. 1139; no. 1; pp. 434 - 449 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.10.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0077-8923 1749-6632 1749-6632 1930-6547 |
DOI | 10.1196/annals.1432.036 |
Cover
Abstract | Major depression and addiction are mental health problems associated with stressful events in life with high relapse and recurrence even after treatment. Many laboratories were not able to detect the presence of CB2 cannabinoid receptors (CB2‐Rs) in healthy brains, but CB2‐R expression has been demonstrated in rat microglial cells and other brain‐associated cells during inflammation. Thus, neuronal expression of CB2‐Rs has been ambiguous and controversial, and its role in depression and substance abuse is unknown. In this study we tested the hypothesis that genetic variants of the CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances, including opiates, cocaine, and ethanol, in rodents. Here we demonstrate that a high incidence of Q63R but not H316Y polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2‐Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated after exposure to stressors and administration of abused drugs. Mice that developed an alcohol preference had reduced CB2 gene expression, and chronic treatment with JWH015 a putative CB2‐R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 antisense oligonucleotide into the mouse brain reduced mouse aversions in the plus‐maze test, indicating the functional presence of CB2‐Rs in the brain that modifies behavior. Using electron microscopy we report the subcellular localization of CB2‐Rs that are mainly on postsynaptic elements in rodent brain. Our data demonstrate the functional expression of CB2‐Rs in the brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuroimmunocannabinoid activity. |
---|---|
AbstractList | Major depression and addiction are mental health problems associated with stressful events in life with high relapse and recurrence even after treatment. Many laboratories were not able to detect the presence of CB2 cannabinoid receptors (CB2-Rs) in healthy brains, but CB2-R expression has been demonstrated in rat microglial cells and other brain-associated cells during inflammation. Thus, neuronal expression of CB2-Rs has been ambiguous and controversial, and its role in depression and substance abuse is unknown. In this study we tested the hypothesis that genetic variants of the CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances, including opiates, cocaine, and ethanol, in rodents. Here we demonstrate that a high incidence of Q63R but not H316Y polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2-Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated after exposure to stressors and administration of abused drugs. Mice that developed an alcohol preference had reduced CB2 gene expression, and chronic treatment with JWH015 a putative CB2-R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 antisense oligonucleotide into the mouse brain reduced mouse aversions in the plus-maze test, indicating the functional presence of CB2-Rs in the brain that modifies behavior. Using electron microscopy we report the subcellular localization of CB2-Rs that are mainly on postsynaptic elements in rodent brain. Our data demonstrate the functional expression of CB2-Rs in the brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuroimmunocannabinoid activity.Major depression and addiction are mental health problems associated with stressful events in life with high relapse and recurrence even after treatment. Many laboratories were not able to detect the presence of CB2 cannabinoid receptors (CB2-Rs) in healthy brains, but CB2-R expression has been demonstrated in rat microglial cells and other brain-associated cells during inflammation. Thus, neuronal expression of CB2-Rs has been ambiguous and controversial, and its role in depression and substance abuse is unknown. In this study we tested the hypothesis that genetic variants of the CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances, including opiates, cocaine, and ethanol, in rodents. Here we demonstrate that a high incidence of Q63R but not H316Y polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2-Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated after exposure to stressors and administration of abused drugs. Mice that developed an alcohol preference had reduced CB2 gene expression, and chronic treatment with JWH015 a putative CB2-R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 antisense oligonucleotide into the mouse brain reduced mouse aversions in the plus-maze test, indicating the functional presence of CB2-Rs in the brain that modifies behavior. Using electron microscopy we report the subcellular localization of CB2-Rs that are mainly on postsynaptic elements in rodent brain. Our data demonstrate the functional expression of CB2-Rs in the brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuroimmunocannabinoid activity. Major depression and addiction are mental health problems associated with stressful events in life with high relapse and recurrence even after treatment. Many laboratories were not able to detect the presence of CB2 cannabinoid receptors (CB2-Rs) in healthy brains, but CB2-R expression has been demonstrated in rat microglial cells and other brain-associated cells during inflammation. Thus, neuronal expression of CB2-Rs has been ambiguous and controversial, and its role in depression and substance abuse is unknown. In this study we tested the hypothesis that genetic variants of the CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances, including opiates, cocaine, and ethanol, in rodents. Here we demonstrate that a high incidence of Q63R but not H316Y polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2-Rs and their gene transcripts are expressed in the brains of naive mice and are modulated after exposure to stressors and administration of abused drugs. Mice that developed an alcohol preference had reduced CB2 gene expression, and chronic treatment with JWH015 a putative CB2-R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 antisense oligonucleotide into the mouse brain reduced mouse aversions in the plus-maze test, indicating the functional presence of CB2-Rs in the brain that modifies behavior. Using electron microscopy we report the subcellular localization of CB2-Rs that are mainly on postsynaptic elements in rodent brain. Our data demonstrate the functional expression of CB2-Rs in the brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuroimmunocannabinoid activity. Major depression and addiction are mental health problems associated with stressful events in life with high relapse and recurrence even after treatment. Many laboratories were not able to detect the presence of CB2 cannabinoid receptors (CB2‐Rs) in healthy brains, but CB2‐R expression has been demonstrated in rat microglial cells and other brain‐associated cells during inflammation. Thus, neuronal expression of CB2‐Rs has been ambiguous and controversial, and its role in depression and substance abuse is unknown. In this study we tested the hypothesis that genetic variants of the CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances, including opiates, cocaine, and ethanol, in rodents. Here we demonstrate that a high incidence of Q63R but not H316Y polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2‐Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated after exposure to stressors and administration of abused drugs. Mice that developed an alcohol preference had reduced CB2 gene expression, and chronic treatment with JWH015 a putative CB2‐R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 antisense oligonucleotide into the mouse brain reduced mouse aversions in the plus‐maze test, indicating the functional presence of CB2‐Rs in the brain that modifies behavior. Using electron microscopy we report the subcellular localization of CB2‐Rs that are mainly on postsynaptic elements in rodent brain. Our data demonstrate the functional expression of CB2‐Rs in the brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuroimmunocannabinoid activity. Major depression and addiction are mental health problems associated with stressful events in life with high relapse and reoccurrence even after treatment. Many laboratories were not able to detect the presence of CB2 cannabinoid receptors (CB2-Rs) in healthy brains, but there has been demonstration of CB2-R expression in rat microglial cells and other brain associated cells during inflammation. Therefore, neuronal expression of CB2-Rs had been ambiguous and controversial and its role in depression and substance abuse is unknown. In this study we tested the hypothesis that genetic variants of CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances including opiates, cocaine and ethanol in rodents. Here we demonstrate that a high incidence of (Q63R) but not (H316Y) polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2-Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated following exposure to stressors and administration of abused drugs. Mice that developed alcohol preference had reduced CB2 gene expression and chronic treatment with JWH015 a putative CB2-R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 anti-sense oligonucleotide into the mouse brain reduced mouse aversions in the plus-maze test, indicating the functional presence of CB2-Rs in the brain that modifies behavior. Using electron microscopy we report the sub cellular localization of CB2-Rs that are mainly on post-synaptic elements in rodent brain. Our data demonstrate the functional expression of CB2-Rs in brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuro-immunocannabinoid activity. Major depression and addiction are mental health problems associated with stressful events in life with high relapse and recurrence even after treatment. Many laboratories were not able to detect the presence of CB2 cannabinoid receptors (CB2‐Rs) in healthy brains, but CB2‐R expression has been demonstrated in rat microglial cells and other brain‐associated cells during inflammation. Thus, neuronal expression of CB2‐Rs has been ambiguous and controversial, and its role in depression and substance abuse is unknown. In this study we tested the hypothesis that genetic variants of the CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances, including opiates, cocaine, and ethanol, in rodents. Here we demonstrate that a high incidence of Q63R but not H316Y polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2‐Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated after exposure to stressors and administration of abused drugs. Mice that developed an alcohol preference had reduced CB2 gene expression, and chronic treatment with JWH015 a putative CB2‐R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 antisense oligonucleotide into the mouse brain reduced mouse aversions in the plus‐maze test, indicating the functional presence of CB2‐Rs in the brain that modifies behavior. Using electron microscopy we report the subcellular localization of CB2‐Rs that are mainly on postsynaptic elements in rodent brain. Our data demonstrate the functional expression of CB2‐Rs in the brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuroimmunocannabinoid activity. |
Author | Hope, Bruce Gong, Jian-Ping Brusco, Alicia Uhl, George R. Perchuk, Alex Gardner, Eileen Iwasaki, Shinya Mora, Zoila Macharia, David Meozzi, Paul A. Myers, Lester Lujilde, Javier Chirwa, Sanika S. Liu, Qing-Rong Ishiguro, Hiroki Patel, Sejal Akinshola, B. Emmanuel Inada, Toshiya Teasenfitz, Lindsey Arinami, Tadao Tagliaferro, Patricia A. Onaivi, Emmanuel S. |
AuthorAffiliation | 6 Department of Biomedical Sciences, Meharry Medical College, Nashville, TN USA 8 Chiba Medical Center, Teikyo University, Anesaki, Ichihara, Chiba, Japan 4 Facultad de Medicina. Universidad de Buenos Aires, Argentina 5 Department of Pharmacology, Howard University, USA 3 Department of Medical Genetics, Institute of Basic Medical Sciences, University of Tsukuba, Japan 7 Behavioral Neuroscience Branch, Intramural Research Program, NIDA-NIH, USA 1 Department of Biology, William Paterson University, USA 2 Molecular Neurobiology Branch, Intramural Research Program, NIDA-NIH, USA |
AuthorAffiliation_xml | – name: 2 Molecular Neurobiology Branch, Intramural Research Program, NIDA-NIH, USA – name: 5 Department of Pharmacology, Howard University, USA – name: 3 Department of Medical Genetics, Institute of Basic Medical Sciences, University of Tsukuba, Japan – name: 1 Department of Biology, William Paterson University, USA – name: 6 Department of Biomedical Sciences, Meharry Medical College, Nashville, TN USA – name: 8 Chiba Medical Center, Teikyo University, Anesaki, Ichihara, Chiba, Japan – name: 7 Behavioral Neuroscience Branch, Intramural Research Program, NIDA-NIH, USA – name: 4 Facultad de Medicina. Universidad de Buenos Aires, Argentina |
Author_xml | – sequence: 1 givenname: Emmanuel S. surname: Onaivi fullname: Onaivi, Emmanuel S. organization: Department of Biology, William Paterson University, Wayne, New Jersey, USA – sequence: 2 givenname: Hiroki surname: Ishiguro fullname: Ishiguro, Hiroki organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA – sequence: 3 givenname: Jian-Ping surname: Gong fullname: Gong, Jian-Ping organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA – sequence: 4 givenname: Sejal surname: Patel fullname: Patel, Sejal organization: Department of Biology, William Paterson University, Wayne, New Jersey, USA – sequence: 5 givenname: Paul A. surname: Meozzi fullname: Meozzi, Paul A. organization: Department of Biology, William Paterson University, Wayne, New Jersey, USA – sequence: 6 givenname: Lester surname: Myers fullname: Myers, Lester organization: Department of Biology, William Paterson University, Wayne, New Jersey, USA – sequence: 7 givenname: Alex surname: Perchuk fullname: Perchuk, Alex organization: Department of Biology, William Paterson University, Wayne, New Jersey, USA – sequence: 8 givenname: Zoila surname: Mora fullname: Mora, Zoila organization: Department of Biology, William Paterson University, Wayne, New Jersey, USA – sequence: 9 givenname: Patricia A. surname: Tagliaferro fullname: Tagliaferro, Patricia A. organization: Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina – sequence: 10 givenname: Eileen surname: Gardner fullname: Gardner, Eileen organization: Department of Biology, William Paterson University, Wayne, New Jersey, USA – sequence: 11 givenname: Alicia surname: Brusco fullname: Brusco, Alicia organization: Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina – sequence: 12 givenname: B. Emmanuel surname: Akinshola fullname: Akinshola, B. Emmanuel organization: Department of Pharmacology, Howard University, Washington, D.C., USA – sequence: 13 givenname: Qing-Rong surname: Liu fullname: Liu, Qing-Rong organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA – sequence: 14 givenname: Sanika S. surname: Chirwa fullname: Chirwa, Sanika S. organization: Department of Biomedical Sciences, Meharry Medical College, Nashville, Tennessee, USA – sequence: 15 givenname: Bruce surname: Hope fullname: Hope, Bruce organization: Behavioral Neuroscience Branch, Intramural Research Program, NIDA-NIH, Baltimore, Maryland, USA – sequence: 16 givenname: Javier surname: Lujilde fullname: Lujilde, Javier organization: Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina – sequence: 17 givenname: Toshiya surname: Inada fullname: Inada, Toshiya organization: Chiba Medical Center, Teikyo University, Anesaki, Ichihara, Chiba, Japan – sequence: 18 givenname: Shinya surname: Iwasaki fullname: Iwasaki, Shinya organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA – sequence: 19 givenname: David surname: Macharia fullname: Macharia, David organization: Department of Biology, William Paterson University, Wayne, New Jersey, USA – sequence: 20 givenname: Lindsey surname: Teasenfitz fullname: Teasenfitz, Lindsey organization: Department of Biology, William Paterson University, Wayne, New Jersey, USA – sequence: 21 givenname: Tadao surname: Arinami fullname: Arinami, Tadao organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA – sequence: 22 givenname: George R. surname: Uhl fullname: Uhl, George R. organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18991891$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstu2zAQFIoUjZP23FvBU29y-JBI8VLAcZwHELho0ueJoKhVwlamXFJyk2P_vJSVpI9DcyBIYmdmd7Czl-y41kGSvCR4SojkB9o53YQpyRidYsafJBMiMplyzuhOMsFYiLSQlO0meyF8xZjQIhPPkl1SSBkPmSQ_j3tnOttGGbS4WXsIIX5QW6NDr61DS-j9tjg_pGg-tCuta22FLsDAumt9QDMP6Mxt2mYDFYqU7hrQoq7BdGHQOfL91fYxK_sASLst6Ajuez1PntbRA7y4u_eTD8eL9_PT9Pztydl8dp6aXOQ81UQYXBtcYClyIcGUuuC8lDQXRJpME8hMdEQqAowDMzJnBStJVuWUF4xXbD95M-qu-3IFlQHXed2otbcr7W9Vq636u-LstbpqN4pJSimmUeD1nYBvv_cQOrWywUDTaAdtHxSXgmeUkUeBRDKWM5FH4Ks_R3qY5X49EXAwAoxvQ_BQ_4ZgNQRAjQFQQwBUDEBk5P8wjO30sODoyTb_4RUj74dt4PaxNmr5ZXZJCJMjNR2pNnRw80DV_pviItpUn5Yn6pR8vLz4zLl6x34BT0vYCw |
CitedBy_id | crossref_primary_10_1007_s43440_021_00270_y crossref_primary_10_1016_j_plipres_2016_02_002 crossref_primary_10_3390_ijms22168961 crossref_primary_10_3390_molecules24071350 crossref_primary_10_3390_biom12111618 crossref_primary_10_1016_j_brainres_2012_01_030 crossref_primary_10_3389_fpsyt_2022_828895 crossref_primary_10_3390_molecules26020465 crossref_primary_10_31887_DCNS_2020_22_3_pfadda crossref_primary_10_1002_ajmg_b_32396 crossref_primary_10_1002_14651858_CD012820_pub2 crossref_primary_10_1016_j_phrs_2018_12_005 crossref_primary_10_1111_j_1471_4159_2010_06578_x crossref_primary_10_37349_ent_2021_00006 crossref_primary_10_1007_s11096_010_9454_1 crossref_primary_10_1016_j_bcp_2018_09_013 crossref_primary_10_1016_j_bbr_2015_01_051 crossref_primary_10_1016_j_neubiorev_2013_05_003 crossref_primary_10_1016_j_neulet_2016_09_020 crossref_primary_10_1016_j_nlm_2016_07_030 crossref_primary_10_1016_j_neuroscience_2012_09_080 crossref_primary_10_3390_biology9110377 crossref_primary_10_1111_adb_12883 crossref_primary_10_1016_j_pnpbp_2012_02_006 crossref_primary_10_3390_ijms23094764 crossref_primary_10_1111_bph_12548 crossref_primary_10_3390_ph18020266 crossref_primary_10_1016_j_pbb_2021_173192 crossref_primary_10_1016_j_ejphar_2018_07_039 crossref_primary_10_1016_j_euroneuro_2009_02_001 crossref_primary_10_1111_j_1365_2982_2009_01466_x crossref_primary_10_3389_fnins_2016_00406 crossref_primary_10_1016_j_imbio_2009_09_007 crossref_primary_10_1016_j_bbr_2023_114439 crossref_primary_10_1016_j_pbb_2014_06_025 crossref_primary_10_1002_dneu_22472 crossref_primary_10_1371_journal_pone_0129618 crossref_primary_10_3390_ijms25031893 crossref_primary_10_3389_fpsyt_2020_587154 crossref_primary_10_1089_can_2020_0004 crossref_primary_10_3390_jcm12237201 crossref_primary_10_1016_j_neubiorev_2015_05_005 crossref_primary_10_1177_0269881111408958 crossref_primary_10_3389_adar_2023_11602 crossref_primary_10_1007_s11481_015_9611_3 crossref_primary_10_1016_j_neubiorev_2018_12_026 crossref_primary_10_1016_j_jneuroim_2012_04_003 crossref_primary_10_3390_cells13020177 crossref_primary_10_1016_j_neuroscience_2017_03_061 crossref_primary_10_1016_j_neubiorev_2020_04_020 crossref_primary_10_1002_14651858_CD012820 crossref_primary_10_1021_jm500807e crossref_primary_10_3390_cimb46050266 crossref_primary_10_1097_AJP_0000000000000508 crossref_primary_10_3389_fphar_2021_805758 crossref_primary_10_4303_jdar_235714 crossref_primary_10_1111_bph_14625 crossref_primary_10_3389_fnbeh_2017_00015 crossref_primary_10_3390_ijms25063203 crossref_primary_10_1371_journal_pone_0140592 crossref_primary_10_3390_ijms20081919 crossref_primary_10_1111_febs_12260 crossref_primary_10_1016_j_pnpbp_2015_03_006 crossref_primary_10_1523_JNEUROSCI_2545_21_2022 crossref_primary_10_3389_fphar_2022_881810 crossref_primary_10_3390_molecules24244626 crossref_primary_10_1177_0269881111400652 crossref_primary_10_1017_S1461145712001186 crossref_primary_10_1007_s12031_020_01774_7 crossref_primary_10_3389_fpsyt_2022_866052 crossref_primary_10_1371_journal_pone_0190897 crossref_primary_10_1038_aps_2016_149 crossref_primary_10_1016_j_neubiorev_2014_02_006 crossref_primary_10_4155_ppa_2021_0002 crossref_primary_10_1016_j_bbr_2018_03_019 crossref_primary_10_1007_s11481_013_9485_1 crossref_primary_10_1074_jbc_M111_335273 crossref_primary_10_3389_fpsyt_2022_871997 crossref_primary_10_1007_s12640_022_00592_6 crossref_primary_10_1073_pnas_1118167109 crossref_primary_10_1111_acer_14391 crossref_primary_10_1111_j_1365_2826_2012_02325_x crossref_primary_10_3390_molecules23081836 crossref_primary_10_1016_j_ebiom_2019_03_040 crossref_primary_10_1016_j_cgh_2013_05_008 crossref_primary_10_1016_j_phrs_2012_03_011 crossref_primary_10_1038_s41398_022_01967_1 crossref_primary_10_1111_bph_12191 crossref_primary_10_1177_0269881110379507 crossref_primary_10_1016_j_resp_2016_05_012 crossref_primary_10_3389_fendo_2021_714561 crossref_primary_10_3390_biom13091388 crossref_primary_10_1038_s41401_020_00530_2 crossref_primary_10_1146_annurev_psych_113011_143739 crossref_primary_10_1515_nipt_2024_0012 crossref_primary_10_1038_npp_2013_157 crossref_primary_10_3390_ijms21207693 crossref_primary_10_3390_ijms23115908 crossref_primary_10_1016_j_euroneuro_2020_01_013 crossref_primary_10_1089_can_2022_0099 crossref_primary_10_2174_1570159X20666220201091006 crossref_primary_10_3390_biomedicines10123000 crossref_primary_10_1016_j_ynstr_2016_08_002 crossref_primary_10_1177_0269881120965934 crossref_primary_10_1007_s00213_013_3042_8 crossref_primary_10_1016_j_acthis_2024_152205 crossref_primary_10_1016_j_psychres_2023_115586 crossref_primary_10_3390_ph3082517 crossref_primary_10_1016_j_physbeh_2014_06_003 crossref_primary_10_1016_j_mehy_2018_04_010 crossref_primary_10_1016_j_phrs_2021_105607 crossref_primary_10_1016_j_jad_2023_12_089 crossref_primary_10_1016_j_neulet_2020_135207 crossref_primary_10_1016_j_phrs_2021_105729 crossref_primary_10_3389_fphar_2022_841766 crossref_primary_10_4155_fmc_11_179 crossref_primary_10_1021_acs_chemrev_5b00411 crossref_primary_10_3892_mmr_2017_7479 crossref_primary_10_1098_rstb_2011_0384 crossref_primary_10_1111_bph_14958 crossref_primary_10_3390_biomedicines11102642 crossref_primary_10_1016_j_biopha_2021_111639 crossref_primary_10_1016_j_jpain_2018_04_009 crossref_primary_10_1016_j_pnpbp_2012_04_017 crossref_primary_10_3390_ijms23020975 crossref_primary_10_1016_j_pnpbp_2023_110924 crossref_primary_10_1038_npp_2014_297 crossref_primary_10_3389_fpsyt_2020_00315 crossref_primary_10_1111_j_1460_9568_2011_07769_x crossref_primary_10_3389_fphar_2014_00037 crossref_primary_10_1038_s41598_019_43858_4 |
Cites_doi | 10.1016/j.brainres.2005.11.035 10.1038/sj.tpj.6500431 10.1007/BF03033223 10.1189/jlb.0205111 10.1136/bmj.325.7374.1195 10.1016/j.pharmthera.2005.06.021 10.1093/hmg/ddi370 10.1083/jcb.17.1.208 10.1167/iovs.04-0651 10.1201/9781420023640 10.1016/j.molbrainres.2004.08.025 10.1016/j.neuropharm.2004.12.008 10.1111/j.1460-9568.2006.04684.x 10.1002/syn.20050 10.1016/S0014-2999(00)00211-9 10.1523/JNEUROSCI.23-35-11136.2003 10.1007/s00210-003-0831-3 10.1038/365061a0 10.1186/1742-2094-2-29 10.1002/cne.20881 10.1523/JNEUROSCI.3923-04.2005 10.1016/j.neulet.2005.11.038 10.1038/sj.mp.4001560 10.1046/j.1360-0443.2001.961116037.x 10.1002/glia.20108 10.1159/000087097 10.1176/appi.ajp.158.12.2033 10.1111/j.1432-1033.1995.tb20780.x 10.1073/pnas.1834309100 10.1016/j.tips.2006.08.006 10.1126/science.1115740 10.1016/S0014-2999(99)00402-1 |
ContentType | Journal Article |
Copyright | 2008 New York Academy of Sciences |
Copyright_xml | – notice: 2008 New York Academy of Sciences |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7TM 7X8 5PM |
DOI | 10.1196/annals.1432.036 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Nucleic Acids Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1749-6632 1930-6547 |
EndPage | 449 |
ExternalDocumentID | PMC3922202 18991891 10_1196_annals_1432_036 NYAS1139036 ark_67375_WNG_H1VSRX66_Q |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z99 DA999999 – fundername: Intramural NIH HHS grantid: Z01 DA000165 – fundername: National Institute on Drug Abuse : NIDA grantid: Z01 DA000165-13 || DA – fundername: National Institute on Drug Abuse : NIDA grantid: Z99 DA999999 || DA |
GroupedDBID | --- --Z -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23M 31~ 33P 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 692 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEGXH AEIGN AEIMD AELAQ AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFSWV AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHDLI AHEFC AHMBA AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IH2 IX1 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RAG RIWAO RJQFR ROL RX1 S10 SAMSI SJN SUPJJ SV3 TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WOHZO WQJ WVDHM WXSBR X7M XG1 YBU YOC YSK ZGI ZKB ZXP ZZTAW ~02 ~IA ~KM ~WT AAYXX CITATION AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7TK 7TM 7X8 5PM |
ID | FETCH-LOGICAL-c5756-a17c0fc08097579ecba866b925719c4a1e4c8911d1e36e3c95383b14d526836d3 |
IEDL.DBID | DR2 |
ISSN | 0077-8923 1749-6632 |
IngestDate | Tue Sep 30 16:33:30 EDT 2025 Fri Jul 11 02:32:33 EDT 2025 Fri Jul 11 13:06:49 EDT 2025 Fri May 30 10:59:34 EDT 2025 Wed Oct 01 04:28:22 EDT 2025 Thu Apr 24 23:11:16 EDT 2025 Wed Aug 20 07:26:07 EDT 2025 Sun Sep 21 06:18:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5756-a17c0fc08097579ecba866b925719c4a1e4c8911d1e36e3c95383b14d526836d3 |
Notes | istex:3C3702B48BE4F13373FF374ED792A7AE1BCD917F ark:/67375/WNG-H1VSRX66-Q ArticleID:NYAS1139036 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3922202 |
PMID | 18991891 |
PQID | 19335375 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3922202 proquest_miscellaneous_69764231 proquest_miscellaneous_19335375 pubmed_primary_18991891 crossref_primary_10_1196_annals_1432_036 crossref_citationtrail_10_1196_annals_1432_036 wiley_primary_10_1196_annals_1432_036_NYAS1139036 istex_primary_ark_67375_WNG_H1VSRX66_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2008 |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: October 2008 |
PublicationDecade | 2000 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: United States |
PublicationTitle | Annals of the New York Academy of Sciences |
PublicationTitleAlternate | Ann N Y Acad Sci |
PublicationYear | 2008 |
Publisher | Blackwell Publishing Inc |
Publisher_xml | – name: Blackwell Publishing Inc |
References | Ehrhart, J. et al . 2005. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J. Neuroinflammation 2: 29-42. Onaivi, E.S., V. Di Marzo & T. Sugiura. 2005. Endocannabinoids: The Brain and Body's Marijuana and Beyond. p. 563. CRC. Boca Raton , FL . Ishiguro, H. et al . 2006. Involvement of cannabinoid CB2 receptor in alcohol preference in mice and alcoholism in humans. Pharmacogenomics J. 7: 380-385. Benito, C. et al . 2005. A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J. Neurosci. 25: 2530-2536. Pickel, V.M. et al . 2006. Targeting dopamine D2 and cannabinoid-1 (CB1) receptors in rat nucleus accumbens. J. Comp. Neurol. 495: 299-313. Manzanares, J. et al . 2004. Role of endocannabinoid system in mental diseases. Neurotox Res. 6: 213-224. Ibrahim, M.M. et al . 2003. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc. Natl. Acad. Sci. USA 100: 10529-10533. Zhong, L. et al . 2005. CB2 cannabinoid receptors in trabecular meshwork cells mediate JWH015-induced enhancement of aqueous humor outflow facility. Invest. Ophthalmol. Vis. Sci. 46: 1988-1992. Benito, C. et al . 2003. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains. J. Neurosci. 23: 11136-11141. Beltramo, M. et al. (2006. CB2 receptor-mediated antihyperalgesia: possible direct involvement of neural mechanisms. Eur. J. Neurosci. 23: 1530-1538. Degenhardt, L. et al . 2001. Alcohol, cannabis and tobacco use among Australians: a comparison of their associations with other drug use and use disorders, affective and anxiety disorders, and psychosis. Addiction 96: 1603-1614. Galiegue, S. et al . 1995. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 232: 54-61. Onaivi, E.S. et al . 2006. Methods to study the behavioral effects and expression of CB2 cannabinoid receptor and its gene transcripts in the chronic mild stress model of depression. Methods Mol. Med. 123: 291-298. Griffin, G. et al . 1999. Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528: further evidence for cannabinoid CB2 receptor absence in the rat central nervous system. Eur. J. Pharmacol. 377: 117-125. Golech, S.A. et al . 2004. Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. Brain Res. Mol. Brain Res. 132: 87-92. Volkow, N.D. & T.K. Li. 2005. Drugs and alcohol: treating and preventing abuse, addiction and their medical consequences. Pharmacol. Ther. 108: 3-17. Nunez, E. et al . 2004. Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: an immunohistochemical study. Synapse 53: 208-213. Willner, P. 2005. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52: 90-110. Ashton, J.C. et al . 2006. Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study. Neurosci. Lett. 396: 113-116. Nieri, P. et al . 2003. CB1- and CB2-cannabinoid receptor-independent lipolysis induced by WIN 55, 212-2 in male rat adipocytes. Naunyn Schmiedebergs Arch. Pharmacol. 368: 352-359. Buckley, N.E. et al . 2000. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor. Eur. J. Pharmacol. 396: 141-149. Sheng, W.S. et al . 2005. Synthetic cannabinoid WIN55, 212-2 inhibits generation of inflammatory mediators by IL-1beta-stimulated human astrocytes. Glia 49: 211-219. Onaivi, E.S. et al . 1990. Pharmacological characterization of cannabinoids in the elevated plus maze. J. Pharmacol. Exp. Ther. 253: 1002-1009. Reynolds, E.S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17: 208-212. Zhang, P.W. et al . 2004. Human cannabinoid receptor 1: 5′ exons, candidate regulatory regions, polymorphisms, haplotypes and association with polysubstance abuse. Mol. Psychiatry 9: 916-931. Bovasso, G.B. 2001. Cannabis abuse as a risk factor for depressive symptoms. Am. J. Psychiatry 158: 2033-2037. Patton, G.C. et al . 2002. Cannabis use and mental health in young people: cohort study. BMJ 325: 1195-1198. Paxinos, G. & C. Watson. 2005. The Rat Brain in Stereotaxic Coordinates. p. xiii [166]. Elsevier. Amsterdam . Sipe, J.C. et al . 2005. Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders. J. Leukoc. Biol. 78: 231-238. Van Sickle, M.D. et al . 2005. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310: 329-332. Munro, S. et al . 1993. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365: 61-65. Vinod, K.Y. & B.L. Hungund. 2006. Role of the endocannabinoid system in depression and suicide. Trends Pharmacol. Sci. 27: 539-545. Valenzano, K.J. et al . 2005. Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Neuropharmacology 48: 658-672. Gong, J.P. et al . 2006. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 1071: 10-23. Karsak, M. et al . 2005. Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum. Mol. Genet. 14: 3389-3396. 2005; 310 2004; 9 2006; 7 2004; 6 2006; 396 2006; 495 2005 2000; 396 1995; 232 2005; 48 2005; 49 1993; 365 2005; 46 2005; 25 2004; 132 2004; 53 2006; 23 2006; 27 2005; 52 2005; 108 2002; 325 1999; 377 2005; 2 2003; 368 1990; 253 2003; 100 2006; 123 1963; 17 2001; 96 2001; 158 2005; 78 2003; 23 2006; 1071 2005; 14 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_27_2 e_1_2_7_28_2 Onaivi E.S. (e_1_2_7_26_2) 1990; 253 e_1_2_7_29_2 Paxinos G. (e_1_2_7_22_2) 2005 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 Onaivi E.S. (e_1_2_7_19_2) 2006; 123 |
References_xml | – reference: Beltramo, M. et al. (2006. CB2 receptor-mediated antihyperalgesia: possible direct involvement of neural mechanisms. Eur. J. Neurosci. 23: 1530-1538. – reference: Golech, S.A. et al . 2004. Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. Brain Res. Mol. Brain Res. 132: 87-92. – reference: Nieri, P. et al . 2003. CB1- and CB2-cannabinoid receptor-independent lipolysis induced by WIN 55, 212-2 in male rat adipocytes. Naunyn Schmiedebergs Arch. Pharmacol. 368: 352-359. – reference: Benito, C. et al . 2003. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains. J. Neurosci. 23: 11136-11141. – reference: Ehrhart, J. et al . 2005. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J. Neuroinflammation 2: 29-42. – reference: Sipe, J.C. et al . 2005. Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders. J. Leukoc. Biol. 78: 231-238. – reference: Onaivi, E.S. et al . 1990. Pharmacological characterization of cannabinoids in the elevated plus maze. J. Pharmacol. Exp. Ther. 253: 1002-1009. – reference: Valenzano, K.J. et al . 2005. Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy. Neuropharmacology 48: 658-672. – reference: Zhang, P.W. et al . 2004. Human cannabinoid receptor 1: 5′ exons, candidate regulatory regions, polymorphisms, haplotypes and association with polysubstance abuse. Mol. Psychiatry 9: 916-931. – reference: Van Sickle, M.D. et al . 2005. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310: 329-332. – reference: Gong, J.P. et al . 2006. Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res. 1071: 10-23. – reference: Zhong, L. et al . 2005. CB2 cannabinoid receptors in trabecular meshwork cells mediate JWH015-induced enhancement of aqueous humor outflow facility. Invest. Ophthalmol. Vis. Sci. 46: 1988-1992. – reference: Willner, P. 2005. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52: 90-110. – reference: Reynolds, E.S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17: 208-212. – reference: Manzanares, J. et al . 2004. Role of endocannabinoid system in mental diseases. Neurotox Res. 6: 213-224. – reference: Benito, C. et al . 2005. A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J. Neurosci. 25: 2530-2536. – reference: Nunez, E. et al . 2004. Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: an immunohistochemical study. Synapse 53: 208-213. – reference: Volkow, N.D. & T.K. Li. 2005. Drugs and alcohol: treating and preventing abuse, addiction and their medical consequences. Pharmacol. Ther. 108: 3-17. – reference: Ishiguro, H. et al . 2006. Involvement of cannabinoid CB2 receptor in alcohol preference in mice and alcoholism in humans. Pharmacogenomics J. 7: 380-385. – reference: Onaivi, E.S. et al . 2006. Methods to study the behavioral effects and expression of CB2 cannabinoid receptor and its gene transcripts in the chronic mild stress model of depression. Methods Mol. Med. 123: 291-298. – reference: Degenhardt, L. et al . 2001. Alcohol, cannabis and tobacco use among Australians: a comparison of their associations with other drug use and use disorders, affective and anxiety disorders, and psychosis. Addiction 96: 1603-1614. – reference: Paxinos, G. & C. Watson. 2005. The Rat Brain in Stereotaxic Coordinates. p. xiii [166]. Elsevier. Amsterdam . – reference: Bovasso, G.B. 2001. Cannabis abuse as a risk factor for depressive symptoms. Am. J. Psychiatry 158: 2033-2037. – reference: Munro, S. et al . 1993. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365: 61-65. – reference: Griffin, G. et al . 1999. Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528: further evidence for cannabinoid CB2 receptor absence in the rat central nervous system. Eur. J. Pharmacol. 377: 117-125. – reference: Onaivi, E.S., V. Di Marzo & T. Sugiura. 2005. Endocannabinoids: The Brain and Body's Marijuana and Beyond. p. 563. CRC. Boca Raton , FL . – reference: Patton, G.C. et al . 2002. Cannabis use and mental health in young people: cohort study. BMJ 325: 1195-1198. – reference: Pickel, V.M. et al . 2006. Targeting dopamine D2 and cannabinoid-1 (CB1) receptors in rat nucleus accumbens. J. Comp. Neurol. 495: 299-313. – reference: Galiegue, S. et al . 1995. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem. 232: 54-61. – reference: Ashton, J.C. et al . 2006. Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study. Neurosci. Lett. 396: 113-116. – reference: Karsak, M. et al . 2005. Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum. Mol. Genet. 14: 3389-3396. – reference: Sheng, W.S. et al . 2005. Synthetic cannabinoid WIN55, 212-2 inhibits generation of inflammatory mediators by IL-1beta-stimulated human astrocytes. Glia 49: 211-219. – reference: Vinod, K.Y. & B.L. Hungund. 2006. Role of the endocannabinoid system in depression and suicide. Trends Pharmacol. Sci. 27: 539-545. – reference: Ibrahim, M.M. et al . 2003. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc. Natl. Acad. Sci. USA 100: 10529-10533. – reference: Buckley, N.E. et al . 2000. Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor. Eur. J. Pharmacol. 396: 141-149. – volume: 78 start-page: 231 year: 2005 end-page: 238 article-title: Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders publication-title: J. Leukoc. Biol. – volume: 52 start-page: 90 year: 2005 end-page: 110 article-title: Chronic mild stress (CMS) revisited: consistency and behavioural‐neurobiological concordance in the effects of CMS publication-title: Neuropsychobiology – volume: 27 start-page: 539 year: 2006 end-page: 545 article-title: Role of the endocannabinoid system in depression and suicide publication-title: Trends Pharmacol. Sci. – volume: 158 start-page: 2033 year: 2001 end-page: 2037 article-title: Cannabis abuse as a risk factor for depressive symptoms publication-title: Am. J. Psychiatry – volume: 2 start-page: 29 year: 2005 end-page: 42 article-title: Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation publication-title: J. Neuroinflammation – start-page: 563 year: 2005 – volume: 23 start-page: 11136 year: 2003 end-page: 11141 article-title: Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque‐associated glia in Alzheimer's disease brains publication-title: J. Neurosci. – start-page: xiii [166] year: 2005 – volume: 17 start-page: 208 year: 1963 end-page: 212 article-title: The use of lead citrate at high pH as an electron‐opaque stain in electron microscopy publication-title: J. Cell Biol. – volume: 365 start-page: 61 year: 1993 end-page: 65 article-title: Molecular characterization of a peripheral receptor for cannabinoids publication-title: Nature – volume: 396 start-page: 141 year: 2000 end-page: 149 article-title: Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor publication-title: Eur. J. Pharmacol. – volume: 232 start-page: 54 year: 1995 end-page: 61 article-title: Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations publication-title: Eur. J. Biochem. – volume: 253 start-page: 1002 year: 1990 end-page: 1009 article-title: Pharmacological characterization of cannabinoids in the elevated plus maze publication-title: J. Pharmacol. Exp. Ther. – volume: 1071 start-page: 10 year: 2006 end-page: 23 article-title: Cannabinoid CB2 receptors: immunohistochemical localization in rat brain publication-title: Brain Res. – volume: 48 start-page: 658 year: 2005 end-page: 672 article-title: Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy publication-title: Neuropharmacology – volume: 325 start-page: 1195 year: 2002 end-page: 1198 article-title: Cannabis use and mental health in young people: cohort study publication-title: BMJ – volume: 9 start-page: 916 year: 2004 end-page: 931 article-title: Human cannabinoid receptor 1: 5′ exons, candidate regulatory regions, polymorphisms, haplotypes and association with polysubstance abuse publication-title: Mol. Psychiatry – volume: 23 start-page: 1530 year: 2006 end-page: 1538 article-title: CB2 receptor‐mediated antihyperalgesia: possible direct involvement of neural mechanisms publication-title: Eur. J. Neurosci. – volume: 6 start-page: 213 year: 2004 end-page: 224 article-title: Role of endocannabinoid system in mental diseases publication-title: Neurotox Res. – volume: 53 start-page: 208 year: 2004 end-page: 213 article-title: Cannabinoid CB2 receptors are expressed by perivascular microglial cells in the human brain: an immunohistochemical study publication-title: Synapse – volume: 25 start-page: 2530 year: 2005 end-page: 2536 article-title: A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus‐induced encephalitis publication-title: J. Neurosci. – volume: 123 start-page: 291 year: 2006 end-page: 298 article-title: Methods to study the behavioral effects and expression of CB2 cannabinoid receptor and its gene transcripts in the chronic mild stress model of depression publication-title: Methods Mol. Med. – volume: 96 start-page: 1603 year: 2001 end-page: 1614 article-title: Alcohol, cannabis and tobacco use among Australians: a comparison of their associations with other drug use and use disorders, affective and anxiety disorders, and psychosis publication-title: Addiction – volume: 132 start-page: 87 year: 2004 end-page: 92 article-title: Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors publication-title: Brain Res. Mol. Brain Res. – volume: 377 start-page: 117 year: 1999 end-page: 125 article-title: Evaluation of the cannabinoid CB2 receptor‐selective antagonist, SR144528: further evidence for cannabinoid CB2 receptor absence in the rat central nervous system publication-title: Eur. J. Pharmacol. – volume: 310 start-page: 329 year: 2005 end-page: 332 article-title: Identification and functional characterization of brainstem cannabinoid CB2 receptors publication-title: Science – volume: 396 start-page: 113 year: 2006 end-page: 116 article-title: Expression of the cannabinoid CB2 receptor in the rat cerebellum: an immunohistochemical study publication-title: Neurosci. Lett. – volume: 7 start-page: 380 year: 2006 end-page: 385 article-title: Involvement of cannabinoid CB2 receptor in alcohol preference in mice and alcoholism in humans publication-title: Pharmacogenomics J. – volume: 46 start-page: 1988 year: 2005 end-page: 1992 article-title: CB2 cannabinoid receptors in trabecular meshwork cells mediate JWH015‐induced enhancement of aqueous humor outflow facility publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 49 start-page: 211 year: 2005 end-page: 219 article-title: Synthetic cannabinoid WIN55, 212‐2 inhibits generation of inflammatory mediators by IL‐1beta‐stimulated human astrocytes publication-title: Glia – volume: 100 start-page: 10529 year: 2003 end-page: 10533 article-title: Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS publication-title: Proc. Natl. Acad. Sci. USA – volume: 368 start-page: 352 year: 2003 end-page: 359 article-title: CB1‐ and CB2‐cannabinoid receptor‐independent lipolysis induced by WIN 55, 212–2 in male rat adipocytes publication-title: Naunyn Schmiedebergs Arch. Pharmacol. – volume: 495 start-page: 299 year: 2006 end-page: 313 article-title: Targeting dopamine D2 and cannabinoid‐1 (CB1) receptors in rat nucleus accumbens publication-title: J. Comp. Neurol. – volume: 108 start-page: 3 year: 2005 end-page: 17 article-title: Drugs and alcohol: treating and preventing abuse, addiction and their medical consequences publication-title: Pharmacol. Ther. – volume: 14 start-page: 3389 year: 2005 end-page: 3396 article-title: Cannabinoid receptor type 2 gene is associated with human osteoporosis publication-title: Hum. Mol. Genet. – ident: e_1_2_7_24_2 doi: 10.1016/j.brainres.2005.11.035 – start-page: xiii [166] volume-title: The Rat Brain in Stereotaxic Coordinates year: 2005 ident: e_1_2_7_22_2 – ident: e_1_2_7_23_2 doi: 10.1038/sj.tpj.6500431 – ident: e_1_2_7_5_2 doi: 10.1007/BF03033223 – ident: e_1_2_7_29_2 doi: 10.1189/jlb.0205111 – ident: e_1_2_7_8_2 doi: 10.1136/bmj.325.7374.1195 – ident: e_1_2_7_4_2 doi: 10.1016/j.pharmthera.2005.06.021 – ident: e_1_2_7_28_2 doi: 10.1093/hmg/ddi370 – ident: e_1_2_7_36_2 doi: 10.1083/jcb.17.1.208 – ident: e_1_2_7_32_2 doi: 10.1167/iovs.04-0651 – ident: e_1_2_7_9_2 doi: 10.1201/9781420023640 – ident: e_1_2_7_15_2 doi: 10.1016/j.molbrainres.2004.08.025 – volume: 253 start-page: 1002 year: 1990 ident: e_1_2_7_26_2 article-title: Pharmacological characterization of cannabinoids in the elevated plus maze publication-title: J. Pharmacol. Exp. Ther. – ident: e_1_2_7_25_2 doi: 10.1016/j.neuropharm.2004.12.008 – ident: e_1_2_7_35_2 doi: 10.1111/j.1460-9568.2006.04684.x – ident: e_1_2_7_16_2 doi: 10.1002/syn.20050 – ident: e_1_2_7_34_2 doi: 10.1016/S0014-2999(00)00211-9 – ident: e_1_2_7_13_2 doi: 10.1523/JNEUROSCI.23-35-11136.2003 – ident: e_1_2_7_30_2 doi: 10.1007/s00210-003-0831-3 – ident: e_1_2_7_10_2 doi: 10.1038/365061a0 – ident: e_1_2_7_31_2 doi: 10.1186/1742-2094-2-29 – ident: e_1_2_7_33_2 doi: 10.1002/cne.20881 – ident: e_1_2_7_17_2 doi: 10.1523/JNEUROSCI.3923-04.2005 – ident: e_1_2_7_21_2 doi: 10.1016/j.neulet.2005.11.038 – ident: e_1_2_7_27_2 doi: 10.1038/sj.mp.4001560 – ident: e_1_2_7_2_2 doi: 10.1046/j.1360-0443.2001.961116037.x – ident: e_1_2_7_18_2 doi: 10.1002/glia.20108 – ident: e_1_2_7_3_2 doi: 10.1159/000087097 – volume: 123 start-page: 291 year: 2006 ident: e_1_2_7_19_2 article-title: Methods to study the behavioral effects and expression of CB2 cannabinoid receptor and its gene transcripts in the chronic mild stress model of depression publication-title: Methods Mol. Med. – ident: e_1_2_7_7_2 doi: 10.1176/appi.ajp.158.12.2033 – ident: e_1_2_7_11_2 doi: 10.1111/j.1432-1033.1995.tb20780.x – ident: e_1_2_7_14_2 doi: 10.1073/pnas.1834309100 – ident: e_1_2_7_6_2 doi: 10.1016/j.tips.2006.08.006 – ident: e_1_2_7_20_2 doi: 10.1126/science.1115740 – ident: e_1_2_7_12_2 doi: 10.1016/S0014-2999(99)00402-1 |
SSID | ssj0012847 |
Score | 2.3632076 |
Snippet | Major depression and addiction are mental health problems associated with stressful events in life with high relapse and recurrence even after treatment. Many... Major depression and addiction are mental health problems associated with stressful events in life with high relapse and reoccurrence even after treatment.... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 434 |
SubjectTerms | anhedonia Animals Asian People - genetics Behavior, Animal - physiology brain Brain - cytology Brain - metabolism chronic mild stress depression Depression - genetics Depression - physiopathology drug abuse electron micrograph Female Humans Male Mice Mice, Inbred Strains Mice, Knockout Motor Activity - physiology neuronal CB2 cannabinoid receptors Oligonucleotides, Antisense - genetics Oligonucleotides, Antisense - metabolism Polymorphism, Genetic Rats Rats, Sprague-Dawley Receptor, Cannabinoid, CB2 - genetics Receptor, Cannabinoid, CB2 - metabolism Stress, Psychological - metabolism Substance-Related Disorders - genetics |
Title | Functional Expression of Brain Neuronal CB2 Cannabinoid Receptors Are Involved in the Effects of Drugs of Abuse and in Depression |
URI | https://api.istex.fr/ark:/67375/WNG-H1VSRX66-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1196%2Fannals.1432.036 https://www.ncbi.nlm.nih.gov/pubmed/18991891 https://www.proquest.com/docview/19335375 https://www.proquest.com/docview/69764231 https://pubmed.ncbi.nlm.nih.gov/PMC3922202 |
Volume | 1139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1749-6632 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0012847 issn: 0077-8923 databaseCode: ABDBF dateStart: 20060501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0077-8923 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1749-6632 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012847 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwGLXQEBIvwMZl4eoHhMZDSh0ndv3YdSsFiUoMBuPJchwXpqF0ahs0eOOfc-xcoIMJCR4qRfIltfP5fMfxl_MR8riYWetMlsaZkVmcwqXEZqZcXAgp-0VmZX2i-2oqJofpy6OsjSb038LU-hDdCze_MgJe-wVu8iYLiWrUbfGAsNJ50gMMA4UZz8JB7UEnIBXAN2CxBBaDyzTiPujh2bn2a37psp_isz-Rzt9jJ3_ltMEpja-TvB1OHYty0qtWec9-O6f0-F_jvUGuNZSVDmsb2ySXXLlFrtRJLL9ukc0GHpZ0p9GwfnqTfB_DX9avGen-WRNsW9L5jO76nBQ0aIL4wtFuQkf-ptihz48LChrrTn0GINzP0Rcl0POLKyiagKnSWmt56fvZW1Qfw8Uwr5aOmjJU2msDe8tb5HC8_3Y0iZtsD7EFZRSxYdL2Z174XMlMKmdzMxAiV8AUpmxqmEvtANBcMMeF41YBqnnO0sIL1nBR8Ntko5yXbpvQAWhtYRi3UpjUJfAtdpCmEmwJvQjjItJrn7W2jRS6z8jxWYctkQqfaWOytZ9sjcmOyE7X4LRWAbm46pNgPF09szjxwXMy0--nz_WEvXtzcCSEfh2RR611aSxpf05jSjev0JXiPEODi2sIkEjwYBaRO7U1_vxX2D_jhxK5ZqddBS8nvl5SHn8KsuJgyknSTyLCghn-baB6-mEIX8gVru_-Q5t75GrSaguz-2RjtajcAxC8Vf4wrOEfl29L5A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CTQhegI1buM0PCI2HlDoXu37s2pUOtkqMDcqT5TjuNg2lU9ugwRv_nGM7CetgQoKHSJFsn8TOuXy2Tz4DvMgnWhuVJmGqeBomGFJCNREmzBnn7TzV3O_o7o3Y8DB5O07HF_6F8fwQzYKbtQznr62B2wVpb-WiorfFL4SmHkct9MPXYdXu0lnj7O83FFLO_TpvzNEbI5qp6H1QxOtLApYi06od5PM_wc7fsycvoloXlgZ3QNcd8tkop61ykbX090tcj__X47twu0KtpOvVbA2umWIdbvhzLL-tw1rlIeZks6KxfnUPfgwwZPqVRrJ9XuXbFmQ6IVv2WAriaEFsYW8rIj37UJykT09ygkjWnNlDgPB5huwU6EC_mpxgEwSrxNMtz62c_qw8cjfdrJwbogpXqV_n9hb34XCwfdAbhtWBD6FG1MhCRbluTyz3ueApF0ZnqsNYJtCtUKETRU2iO-idc2piZmIt0FvHGU1yy1kTszx-ACvFtDCPgHQQ2eaKxpozlZgIw4vuJAlHwIRSmDIBtOqPLXXFhm4P5fgi3axIuD-1cbClHWyJgx3AZtPgzBOBXF31pdOepp6andr8OZ7KT6M3ckg_ftgfMybfB7BRq5dEq7ZbNaow0xJFiThOscHVNRjiSITCNICHXh1_vRVOofHCEr6kqE0Fyyi-XFKcHDtmcQTLUdSOAqBOD__WUTn63MVwGAu8f_wPbTbg5vBgb1fu7ozePYFbUU01TJ_CymJWmmeI9xbZc2fQPwEpMFAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgE4gXYOMWbvMDQuMhpU4cu37s2pWOSwWDjfFkObYD01BatQ0avPHPObaTQAcTEjxEiuTjk9g5l8_JyWeEHplCa6syGmeKZzGFlBKrQtjYMM67JtM8fNF9NWHjA_r8KGuqCd2_MIEfon3h5jzDx2vn4DNTBCcXNbstPCDw9DTpQBi-iNYpgzWWw0X7LYOUj74-GHMIxgBmanYfUPH0jIKVxLTu5vj0T6jz9-LJX0Gtz0qjayhvxhOKUU461TLv6G9nqB7_a8DX0dUas-J-MLINdMGWm-hS2MXy6ybaqOPDAm_XJNZPbqDvI0iY4T0j3j2tq21LPC3wjtuUAntSENc42EnwwF0UlujTY4MBx9qZ2wIIrmfxXgnh84s1GLoAVMWBbHnh9Azn1Ud_0s-rhcWq9ELDprK3vIkORrvvBuO43u4h1oAZWawI193CMZ8LnnFhda56jOUCggoRmipiqe5BbDbEpsymWkCsTnNCjWOsSZlJb6G1clraOwj3ANcaRVLNmaI2geSie5RygEughSkboU7zrKWuudDdlhyfpV8TCf-fNky2dJMtYbIjtN12mAUakPNFH3vjaeXU_MRVz_FMvp88k2Ny-Hb_iDH5JkJbjXVJ8Gn3oUaVdlqBKpGmGXQ4X4IBigQgTCJ0O1jjz7uCBTQc0MJX7LQVcHziqy3l8SfPKw5QOUm6SYSIN8O_DVROPvQhGaYCzu_-Q58tdPn1cCRf7k1e3ENXkoZnmNxHa8t5ZR8A2FvmD707_wD-iU6v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Expression+of+Brain+Neuronal+CB2+Cannabinoid+Receptors+Are+Involved+in+the+Effects+of+Drugs+of+Abuse+and+in+Depression&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Onaivi%2C+Emmanuel+S.&rft.au=Ishiguro%2C+Hiroki&rft.au=Gong%2C+Jian%E2%80%90Ping&rft.au=Patel%2C+Sejal&rft.date=2008-10-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1139&rft.issue=1&rft.spage=434&rft.epage=449&rft_id=info:doi/10.1196%2Fannals.1432.036&rft.externalDBID=10.1196%252Fannals.1432.036&rft.externalDocID=NYAS1139036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon |