FOLFOX treatment response prediction in metastatic or recurrent colorectal cancer patients via machine learning algorithms
Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta‐analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresp...
        Saved in:
      
    
          | Published in | Cancer medicine (Malden, MA) Vol. 9; no. 4; pp. 1419 - 1429 | 
|---|---|
| Main Authors | , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          John Wiley & Sons, Inc
    
        01.02.2020
     John Wiley and Sons Inc Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2045-7634 2045-7634  | 
| DOI | 10.1002/cam4.2786 | 
Cover
| Abstract | Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta‐analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy.
We performed the microarray meta‐analysis to identify common differentially expressed genes between FOLFOX responders and non‐responders in metastatic or recurrent colorectal cancer patients, and built prediction models with machine learning algorithms. | 
    
|---|---|
| AbstractList | Abstract Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta‐analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy. Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta‐analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy. We performed the microarray meta‐analysis to identify common differentially expressed genes between FOLFOX responders and non‐responders in metastatic or recurrent colorectal cancer patients, and built prediction models with machine learning algorithms. Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5-FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta-analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy.Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5-FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta-analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy. Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta‐analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy. We performed the microarray meta‐analysis to identify common differentially expressed genes between FOLFOX responders and non‐responders in metastatic or recurrent colorectal cancer patients, and built prediction models with machine learning algorithms. Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5-FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta-analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy.  | 
    
| Author | Lu, Wei Kong, Xiangxing Jiang, Kai Ding, Kefeng Li, Jun Fu, Dongliang Zhu, Yingshuang Yuan, Ying Hwang, Maxwell Li, Xinlin Chen, Liubo Huang, Zhiheng Wu, Yihua  | 
    
| AuthorAffiliation | 3 Department of Medical Oncology The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China 4 Department of Toxicology School of Public Health Zhejiang University Hangzhou Zhejiang China 1 Department of Colorectal Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China 2 Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China) The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China  | 
    
| AuthorAffiliation_xml | – name: 1 Department of Colorectal Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China – name: 2 Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China) The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China – name: 4 Department of Toxicology School of Public Health Zhejiang University Hangzhou Zhejiang China – name: 3 Department of Medical Oncology The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China  | 
    
| Author_xml | – sequence: 1 givenname: Wei surname: Lu fullname: Lu, Wei organization: Zhejiang University School of Medicine – sequence: 2 givenname: Dongliang surname: Fu fullname: Fu, Dongliang organization: Zhejiang University School of Medicine – sequence: 3 givenname: Xiangxing surname: Kong fullname: Kong, Xiangxing organization: Zhejiang University School of Medicine – sequence: 4 givenname: Zhiheng surname: Huang fullname: Huang, Zhiheng organization: Zhejiang University School of Medicine – sequence: 5 givenname: Maxwell surname: Hwang fullname: Hwang, Maxwell organization: Zhejiang University School of Medicine – sequence: 6 givenname: Yingshuang surname: Zhu fullname: Zhu, Yingshuang organization: Zhejiang University School of Medicine – sequence: 7 givenname: Liubo surname: Chen fullname: Chen, Liubo organization: Zhejiang University School of Medicine – sequence: 8 givenname: Kai surname: Jiang fullname: Jiang, Kai organization: Zhejiang University School of Medicine – sequence: 9 givenname: Xinlin surname: Li fullname: Li, Xinlin organization: Zhejiang University School of Medicine – sequence: 10 givenname: Yihua surname: Wu fullname: Wu, Yihua organization: Zhejiang University – sequence: 11 givenname: Jun surname: Li fullname: Li, Jun organization: Zhejiang University School of Medicine – sequence: 12 givenname: Ying orcidid: 0000-0002-3922-9553 surname: Yuan fullname: Yuan, Ying organization: Zhejiang University School of Medicine – sequence: 13 givenname: Kefeng orcidid: 0000-0002-2380-3717 surname: Ding fullname: Ding, Kefeng email: dingkefeng@zju.edu.cn organization: Zhejiang University School of Medicine  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31893575$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kl9v0zAUxS00xEbZA18AWeIFkLo5dhI3L0hTRWFSUV9A4s26cW5bV44d7GRT-fQ4a5m2CchL_vjn43PPyUty4rxDQl5n7CJjjF9qaPMLLmflM3LGWV5MZSnykwfPp-Q8xh1Ll2S8lNkLciqyWSUKWZyRX4vVcrH6QfuA0Lfoehowdt5FpF3AxujeeEeNoy32EHvojaY-JEgPIYy49tantx4s1eA0BtolKK1EemOAtqC3xiG1CMEZt6FgNz6YftvGV-T5GmzE8-N9Qr4vPn2bf5kuV5-v51fLqU4Oy2klM87zmvNGMKkrYJgl67qoORRynXNRFkKgnEktNUCOQtfFmudZU2EJMw5iQq4Puo2HneqCaSHslQej7j74sFEQ0lwWVSFqWXBdMZmOFCDqlJOudJ2VTVNk2CStDwetwXWwvwVr7wUzpsY-1NiHGvtI8McD3A11i41OoQSwjxw8XnFmqzb-RkmWCZbGmpB3R4Hgfw4Ye9WaqNFacOiHqLgQnM2EEONZb5-gOz8El3JNVAqIl6n7RL156Ojeyp__IQGXB0AHH2PAtdJmLN2PBo3965Dvn-z4XyBH9Vtjcf9vUM2vvuZ3O34Dtbzl9Q | 
    
| CitedBy_id | crossref_primary_10_1186_s13036_023_00372_6 crossref_primary_10_1186_s40249_022_00946_4 crossref_primary_10_3390_cancers14164012 crossref_primary_10_1038_s41598_023_31331_2 crossref_primary_10_1016_j_bbadis_2024_167263 crossref_primary_10_1158_0008_5472_CAN_23_2781 crossref_primary_10_3390_ijms232214398 crossref_primary_10_1016_j_canlet_2023_216225 crossref_primary_10_3389_fonc_2022_815001 crossref_primary_10_1007_s00520_022_07156_6 crossref_primary_10_1016_j_ijbiomac_2024_137393 crossref_primary_10_1016_j_csbj_2023_03_046 crossref_primary_10_3390_ijms22094394 crossref_primary_10_1016_j_biopha_2023_114762 crossref_primary_10_1007_s10151_023_02772_8 crossref_primary_10_1080_15513815_2023_2242979 crossref_primary_10_3389_fphys_2023_1272206 crossref_primary_10_1080_07357907_2020_1843662 crossref_primary_10_3390_app14020669 crossref_primary_10_1002_ctm2_986 crossref_primary_10_3390_life15020320 crossref_primary_10_1155_2022_8766448 crossref_primary_10_30699_jambs_29_133_100 crossref_primary_10_3389_fgene_2021_804916  | 
    
| Cites_doi | 10.1080/1061186X.2017.1339192 10.1136/gutjnl-2013-305475 10.18632/oncotarget.24083 10.18637/jss.v046.i07 10.1200/JCO.2006.09.0928 10.1016/j.ejca.2006.04.012 10.1093/jnci/92.3.205 10.1093/annonc/mdu260 10.1093/annonc/mdw235 10.1002/ijc.30026 10.1016/j.molonc.2013.02.016 10.3322/caac.21395 10.18637/jss.v028.i05 10.1007/s12094-011-0676-z 10.1016/j.ejca.2011.11.007 10.1038/bjc.2011.201 10.1371/journal.pmed.0050184 10.1111/j.2517-6161.1995.tb02031.x 10.1016/j.molonc.2015.02.008 10.1093/bioinformatics/bts485 10.1093/bioinformatics/btg1010 10.1186/1471-2105-8-273 10.1007/978-0-387-21706-2 10.3322/caac.21387 10.1186/1471-2105-12-77 10.1016/S0140-6736(03)14686-7 10.1093/nar/gkr1265 10.1214/09-SS054 10.1093/bioinformatics/btg405 10.1186/1471-2105-9-319 10.1093/nar/gkr1071 10.1016/j.chom.2015.11.002 10.1200/JCO.2004.05.113 10.1089/omi.2011.0118 10.1038/nature11156 10.1038/bjc.2011.505 10.1186/1471-2105-13-52 10.1093/bioinformatics/bth469 10.1158/1535-7163.MCT-16-0591 10.1016/j.ejrad.2016.08.014 10.18632/oncotarget.14638 10.1200/JCO.2005.07.113 10.1016/j.canlet.2015.02.045  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 The Authors. published by John Wiley & Sons Ltd. 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2019 The Authors. published by John Wiley & Sons Ltd. – notice: 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1002/cam4.2786 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database Proquest Central Premium ProQuest One Academic ProQuest: Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: Openly Available Collection - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| DocumentTitleAlternate | LU et al | 
    
| EISSN | 2045-7634 | 
    
| EndPage | 1429 | 
    
| ExternalDocumentID | oai_doaj_org_article_53b752c9072243a3b189c9cb16dd51ed 10.1002/cam4.2786 PMC7013065 31893575 10_1002_cam4_2786 CAM42786  | 
    
| Genre | article Research Support, Non-U.S. Gov't Meta-Analysis Journal Article  | 
    
| GrantInformation_xml | – fundername: Key Technology Research and Development Program of Zhejiang Province funderid: 2017C03017 – fundername: Key Technology Research and Development Program of Zhejiang Province grantid: 2017C03017  | 
    
| GroupedDBID | 0R~ 1OC 24P 31~ 53G 5VS 7X7 8-0 8-1 8FE 8FH 8FI 8FJ AAMMB AAZKR ABDBF ABUWG ACCMX ACUHS ACXQS ADBBV ADKYN ADPDF ADRAZ ADZMN AEFGJ AENEX AFKRA AGXDD AIDQK AIDYY ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU D-8 D-9 DIK EBS EJD FYUFA GODZA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE HZ~ IHR ITC KQ8 LK8 M48 M7P M~E O9- OK1 OVD PHGZM PHGZT PIMPY PQQKQ PROAC RPM TEORI TUS UKHRP AAYXX CITATION PQGLB PUEGO WIN AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF IAO NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c5756-971224b22d307c9a0e1357c5b2a57f4236533e787c7caa4e3cb5f241d9e6a82a3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 2045-7634 | 
    
| IngestDate | Fri Oct 03 12:53:29 EDT 2025 Sun Oct 26 04:16:01 EDT 2025 Tue Sep 30 15:56:48 EDT 2025 Thu Sep 04 17:49:46 EDT 2025 Tue Oct 07 06:38:32 EDT 2025 Wed Feb 19 02:28:29 EST 2025 Thu Apr 24 22:52:17 EDT 2025 Wed Oct 01 01:23:25 EDT 2025 Sun Jul 06 04:45:00 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | colorectal cancer FOLFOX microarray meta-analysis machine learning algorithm  | 
    
| Language | English | 
    
| License | Attribution 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c5756-971224b22d307c9a0e1357c5b2a57f4236533e787c7caa4e3cb5f241d9e6a82a3 | 
    
| Notes | Funding information This work was supported by the Key Technology Research and Development Program of Zhejiang Province (2017C03017). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Wei Lu, Dongliang Fu, and Xiangxing Kong contributed equally to this article.  | 
    
| ORCID | 0000-0002-2380-3717 0000-0002-3922-9553  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/cam4.2786 | 
    
| PMID | 31893575 | 
    
| PQID | 2353326026 | 
    
| PQPubID | 2032540 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_53b752c9072243a3b189c9cb16dd51ed unpaywall_primary_10_1002_cam4_2786 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7013065 proquest_miscellaneous_2332083336 proquest_journals_2353326026 pubmed_primary_31893575 crossref_citationtrail_10_1002_cam4_2786 crossref_primary_10_1002_cam4_2786 wiley_primary_10_1002_cam4_2786_CAM42786  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2020 | 
    
| PublicationDateYYYYMMDD | 2020-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Bognor Regis – name: Hoboken  | 
    
| PublicationTitle | Cancer medicine (Malden, MA) | 
    
| PublicationTitleAlternate | Cancer Med | 
    
| PublicationYear | 2020 | 
    
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley  | 
    
| References | 2015; 361 2004; 22 2017; 8 2004; 20 2012; 486 2015; 18 1995; 57 2017; 67 2008; 9 2002; 2 2014; 25 2000; 92 2005; 21 2011; 13 2008; 5 2005 2011; 12 2003; 19 2012; 16 2006; 1 2002 2014; 63 2013; 7 2015; 9 2012; 13 2012; 106 2005; 23 2018; 26 2011; 105 2018; 9 2006; 42 2017; 16 2008; 28 2007; 8 2016; 85 2017 2016 2016; 138 2012; 28 2015 2012; 48 2012; 46 2016; 27 2010; 4 2018; 38 2007; 25 2003; 362 2012; 40 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 Liaw A (e_1_2_7_42_1) 2002; 2 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_48_1 e_1_2_7_27_1 Yan C (e_1_2_7_46_1) 2018; 38 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1  | 
    
| References_xml | – volume: 5 start-page: e184 year: 2008 article-title: Key issues in conducting a meta‐analysis of gene expression microarray datasets publication-title: PLoS Medicine – volume: 19 start-page: i84 issue: Suppl 1 year: 2003 end-page: 90 article-title: Combining multiple microarray studies and modeling interstudy variation publication-title: Bioinformatics (Oxford, England) – volume: 8 start-page: 273 year: 2007 article-title: The utility of MAS5 expression summary and detection call algorithms publication-title: BMC Bioinformatics – year: 2005 – volume: 7 start-page: 637 year: 2013 end-page: 646 article-title: High expression of microRNA‐625‐3p is associated with poor response to first‐line oxaliplatin based treatment of metastatic colorectal cancer publication-title: Mol Oncol – volume: 27 start-page: 1386 year: 2016 end-page: 1422 article-title: ESMO consensus guidelines for the management of patients with metastatic colorectal cancer publication-title: Ann Oncol – volume: 40 start-page: 3785 year: 2012 end-page: 3799 article-title: Comprehensive literature review and statistical considerations for microarray meta‐analysis publication-title: Nucleic Acids Res – volume: 67 start-page: 177 issue: 3 year: 2017 end-page: 193 article-title: Colorectal cancer statistics, 2017 publication-title: CA Cancer J Clin – volume: 42 start-page: 2212 year: 2006 end-page: 2221 article-title: European colorectal metastases treatment G. Towards a pan‐European consensus on the treatment of patients with colorectal liver metastases publication-title: Eur J Cancer – volume: 28 start-page: 2534 year: 2012 end-page: 2536 article-title: An R package suite for microarray meta‐analysis in quality control, differentially expressed gene analysis and pathway enrichment detection publication-title: Bioinformatics (Oxford, England) – volume: 16 start-page: 284 year: 2012 end-page: 287 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters publication-title: OMICS – volume: 13 start-page: 419 year: 2011 end-page: 425 article-title: Gene expression signature and response to the use of leucovorin, fluorouracil and oxaliplatin in colorectal cancer patients publication-title: Clin Transl Oncol – volume: 18 start-page: 723 year: 2015 end-page: 735 article-title: Meta‐ and orthogonal integration of influenza "OMICs" data defines a role for UBR4 in virus budding publication-title: Cell Host Microbe – volume: 23 start-page: 4866 year: 2005 end-page: 4875 article-title: Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell'Italia Meridionale publication-title: J Clinic Oncol – volume: 9 start-page: 319 year: 2008 article-title: A comprehensive comparison of random forests and support vector machines for microarray‐based cancer classification publication-title: BMC Bioinformatics – volume: 12 start-page: 77 year: 2011 article-title: pROC: an open‐source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinformatics – volume: 138 start-page: 2993 year: 2016 end-page: 3001 article-title: SNPs in transporter and metabolizing genes as predictive markers for oxaliplatin treatment in colorectal cancer patients publication-title: Int J Cancer – volume: 67 start-page: 7 issue: 1 year: 2017 end-page: 30 article-title: Cancer statistics, 2017 publication-title: CA: Cancer J Clinic – volume: 106 start-page: 126 year: 2012 end-page: 132 article-title: Potential responders to FOLFOX therapy for colorectal cancer by Random Forests analysis publication-title: Br J Cancer – volume: 28 start-page: 1 year: 2008 end-page: 26 article-title: Caret package publication-title: J Stat Softw – volume: 2 start-page: 18 year: 2002 end-page: 22 article-title: Classification and regression by randomForest publication-title: R News – volume: 48 start-page: 1443 year: 2012 end-page: 1451 article-title: Response prediction in metastasised colorectal cancer using intratumoural thymidylate synthase: Results of a randomised multicentre trial publication-title: Eur J Cancer – volume: 63 start-page: 1457 year: 2014 end-page: 1467 article-title: Gene expression profiling‐derived immunohistochemistry signature with high prognostic value in colorectal carcinoma publication-title: Gut – year: 2015 – volume: 362 start-page: 1439 year: 2003 end-page: 1444 article-title: Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment publication-title: Lancet – volume: 9 start-page: 1169 year: 2015 end-page: 1185 article-title: Establishment and characterization of models of chemotherapy resistance in colorectal cancer: towards a predictive signature of chemoresistance publication-title: Mol Oncol – volume: 13 start-page: 52 year: 2012 article-title: Detecting disease‐associated genes with confounding variable adjustment and the impact on genomic meta‐analysis: with application to major depressive disorder publication-title: BMC Bioinformatics – volume: 40 start-page: e15 year: 2012 article-title: MetaQC: objective quality control and inclusion/exclusion criteria for genomic meta‐analysis publication-title: Nucleic Acids Res – volume: 16 start-page: 739 year: 2017 end-page: 751 article-title: MALAT1 is associated with poor response to oxaliplatin‐based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2 publication-title: Mol Cancer Ther – volume: 85 start-page: 1867 year: 2016 end-page: 1874 article-title: Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis publication-title: Eur J Radiol – volume: 9 start-page: 7902 year: 2018 end-page: 7917 article-title: Antitumor activity of HPA3P through RIPK3‐dependent regulated necrotic cell death in colon cancer publication-title: Oncotarget – volume: 105 start-page: 58 year: 2011 end-page: 64 article-title: XELOX vs FOLFOX‐4 as first‐line therapy for metastatic colorectal cancer: NO16966 updated results publication-title: Br J Cancer – volume: 486 start-page: 532 year: 2012 end-page: U131 article-title: Emergence of KRAS mutations and acquired resistance to anti‐EGFR therapy in colorectal cancer publication-title: Nature – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate ‐ a practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society Series B‐Methodological – year: 2016 – volume: 22 start-page: 229 year: 2004 end-page: 237 article-title: FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study publication-title: J Clinic Oncol – volume: 8 start-page: 13805 year: 2017 end-page: 13817 article-title: Building personalized treatment plans for early‐stage colorectal cancer patients publication-title: Oncotarget – volume: 46 start-page: 1 year: 2012 end-page: 26 article-title: Neural networks in R using the stuttgart neural network simulator: RSNNS publication-title: Journal of Statistical Software – volume: 1 start-page: 55 year: 2006 – year: 2002 – volume: 4 start-page: 40 year: 2010 end-page: 79 article-title: A survey of cross‐validation procedures for model selection publication-title: Statistics Surveys – volume: 38 start-page: 617 year: 2018 end-page: 621 article-title: Dual role of mitophagy in cancer drug resistance publication-title: Anticancer Res – volume: 25 start-page: iii1 issue: suppl 3 year: 2014 end-page: iii9 article-title: Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow‐up publication-title: Ann Oncol – volume: 25 start-page: 1670 year: 2007 end-page: 1676 article-title: Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first‐line treatment for metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest publication-title: J Clinic Oncol – volume: 361 start-page: 128 year: 2015 end-page: 136 article-title: Autophagy contributes to the enrichment and survival of colorectal cancer stem cells under oxaliplatin treatment publication-title: Cancer Lett – volume: 21 start-page: 171 year: 2005 end-page: 178 article-title: Outcome signature genes in breast cancer: is there a unique set? publication-title: Bioinformatics (Oxford, England) – year: 2017 – volume: 92 start-page: 205 issue: 3 year: 2000 end-page: 216 article-title: New guidelines to evaluate the response to treatment in solid tumors publication-title: J Natl Cancer Inst – volume: 20 start-page: 307 year: 2004 end-page: 315 article-title: Affy–analysis of Affymetrix GeneChip data at the probe level publication-title: Bioinformatics (Oxford, England) – volume: 26 start-page: 45 year: 2018 end-page: 54 article-title: Cationic liposome co‐encapsulation of SMAC mimetic and zVAD using a novel lipid bilayer fusion loaded with MLKL‐pDNA for tumour inhibition in vivo publication-title: J Drug Target – ident: e_1_2_7_49_1 doi: 10.1080/1061186X.2017.1339192 – ident: e_1_2_7_16_1 doi: 10.1136/gutjnl-2013-305475 – ident: e_1_2_7_48_1 doi: 10.18632/oncotarget.24083 – ident: e_1_2_7_43_1 doi: 10.18637/jss.v046.i07 – ident: e_1_2_7_25_1 – ident: e_1_2_7_8_1 doi: 10.1200/JCO.2006.09.0928 – volume: 2 start-page: 18 year: 2002 ident: e_1_2_7_42_1 article-title: Classification and regression by randomForest publication-title: R News – ident: e_1_2_7_4_1 doi: 10.1016/j.ejca.2006.04.012 – ident: e_1_2_7_22_1 doi: 10.1093/jnci/92.3.205 – ident: e_1_2_7_5_1 doi: 10.1093/annonc/mdu260 – ident: e_1_2_7_39_1 – ident: e_1_2_7_50_1 doi: 10.1093/annonc/mdw235 – ident: e_1_2_7_13_1 doi: 10.1002/ijc.30026 – ident: e_1_2_7_52_1 doi: 10.1016/j.molonc.2013.02.016 – ident: e_1_2_7_2_1 doi: 10.3322/caac.21395 – ident: e_1_2_7_41_1 – ident: e_1_2_7_36_1 doi: 10.18637/jss.v028.i05 – ident: e_1_2_7_18_1 doi: 10.1007/s12094-011-0676-z – ident: e_1_2_7_27_1 – ident: e_1_2_7_14_1 doi: 10.1016/j.ejca.2011.11.007 – ident: e_1_2_7_7_1 doi: 10.1038/bjc.2011.201 – ident: e_1_2_7_29_1 doi: 10.1371/journal.pmed.0050184 – ident: e_1_2_7_33_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_7_12_1 doi: 10.1016/j.molonc.2015.02.008 – ident: e_1_2_7_28_1 doi: 10.1093/bioinformatics/bts485 – ident: e_1_2_7_32_1 doi: 10.1093/bioinformatics/btg1010 – ident: e_1_2_7_24_1 doi: 10.1186/1471-2105-8-273 – ident: e_1_2_7_38_1 doi: 10.1007/978-0-387-21706-2 – ident: e_1_2_7_3_1 doi: 10.3322/caac.21387 – volume: 38 start-page: 617 year: 2018 ident: e_1_2_7_46_1 article-title: Dual role of mitophagy in cancer drug resistance publication-title: Anticancer Res – ident: e_1_2_7_40_1 – ident: e_1_2_7_44_1 doi: 10.1186/1471-2105-12-77 – ident: e_1_2_7_20_1 doi: 10.1016/S0140-6736(03)14686-7 – ident: e_1_2_7_21_1 doi: 10.1093/nar/gkr1265 – ident: e_1_2_7_37_1 doi: 10.1214/09-SS054 – ident: e_1_2_7_23_1 doi: 10.1093/bioinformatics/btg405 – ident: e_1_2_7_47_1 doi: 10.1186/1471-2105-9-319 – ident: e_1_2_7_30_1 doi: 10.1093/nar/gkr1071 – ident: e_1_2_7_34_1 doi: 10.1016/j.chom.2015.11.002 – ident: e_1_2_7_6_1 doi: 10.1200/JCO.2004.05.113 – ident: e_1_2_7_35_1 doi: 10.1089/omi.2011.0118 – ident: e_1_2_7_11_1 doi: 10.1038/nature11156 – ident: e_1_2_7_15_1 doi: 10.1038/bjc.2011.505 – ident: e_1_2_7_31_1 doi: 10.1186/1471-2105-13-52 – ident: e_1_2_7_19_1 doi: 10.1093/bioinformatics/bth469 – ident: e_1_2_7_51_1 doi: 10.1158/1535-7163.MCT-16-0591 – ident: e_1_2_7_10_1 doi: 10.1016/j.ejrad.2016.08.014 – ident: e_1_2_7_17_1 doi: 10.18632/oncotarget.14638 – ident: e_1_2_7_26_1 – ident: e_1_2_7_9_1 doi: 10.1200/JCO.2005.07.113 – ident: e_1_2_7_45_1 doi: 10.1016/j.canlet.2015.02.045  | 
    
| SSID | ssj0000702671 | 
    
| Score | 2.333341 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin) therapy is... Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5-FU, leucovorin and oxaliplatin) therapy is... Abstract Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin)...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref wiley  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1419 | 
    
| SubjectTerms | Accuracy Algorithms Antineoplastic Combined Chemotherapy Protocols - therapeutic use Apoptosis Autophagy Biomarkers, Tumor - genetics Cancer therapies Cell Cycle Proteins - genetics Chemotherapy Clinical Cancer Research Colorectal cancer Colorectal carcinoma Colorectal Neoplasms - drug therapy Colorectal Neoplasms - genetics Colorectal Neoplasms - pathology Datasets Datasets as Topic DNA microarrays Endocytosis ErbB protein Fluorouracil - therapeutic use FOLFOX Forkhead protein Gene expression Gene Expression Profiling - statistics & numerical data Gene Expression Regulation, Neoplastic Genomes Humans Interferon regulatory factor 7 Intracellular Signaling Peptides and Proteins - genetics Learning algorithms Leucovorin - therapeutic use Machine Learning machine learning algorithm Meta-analysis Metastases Metastasis microarray meta‐analysis Neoplasm Recurrence, Local - drug therapy Neoplasm Recurrence, Local - genetics Oligonucleotide Array Sequence Analysis - statistics & numerical data Ontology Organoplatinum Compounds - therapeutic use Original Research Oxaliplatin Phagocytosis Prognosis Protein Kinases - genetics Quality control Response Evaluation Criteria in Solid Tumors Signal transduction  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHoAL4k3YBZnHYS9hGzuJ4-Oyolohyl5YqbdoPHF3K7Vplbag5dcz46RRKxa4cI0nijPzjWcSj78R4j1g4RKLRQwFVnFKKX9sXa5jm5o0EJ4A8tnh0df8_DL9PM7GO62-uCaspQduFXeSaWcyhfQNR8FGg3ZJYdGiS_KqyhJf8eo7KOzOx1RYgw13Vkq2VEIDdYIwTz8ow2emdwJQ4Om_Lbn8vUby3qZews0PmM3289gQiIYPxYMug5Sn7cwfiTu-fizujro98ifi5_Diy_BiLPsSctm0dbBeLhuWYlPIaS3nfg18nmiKctGQELZUTZJ5rHkdpIcgY6KRHfnqSn6fgpyH8ksvu34TVxJmV4tmur6er56Ky-Gnb2fncddhIUZK0_LYGt5Yc0pV5OpoYeATnRnMnILMTCjTyikb9OTTaBAg9RpdNqGYX1mfQ6FAPxMH9aL2L4QEbyfgmCrHUmAsDNlJO-RWxh7SSplIHG_VXmJHP85dMGZlS5ysSrZQyRaKxNtedNlybtwm9JFt1wswTXa4QOApO_CU_wJPJI62li87312VStNLK27NFYk3_TB5HW-lQO0XG5bRhDqtNck8b4HSz4RWSUtazCJh9iC0N9X9kXp6HZi9De8j53Tnux5sf9PAcYDhnyXKs9MRt1LJX_4PZR2K-4p_NoSS9SNxsG42_hVlZGv3OjjfLxvANC4 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdGJwEvE58jMJD5eNhLWGMncfyA0DatmhDtEGJS36Kz43aV2qSk7RD89dzlCyrGXuOL4vg-_JPv_DvG3oFNTKBt4kNiMz9EyO9rE0tfhyqsCE_A0t3h4Sg-vww_jaPxDhu1d2GorLKNiVWgzgpLZ-RHQiIwEdQw6ePyu09doyi72rbQgKa1Qvahohi7w3YFMWP12O7J2ejL1-7UBQ1cxCpoKYb64sjCInwvFN2l_mtjqvj7bwKd_9ZO3tvkS_j5A-bzbXxbbVCDB2yvQZb8uDaFh2zH5Y_Y3WGTO3_Mfg0uPg8uxrwrLedlXR_r-LIkKVIRn-V84dZA94xmlhclCtmawokTvzXFR_yIJVspeUPKuuLXM-CLqizT8aYPxZTDfIoLuL5arJ6wy8HZt9Nzv-m84FuEb7GvFSXcjBAZhgCroe8CGSkbGQGRmiACi1EZDn3dKgsQOmlNNEEskGkXQyJAPmW9vMjdM8bB6QkYotDRuGEmymAMMZZaHDsIM6E8dtgue2obWnLqjjFPa0JlkZKGUtKQx950osuai-MmoRPSXSdA9NnVg6Kcpo03ppE0KhJW9xX-pgSJk9JWWxPEWRYFLvPYQav5tPHpVfrHAj32uhtGb6QUC-Su2JCMFAhqpUSZ_dpQuplg9NS4ipHH1JYJbU11eySfXVWM34ryyzG--bYztttW4LAyw_9LpKfHQ2qxEj-__T9fsPuCjheqIvUD1luXG_cSMdjavGoc6zcUQzJt priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWgK8Fe-IYNLMh8HPaSsrUTOz6WFdUK0V0OVCqnYDtuN6JNqrQFsb-emcSNCCwIiWvz0tjOzPgpM35DyCttEzNQNgl1YrMwAsofKiN4qCIZ1YIn2uLZ4fGZOJ1E76bx1Pc5xbMwjT5E-8ENPaOO1-jgq2zWxHmf3WevrV5GfSYTcZ3siRjIeI_sTc4-DD9hSzkgKyF4T7TTE_oZ39mFarH-qxjm74WSN7fFSn__pheLLpmtd6PRbfJ5N4-mCOVLf7sxfXv5i8Tjf0z0DrnlmSodNqZ1l1xzxT1yY-xz8ffJ5ej8_eh8SttSdVo19baOripE4SuneUGXbqPx3FJuaVkByDaSUBT1svHx8BCLtldRL_K6pl9zTZd1maejvq_FnOrFvKzyzcVy_YBMRm8_npyGvpNDaIEOilBJTOAZxjIIKVbpYzfgsbSxYTqWM2B0Aling9hhpdU6ctyaeAbcIlNO6IRp_pD0irJwB4Rqp2baoCSPgg04kQZikrHYMtnpKGMyIEe7N5taL3OO3TYWaSPQzFJcyxTXMiAvWuiq0fa4CvQGzaMFoBx3_UNZzVPv3WnMjYyZVccSpsk1h0Epq6wZiCyLBy4LyOHOuFIfI9Yp4zBphi3AAvK8vQzejSkbXbhyixjOgCRzDphHjS22I4ForGAV44DIjpV2htq9UuQXtYK4xHy1gDtftvb8txU4qs3zz4j0ZDjGli3i8T_94ROyz_CrRV37fkh6m2rrngK125hn3n1_AKz6T94 priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKkYAL4rMECjIfh15CN3YSx-JUKlYVYikHKu0tGjvebaTdZJXdbQW_nhknGxRRENfkRXE8M_aLPX7D2DuwmYm0zULIbBHGSPlDbVIZ6ljFXvAELJ0dnnxNzy7iz9Nkusc-7M7CtPoQ_YIbRYYfrynAwayPf4uGWljG74XK0lvsdoQ8htxbxN_6BRb0ZZH6Hy5SXA8xjuKdstBIHPdPD-YjL9t_E9f8M2Xy7rZawY9rWCyGtNbPS-MH7H5HKPlJ6wEP2Z6rHrE7k27L_DH7OT7_Mj6f8j6jnDdtWqzjq4ZQZBleVnzpNkDHi0rL6wZBtlVu4iRrTcMivsSSizS802Jd86sS-NJnYzrelZ-Yc1jM66bcXC7XT9jF-NP307OwK7gQWmRtaagV7bMZIQqMfKth5CKZKJsYAYmaIfFKkRw6DHGrLEDspDXJDClAoV0KmQD5lO1XdeWeMQ5Oz8CQco7GeTJTBocOY6mysYO4ECpgR7tuz22nRk5FMRZ5q6MscrJQThYK2JseumolOG4CfSTb9QBSzfYX6maed0GYJ9KoRFg9UviZEiQ2SlttTZQWRRK5ImCHO8vnXSivcyHxowVV6grY6_42BiHtrEDl6i1hpEAuKyViDlpH6VuCg6bGXkwCpgYuNGjq8E5VXnqhb0Xbyik--bZ3tn_1wJF3w78j8tOTCVVWSZ__P_QFuydohcHnqR-y_U2zdS-Rhm3MKx9uvwAavC3T priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | FOLFOX treatment response prediction in metastatic or recurrent colorectal cancer patients via machine learning algorithms | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcam4.2786 https://www.ncbi.nlm.nih.gov/pubmed/31893575 https://www.proquest.com/docview/2353326026 https://www.proquest.com/docview/2332083336 https://pubmed.ncbi.nlm.nih.gov/PMC7013065 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cam4.2786 https://doaj.org/article/53b752c9072243a3b189c9cb16dd51ed  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: ABDBF dateStart: 20140401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: GX1 dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: 7X7 dateStart: 20120801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: BENPR dateStart: 20120801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals Open Access customDbUrl: eissn: 2045-7634 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: M48 dateStart: 20120801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: AVUZU dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: 24P dateStart: 20120101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZ2kcZeEHcKozKXh71kLHYSxw8IddPKhGhXISqVp8h23K5Smpa0Bcav5xznolV0vOQhPlEcn3PsL_HJ9xHyTplY-9LEnopN6gUA-T2pI-7JQASO8EQZ_He4148uh8HnUTjaIbXGZjWAy62vdqgnNSyyk98_bj5Cwn-oCETfGzULTpiIo12yDwuURAWHXoXy3YQsUGbJr3mFbl9xSA4gqCUPsc7w1sLk-Pu3gc5_ayfvrfOFuvmlsmwT37oFqvuA3K-QJe2UofCQ7Nj8ETnoVXvnj8mf7tWX7tWINqXltCjrYy1dFGiFLqLTnM7sSuF_RlND5wUYmZLCiSK_Nc6PcBODsVLQipR1SX9OFZ25skxLKx2KCVXZZF5MV9ez5RMy7F58O7_0KuUFz8BIRJ4UuOGmGUthCjBSnVofhsiEmqlQjAGBRYASLeS6EUapwHKjwzFggVTaSMVM8adkL5_n9jmhysqx0kihI2HBjIWGOUQblDi2KkiZaJHjetgTU9GSozpGlpSEyixBZyXorBZ505guSi6ObUZn6LvGAOmz3Yl5MUmqbExCrkXIjDwV8JhcceiUNNJoP0rT0LdpixzVnk_qkEwYh4dmKNnVIq-bZshG3GJRuZ2v0YYzALWcg82zMlCantSB1iJiI4Q2urrZkk-vHeO3wP3lCK582wTb_0bg2IXh3RbJeaeHEivRizs7-ZIcMvyy4OrTj8jeqljbVwC_VrpNdlkwgKMYiTbZP7voD7623acMOH4a-W2XfNAy7A863_8Cnx40gw | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjFeEN8UBpgvaS9hjZ3E8cOEtrGqY22H0Cb1LdiO21Vq05K2TOOP42_jLnECFWNve20ujeP7-Xzx3f2OkHfKxNqXJvZUbFIvAJffkzringxEUBCeKIO1w91e1D4LPvfD_hr5VdXCYFplZRMLQ51ODZ6R7zAOjgnDhkkfZ9897BqF0dWqhYZyrRXS3YJizBV2HNvLC_iEm-8efQJ9v2esdXh60PZclwHPgKsSeVJgcEkzlgLcjVRN6_NQmFAzFYoBeBsRPNgCro0wSgWWGx0OYN9LpY1UzBSH_71FNgIeSPj429g_7H35Wp_ywIJikfArSqMm2zFqEnxgAmu3_9oIi34BVzm5_-Zqbi6zmbq8UOPxqj9dbIite-Su82TpXgm9-2TNZg_I7a6L1T8kP1snndZJn9ap7DQv83EtneUohZCgo4xO7EJhXdPI0GkOQqakjKLIp432GB5iEJs5dSSwc_pjpOikSAO11PW9GFI1HoLCFueT-SNydiM6eEzWs2lmnxKqrBwojZQ9EjboWGiwWdpgS2WrgpSJBtmupj0xjgYdu3GMk5LAmSWooQQ11CBvatFZyf1xldA-6q4WQLru4odpPkzc6k9CrkXIjGwKeE2uOAxKGmm0H6Vp6Nu0QbYqzSfOhsyTP4hvkNf1ZVj9GNJRmZ0uUYYzcKI5B5knJVDqkYC1ljCLYYOIFQitDHX1SjY6LxjGBcazI7jzbQ2262Zgu4Dh_yWSg70utnSJnl3_nq_IZvu020k6R73j5-QOw6ONIkF-i6wv8qV9Af7fQr90i4ySbze9rn8DbANt4Q | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkAYviG8KA8yXtJfQxk7i-AGhsRFtbN14YFLfMttxu0ptUtKWafxp_HXcOR9QMfa21-SaOL7fna--8-8IeatMrH1pYk_FJvMCCPk9qSPuyUAEjvBEGTw73D-K9k6CL4NwsEZ-NWdhsKyy8YnOUWeFwT3yLuMQmDBsmNQd1mURX3eTj7PvHnaQwkxr006jgsiBvTiHv2_zD_u7oOt3jCWfv-3seXWHAc9AmBJ5UmBiSTOWAdSNVD3r81CYUDMViiFEGhG81AKmjTBKBZYbHQ5hzcukjVTMFIfn3iA3BecSywnFQLT7O2BKLBJ-Q2bUY12jpsF7JvDU9l9LoOsUcFl4-2-V5q1lPlMX52oyWY2k3VKY3CV36hiWblegu0fWbH6fbPTrLP0D8jM5PkyOB7QtYqdlVYlr6axEKQQDHed0ahcKTzSNDS1KEDIVWRRFJm30xPASg6gsaU3_Oqc_xopOXQGopXXHixFVkxGoZ3E2nT8kJ9eigUdkPS9y-4RQZeVQaSTrkbA0x0KDt9IGmylbFWRMdMhWM-2pqQnQsQ_HJK2om1mKGkpRQx3yuhWdVawflwl9Qt21AkjU7S4U5Sit7T4NuRYhM7In4DO54jAoaaTRfpRloW-zDtlsNJ_W3mOe_sF6h7xqb4PdYzJH5bZYogxnED5zDjKPK6C0IwE_LWEWww4RKxBaGerqnXx85rjFBWayI_jlmxZsV83AloPh_yXSne0-NnOJnl79nS_JBlhzerh_dPCM3Ga4p-Eq4zfJ-qJc2ucQ-C30C2dhlJxet0n_BmpPa3s | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWgK8Fe-IYNLMh8HPaSsrUTOz6WFdUK0V0OVCqnYDtuN6JNqrQFsb-emcSNCCwIiWvz0tjOzPgpM35DyCttEzNQNgl1YrMwAsofKiN4qCIZ1YIn2uLZ4fGZOJ1E76bx1Pc5xbMwjT5E-8ENPaOO1-jgq2zWxHmf3WevrV5GfSYTcZ3siRjIeI_sTc4-DD9hSzkgKyF4T7TTE_oZ39mFarH-qxjm74WSN7fFSn__pheLLpmtd6PRbfJ5N4-mCOVLf7sxfXv5i8Tjf0z0DrnlmSodNqZ1l1xzxT1yY-xz8ffJ5ej8_eh8SttSdVo19baOripE4SuneUGXbqPx3FJuaVkByDaSUBT1svHx8BCLtldRL_K6pl9zTZd1maejvq_FnOrFvKzyzcVy_YBMRm8_npyGvpNDaIEOilBJTOAZxjIIKVbpYzfgsbSxYTqWM2B0Aling9hhpdU6ctyaeAbcIlNO6IRp_pD0irJwB4Rqp2baoCSPgg04kQZikrHYMtnpKGMyIEe7N5taL3OO3TYWaSPQzFJcyxTXMiAvWuiq0fa4CvQGzaMFoBx3_UNZzVPv3WnMjYyZVccSpsk1h0Epq6wZiCyLBy4LyOHOuFIfI9Yp4zBphi3AAvK8vQzejSkbXbhyixjOgCRzDphHjS22I4ForGAV44DIjpV2htq9UuQXtYK4xHy1gDtftvb8txU4qs3zz4j0ZDjGli3i8T_94ROyz_CrRV37fkh6m2rrngK125hn3n1_AKz6T94 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FOLFOX+treatment+response+prediction+in+metastatic+or+recurrent+colorectal+cancer+patients+via+machine+learning+algorithms&rft.jtitle=Cancer+medicine+%28Malden%2C+MA%29&rft.au=Lu%2C+Wei&rft.au=Fu%2C+Dongliang&rft.au=Kong%2C+Xiangxing&rft.au=Huang%2C+Zhiheng&rft.date=2020-02-01&rft.eissn=2045-7634&rft.volume=9&rft.issue=4&rft.spage=1419&rft_id=info:doi/10.1002%2Fcam4.2786&rft_id=info%3Apmid%2F31893575&rft.externalDocID=31893575 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7634&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7634&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7634&client=summon |