Covariate Model Selection Approaches for Population Pharmacokinetics: A Systematic Review of Existing Methods, From SCM to AI

ABSTRACT A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existin...

Full description

Saved in:
Bibliographic Details
Published inCPT: pharmacometrics and systems pharmacology Vol. 14; no. 4; pp. 621 - 639
Main Authors Karlsen, Mélanie, Khier, Sonia, Fabre, David, Marchionni, David, Azé, Jérôme, Bringay, Sandra, Poncelet, Pascal, Calvier, Elisa
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.04.2025
American Society for Clinical Pharmacology and Therapeutics ; International Society of Pharmacometrics
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2163-8306
2163-8306
DOI10.1002/psp4.13306

Cover

Abstract ABSTRACT A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed that EBEs‐based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques—AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of different scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias (MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open‐source benchmark of simulated datasets on a representative set of scenarios.
AbstractList ABSTRACT A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed that EBEs‐based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques—AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of different scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias (MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open‐source benchmark of simulated datasets on a representative set of scenarios.
ABSTRACT A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed that EBEs‐based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques—AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of different scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias (MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open‐source benchmark of simulated datasets on a representative set of scenarios.
A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed that EBEs‐based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques—AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of different scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias (MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open‐source benchmark of simulated datasets on a representative set of scenarios.
A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed that EBEs-based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques-AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of different scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias (MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open-source benchmark of simulated datasets on a representative set of scenarios.A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed that EBEs-based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques-AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of different scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias (MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open-source benchmark of simulated datasets on a representative set of scenarios.
Author Calvier, Elisa
Khier, Sonia
Marchionni, David
Poncelet, Pascal
Fabre, David
Karlsen, Mélanie
Azé, Jérôme
Bringay, Sandra
AuthorAffiliation 3 Pharmacokinetics and Pharmacometrics Department, Faculty of Pharmaceutical and Biological Sciences Montpellier University Montpellier France
1 LIRMM, Laboratory of Computer Science, Robotics and Microelectronics in Montpellier, CNRS Montpellier University Montpellier France
4 Institute of Mathematics Alexander Grothendieck (IMAG), CNRS UMR 5149 Montpellier University Montpellier France
5 Applied Mathematics, Computer Science and Statistics (AMIS) Montpellier 3 University Montpellier France
2 Pharmacokinetics Dynamics and Metabolism/Translational Medicine and Early Development Sanofi R&D Montpellier Montpellier France
AuthorAffiliation_xml – name: 3 Pharmacokinetics and Pharmacometrics Department, Faculty of Pharmaceutical and Biological Sciences Montpellier University Montpellier France
– name: 2 Pharmacokinetics Dynamics and Metabolism/Translational Medicine and Early Development Sanofi R&D Montpellier Montpellier France
– name: 1 LIRMM, Laboratory of Computer Science, Robotics and Microelectronics in Montpellier, CNRS Montpellier University Montpellier France
– name: 4 Institute of Mathematics Alexander Grothendieck (IMAG), CNRS UMR 5149 Montpellier University Montpellier France
– name: 5 Applied Mathematics, Computer Science and Statistics (AMIS) Montpellier 3 University Montpellier France
Author_xml – sequence: 1
  givenname: Mélanie
  orcidid: 0009-0002-8868-295X
  surname: Karlsen
  fullname: Karlsen, Mélanie
  email: melanie.karlsen@gmail.com
  organization: Sanofi R&D Montpellier
– sequence: 2
  givenname: Sonia
  orcidid: 0000-0001-6712-8461
  surname: Khier
  fullname: Khier, Sonia
  organization: Montpellier University
– sequence: 3
  givenname: David
  surname: Fabre
  fullname: Fabre, David
  organization: Sanofi R&D Montpellier
– sequence: 4
  givenname: David
  surname: Marchionni
  fullname: Marchionni, David
  organization: Sanofi R&D Montpellier
– sequence: 5
  givenname: Jérôme
  orcidid: 0000-0002-7372-729X
  surname: Azé
  fullname: Azé, Jérôme
  organization: Montpellier University
– sequence: 6
  givenname: Sandra
  orcidid: 0000-0002-2830-3666
  surname: Bringay
  fullname: Bringay, Sandra
  organization: Montpellier 3 University
– sequence: 7
  givenname: Pascal
  orcidid: 0000-0002-8277-3490
  surname: Poncelet
  fullname: Poncelet, Pascal
  organization: Montpellier University
– sequence: 8
  givenname: Elisa
  orcidid: 0000-0002-3764-6249
  surname: Calvier
  fullname: Calvier, Elisa
  organization: Sanofi R&D Montpellier
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39831409$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04905888$$DView record in HAL
BookMark eNp9kt9v0zAQxyM0xMbYC38AssTL-NFhO07i8IKqamOVVlFReLYuyaV1SeJgJy194H_Hbca07WF-8enuc9873_llcNSYBoPgNaMXjFL-qXWtuGBhSONnwQlncTiS3j66Zx8HZ86tqT-JoCylL4LjMJUhEzQ9Cf5OzAashg7JzBRYkQVWmHfaNGTcttZAvkJHSmPJ3LR9BYfIfAW2htz80g12OnefyZgsdq7D2sdz8h03GrfElOTyj3adbpZkht3KFO4jubKmJovJjHSGjKevguclVA7Pbu_T4OfV5Y_J9ejm29fpZHwzyqMkikcRK4s8yzKURRJzAJqFEEICUSriXIRcRjISkjOJcYZQCpAiK2KIpMxiLgQNT4PpoFsYWKvW6hrsThnQ6uAwdqnA-tYrVCIpgQsWgYylYFymPOM8TEUalmlWYOS1PgxafdPCbgtVdSfIqNrvRO13og478fSXgW77rMYix6azUD1o4WGk0Su1NBvFOKWMx_ve3w0Kq0d51-MbtfdRkVL_VLlhnj2_rWbN7x5dp2rtcqwqaND0ToXMzzNiIhEeffsIXZveNn4LnvKCImJyL_jmfvt39f9_IA-8H4DcGucslk8Pgw3wVle4e4JU88VcDDn_AP105Bo
Cites_doi 10.1007/s10928-021-09757-w
10.1016/j.xphs.2017.04.029
10.1208/s12248-016-0001-4
10.1089/aid.2020.0108
10.1007/s10928-023-09887-3
10.1002/psp4.12838
10.1007/s10928-023-09856-w
10.1007/s40262-021-01033-x
10.1002/psp4.13115
10.1002/psp4.12612
10.1007/s10928-024-09911-0
10.1007/s10928-006-9004-6
10.1007/BF01061469
10.1111/bcp.13577
10.1007/s10928-017-9504-6
10.1007/s10928-005-0040-4
10.1023/A:1011970125687
10.1208/s12248-024-00934-6
10.1007/s10928-007-9057-1
10.1002/psp4.12742
10.1023/A:1011579109640
10.1208/s12248-011-9289-2
10.1136/bmj.n71
10.1002/psp4.12208
10.1002/psp4.12874
10.1007/s10928-019-09635-6
10.1002/psp4.12828
10.1111/j.1365-2125.1989.tb05431.x
10.1198/016214506000000735
10.1208/ps040427
10.1007/s10928-021-09782-9
10.1007/s10928-023-09875-7
10.1007/s10928-012-9258-0
10.1208/s12248-021-00572-2
10.1002/psp4.12741
10.1007/s00228-007-0269-5
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
2025 The Author(s). CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
– notice: 2025 The Author(s). CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution - NonCommercial - NoDerivatives
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOA
DOI 10.1002/psp4.13306
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList

ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2163-8306
EndPage 639
ExternalDocumentID oai_doaj_org_article_47fa2415a868412892b2239493f9bde5
10.1002/psp4.13306
PMC12001260
oai:HAL:hal-04905888v1
39831409
10_1002_psp4_13306
PSP413306
Genre reviewArticle
Systematic Review
Journal Article
GroupedDBID 0R~
1OC
24P
5VS
7X7
8FI
8FJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
DIK
EBS
EJD
FYUFA
GODZA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
M48
O9-
OK1
PHGZT
PIMPY
PQQKQ
PROAC
RNTTT
RPM
TUS
UKHRP
AAYXX
ADPDF
CITATION
M~E
OVD
PHGZM
PUEGO
TEORI
WIN
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5756-51fdcbbbe8d762aa0b3a3a7a5946c432858548218e6beaf4a84bd6a588b624403
IEDL.DBID M48
ISSN 2163-8306
IngestDate Fri Oct 03 12:43:00 EDT 2025
Sun Oct 26 04:16:31 EDT 2025
Tue Sep 30 17:04:07 EDT 2025
Tue Oct 14 20:54:49 EDT 2025
Fri Sep 05 06:57:08 EDT 2025
Tue Oct 07 06:45:42 EDT 2025
Wed Jul 30 01:49:30 EDT 2025
Wed Oct 01 06:03:15 EDT 2025
Wed Apr 16 09:40:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords covariate modeling
population pharmacokinetic
covariate model building
pharmacometrics
machine learning
artificial intelligence
covariate screening
Covariate screening
Covariate model building
Machine learning
Pharmacometrics
Artificial intelligence
Covariate modeling
Population pharmacokinetic
Language English
License Attribution-NonCommercial-NoDerivs
2025 The Author(s). CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5756-51fdcbbbe8d762aa0b3a3a7a5946c432858548218e6beaf4a84bd6a588b624403
Notes This material is based upon work supported by the ANRT (Association nationale de la recherche et de la technologie) with a CIFRE fellowship granted to Mélanie Karlsen.
Funding
ObjectType-Article-1
ObjectType-Evidence Based Healthcare-3
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Funding: This material is based upon work supported by the ANRT (Association nationale de la recherche et de la technologie) with a CIFRE fellowship granted to Mélanie Karlsen.
ORCID 0000-0002-3764-6249
0009-0002-8868-295X
0000-0002-7372-729X
0000-0002-2830-3666
0000-0002-8277-3490
0000-0001-6712-8461
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/psp4.13306
PMID 39831409
PQID 3190545181
PQPubID 4368367
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_47fa2415a868412892b2239493f9bde5
unpaywall_primary_10_1002_psp4_13306
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12001260
hal_primary_oai_HAL_hal_04905888v1
proquest_miscellaneous_3157551474
proquest_journals_3190545181
pubmed_primary_39831409
crossref_primary_10_1002_psp4_13306
wiley_primary_10_1002_psp4_13306_PSP413306
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2025
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle CPT: pharmacometrics and systems pharmacology
PublicationTitleAlternate CPT Pharmacometrics Syst Pharmacol
PublicationYear 2025
Publisher John Wiley & Sons, Inc
American Society for Clinical Pharmacology and Therapeutics ; International Society of Pharmacometrics
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Society for Clinical Pharmacology and Therapeutics ; International Society of Pharmacometrics
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 6
2021; 48
2021; 23
2011
2006; 33
2017; 44
2024; 51
2004; 6
2002; 4
2011; 13
2018; 84
2012; 39
2001; 28
2024; 13
2024
2007; 34
2022; 49
1989; 28
1998; 15
2021; 37
2021; 10
2024; 115
2019; 46
2005; 32
2017; 19
2021; 372
2022; 11
2007; 63
1992; 20
2024; 26
2021; 60
2006; 101
2023; 50
2017; 106
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
Xinnong L. (e_1_2_8_41_1) 2024; 115
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
Karlsson M. O. (e_1_2_8_18_1) 2011
e_1_2_8_23_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
Gabaut A. (e_1_2_8_39_1) 2024
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Rebai I. (e_1_2_8_40_1) 2024
e_1_2_8_30_1
Gastonguay M. R. (e_1_2_8_17_1) 2004; 6
References_xml – year: 2011
– volume: 32
  start-page: 333
  year: 2005
  end-page: 358
  article-title: Cluster Analysis: An Alternative Method for Covariate Selection in Population Pharmacokinetic Modeling
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– volume: 6
  start-page: 552
  year: 2017
  end-page: 559
  article-title: Supervised Machine‐Learning Reveals That Old and Obese People Achieve Low Dapsone Concentrations
  publication-title: CPT: Pharmacometrics & Systems Pharmacology
– volume: 115
  start-page: 758
  issue: 14
  year: 2024
  end-page: 773
  article-title: pyDarwin: A Machine Learning Enhanced Automated Nonlinear Mixed‐Effect Model Selection Toolbox
  publication-title: CPT
– volume: 11
  start-page: 149
  year: 2022
  end-page: 160
  article-title: An Introduction to the Full Random Effects Model
  publication-title: CPT: Pharmacometrics & Systems Pharmacology
– volume: 48
  start-page: 597
  year: 2021
  end-page: 609
  article-title: Fast Screening of Covariates in Population Models Empowered by Machine Learning
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– volume: 34
  start-page: 485
  year: 2007
  end-page: 517
  article-title: The Lasso—A Novel Method for Predictive Covariate Model Building in Nonlinear Mixed Effects Models
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– volume: 6
  start-page: W4354
  issue: S1
  year: 2004
  article-title: A Full Model Estimation Approach for Covariate Effects: Inference Based on Clinical Importance and Estimation Precision
  publication-title: AAPS Journal
– volume: 51
  start-page: 155
  year: 2024
  end-page: 167
  article-title: Learning Pharmacometric Covariate Model Structures With Symbolic Regression Networks
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– volume: 51
  start-page: 653
  year: 2024
  end-page: 670
  article-title: Impact of Covariate Model Building Methods on Their Clinical Relevance Evaluation in Population Pharmacokinetic Analyses: Comparison of the Full Model, Stepwise Covariate Model (SCM) and SCM+ Approaches
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– volume: 106
  start-page: 2407
  year: 2017
  end-page: 2411
  article-title: An Evolutionary Search Algorithm for Covariate Models in Population Pharmacokinetic Analysis
  publication-title: Journal of Pharmaceutical Sciences
– volume: 11
  start-page: 161
  year: 2022
  end-page: 172
  article-title: SAMBA: A Novel Method for Fast Automatic Model Building in Nonlinear Mixed‐Effects Models
  publication-title: CPT: Pharmacometrics & Systems Pharmacology
– volume: 33
  start-page: 195
  year: 2006
  end-page: 221
  article-title: A Genetic Algorithm‐Based, Hybrid Machine Learning Approach to Model Selection
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– year: 2024
– volume: 46
  start-page: 273
  year: 2019
  end-page: 285
  article-title: Operating Characteristics of Stepwise Covariate Selection in Pharmacometric Modeling
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– volume: 63
  start-page: 437
  year: 2007
  end-page: 449
  article-title: Modelling the Influence of MDR1 Polymorphism on Digoxin Pharmacokinetic Parameters
  publication-title: European Journal of Clinical Pharmacology
– volume: 44
  start-page: 55
  year: 2017
  end-page: 66
  article-title: Adjusted Adaptive Lasso for Covariate Model‐Building in Nonlinear Mixed‐Effect Pharmacokinetic Models
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– volume: 4
  start-page: 68
  year: 2002
  end-page: 79
  article-title: Comparison of Stepwise Covariate Model Building Strategies in Population Pharmacokinetic‐Pharmacodynamic Analysis
  publication-title: AAPS Journal
– volume: 60
  start-page: 1435
  year: 2021
  end-page: 1448
  article-title: Drug Clearance in Neonates: A Combination of Population Pharmacokinetic Modelling and Machine Learning Approaches to Improve Individual Prediction
  publication-title: Clinical Pharmacokinetics
– volume: 28
  start-page: 305
  year: 1989
  end-page: 314
  article-title: Population Pharmacokinetics of Tobramycin
  publication-title: British Journal of Clinical Pharmacology
– volume: 19
  start-page: 264
  year: 2017
  end-page: 273
  article-title: Further Evaluation of Covariate Analysis Using Empirical Bayes Estimates in Population Pharmacokinetics: The Perception of Shrinkage and Likelihood Ratio Test
  publication-title: AAPS Journal
– volume: 15
  start-page: 1463
  year: 1998
  end-page: 1468
  article-title: Automated Covariate Model Building Within NONMEM
  publication-title: Pharmaceutical Research
– volume: 50
  start-page: 315
  year: 2023
  end-page: 326
  article-title: Operational Characteristics of Full Random Effects Modelling (‘frem’) Compared to Stepwise Covariate Modelling ('scm')
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– volume: 28
  start-page: 253
  year: 2001
  end-page: 275
  article-title: Efficient Screening of Covariates in Population Models Using Wald's Approximation to the Likelihood Ratio Test
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– volume: 11
  start-page: 1638
  year: 2022
  end-page: 1648
  article-title: Evaluation of Machine Learning Methods for Covariate Data Imputation in Pharmacometrics
  publication-title: CPT: Pharmacometrics & Systems Pharmacology
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  article-title: The Adaptive Lasso and Its Oracle Properties
  publication-title: Journal of the American Statistical Association
– volume: 13
  start-page: 710
  issue: 15
  year: 2024
  end-page: 728
  article-title: Covariate Modeling in Pharmacometrics: General Points for Consideration
  publication-title: CPT: Pharmacometrics & Systems Pharmacology
– volume: 11
  start-page: 1210
  year: 2022
  end-page: 1222
  article-title: Efficient and Relevant Stepwise Covariate Model Building for Pharmacometrics
  publication-title: CPT: Pharmacometrics & Systems Pharmacology
– volume: 23
  start-page: 37
  year: 2021
  article-title: A Modified Hybrid Wald's Approximation Method for Efficient Covariate Selection in Population Pharmacokinetic Analysis
  publication-title: AAPS Journal
– volume: 39
  start-page: 393
  year: 2012
  end-page: 414
  article-title: Application of a Single‐Objective, Hybrid Genetic Algorithm Approach to Pharmacokinetic Model Building
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– volume: 13
  start-page: 464
  year: 2011
  end-page: 472
  article-title: A Fast Method for Testing Covariates in Population PK/PD Models
  publication-title: AAPS Journal
– volume: 20
  start-page: 511
  year: 1992
  end-page: 528
  article-title: Building Population Pharmacokineticpharmacodynamic Models. I. Models for Covariate Effects
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
– volume: 84
  start-page: 1525
  year: 2018
  end-page: 1534
  article-title: Full Covariate Modelling Approach in Population Pharmacokinetics: Understanding the Underlying Hypothesis Tests and Implications of Multiplicity
  publication-title: British Journal of Clinical Pharmacology
– volume: 37
  start-page: 421
  issue: 6
  year: 2021
  end-page: 428
  article-title: Individualized Adherence Benchmarks for HIV Pre‐Exposure Prophylaxis
  publication-title: AIDS Research and Human Retroviruses
– volume: 10
  start-page: 318
  year: 2021
  end-page: 329
  article-title: A Novel Method Based on Unbiased Correlations Tests for Covariate Selection in Nonlinear Mixed Effects Models: The COSSAC Approach
  publication-title: CPT: Pharmacometrics & Systems Pharmacology
– volume: 372
  start-page: n71
  year: 2021
  article-title: The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews
  publication-title: BMJ
– volume: 51
  start-page: 109
  year: 2024
  end-page: 121
  article-title: Go Beyond the Limits of Genetic Algorithm in Daily Covariate Selection Practice
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– volume: 26
  start-page: 63
  issue: 63
  year: 2024
  article-title: Machine‐Learning Assisted Screening of Correlated Covariates: Application to Clinical Data of Desipramine
  publication-title: AAPS Journal
– volume: 49
  start-page: 243
  year: 2022
  end-page: 256
  article-title: Development of a Genetic Algorithm and NONMEM Workbench for Automating and Improving Population Pharmacokinetic/Pharmacodynamic Model Selection
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– volume: 11
  start-page: 1100
  year: 2022
  end-page: 1110
  article-title: Application of SHAP Values for Inferring the Optimal Functional Form of Covariates in Pharmacokinetic Modeling
  publication-title: CPT: Pharmacometrics & Systems Pharmacology
– ident: e_1_2_8_28_1
  doi: 10.1007/s10928-021-09757-w
– volume-title: mlcov: New Machine Learning Based R Package for Covariate Selection
  year: 2024
  ident: e_1_2_8_40_1
– ident: e_1_2_8_23_1
  doi: 10.1016/j.xphs.2017.04.029
– ident: e_1_2_8_42_1
  doi: 10.1208/s12248-016-0001-4
– ident: e_1_2_8_31_1
  doi: 10.1089/aid.2020.0108
– ident: e_1_2_8_35_1
  doi: 10.1007/s10928-023-09887-3
– ident: e_1_2_8_7_1
  doi: 10.1002/psp4.12838
– ident: e_1_2_8_16_1
  doi: 10.1007/s10928-023-09856-w
– ident: e_1_2_8_32_1
  doi: 10.1007/s40262-021-01033-x
– ident: e_1_2_8_37_1
  doi: 10.1002/psp4.13115
– ident: e_1_2_8_6_1
  doi: 10.1002/psp4.12612
– ident: e_1_2_8_4_1
  doi: 10.1007/s10928-024-09911-0
– ident: e_1_2_8_20_1
  doi: 10.1007/s10928-006-9004-6
– ident: e_1_2_8_26_1
  doi: 10.1007/BF01061469
– ident: e_1_2_8_15_1
  doi: 10.1111/bcp.13577
– ident: e_1_2_8_14_1
  doi: 10.1007/s10928-017-9504-6
– ident: e_1_2_8_34_1
  doi: 10.1007/s10928-005-0040-4
– volume-title: Population Approach Group Europe (PAGE)
  year: 2024
  ident: e_1_2_8_39_1
– ident: e_1_2_8_5_1
  doi: 10.1023/A:1011970125687
– ident: e_1_2_8_29_1
  doi: 10.1208/s12248-024-00934-6
– ident: e_1_2_8_3_1
  doi: 10.1007/s10928-007-9057-1
– ident: e_1_2_8_8_1
  doi: 10.1002/psp4.12742
– ident: e_1_2_8_12_1
  doi: 10.1023/A:1011579109640
– volume: 115
  start-page: 758
  issue: 14
  year: 2024
  ident: e_1_2_8_41_1
  article-title: pyDarwin: A Machine Learning Enhanced Automated Nonlinear Mixed‐Effect Model Selection Toolbox
  publication-title: CPT
– ident: e_1_2_8_10_1
  doi: 10.1208/s12248-011-9289-2
– volume-title: A Full Model Approach Based on the Covariance Matrix of Parameters and Covariates
  year: 2011
  ident: e_1_2_8_18_1
– ident: e_1_2_8_2_1
  doi: 10.1136/bmj.n71
– ident: e_1_2_8_30_1
  doi: 10.1002/psp4.12208
– ident: e_1_2_8_36_1
  doi: 10.1002/psp4.12874
– ident: e_1_2_8_9_1
  doi: 10.1007/s10928-019-09635-6
– ident: e_1_2_8_33_1
  doi: 10.1002/psp4.12828
– ident: e_1_2_8_25_1
  doi: 10.1111/j.1365-2125.1989.tb05431.x
– ident: e_1_2_8_19_1
  doi: 10.1198/016214506000000735
– ident: e_1_2_8_27_1
  doi: 10.1208/ps040427
– ident: e_1_2_8_22_1
  doi: 10.1007/s10928-021-09782-9
– ident: e_1_2_8_21_1
  doi: 10.1007/s10928-023-09875-7
– ident: e_1_2_8_24_1
  doi: 10.1007/s10928-012-9258-0
– ident: e_1_2_8_13_1
  doi: 10.1208/s12248-021-00572-2
– ident: e_1_2_8_11_1
  doi: 10.1002/psp4.12741
– volume: 6
  start-page: W4354
  issue: 1
  year: 2004
  ident: e_1_2_8_17_1
  article-title: A Full Model Estimation Approach for Covariate Effects: Inference Based on Clinical Importance and Estimation Precision
  publication-title: AAPS Journal
– ident: e_1_2_8_38_1
  doi: 10.1007/s00228-007-0269-5
SSID ssj0000740190
Score 2.341224
SecondaryResourceType review_article
Snippet ABSTRACT A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all...
A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The...
ABSTRACT A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all...
SourceID doaj
unpaywall
pubmedcentral
hal
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 621
SubjectTerms Algorithms
Artificial Intelligence
Business metrics
Computer Simulation
covariate model building
covariate modeling
covariate screening
Datasets
Drug development
Genetic algorithms
Humans
Life Sciences
machine learning
Methods
Models, Biological
Pharmaceutical sciences
Pharmacokinetics
Pharmacology
pharmacometrics
Population
population pharmacokinetic
Review
Systematic review
Systemic Review
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQLnBB_CYw0AOmHdDC0sRxHW6hWlUQRZG6SbtZduJsiJJUazvogf-d95wsazRpXLhFieUkfs_P35Ofv4-xPWMTkWib-2E0pCM5tvRljFfEXFQGREhl6aDw9JuYnPAvp_HpltQX1YQ19MDNwB3yYalpldFSSI7BNAlNSHLe2FViCuvYSwOZbCVTLgaT0FwSdHyk4eFiueAfMCEjaaOtFcgR9eO6ck5lkDcx5s1SybvraqE3v_R83oezbj0aP2D3WyAJafMDD9kdWz1i-1nDRL05gOPrg1XLA9iH7JqjevOY_RnVl5glI9AEUkObw8zp4aCRIG1Zxu0SENBC1il8dV38QGRK3X6EFGYdEzQ02wxQl3D0myJHdQZTp0-N7x9f1D9hNprCqob08xN2Mj46Hk38VonBzxHOCT8elEVujLGywOCpdWAiHemhjhMuch6FtLnIJaIFK4zVJdeSm0LoWEojED8E0VO2U9WVfc6gCINQY5IT0YnbQVRohKRCigKhSJ4Uwnjs3ZV11KIh3FANtXKoyIbK2dBjn8hwXQsiyXY30HVU6zrqX67jsbdo9l4fk_Sronu0H4pfLy8HHtu98grVTu-lwriFUDdGdOSxN91jnJi026IrW6-pDQ4dwtEh99izxom6V0WJjIhpzGOy5169b-k_qb6fO_LvARXBYRLqsb3OE28dqPfOSW9porJZxt3Vi_8xqi_ZvZA0kl110y7bWV2s7SsEbivz2s3Rv-qTPNc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5N3QO8AOPXAhsyMO0BLV2bOK7DW6hWFUSnSF2l8RTZibOhlaRa20GR-N-5S9JsYVLFm2U7tmOf7c-6u-8ADrTxha9MbDtuj1xyTGpLD1PEXJR2iJDKkKPw6FQMJ_zLuXe-Be_WvjBN_b1zPJvPeBvfUcSqvS08xNst2J6chsE3ihqHYMKWWFbzjt79oHHTFIT8eH9ckrnjfSx53yTywTKbqdVPNZ02YWtx7wweQ3894tLc5Kq9XOh2_PsfMsfNv_QEHlWwkwWlnOzAlsmewmFY8lavjtjZrRvW_IgdsvCW0Xr1DP708xt8UyMsZRQ7bcrGRfQcXFIWVJzkZs4Q_rKwjgdWN3GFOJaa_cgCNq55o1mplGB5yk5-0TmTXbBREc0a-x9c5z_YuD9ii5wFn5_DZHBy1h_aVdwGO0bwJ2yvmyax1trIBI9apTraVa7qKc_nIuauQ6pILhFbGKGNSrmSXCdCeVJqgWij476AVpZnZhdY4nQchU8il_xzu26iEMAKKRIELrGfCG3B-_UaR7OSniMqiZidiOY5KubZgk-0_HUNotQuMnBZomqHRryXKoIzSgrJ8db2He1Q3HiUWV8nxrNQSHHv321jGHyNKI-0pzh6edO1YG8tW1F1GMwjPOUQGHuIpSx4WxfjNibdjMpMvqQ6OHUIXnvcgpelKNZdub50iZfMAtkQ0sZYmiXZ98uCKrxLJnP4ZLXgoJbnjRP1oRD1DVWicBzyIvXq_9p8DQ8diplcWDvtQWtxvTT7COQW-k21k_8Cnz9CaA
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcoAL4k2gIANVD6ihieN4HcQlrLpaEIsibSv1ZtmJ0yKWZLWPwh7478w42ayiSpW4WcnEjjwz9ufHfEPIobGJSLTNfRYNMCTHlr6MoYTMRWWAhFQWA4Un38X4nH-9iC_2yKdtLEzDD9FtuKFnuPEaHVyb5cmONHS-nPMPsMJCvu07IQAZtG_Gs26HJcBkc26ThQHo8CVIdvyk7GT3eW9GcsT9MM9c4bXIm5jz5tXJu-tqrje_9WzWh7dufho9IPdbYEnTxhIekj1bPSJHWcNMvTmmZ7tAq-UxPaLZjrN685j8HdbXsGoG4EkxO9qMTl1-HFAaTVvWcbukAHBp1mX86qr4CX2J1X6kKZ12zNC0OXagdUlP_-BIUl3SictXDe2PFvUvOh1O6Kqm6Zcn5Hx0ejYc-21mBj8HeCf8OCyL3BhjZQGDqdaBiXSkBzpOuMh5xPCwkUtAD1YYq0uuJTeF0LGURgCeCKKnZL-qK_uc0IIFTMOiJ8II3DAqNEBUIUUB0CRPCmE88m6rHTVvCDhUQ7XMFOpQOR165DMqrpNA0mz3oF5cqtYHFR-UGgGLlkJymJcTZhhmhgerTExhY4-8BbX36hin3xQ-w_NR-Ht5HXrkYGsVqnX3pYJxDKBvDGjJI2-61-CoePqiK1uvUQa6DuDpgHvkWWNEXVNRIiNkHvOI7JlX71_6b6ofV44MPMRLcbAo9chhZ4m3dtR7Z6S3iKhsmnFXevE_wi_JPYa5kd2tpgOyv1qs7SsAbCvz2vnlP_zKOE8
  priority: 102
  providerName: Wiley-Blackwell
Title Covariate Model Selection Approaches for Population Pharmacokinetics: A Systematic Review of Existing Methods, From SCM to AI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpsp4.13306
https://www.ncbi.nlm.nih.gov/pubmed/39831409
https://www.proquest.com/docview/3190545181
https://www.proquest.com/docview/3157551474
https://hal.science/hal-04905888
https://pubmed.ncbi.nlm.nih.gov/PMC12001260
https://doi.org/10.1002/psp4.13306
https://doaj.org/article/47fa2415a868412892b2239493f9bde5
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2163-8306
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740190
  issn: 2163-8306
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2163-8306
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740190
  issn: 2163-8306
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2163-8306
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740190
  issn: 2163-8306
  databaseCode: ABDBF
  dateStart: 20150501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2163-8306
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740190
  issn: 2163-8306
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2163-8306
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740190
  issn: 2163-8306
  databaseCode: GX1
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2163-8306
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740190
  issn: 2163-8306
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2163-8306
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740190
  issn: 2163-8306
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2163-8306
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740190
  issn: 2163-8306
  databaseCode: 7X7
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2163-8306
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740190
  issn: 2163-8306
  databaseCode: BENPR
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2163-8306
  dateEnd: 20250731
  omitProxy: true
  ssIdentifier: ssj0000740190
  issn: 2163-8306
  databaseCode: M48
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2163-8306
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740190
  issn: 2163-8306
  databaseCode: AVUZU
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2163-8306
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740190
  issn: 2163-8306
  databaseCode: 24P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLXG9gAviG8yRmVg2gNaRps4joOEUFa1FESriK5S9xTZjbOhlaT0Y6wP_HfuddKMaGjiJYpix458r-1zY_scQvaVDngg9cR2XB-P5OjUFh7cIXNR2kRCKo0HhfsD3huxL2NvvEU2-p1lAy7-GdqhntRoPj26-rn-CB3-Q0kg-m62mLEjiLWQeXsHZqgAJRz6Jcw3IzLKzpnfLQ7AD1tAzoqp9O_Xa3OTofCHGeccN0jeRJ83N1HeXWUzuf4lp9M60DUzVfcBuV9CTBoWPvGQbOnsETmICo7q9SE9uT5ytTikBzS6Zq9ePya_2_klxM8AQSnqpE3p0CjlgPloWPKP6wUFqEujSvurKuICMCsW-56GdFhxRNNiAYLmKe1c4ZiSndG-Ua6G-rvz_Acdtvt0mdPw8xMy6nZO2j271GiwJwD0uO210mSilNIigWFVyqZypSt96QWMT5jr4LIjE4AjNFdapkwKphIuPSEUB2TRdJ-S7SzP9HNCE6fpSAh_XDyL23ITCWCVC54ASJkECVcWebOxTjwrqDjignTZidGGsbGhRY7RcFUOpM82D_L5WVz2xpj5qUToIgUXDGbowFEOasSDfwYq0Z5FXoPZa2X0wq8xPsOVUvh6cdmyyN7GK-KN38YwogEI9gA3WeRVlQxdFtdhZKbzFeaBpgOg6jOLPCucqKrKDYSLHGQWETX3qn1LPSX7fm5owVu4PQ7CU4vsV554a0O9NU56S5Y4GkbM3O3-V9u_IPcclEc2G5v2yPZyvtIvAbMtVYPccVgEV3_sN8jOcWcQfWuY_x9w_TRuNUyHhZTRIApP_wDSaEKf
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQeBgviG8CAwxMe0ALaxzHdXgL1aoO2ilSO2lvlt04G1qXVP0Y9IH_nTsnSxVNmsRblFycyHdn_2zf_Y6QfWNjEWs79VnYxZQcm_sygitkLso7SEhlMVF4dCoGZ_zHeXRex-ZgLkzFD9FsuKFnuPEaHRw3pI-2rKHz5Zx_hSUWEm4_5CIQuPZiPG22WDpYbc7tsjBAHb4EyYaglB1tX29NSY65HyaaS4yLvAs678ZO7q6Lud781rNZG9-6Car_hDyukSVNKlN4Sh7Y4hk5SCtq6s0hnWwzrZaH9ICmW9LqzXPyt1fewLIZkCfF8mgzOnYFckBrNKlpx-2SAsKlaVPyq2niCjoTm_1GEzpuqKFpde5Ay5we_8GhpLigI1ewGr7fX5TXdNwb0VVJk5MX5Kx_POkN_Lo0gz8FfCf8KMizqTHGygxGU607JtSh7uoo5mLKQ4anjVwCfLDCWJ1zLbnJhI6kNAIARSd8SXaKsrCvCc1Yh2lY9YSYghuEmQaMKqTIAJtM40wYj3y-1Y6aVwwcquJaZgp1qJwOPfIdFddIIGu2u1EuLlTthIp3c42IRUshOUzMMTMMS8ODWcYms5FHPoHaW20MkqHCe3hACn8vbwKP7N1ahar9falgIAPsGwFc8sjH5jF4Kh6_6MKWa5SBrgN82uUeeVUZUfOpMJYhUo95RLbMq_Uv7SfFr0vHBh5gVBysSj2y31jivR31xRnpPSIqHafcXb35H-EPZHcwGQ3V8OT051vyiGGhZBfitEd2Vou1fQfobWXeOx_9B8o3O7s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwEviG8yBhiY9oAWliaO6_AWyqoO1ilSVzTxYtmJs02UpOrHoA_879w5Wapo0iTeIufkRL47-2f77neE7GoT8UiZ1PWDHqbkmNwVITwhc1HuISGVwUTh0QkfTtjXs_Csjs3BXJiKH6I5cEPPsPM1OriZZfnBhjV0tpixj7DFQsLtLVjIPdYhW_H3yY9Jc8jiYb05e87iA-5wBcg2FKX-waaD1qJkufthqbnAyMibsPNm9OS9VTFT699qOm0jXLtEDR6SBzW2pHFlDI_IHVM8JntJRU693qenm1yrxT7do8mGtnr9hPztl1ewcQbsSbFA2pSObYkc0BuNa-Jxs6CAcWnSFP1quvgJw4ndfqIxHTfk0LS6eaBlTg__4GRSnNORLVkN3x_My1903B_RZUnjo6dkMjg87Q_dujiDmwLC427YzbNUa21EBvOpUp4OVKB6KowYT1ng430jEwAgDNdG5UwJpjOuQiE0B0jhBc9IpygL84LQzPd8BfueAJNwu0GmAKVywTNAJ2mUce2Q99fakbOKg0NWbMu-RB1Kq0OHfEbFNRLIm20byvm5rN1Qsl6uELMowQWDpTnytY_F4cEwI52Z0CHvQO2tPobxscQ2vCKFvxdXXYfsXFuFrD1-IWEqA_QbAmByyNvmNfgqXsCowpQrlIGhA4TaYw55XhlR86kgEgGSjzlEtMyr9S_tN8XlheUD72JcHOxLHbLbWOKtA_XBGuktIjIZJ8w-bf-P8BtyN_kykMdHJ99ekvs-Vkq2MU47pLOcr8wrgG9L_bp20n8hfT0P
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5N3QO8AOPXAhsyMO0BLV2bOK7DW6hWFUSnSF2l8RTZibOhlaRa20GR-N-5S9JsYVLFm2U7tmOf7c-6u-8ADrTxha9MbDtuj1xyTGpLD1PEXJR2iJDKkKPw6FQMJ_zLuXe-Be_WvjBN_b1zPJvPeBvfUcSqvS08xNst2J6chsE3ihqHYMKWWFbzjt79oHHTFIT8eH9ckrnjfSx53yTywTKbqdVPNZ02YWtx7wweQ3894tLc5Kq9XOh2_PsfMsfNv_QEHlWwkwWlnOzAlsmewmFY8lavjtjZrRvW_IgdsvCW0Xr1DP708xt8UyMsZRQ7bcrGRfQcXFIWVJzkZs4Q_rKwjgdWN3GFOJaa_cgCNq55o1mplGB5yk5-0TmTXbBREc0a-x9c5z_YuD9ii5wFn5_DZHBy1h_aVdwGO0bwJ2yvmyax1trIBI9apTraVa7qKc_nIuauQ6pILhFbGKGNSrmSXCdCeVJqgWij476AVpZnZhdY4nQchU8il_xzu26iEMAKKRIELrGfCG3B-_UaR7OSniMqiZidiOY5KubZgk-0_HUNotQuMnBZomqHRryXKoIzSgrJ8db2He1Q3HiUWV8nxrNQSHHv321jGHyNKI-0pzh6edO1YG8tW1F1GMwjPOUQGHuIpSx4WxfjNibdjMpMvqQ6OHUIXnvcgpelKNZdub50iZfMAtkQ0sZYmiXZ98uCKrxLJnP4ZLXgoJbnjRP1oRD1DVWicBzyIvXq_9p8DQ8diplcWDvtQWtxvTT7COQW-k21k_8Cnz9CaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covariate+Model+Selection+Approaches+for+Population+Pharmacokinetics%3A+A+Systematic+Review+of+Existing+Methods%2C+From+SCM+to+AI&rft.jtitle=CPT%3A+pharmacometrics+and+systems+pharmacology&rft.au=Karlsen%2C+M%C3%A9lanie&rft.au=Khier%2C+Sonia&rft.au=Fabre%2C+David&rft.au=Marchionni%2C+David&rft.date=2025-04-01&rft.issn=2163-8306&rft.eissn=2163-8306&rft.volume=14&rft.issue=4&rft.spage=621&rft.epage=639&rft_id=info:doi/10.1002%2Fpsp4.13306&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_psp4_13306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2163-8306&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2163-8306&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2163-8306&client=summon