FOLFOX treatment response prediction in metastatic or recurrent colorectal cancer patients via machine learning algorithms

Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta‐analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresp...

Full description

Saved in:
Bibliographic Details
Published inCancer medicine (Malden, MA) Vol. 9; no. 4; pp. 1419 - 1429
Main Authors Lu, Wei, Fu, Dongliang, Kong, Xiangxing, Huang, Zhiheng, Hwang, Maxwell, Zhu, Yingshuang, Chen, Liubo, Jiang, Kai, Li, Xinlin, Wu, Yihua, Li, Jun, Yuan, Ying, Ding, Kefeng
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.02.2020
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2045-7634
2045-7634
DOI10.1002/cam4.2786

Cover

Abstract Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta‐analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy. We performed the microarray meta‐analysis to identify common differentially expressed genes between FOLFOX responders and non‐responders in metastatic or recurrent colorectal cancer patients, and built prediction models with machine learning algorithms.
AbstractList Abstract Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta‐analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy.
Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta‐analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy. We performed the microarray meta‐analysis to identify common differentially expressed genes between FOLFOX responders and non‐responders in metastatic or recurrent colorectal cancer patients, and built prediction models with machine learning algorithms.
Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5-FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta-analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy.Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5-FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta-analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy.
Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta‐analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy. We performed the microarray meta‐analysis to identify common differentially expressed genes between FOLFOX responders and non‐responders in metastatic or recurrent colorectal cancer patients, and built prediction models with machine learning algorithms.
Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5-FU, leucovorin and oxaliplatin) therapy is very important. We performed microarray meta-analysis to identify differentially expressed genes (DEGs) between FOLFOX responders and nonresponders in metastatic or recurrent CRC patients, and found that the expression levels of WASHC4, HELZ, ERN1, RPS6KB1, and APPBP2 were downregulated, while the expression levels of IRF7, EML3, LYPLA2, DRAP1, RNH1, PKP3, TSPAN17, LSS, MLKL, PPP1R7, GCDH, C19ORF24, and CCDC124 were upregulated in FOLFOX responders compared with nonresponders. Subsequent functional annotation showed that DEGs were significantly enriched in autophagy, ErbB signaling pathway, mitophagy, endocytosis, FoxO signaling pathway, apoptosis, and antifolate resistance pathways. Based on those candidate genes, several machine learning algorithms were applied to the training set, then performances of models were assessed via the cross validation method. Candidate models with the best tuning parameters were applied to the test set and the final model showed satisfactory performance. In addition, we also reported that MLKL and CCDC124 gene expression were independent prognostic factors for metastatic CRC patients undergoing FOLFOX therapy.
Author Lu, Wei
Kong, Xiangxing
Jiang, Kai
Ding, Kefeng
Li, Jun
Fu, Dongliang
Zhu, Yingshuang
Yuan, Ying
Hwang, Maxwell
Li, Xinlin
Chen, Liubo
Huang, Zhiheng
Wu, Yihua
AuthorAffiliation 3 Department of Medical Oncology The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China
4 Department of Toxicology School of Public Health Zhejiang University Hangzhou Zhejiang China
1 Department of Colorectal Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China
2 Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China) The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China
AuthorAffiliation_xml – name: 1 Department of Colorectal Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China
– name: 2 Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China) The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China
– name: 4 Department of Toxicology School of Public Health Zhejiang University Hangzhou Zhejiang China
– name: 3 Department of Medical Oncology The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China
Author_xml – sequence: 1
  givenname: Wei
  surname: Lu
  fullname: Lu, Wei
  organization: Zhejiang University School of Medicine
– sequence: 2
  givenname: Dongliang
  surname: Fu
  fullname: Fu, Dongliang
  organization: Zhejiang University School of Medicine
– sequence: 3
  givenname: Xiangxing
  surname: Kong
  fullname: Kong, Xiangxing
  organization: Zhejiang University School of Medicine
– sequence: 4
  givenname: Zhiheng
  surname: Huang
  fullname: Huang, Zhiheng
  organization: Zhejiang University School of Medicine
– sequence: 5
  givenname: Maxwell
  surname: Hwang
  fullname: Hwang, Maxwell
  organization: Zhejiang University School of Medicine
– sequence: 6
  givenname: Yingshuang
  surname: Zhu
  fullname: Zhu, Yingshuang
  organization: Zhejiang University School of Medicine
– sequence: 7
  givenname: Liubo
  surname: Chen
  fullname: Chen, Liubo
  organization: Zhejiang University School of Medicine
– sequence: 8
  givenname: Kai
  surname: Jiang
  fullname: Jiang, Kai
  organization: Zhejiang University School of Medicine
– sequence: 9
  givenname: Xinlin
  surname: Li
  fullname: Li, Xinlin
  organization: Zhejiang University School of Medicine
– sequence: 10
  givenname: Yihua
  surname: Wu
  fullname: Wu, Yihua
  organization: Zhejiang University
– sequence: 11
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: Zhejiang University School of Medicine
– sequence: 12
  givenname: Ying
  orcidid: 0000-0002-3922-9553
  surname: Yuan
  fullname: Yuan, Ying
  organization: Zhejiang University School of Medicine
– sequence: 13
  givenname: Kefeng
  orcidid: 0000-0002-2380-3717
  surname: Ding
  fullname: Ding, Kefeng
  email: dingkefeng@zju.edu.cn
  organization: Zhejiang University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31893575$$D View this record in MEDLINE/PubMed
BookMark eNp9kl9v0zAUxS00xEbZA18AWeIFkLo5dhI3L0hTRWFSUV9A4s26cW5bV44d7GRT-fQ4a5m2CchL_vjn43PPyUty4rxDQl5n7CJjjF9qaPMLLmflM3LGWV5MZSnykwfPp-Q8xh1Ll2S8lNkLciqyWSUKWZyRX4vVcrH6QfuA0Lfoehowdt5FpF3AxujeeEeNoy32EHvojaY-JEgPIYy49tantx4s1eA0BtolKK1EemOAtqC3xiG1CMEZt6FgNz6YftvGV-T5GmzE8-N9Qr4vPn2bf5kuV5-v51fLqU4Oy2klM87zmvNGMKkrYJgl67qoORRynXNRFkKgnEktNUCOQtfFmudZU2EJMw5iQq4Puo2HneqCaSHslQej7j74sFEQ0lwWVSFqWXBdMZmOFCDqlJOudJ2VTVNk2CStDwetwXWwvwVr7wUzpsY-1NiHGvtI8McD3A11i41OoQSwjxw8XnFmqzb-RkmWCZbGmpB3R4Hgfw4Ye9WaqNFacOiHqLgQnM2EEONZb5-gOz8El3JNVAqIl6n7RL156Ojeyp__IQGXB0AHH2PAtdJmLN2PBo3965Dvn-z4XyBH9Vtjcf9vUM2vvuZ3O34Dtbzl9Q
CitedBy_id crossref_primary_10_1186_s13036_023_00372_6
crossref_primary_10_1186_s40249_022_00946_4
crossref_primary_10_3390_cancers14164012
crossref_primary_10_1038_s41598_023_31331_2
crossref_primary_10_1016_j_bbadis_2024_167263
crossref_primary_10_1158_0008_5472_CAN_23_2781
crossref_primary_10_3390_ijms232214398
crossref_primary_10_1016_j_canlet_2023_216225
crossref_primary_10_3389_fonc_2022_815001
crossref_primary_10_1007_s00520_022_07156_6
crossref_primary_10_1016_j_ijbiomac_2024_137393
crossref_primary_10_1016_j_csbj_2023_03_046
crossref_primary_10_3390_ijms22094394
crossref_primary_10_1016_j_biopha_2023_114762
crossref_primary_10_1007_s10151_023_02772_8
crossref_primary_10_1080_15513815_2023_2242979
crossref_primary_10_3389_fphys_2023_1272206
crossref_primary_10_1080_07357907_2020_1843662
crossref_primary_10_3390_app14020669
crossref_primary_10_1002_ctm2_986
crossref_primary_10_3390_life15020320
crossref_primary_10_1155_2022_8766448
crossref_primary_10_30699_jambs_29_133_100
crossref_primary_10_3389_fgene_2021_804916
Cites_doi 10.1080/1061186X.2017.1339192
10.1136/gutjnl-2013-305475
10.18632/oncotarget.24083
10.18637/jss.v046.i07
10.1200/JCO.2006.09.0928
10.1016/j.ejca.2006.04.012
10.1093/jnci/92.3.205
10.1093/annonc/mdu260
10.1093/annonc/mdw235
10.1002/ijc.30026
10.1016/j.molonc.2013.02.016
10.3322/caac.21395
10.18637/jss.v028.i05
10.1007/s12094-011-0676-z
10.1016/j.ejca.2011.11.007
10.1038/bjc.2011.201
10.1371/journal.pmed.0050184
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.molonc.2015.02.008
10.1093/bioinformatics/bts485
10.1093/bioinformatics/btg1010
10.1186/1471-2105-8-273
10.1007/978-0-387-21706-2
10.3322/caac.21387
10.1186/1471-2105-12-77
10.1016/S0140-6736(03)14686-7
10.1093/nar/gkr1265
10.1214/09-SS054
10.1093/bioinformatics/btg405
10.1186/1471-2105-9-319
10.1093/nar/gkr1071
10.1016/j.chom.2015.11.002
10.1200/JCO.2004.05.113
10.1089/omi.2011.0118
10.1038/nature11156
10.1038/bjc.2011.505
10.1186/1471-2105-13-52
10.1093/bioinformatics/bth469
10.1158/1535-7163.MCT-16-0591
10.1016/j.ejrad.2016.08.014
10.18632/oncotarget.14638
10.1200/JCO.2005.07.113
10.1016/j.canlet.2015.02.045
ContentType Journal Article
Copyright 2019 The Authors. published by John Wiley & Sons Ltd.
2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by John Wiley & Sons Ltd.
– notice: 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1002/cam4.2786
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest: Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate LU et al
EISSN 2045-7634
EndPage 1429
ExternalDocumentID oai_doaj_org_article_53b752c9072243a3b189c9cb16dd51ed
10.1002/cam4.2786
PMC7013065
31893575
10_1002_cam4_2786
CAM42786
Genre article
Research Support, Non-U.S. Gov't
Meta-Analysis
Journal Article
GrantInformation_xml – fundername: Key Technology Research and Development Program of Zhejiang Province
  funderid: 2017C03017
– fundername: Key Technology Research and Development Program of Zhejiang Province
  grantid: 2017C03017
GroupedDBID 0R~
1OC
24P
31~
53G
5VS
7X7
8-0
8-1
8FE
8FH
8FI
8FJ
AAMMB
AAZKR
ABDBF
ABUWG
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADPDF
ADRAZ
ADZMN
AEFGJ
AENEX
AFKRA
AGXDD
AIDQK
AIDYY
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
D-8
D-9
DIK
EBS
EJD
FYUFA
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
HZ~
IHR
ITC
KQ8
LK8
M48
M7P
M~E
O9-
OK1
OVD
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
TEORI
TUS
UKHRP
AAYXX
CITATION
PQGLB
PUEGO
WIN
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
IAO
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5756-971224b22d307c9a0e1357c5b2a57f4236533e787c7caa4e3cb5f241d9e6a82a3
IEDL.DBID M48
ISSN 2045-7634
IngestDate Fri Oct 03 12:53:29 EDT 2025
Sun Oct 26 04:16:01 EDT 2025
Tue Sep 30 15:56:48 EDT 2025
Thu Sep 04 17:49:46 EDT 2025
Tue Oct 07 06:38:32 EDT 2025
Wed Feb 19 02:28:29 EST 2025
Thu Apr 24 22:52:17 EDT 2025
Wed Oct 01 01:23:25 EDT 2025
Sun Jul 06 04:45:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords colorectal cancer
FOLFOX
microarray meta-analysis
machine learning algorithm
Language English
License Attribution
2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5756-971224b22d307c9a0e1357c5b2a57f4236533e787c7caa4e3cb5f241d9e6a82a3
Notes Funding information
This work was supported by the Key Technology Research and Development Program of Zhejiang Province (2017C03017).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Wei Lu, Dongliang Fu, and Xiangxing Kong contributed equally to this article.
ORCID 0000-0002-2380-3717
0000-0002-3922-9553
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/cam4.2786
PMID 31893575
PQID 2353326026
PQPubID 2032540
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_53b752c9072243a3b189c9cb16dd51ed
unpaywall_primary_10_1002_cam4_2786
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7013065
proquest_miscellaneous_2332083336
proquest_journals_2353326026
pubmed_primary_31893575
crossref_citationtrail_10_1002_cam4_2786
crossref_primary_10_1002_cam4_2786
wiley_primary_10_1002_cam4_2786_CAM42786
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bognor Regis
– name: Hoboken
PublicationTitle Cancer medicine (Malden, MA)
PublicationTitleAlternate Cancer Med
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2015; 361
2004; 22
2017; 8
2004; 20
2012; 486
2015; 18
1995; 57
2017; 67
2008; 9
2002; 2
2014; 25
2000; 92
2005; 21
2011; 13
2008; 5
2005
2011; 12
2003; 19
2012; 16
2006; 1
2002
2014; 63
2013; 7
2015; 9
2012; 13
2012; 106
2005; 23
2018; 26
2011; 105
2018; 9
2006; 42
2017; 16
2008; 28
2007; 8
2016; 85
2017
2016
2016; 138
2012; 28
2015
2012; 48
2012; 46
2016; 27
2010; 4
2018; 38
2007; 25
2003; 362
2012; 40
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
Liaw A (e_1_2_7_42_1) 2002; 2
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_48_1
e_1_2_7_27_1
Yan C (e_1_2_7_46_1) 2018; 38
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 5
  start-page: e184
  year: 2008
  article-title: Key issues in conducting a meta‐analysis of gene expression microarray datasets
  publication-title: PLoS Medicine
– volume: 19
  start-page: i84
  issue: Suppl 1
  year: 2003
  end-page: 90
  article-title: Combining multiple microarray studies and modeling interstudy variation
  publication-title: Bioinformatics (Oxford, England)
– volume: 8
  start-page: 273
  year: 2007
  article-title: The utility of MAS5 expression summary and detection call algorithms
  publication-title: BMC Bioinformatics
– year: 2005
– volume: 7
  start-page: 637
  year: 2013
  end-page: 646
  article-title: High expression of microRNA‐625‐3p is associated with poor response to first‐line oxaliplatin based treatment of metastatic colorectal cancer
  publication-title: Mol Oncol
– volume: 27
  start-page: 1386
  year: 2016
  end-page: 1422
  article-title: ESMO consensus guidelines for the management of patients with metastatic colorectal cancer
  publication-title: Ann Oncol
– volume: 40
  start-page: 3785
  year: 2012
  end-page: 3799
  article-title: Comprehensive literature review and statistical considerations for microarray meta‐analysis
  publication-title: Nucleic Acids Res
– volume: 67
  start-page: 177
  issue: 3
  year: 2017
  end-page: 193
  article-title: Colorectal cancer statistics, 2017
  publication-title: CA Cancer J Clin
– volume: 42
  start-page: 2212
  year: 2006
  end-page: 2221
  article-title: European colorectal metastases treatment G. Towards a pan‐European consensus on the treatment of patients with colorectal liver metastases
  publication-title: Eur J Cancer
– volume: 28
  start-page: 2534
  year: 2012
  end-page: 2536
  article-title: An R package suite for microarray meta‐analysis in quality control, differentially expressed gene analysis and pathway enrichment detection
  publication-title: Bioinformatics (Oxford, England)
– volume: 16
  start-page: 284
  year: 2012
  end-page: 287
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS
– volume: 13
  start-page: 419
  year: 2011
  end-page: 425
  article-title: Gene expression signature and response to the use of leucovorin, fluorouracil and oxaliplatin in colorectal cancer patients
  publication-title: Clin Transl Oncol
– volume: 18
  start-page: 723
  year: 2015
  end-page: 735
  article-title: Meta‐ and orthogonal integration of influenza "OMICs" data defines a role for UBR4 in virus budding
  publication-title: Cell Host Microbe
– volume: 23
  start-page: 4866
  year: 2005
  end-page: 4875
  article-title: Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell'Italia Meridionale
  publication-title: J Clinic Oncol
– volume: 9
  start-page: 319
  year: 2008
  article-title: A comprehensive comparison of random forests and support vector machines for microarray‐based cancer classification
  publication-title: BMC Bioinformatics
– volume: 12
  start-page: 77
  year: 2011
  article-title: pROC: an open‐source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
– volume: 138
  start-page: 2993
  year: 2016
  end-page: 3001
  article-title: SNPs in transporter and metabolizing genes as predictive markers for oxaliplatin treatment in colorectal cancer patients
  publication-title: Int J Cancer
– volume: 67
  start-page: 7
  issue: 1
  year: 2017
  end-page: 30
  article-title: Cancer statistics, 2017
  publication-title: CA: Cancer J Clinic
– volume: 106
  start-page: 126
  year: 2012
  end-page: 132
  article-title: Potential responders to FOLFOX therapy for colorectal cancer by Random Forests analysis
  publication-title: Br J Cancer
– volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  article-title: Caret package
  publication-title: J Stat Softw
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  article-title: Classification and regression by randomForest
  publication-title: R News
– volume: 48
  start-page: 1443
  year: 2012
  end-page: 1451
  article-title: Response prediction in metastasised colorectal cancer using intratumoural thymidylate synthase: Results of a randomised multicentre trial
  publication-title: Eur J Cancer
– volume: 63
  start-page: 1457
  year: 2014
  end-page: 1467
  article-title: Gene expression profiling‐derived immunohistochemistry signature with high prognostic value in colorectal carcinoma
  publication-title: Gut
– year: 2015
– volume: 362
  start-page: 1439
  year: 2003
  end-page: 1444
  article-title: Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment
  publication-title: Lancet
– volume: 9
  start-page: 1169
  year: 2015
  end-page: 1185
  article-title: Establishment and characterization of models of chemotherapy resistance in colorectal cancer: towards a predictive signature of chemoresistance
  publication-title: Mol Oncol
– volume: 13
  start-page: 52
  year: 2012
  article-title: Detecting disease‐associated genes with confounding variable adjustment and the impact on genomic meta‐analysis: with application to major depressive disorder
  publication-title: BMC Bioinformatics
– volume: 40
  start-page: e15
  year: 2012
  article-title: MetaQC: objective quality control and inclusion/exclusion criteria for genomic meta‐analysis
  publication-title: Nucleic Acids Res
– volume: 16
  start-page: 739
  year: 2017
  end-page: 751
  article-title: MALAT1 is associated with poor response to oxaliplatin‐based chemotherapy in colorectal cancer patients and promotes chemoresistance through EZH2
  publication-title: Mol Cancer Ther
– volume: 85
  start-page: 1867
  year: 2016
  end-page: 1874
  article-title: Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis
  publication-title: Eur J Radiol
– volume: 9
  start-page: 7902
  year: 2018
  end-page: 7917
  article-title: Antitumor activity of HPA3P through RIPK3‐dependent regulated necrotic cell death in colon cancer
  publication-title: Oncotarget
– volume: 105
  start-page: 58
  year: 2011
  end-page: 64
  article-title: XELOX vs FOLFOX‐4 as first‐line therapy for metastatic colorectal cancer: NO16966 updated results
  publication-title: Br J Cancer
– volume: 486
  start-page: 532
  year: 2012
  end-page: U131
  article-title: Emergence of KRAS mutations and acquired resistance to anti‐EGFR therapy in colorectal cancer
  publication-title: Nature
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate ‐ a practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society Series B‐Methodological
– year: 2016
– volume: 22
  start-page: 229
  year: 2004
  end-page: 237
  article-title: FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study
  publication-title: J Clinic Oncol
– volume: 8
  start-page: 13805
  year: 2017
  end-page: 13817
  article-title: Building personalized treatment plans for early‐stage colorectal cancer patients
  publication-title: Oncotarget
– volume: 46
  start-page: 1
  year: 2012
  end-page: 26
  article-title: Neural networks in R using the stuttgart neural network simulator: RSNNS
  publication-title: Journal of Statistical Software
– volume: 1
  start-page: 55
  year: 2006
– year: 2002
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  article-title: A survey of cross‐validation procedures for model selection
  publication-title: Statistics Surveys
– volume: 38
  start-page: 617
  year: 2018
  end-page: 621
  article-title: Dual role of mitophagy in cancer drug resistance
  publication-title: Anticancer Res
– volume: 25
  start-page: iii1
  issue: suppl 3
  year: 2014
  end-page: iii9
  article-title: Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow‐up
  publication-title: Ann Oncol
– volume: 25
  start-page: 1670
  year: 2007
  end-page: 1676
  article-title: Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first‐line treatment for metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest
  publication-title: J Clinic Oncol
– volume: 361
  start-page: 128
  year: 2015
  end-page: 136
  article-title: Autophagy contributes to the enrichment and survival of colorectal cancer stem cells under oxaliplatin treatment
  publication-title: Cancer Lett
– volume: 21
  start-page: 171
  year: 2005
  end-page: 178
  article-title: Outcome signature genes in breast cancer: is there a unique set?
  publication-title: Bioinformatics (Oxford, England)
– year: 2017
– volume: 92
  start-page: 205
  issue: 3
  year: 2000
  end-page: 216
  article-title: New guidelines to evaluate the response to treatment in solid tumors
  publication-title: J Natl Cancer Inst
– volume: 20
  start-page: 307
  year: 2004
  end-page: 315
  article-title: Affy–analysis of Affymetrix GeneChip data at the probe level
  publication-title: Bioinformatics (Oxford, England)
– volume: 26
  start-page: 45
  year: 2018
  end-page: 54
  article-title: Cationic liposome co‐encapsulation of SMAC mimetic and zVAD using a novel lipid bilayer fusion loaded with MLKL‐pDNA for tumour inhibition in vivo
  publication-title: J Drug Target
– ident: e_1_2_7_49_1
  doi: 10.1080/1061186X.2017.1339192
– ident: e_1_2_7_16_1
  doi: 10.1136/gutjnl-2013-305475
– ident: e_1_2_7_48_1
  doi: 10.18632/oncotarget.24083
– ident: e_1_2_7_43_1
  doi: 10.18637/jss.v046.i07
– ident: e_1_2_7_25_1
– ident: e_1_2_7_8_1
  doi: 10.1200/JCO.2006.09.0928
– volume: 2
  start-page: 18
  year: 2002
  ident: e_1_2_7_42_1
  article-title: Classification and regression by randomForest
  publication-title: R News
– ident: e_1_2_7_4_1
  doi: 10.1016/j.ejca.2006.04.012
– ident: e_1_2_7_22_1
  doi: 10.1093/jnci/92.3.205
– ident: e_1_2_7_5_1
  doi: 10.1093/annonc/mdu260
– ident: e_1_2_7_39_1
– ident: e_1_2_7_50_1
  doi: 10.1093/annonc/mdw235
– ident: e_1_2_7_13_1
  doi: 10.1002/ijc.30026
– ident: e_1_2_7_52_1
  doi: 10.1016/j.molonc.2013.02.016
– ident: e_1_2_7_2_1
  doi: 10.3322/caac.21395
– ident: e_1_2_7_41_1
– ident: e_1_2_7_36_1
  doi: 10.18637/jss.v028.i05
– ident: e_1_2_7_18_1
  doi: 10.1007/s12094-011-0676-z
– ident: e_1_2_7_27_1
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ejca.2011.11.007
– ident: e_1_2_7_7_1
  doi: 10.1038/bjc.2011.201
– ident: e_1_2_7_29_1
  doi: 10.1371/journal.pmed.0050184
– ident: e_1_2_7_33_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_7_12_1
  doi: 10.1016/j.molonc.2015.02.008
– ident: e_1_2_7_28_1
  doi: 10.1093/bioinformatics/bts485
– ident: e_1_2_7_32_1
  doi: 10.1093/bioinformatics/btg1010
– ident: e_1_2_7_24_1
  doi: 10.1186/1471-2105-8-273
– ident: e_1_2_7_38_1
  doi: 10.1007/978-0-387-21706-2
– ident: e_1_2_7_3_1
  doi: 10.3322/caac.21387
– volume: 38
  start-page: 617
  year: 2018
  ident: e_1_2_7_46_1
  article-title: Dual role of mitophagy in cancer drug resistance
  publication-title: Anticancer Res
– ident: e_1_2_7_40_1
– ident: e_1_2_7_44_1
  doi: 10.1186/1471-2105-12-77
– ident: e_1_2_7_20_1
  doi: 10.1016/S0140-6736(03)14686-7
– ident: e_1_2_7_21_1
  doi: 10.1093/nar/gkr1265
– ident: e_1_2_7_37_1
  doi: 10.1214/09-SS054
– ident: e_1_2_7_23_1
  doi: 10.1093/bioinformatics/btg405
– ident: e_1_2_7_47_1
  doi: 10.1186/1471-2105-9-319
– ident: e_1_2_7_30_1
  doi: 10.1093/nar/gkr1071
– ident: e_1_2_7_34_1
  doi: 10.1016/j.chom.2015.11.002
– ident: e_1_2_7_6_1
  doi: 10.1200/JCO.2004.05.113
– ident: e_1_2_7_35_1
  doi: 10.1089/omi.2011.0118
– ident: e_1_2_7_11_1
  doi: 10.1038/nature11156
– ident: e_1_2_7_15_1
  doi: 10.1038/bjc.2011.505
– ident: e_1_2_7_31_1
  doi: 10.1186/1471-2105-13-52
– ident: e_1_2_7_19_1
  doi: 10.1093/bioinformatics/bth469
– ident: e_1_2_7_51_1
  doi: 10.1158/1535-7163.MCT-16-0591
– ident: e_1_2_7_10_1
  doi: 10.1016/j.ejrad.2016.08.014
– ident: e_1_2_7_17_1
  doi: 10.18632/oncotarget.14638
– ident: e_1_2_7_26_1
– ident: e_1_2_7_9_1
  doi: 10.1200/JCO.2005.07.113
– ident: e_1_2_7_45_1
  doi: 10.1016/j.canlet.2015.02.045
SSID ssj0000702671
Score 2.333341
SecondaryResourceType review_article
Snippet Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin) therapy is...
Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5-FU, leucovorin and oxaliplatin) therapy is...
Abstract Early identification of metastatic or recurrent colorectal cancer (CRC) patients who will be sensitive to FOLFOX (5‐FU, leucovorin and oxaliplatin)...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1419
SubjectTerms Accuracy
Algorithms
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Apoptosis
Autophagy
Biomarkers, Tumor - genetics
Cancer therapies
Cell Cycle Proteins - genetics
Chemotherapy
Clinical Cancer Research
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - drug therapy
Colorectal Neoplasms - genetics
Colorectal Neoplasms - pathology
Datasets
Datasets as Topic
DNA microarrays
Endocytosis
ErbB protein
Fluorouracil - therapeutic use
FOLFOX
Forkhead protein
Gene expression
Gene Expression Profiling - statistics & numerical data
Gene Expression Regulation, Neoplastic
Genomes
Humans
Interferon regulatory factor 7
Intracellular Signaling Peptides and Proteins - genetics
Learning algorithms
Leucovorin - therapeutic use
Machine Learning
machine learning algorithm
Meta-analysis
Metastases
Metastasis
microarray meta‐analysis
Neoplasm Recurrence, Local - drug therapy
Neoplasm Recurrence, Local - genetics
Oligonucleotide Array Sequence Analysis - statistics & numerical data
Ontology
Organoplatinum Compounds - therapeutic use
Original Research
Oxaliplatin
Phagocytosis
Prognosis
Protein Kinases - genetics
Quality control
Response Evaluation Criteria in Solid Tumors
Signal transduction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHoAL4k3YBZnHYS9hGzuJ4-Oyolohyl5YqbdoPHF3K7Vplbag5dcz46RRKxa4cI0nijPzjWcSj78R4j1g4RKLRQwFVnFKKX9sXa5jm5o0EJ4A8tnh0df8_DL9PM7GO62-uCaspQduFXeSaWcyhfQNR8FGg3ZJYdGiS_KqyhJf8eo7KOzOx1RYgw13Vkq2VEIDdYIwTz8ow2emdwJQ4Om_Lbn8vUby3qZews0PmM3289gQiIYPxYMug5Sn7cwfiTu-fizujro98ifi5_Diy_BiLPsSctm0dbBeLhuWYlPIaS3nfg18nmiKctGQELZUTZJ5rHkdpIcgY6KRHfnqSn6fgpyH8ksvu34TVxJmV4tmur6er56Ky-Gnb2fncddhIUZK0_LYGt5Yc0pV5OpoYeATnRnMnILMTCjTyikb9OTTaBAg9RpdNqGYX1mfQ6FAPxMH9aL2L4QEbyfgmCrHUmAsDNlJO-RWxh7SSplIHG_VXmJHP85dMGZlS5ysSrZQyRaKxNtedNlybtwm9JFt1wswTXa4QOApO_CU_wJPJI62li87312VStNLK27NFYk3_TB5HW-lQO0XG5bRhDqtNck8b4HSz4RWSUtazCJh9iC0N9X9kXp6HZi9De8j53Tnux5sf9PAcYDhnyXKs9MRt1LJX_4PZR2K-4p_NoSS9SNxsG42_hVlZGv3OjjfLxvANC4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdGJwEvE58jMJD5eNhLWGMncfyA0DatmhDtEGJS36Kz43aV2qSk7RD89dzlCyrGXuOL4vg-_JPv_DvG3oFNTKBt4kNiMz9EyO9rE0tfhyqsCE_A0t3h4Sg-vww_jaPxDhu1d2GorLKNiVWgzgpLZ-RHQiIwEdQw6ePyu09doyi72rbQgKa1Qvahohi7w3YFMWP12O7J2ejL1-7UBQ1cxCpoKYb64sjCInwvFN2l_mtjqvj7bwKd_9ZO3tvkS_j5A-bzbXxbbVCDB2yvQZb8uDaFh2zH5Y_Y3WGTO3_Mfg0uPg8uxrwrLedlXR_r-LIkKVIRn-V84dZA94xmlhclCtmawokTvzXFR_yIJVspeUPKuuLXM-CLqizT8aYPxZTDfIoLuL5arJ6wy8HZt9Nzv-m84FuEb7GvFSXcjBAZhgCroe8CGSkbGQGRmiACi1EZDn3dKgsQOmlNNEEskGkXQyJAPmW9vMjdM8bB6QkYotDRuGEmymAMMZZaHDsIM6E8dtgue2obWnLqjjFPa0JlkZKGUtKQx950osuai-MmoRPSXSdA9NnVg6Kcpo03ppE0KhJW9xX-pgSJk9JWWxPEWRYFLvPYQav5tPHpVfrHAj32uhtGb6QUC-Su2JCMFAhqpUSZ_dpQuplg9NS4ipHH1JYJbU11eySfXVWM34ryyzG--bYztttW4LAyw_9LpKfHQ2qxEj-__T9fsPuCjheqIvUD1luXG_cSMdjavGoc6zcUQzJt
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWgK8Fe-IYNLMh8HPaSsrUTOz6WFdUK0V0OVCqnYDtuN6JNqrQFsb-emcSNCCwIiWvz0tjOzPgpM35DyCttEzNQNgl1YrMwAsofKiN4qCIZ1YIn2uLZ4fGZOJ1E76bx1Pc5xbMwjT5E-8ENPaOO1-jgq2zWxHmf3WevrV5GfSYTcZ3siRjIeI_sTc4-DD9hSzkgKyF4T7TTE_oZ39mFarH-qxjm74WSN7fFSn__pheLLpmtd6PRbfJ5N4-mCOVLf7sxfXv5i8Tjf0z0DrnlmSodNqZ1l1xzxT1yY-xz8ffJ5ej8_eh8SttSdVo19baOripE4SuneUGXbqPx3FJuaVkByDaSUBT1svHx8BCLtldRL_K6pl9zTZd1maejvq_FnOrFvKzyzcVy_YBMRm8_npyGvpNDaIEOilBJTOAZxjIIKVbpYzfgsbSxYTqWM2B0Aling9hhpdU6ctyaeAbcIlNO6IRp_pD0irJwB4Rqp2baoCSPgg04kQZikrHYMtnpKGMyIEe7N5taL3OO3TYWaSPQzFJcyxTXMiAvWuiq0fa4CvQGzaMFoBx3_UNZzVPv3WnMjYyZVccSpsk1h0Epq6wZiCyLBy4LyOHOuFIfI9Yp4zBphi3AAvK8vQzejSkbXbhyixjOgCRzDphHjS22I4ForGAV44DIjpV2htq9UuQXtYK4xHy1gDtftvb8txU4qs3zz4j0ZDjGli3i8T_94ROyz_CrRV37fkh6m2rrngK125hn3n1_AKz6T94
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKkYAL4rMECjIfh15CN3YSx-JUKlYVYikHKu0tGjvebaTdZJXdbQW_nhknGxRRENfkRXE8M_aLPX7D2DuwmYm0zULIbBHGSPlDbVIZ6ljFXvAELJ0dnnxNzy7iz9Nkusc-7M7CtPoQ_YIbRYYfrynAwayPf4uGWljG74XK0lvsdoQ8htxbxN_6BRb0ZZH6Hy5SXA8xjuKdstBIHPdPD-YjL9t_E9f8M2Xy7rZawY9rWCyGtNbPS-MH7H5HKPlJ6wEP2Z6rHrE7k27L_DH7OT7_Mj6f8j6jnDdtWqzjq4ZQZBleVnzpNkDHi0rL6wZBtlVu4iRrTcMivsSSizS802Jd86sS-NJnYzrelZ-Yc1jM66bcXC7XT9jF-NP307OwK7gQWmRtaagV7bMZIQqMfKth5CKZKJsYAYmaIfFKkRw6DHGrLEDspDXJDClAoV0KmQD5lO1XdeWeMQ5Oz8CQco7GeTJTBocOY6mysYO4ECpgR7tuz22nRk5FMRZ5q6MscrJQThYK2JseumolOG4CfSTb9QBSzfYX6maed0GYJ9KoRFg9UviZEiQ2SlttTZQWRRK5ImCHO8vnXSivcyHxowVV6grY6_42BiHtrEDl6i1hpEAuKyViDlpH6VuCg6bGXkwCpgYuNGjq8E5VXnqhb0Xbyik--bZ3tn_1wJF3w78j8tOTCVVWSZ__P_QFuydohcHnqR-y_U2zdS-Rhm3MKx9uvwAavC3T
  priority: 102
  providerName: Wiley-Blackwell
Title FOLFOX treatment response prediction in metastatic or recurrent colorectal cancer patients via machine learning algorithms
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcam4.2786
https://www.ncbi.nlm.nih.gov/pubmed/31893575
https://www.proquest.com/docview/2353326026
https://www.proquest.com/docview/2332083336
https://pubmed.ncbi.nlm.nih.gov/PMC7013065
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cam4.2786
https://doaj.org/article/53b752c9072243a3b189c9cb16dd51ed
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: ABDBF
  dateStart: 20140401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: Open access medical journals (GFMER)
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: GX1
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: 7X7
  dateStart: 20120801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: BENPR
  dateStart: 20120801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals Open Access
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: M48
  dateStart: 20120801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: AVUZU
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: 24P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZ2kcZeEHcKozKXh71kLHYSxw8IddPKhGhXISqVp8h23K5Smpa0Bcav5xznolV0vOQhPlEcn3PsL_HJ9xHyTplY-9LEnopN6gUA-T2pI-7JQASO8EQZ_He4148uh8HnUTjaIbXGZjWAy62vdqgnNSyyk98_bj5Cwn-oCETfGzULTpiIo12yDwuURAWHXoXy3YQsUGbJr3mFbl9xSA4gqCUPsc7w1sLk-Pu3gc5_ayfvrfOFuvmlsmwT37oFqvuA3K-QJe2UofCQ7Nj8ETnoVXvnj8mf7tWX7tWINqXltCjrYy1dFGiFLqLTnM7sSuF_RlND5wUYmZLCiSK_Nc6PcBODsVLQipR1SX9OFZ25skxLKx2KCVXZZF5MV9ez5RMy7F58O7_0KuUFz8BIRJ4UuOGmGUthCjBSnVofhsiEmqlQjAGBRYASLeS6EUapwHKjwzFggVTaSMVM8adkL5_n9jmhysqx0kihI2HBjIWGOUQblDi2KkiZaJHjetgTU9GSozpGlpSEyixBZyXorBZ505guSi6ObUZn6LvGAOmz3Yl5MUmqbExCrkXIjDwV8JhcceiUNNJoP0rT0LdpixzVnk_qkEwYh4dmKNnVIq-bZshG3GJRuZ2v0YYzALWcg82zMlCantSB1iJiI4Q2urrZkk-vHeO3wP3lCK582wTb_0bg2IXh3RbJeaeHEivRizs7-ZIcMvyy4OrTj8jeqljbVwC_VrpNdlkwgKMYiTbZP7voD7623acMOH4a-W2XfNAy7A863_8Cnx40gw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjFeEN8UBpgvaS9hjZ3E8cOEtrGqY22H0Cb1LdiO21Vq05K2TOOP42_jLnECFWNve20ujeP7-Xzx3f2OkHfKxNqXJvZUbFIvAJffkzringxEUBCeKIO1w91e1D4LPvfD_hr5VdXCYFplZRMLQ51ODZ6R7zAOjgnDhkkfZ9897BqF0dWqhYZyrRXS3YJizBV2HNvLC_iEm-8efQJ9v2esdXh60PZclwHPgKsSeVJgcEkzlgLcjVRN6_NQmFAzFYoBeBsRPNgCro0wSgWWGx0OYN9LpY1UzBSH_71FNgIeSPj429g_7H35Wp_ywIJikfArSqMm2zFqEnxgAmu3_9oIi34BVzm5_-Zqbi6zmbq8UOPxqj9dbIite-Su82TpXgm9-2TNZg_I7a6L1T8kP1snndZJn9ap7DQv83EtneUohZCgo4xO7EJhXdPI0GkOQqakjKLIp432GB5iEJs5dSSwc_pjpOikSAO11PW9GFI1HoLCFueT-SNydiM6eEzWs2lmnxKqrBwojZQ9EjboWGiwWdpgS2WrgpSJBtmupj0xjgYdu3GMk5LAmSWooQQ11CBvatFZyf1xldA-6q4WQLru4odpPkzc6k9CrkXIjGwKeE2uOAxKGmm0H6Vp6Nu0QbYqzSfOhsyTP4hvkNf1ZVj9GNJRmZ0uUYYzcKI5B5knJVDqkYC1ljCLYYOIFQitDHX1SjY6LxjGBcazI7jzbQ2262Zgu4Dh_yWSg70utnSJnl3_nq_IZvu020k6R73j5-QOw6ONIkF-i6wv8qV9Af7fQr90i4ySbze9rn8DbANt4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkAYviG8KA8yXtJfQxk7i-AGhsRFtbN14YFLfMttxu0ptUtKWafxp_HXcOR9QMfa21-SaOL7fna--8-8IeatMrH1pYk_FJvMCCPk9qSPuyUAEjvBEGTw73D-K9k6CL4NwsEZ-NWdhsKyy8YnOUWeFwT3yLuMQmDBsmNQd1mURX3eTj7PvHnaQwkxr006jgsiBvTiHv2_zD_u7oOt3jCWfv-3seXWHAc9AmBJ5UmBiSTOWAdSNVD3r81CYUDMViiFEGhG81AKmjTBKBZYbHQ5hzcukjVTMFIfn3iA3BecSywnFQLT7O2BKLBJ-Q2bUY12jpsF7JvDU9l9LoOsUcFl4-2-V5q1lPlMX52oyWY2k3VKY3CV36hiWblegu0fWbH6fbPTrLP0D8jM5PkyOB7QtYqdlVYlr6axEKQQDHed0ahcKTzSNDS1KEDIVWRRFJm30xPASg6gsaU3_Oqc_xopOXQGopXXHixFVkxGoZ3E2nT8kJ9eigUdkPS9y-4RQZeVQaSTrkbA0x0KDt9IGmylbFWRMdMhWM-2pqQnQsQ_HJK2om1mKGkpRQx3yuhWdVawflwl9Qt21AkjU7S4U5Sit7T4NuRYhM7In4DO54jAoaaTRfpRloW-zDtlsNJ_W3mOe_sF6h7xqb4PdYzJH5bZYogxnED5zDjKPK6C0IwE_LWEWww4RKxBaGerqnXx85rjFBWayI_jlmxZsV83AloPh_yXSne0-NnOJnl79nS_JBlhzerh_dPCM3Ga4p-Eq4zfJ-qJc2ucQ-C30C2dhlJxet0n_BmpPa3s
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELWgK8Fe-IYNLMh8HPaSsrUTOz6WFdUK0V0OVCqnYDtuN6JNqrQFsb-emcSNCCwIiWvz0tjOzPgpM35DyCttEzNQNgl1YrMwAsofKiN4qCIZ1YIn2uLZ4fGZOJ1E76bx1Pc5xbMwjT5E-8ENPaOO1-jgq2zWxHmf3WevrV5GfSYTcZ3siRjIeI_sTc4-DD9hSzkgKyF4T7TTE_oZ39mFarH-qxjm74WSN7fFSn__pheLLpmtd6PRbfJ5N4-mCOVLf7sxfXv5i8Tjf0z0DrnlmSodNqZ1l1xzxT1yY-xz8ffJ5ej8_eh8SttSdVo19baOripE4SuneUGXbqPx3FJuaVkByDaSUBT1svHx8BCLtldRL_K6pl9zTZd1maejvq_FnOrFvKzyzcVy_YBMRm8_npyGvpNDaIEOilBJTOAZxjIIKVbpYzfgsbSxYTqWM2B0Aling9hhpdU6ctyaeAbcIlNO6IRp_pD0irJwB4Rqp2baoCSPgg04kQZikrHYMtnpKGMyIEe7N5taL3OO3TYWaSPQzFJcyxTXMiAvWuiq0fa4CvQGzaMFoBx3_UNZzVPv3WnMjYyZVccSpsk1h0Epq6wZiCyLBy4LyOHOuFIfI9Yp4zBphi3AAvK8vQzejSkbXbhyixjOgCRzDphHjS22I4ForGAV44DIjpV2htq9UuQXtYK4xHy1gDtftvb8txU4qs3zz4j0ZDjGli3i8T_94ROyz_CrRV37fkh6m2rrngK125hn3n1_AKz6T94
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FOLFOX+treatment+response+prediction+in+metastatic+or+recurrent+colorectal+cancer+patients+via+machine+learning+algorithms&rft.jtitle=Cancer+medicine+%28Malden%2C+MA%29&rft.au=Lu%2C+Wei&rft.au=Fu%2C+Dongliang&rft.au=Kong%2C+Xiangxing&rft.au=Huang%2C+Zhiheng&rft.date=2020-02-01&rft.eissn=2045-7634&rft.volume=9&rft.issue=4&rft.spage=1419&rft_id=info:doi/10.1002%2Fcam4.2786&rft_id=info%3Apmid%2F31893575&rft.externalDocID=31893575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7634&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7634&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7634&client=summon