Covariate Model Selection Approaches for Population Pharmacokinetics: A Systematic Review of Existing Methods, From SCM to AI
ABSTRACT A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existin...
Saved in:
| Published in | CPT: pharmacometrics and systems pharmacology Vol. 14; no. 4; pp. 621 - 639 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
John Wiley & Sons, Inc
01.04.2025
American Society for Clinical Pharmacology and Therapeutics ; International Society of Pharmacometrics John Wiley and Sons Inc Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2163-8306 2163-8306 |
| DOI | 10.1002/psp4.13306 |
Cover
| Abstract | ABSTRACT
A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed that EBEs‐based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques—AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of different scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias (MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open‐source benchmark of simulated datasets on a representative set of scenarios. |
|---|---|
| AbstractList | ABSTRACT A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed that EBEs‐based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques—AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of different scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias (MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open‐source benchmark of simulated datasets on a representative set of scenarios. ABSTRACT A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed that EBEs‐based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques—AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of different scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias (MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open‐source benchmark of simulated datasets on a representative set of scenarios. A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed that EBEs‐based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques—AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of different scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias (MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open‐source benchmark of simulated datasets on a representative set of scenarios. A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed that EBEs-based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques-AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of different scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias (MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open-source benchmark of simulated datasets on a representative set of scenarios.A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this review, evaluation setting, performance metrics along with their associated values, and relative computational times were reported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed that EBEs-based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques-AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of different scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias (MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open-source benchmark of simulated datasets on a representative set of scenarios. |
| Author | Calvier, Elisa Khier, Sonia Marchionni, David Poncelet, Pascal Fabre, David Karlsen, Mélanie Azé, Jérôme Bringay, Sandra |
| AuthorAffiliation | 3 Pharmacokinetics and Pharmacometrics Department, Faculty of Pharmaceutical and Biological Sciences Montpellier University Montpellier France 1 LIRMM, Laboratory of Computer Science, Robotics and Microelectronics in Montpellier, CNRS Montpellier University Montpellier France 4 Institute of Mathematics Alexander Grothendieck (IMAG), CNRS UMR 5149 Montpellier University Montpellier France 5 Applied Mathematics, Computer Science and Statistics (AMIS) Montpellier 3 University Montpellier France 2 Pharmacokinetics Dynamics and Metabolism/Translational Medicine and Early Development Sanofi R&D Montpellier Montpellier France |
| AuthorAffiliation_xml | – name: 3 Pharmacokinetics and Pharmacometrics Department, Faculty of Pharmaceutical and Biological Sciences Montpellier University Montpellier France – name: 2 Pharmacokinetics Dynamics and Metabolism/Translational Medicine and Early Development Sanofi R&D Montpellier Montpellier France – name: 1 LIRMM, Laboratory of Computer Science, Robotics and Microelectronics in Montpellier, CNRS Montpellier University Montpellier France – name: 4 Institute of Mathematics Alexander Grothendieck (IMAG), CNRS UMR 5149 Montpellier University Montpellier France – name: 5 Applied Mathematics, Computer Science and Statistics (AMIS) Montpellier 3 University Montpellier France |
| Author_xml | – sequence: 1 givenname: Mélanie orcidid: 0009-0002-8868-295X surname: Karlsen fullname: Karlsen, Mélanie email: melanie.karlsen@gmail.com organization: Sanofi R&D Montpellier – sequence: 2 givenname: Sonia orcidid: 0000-0001-6712-8461 surname: Khier fullname: Khier, Sonia organization: Montpellier University – sequence: 3 givenname: David surname: Fabre fullname: Fabre, David organization: Sanofi R&D Montpellier – sequence: 4 givenname: David surname: Marchionni fullname: Marchionni, David organization: Sanofi R&D Montpellier – sequence: 5 givenname: Jérôme orcidid: 0000-0002-7372-729X surname: Azé fullname: Azé, Jérôme organization: Montpellier University – sequence: 6 givenname: Sandra orcidid: 0000-0002-2830-3666 surname: Bringay fullname: Bringay, Sandra organization: Montpellier 3 University – sequence: 7 givenname: Pascal orcidid: 0000-0002-8277-3490 surname: Poncelet fullname: Poncelet, Pascal organization: Montpellier University – sequence: 8 givenname: Elisa orcidid: 0000-0002-3764-6249 surname: Calvier fullname: Calvier, Elisa organization: Sanofi R&D Montpellier |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39831409$$D View this record in MEDLINE/PubMed https://hal.science/hal-04905888$$DView record in HAL |
| BookMark | eNp9kt9v0zAQxyM0xMbYC38AssTL-NFhO07i8IKqamOVVlFReLYuyaV1SeJgJy194H_Hbca07WF-8enuc9873_llcNSYBoPgNaMXjFL-qXWtuGBhSONnwQlncTiS3j66Zx8HZ86tqT-JoCylL4LjMJUhEzQ9Cf5OzAashg7JzBRYkQVWmHfaNGTcttZAvkJHSmPJ3LR9BYfIfAW2htz80g12OnefyZgsdq7D2sdz8h03GrfElOTyj3adbpZkht3KFO4jubKmJovJjHSGjKevguclVA7Pbu_T4OfV5Y_J9ejm29fpZHwzyqMkikcRK4s8yzKURRJzAJqFEEICUSriXIRcRjISkjOJcYZQCpAiK2KIpMxiLgQNT4PpoFsYWKvW6hrsThnQ6uAwdqnA-tYrVCIpgQsWgYylYFymPOM8TEUalmlWYOS1PgxafdPCbgtVdSfIqNrvRO13og478fSXgW77rMYix6azUD1o4WGk0Su1NBvFOKWMx_ve3w0Kq0d51-MbtfdRkVL_VLlhnj2_rWbN7x5dp2rtcqwqaND0ToXMzzNiIhEeffsIXZveNn4LnvKCImJyL_jmfvt39f9_IA-8H4DcGucslk8Pgw3wVle4e4JU88VcDDn_AP105Bo |
| Cites_doi | 10.1007/s10928-021-09757-w 10.1016/j.xphs.2017.04.029 10.1208/s12248-016-0001-4 10.1089/aid.2020.0108 10.1007/s10928-023-09887-3 10.1002/psp4.12838 10.1007/s10928-023-09856-w 10.1007/s40262-021-01033-x 10.1002/psp4.13115 10.1002/psp4.12612 10.1007/s10928-024-09911-0 10.1007/s10928-006-9004-6 10.1007/BF01061469 10.1111/bcp.13577 10.1007/s10928-017-9504-6 10.1007/s10928-005-0040-4 10.1023/A:1011970125687 10.1208/s12248-024-00934-6 10.1007/s10928-007-9057-1 10.1002/psp4.12742 10.1023/A:1011579109640 10.1208/s12248-011-9289-2 10.1136/bmj.n71 10.1002/psp4.12208 10.1002/psp4.12874 10.1007/s10928-019-09635-6 10.1002/psp4.12828 10.1111/j.1365-2125.1989.tb05431.x 10.1198/016214506000000735 10.1208/ps040427 10.1007/s10928-021-09782-9 10.1007/s10928-023-09875-7 10.1007/s10928-012-9258-0 10.1208/s12248-021-00572-2 10.1002/psp4.12741 10.1007/s00228-007-0269-5 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. 2025 The Author(s). CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution - NonCommercial - NoDerivatives |
| Copyright_xml | – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. – notice: 2025 The Author(s). CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. – notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution - NonCommercial - NoDerivatives |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 1XC VOOES 5PM ADTOC UNPAY DOA |
| DOI | 10.1002/psp4.13306 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 2163-8306 |
| EndPage | 639 |
| ExternalDocumentID | oai_doaj_org_article_47fa2415a868412892b2239493f9bde5 10.1002/psp4.13306 PMC12001260 oai:HAL:hal-04905888v1 39831409 10_1002_psp4_13306 PSP413306 |
| Genre | reviewArticle Systematic Review Journal Article |
| GroupedDBID | 0R~ 1OC 24P 5VS 7X7 8FI 8FJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU DIK EBS EJD FYUFA GODZA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH ITC KQ8 M48 O9- OK1 PHGZT PIMPY PQQKQ PROAC RNTTT RPM TUS UKHRP AAYXX ADPDF CITATION M~E OVD PHGZM PUEGO TEORI WIN CGR CUY CVF ECM EIF NPM K9. 7X8 1XC VOOES 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5756-51fdcbbbe8d762aa0b3a3a7a5946c432858548218e6beaf4a84bd6a588b624403 |
| IEDL.DBID | M48 |
| ISSN | 2163-8306 |
| IngestDate | Fri Oct 03 12:43:00 EDT 2025 Sun Oct 26 04:16:31 EDT 2025 Tue Sep 30 17:04:07 EDT 2025 Tue Oct 14 20:54:49 EDT 2025 Fri Sep 05 06:57:08 EDT 2025 Tue Oct 07 06:45:42 EDT 2025 Wed Jul 30 01:49:30 EDT 2025 Wed Oct 01 06:03:15 EDT 2025 Wed Apr 16 09:40:41 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | covariate modeling population pharmacokinetic covariate model building pharmacometrics machine learning artificial intelligence covariate screening Covariate screening Covariate model building Machine learning Pharmacometrics Artificial intelligence Covariate modeling Population pharmacokinetic |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2025 The Author(s). CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5756-51fdcbbbe8d762aa0b3a3a7a5946c432858548218e6beaf4a84bd6a588b624403 |
| Notes | This material is based upon work supported by the ANRT (Association nationale de la recherche et de la technologie) with a CIFRE fellowship granted to Mélanie Karlsen. Funding ObjectType-Article-1 ObjectType-Evidence Based Healthcare-3 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Funding: This material is based upon work supported by the ANRT (Association nationale de la recherche et de la technologie) with a CIFRE fellowship granted to Mélanie Karlsen. |
| ORCID | 0000-0002-3764-6249 0009-0002-8868-295X 0000-0002-7372-729X 0000-0002-2830-3666 0000-0002-8277-3490 0000-0001-6712-8461 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/psp4.13306 |
| PMID | 39831409 |
| PQID | 3190545181 |
| PQPubID | 4368367 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_47fa2415a868412892b2239493f9bde5 unpaywall_primary_10_1002_psp4_13306 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12001260 hal_primary_oai_HAL_hal_04905888v1 proquest_miscellaneous_3157551474 proquest_journals_3190545181 pubmed_primary_39831409 crossref_primary_10_1002_psp4_13306 wiley_primary_10_1002_psp4_13306_PSP413306 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2025 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | CPT: pharmacometrics and systems pharmacology |
| PublicationTitleAlternate | CPT Pharmacometrics Syst Pharmacol |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc American Society for Clinical Pharmacology and Therapeutics ; International Society of Pharmacometrics John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Society for Clinical Pharmacology and Therapeutics ; International Society of Pharmacometrics – name: John Wiley and Sons Inc – name: Wiley |
| References | 2017; 6 2021; 48 2021; 23 2011 2006; 33 2017; 44 2024; 51 2004; 6 2002; 4 2011; 13 2018; 84 2012; 39 2001; 28 2024; 13 2024 2007; 34 2022; 49 1989; 28 1998; 15 2021; 37 2021; 10 2024; 115 2019; 46 2005; 32 2017; 19 2021; 372 2022; 11 2007; 63 1992; 20 2024; 26 2021; 60 2006; 101 2023; 50 2017; 106 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 Xinnong L. (e_1_2_8_41_1) 2024; 115 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 Karlsson M. O. (e_1_2_8_18_1) 2011 e_1_2_8_23_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 Gabaut A. (e_1_2_8_39_1) 2024 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Rebai I. (e_1_2_8_40_1) 2024 e_1_2_8_30_1 Gastonguay M. R. (e_1_2_8_17_1) 2004; 6 |
| References_xml | – year: 2011 – volume: 32 start-page: 333 year: 2005 end-page: 358 article-title: Cluster Analysis: An Alternative Method for Covariate Selection in Population Pharmacokinetic Modeling publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 6 start-page: 552 year: 2017 end-page: 559 article-title: Supervised Machine‐Learning Reveals That Old and Obese People Achieve Low Dapsone Concentrations publication-title: CPT: Pharmacometrics & Systems Pharmacology – volume: 115 start-page: 758 issue: 14 year: 2024 end-page: 773 article-title: pyDarwin: A Machine Learning Enhanced Automated Nonlinear Mixed‐Effect Model Selection Toolbox publication-title: CPT – volume: 11 start-page: 149 year: 2022 end-page: 160 article-title: An Introduction to the Full Random Effects Model publication-title: CPT: Pharmacometrics & Systems Pharmacology – volume: 48 start-page: 597 year: 2021 end-page: 609 article-title: Fast Screening of Covariates in Population Models Empowered by Machine Learning publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 34 start-page: 485 year: 2007 end-page: 517 article-title: The Lasso—A Novel Method for Predictive Covariate Model Building in Nonlinear Mixed Effects Models publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 6 start-page: W4354 issue: S1 year: 2004 article-title: A Full Model Estimation Approach for Covariate Effects: Inference Based on Clinical Importance and Estimation Precision publication-title: AAPS Journal – volume: 51 start-page: 155 year: 2024 end-page: 167 article-title: Learning Pharmacometric Covariate Model Structures With Symbolic Regression Networks publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 51 start-page: 653 year: 2024 end-page: 670 article-title: Impact of Covariate Model Building Methods on Their Clinical Relevance Evaluation in Population Pharmacokinetic Analyses: Comparison of the Full Model, Stepwise Covariate Model (SCM) and SCM+ Approaches publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 106 start-page: 2407 year: 2017 end-page: 2411 article-title: An Evolutionary Search Algorithm for Covariate Models in Population Pharmacokinetic Analysis publication-title: Journal of Pharmaceutical Sciences – volume: 11 start-page: 161 year: 2022 end-page: 172 article-title: SAMBA: A Novel Method for Fast Automatic Model Building in Nonlinear Mixed‐Effects Models publication-title: CPT: Pharmacometrics & Systems Pharmacology – volume: 33 start-page: 195 year: 2006 end-page: 221 article-title: A Genetic Algorithm‐Based, Hybrid Machine Learning Approach to Model Selection publication-title: Journal of Pharmacokinetics and Pharmacodynamics – year: 2024 – volume: 46 start-page: 273 year: 2019 end-page: 285 article-title: Operating Characteristics of Stepwise Covariate Selection in Pharmacometric Modeling publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 63 start-page: 437 year: 2007 end-page: 449 article-title: Modelling the Influence of MDR1 Polymorphism on Digoxin Pharmacokinetic Parameters publication-title: European Journal of Clinical Pharmacology – volume: 44 start-page: 55 year: 2017 end-page: 66 article-title: Adjusted Adaptive Lasso for Covariate Model‐Building in Nonlinear Mixed‐Effect Pharmacokinetic Models publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 4 start-page: 68 year: 2002 end-page: 79 article-title: Comparison of Stepwise Covariate Model Building Strategies in Population Pharmacokinetic‐Pharmacodynamic Analysis publication-title: AAPS Journal – volume: 60 start-page: 1435 year: 2021 end-page: 1448 article-title: Drug Clearance in Neonates: A Combination of Population Pharmacokinetic Modelling and Machine Learning Approaches to Improve Individual Prediction publication-title: Clinical Pharmacokinetics – volume: 28 start-page: 305 year: 1989 end-page: 314 article-title: Population Pharmacokinetics of Tobramycin publication-title: British Journal of Clinical Pharmacology – volume: 19 start-page: 264 year: 2017 end-page: 273 article-title: Further Evaluation of Covariate Analysis Using Empirical Bayes Estimates in Population Pharmacokinetics: The Perception of Shrinkage and Likelihood Ratio Test publication-title: AAPS Journal – volume: 15 start-page: 1463 year: 1998 end-page: 1468 article-title: Automated Covariate Model Building Within NONMEM publication-title: Pharmaceutical Research – volume: 50 start-page: 315 year: 2023 end-page: 326 article-title: Operational Characteristics of Full Random Effects Modelling (‘frem’) Compared to Stepwise Covariate Modelling ('scm') publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 28 start-page: 253 year: 2001 end-page: 275 article-title: Efficient Screening of Covariates in Population Models Using Wald's Approximation to the Likelihood Ratio Test publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 11 start-page: 1638 year: 2022 end-page: 1648 article-title: Evaluation of Machine Learning Methods for Covariate Data Imputation in Pharmacometrics publication-title: CPT: Pharmacometrics & Systems Pharmacology – volume: 101 start-page: 1418 year: 2006 end-page: 1429 article-title: The Adaptive Lasso and Its Oracle Properties publication-title: Journal of the American Statistical Association – volume: 13 start-page: 710 issue: 15 year: 2024 end-page: 728 article-title: Covariate Modeling in Pharmacometrics: General Points for Consideration publication-title: CPT: Pharmacometrics & Systems Pharmacology – volume: 11 start-page: 1210 year: 2022 end-page: 1222 article-title: Efficient and Relevant Stepwise Covariate Model Building for Pharmacometrics publication-title: CPT: Pharmacometrics & Systems Pharmacology – volume: 23 start-page: 37 year: 2021 article-title: A Modified Hybrid Wald's Approximation Method for Efficient Covariate Selection in Population Pharmacokinetic Analysis publication-title: AAPS Journal – volume: 39 start-page: 393 year: 2012 end-page: 414 article-title: Application of a Single‐Objective, Hybrid Genetic Algorithm Approach to Pharmacokinetic Model Building publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 13 start-page: 464 year: 2011 end-page: 472 article-title: A Fast Method for Testing Covariates in Population PK/PD Models publication-title: AAPS Journal – volume: 20 start-page: 511 year: 1992 end-page: 528 article-title: Building Population Pharmacokineticpharmacodynamic Models. I. Models for Covariate Effects publication-title: Journal of Pharmacokinetics and Biopharmaceutics – volume: 84 start-page: 1525 year: 2018 end-page: 1534 article-title: Full Covariate Modelling Approach in Population Pharmacokinetics: Understanding the Underlying Hypothesis Tests and Implications of Multiplicity publication-title: British Journal of Clinical Pharmacology – volume: 37 start-page: 421 issue: 6 year: 2021 end-page: 428 article-title: Individualized Adherence Benchmarks for HIV Pre‐Exposure Prophylaxis publication-title: AIDS Research and Human Retroviruses – volume: 10 start-page: 318 year: 2021 end-page: 329 article-title: A Novel Method Based on Unbiased Correlations Tests for Covariate Selection in Nonlinear Mixed Effects Models: The COSSAC Approach publication-title: CPT: Pharmacometrics & Systems Pharmacology – volume: 372 start-page: n71 year: 2021 article-title: The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews publication-title: BMJ – volume: 51 start-page: 109 year: 2024 end-page: 121 article-title: Go Beyond the Limits of Genetic Algorithm in Daily Covariate Selection Practice publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 26 start-page: 63 issue: 63 year: 2024 article-title: Machine‐Learning Assisted Screening of Correlated Covariates: Application to Clinical Data of Desipramine publication-title: AAPS Journal – volume: 49 start-page: 243 year: 2022 end-page: 256 article-title: Development of a Genetic Algorithm and NONMEM Workbench for Automating and Improving Population Pharmacokinetic/Pharmacodynamic Model Selection publication-title: Journal of Pharmacokinetics and Pharmacodynamics – volume: 11 start-page: 1100 year: 2022 end-page: 1110 article-title: Application of SHAP Values for Inferring the Optimal Functional Form of Covariates in Pharmacokinetic Modeling publication-title: CPT: Pharmacometrics & Systems Pharmacology – ident: e_1_2_8_28_1 doi: 10.1007/s10928-021-09757-w – volume-title: mlcov: New Machine Learning Based R Package for Covariate Selection year: 2024 ident: e_1_2_8_40_1 – ident: e_1_2_8_23_1 doi: 10.1016/j.xphs.2017.04.029 – ident: e_1_2_8_42_1 doi: 10.1208/s12248-016-0001-4 – ident: e_1_2_8_31_1 doi: 10.1089/aid.2020.0108 – ident: e_1_2_8_35_1 doi: 10.1007/s10928-023-09887-3 – ident: e_1_2_8_7_1 doi: 10.1002/psp4.12838 – ident: e_1_2_8_16_1 doi: 10.1007/s10928-023-09856-w – ident: e_1_2_8_32_1 doi: 10.1007/s40262-021-01033-x – ident: e_1_2_8_37_1 doi: 10.1002/psp4.13115 – ident: e_1_2_8_6_1 doi: 10.1002/psp4.12612 – ident: e_1_2_8_4_1 doi: 10.1007/s10928-024-09911-0 – ident: e_1_2_8_20_1 doi: 10.1007/s10928-006-9004-6 – ident: e_1_2_8_26_1 doi: 10.1007/BF01061469 – ident: e_1_2_8_15_1 doi: 10.1111/bcp.13577 – ident: e_1_2_8_14_1 doi: 10.1007/s10928-017-9504-6 – ident: e_1_2_8_34_1 doi: 10.1007/s10928-005-0040-4 – volume-title: Population Approach Group Europe (PAGE) year: 2024 ident: e_1_2_8_39_1 – ident: e_1_2_8_5_1 doi: 10.1023/A:1011970125687 – ident: e_1_2_8_29_1 doi: 10.1208/s12248-024-00934-6 – ident: e_1_2_8_3_1 doi: 10.1007/s10928-007-9057-1 – ident: e_1_2_8_8_1 doi: 10.1002/psp4.12742 – ident: e_1_2_8_12_1 doi: 10.1023/A:1011579109640 – volume: 115 start-page: 758 issue: 14 year: 2024 ident: e_1_2_8_41_1 article-title: pyDarwin: A Machine Learning Enhanced Automated Nonlinear Mixed‐Effect Model Selection Toolbox publication-title: CPT – ident: e_1_2_8_10_1 doi: 10.1208/s12248-011-9289-2 – volume-title: A Full Model Approach Based on the Covariance Matrix of Parameters and Covariates year: 2011 ident: e_1_2_8_18_1 – ident: e_1_2_8_2_1 doi: 10.1136/bmj.n71 – ident: e_1_2_8_30_1 doi: 10.1002/psp4.12208 – ident: e_1_2_8_36_1 doi: 10.1002/psp4.12874 – ident: e_1_2_8_9_1 doi: 10.1007/s10928-019-09635-6 – ident: e_1_2_8_33_1 doi: 10.1002/psp4.12828 – ident: e_1_2_8_25_1 doi: 10.1111/j.1365-2125.1989.tb05431.x – ident: e_1_2_8_19_1 doi: 10.1198/016214506000000735 – ident: e_1_2_8_27_1 doi: 10.1208/ps040427 – ident: e_1_2_8_22_1 doi: 10.1007/s10928-021-09782-9 – ident: e_1_2_8_21_1 doi: 10.1007/s10928-023-09875-7 – ident: e_1_2_8_24_1 doi: 10.1007/s10928-012-9258-0 – ident: e_1_2_8_13_1 doi: 10.1208/s12248-021-00572-2 – ident: e_1_2_8_11_1 doi: 10.1002/psp4.12741 – volume: 6 start-page: W4354 issue: 1 year: 2004 ident: e_1_2_8_17_1 article-title: A Full Model Estimation Approach for Covariate Effects: Inference Based on Clinical Importance and Estimation Precision publication-title: AAPS Journal – ident: e_1_2_8_38_1 doi: 10.1007/s00228-007-0269-5 |
| SSID | ssj0000740190 |
| Score | 2.341224 |
| SecondaryResourceType | review_article |
| Snippet | ABSTRACT
A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all... A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all compare. The... ABSTRACT A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information exists on how they all... |
| SourceID | doaj unpaywall pubmedcentral hal proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 621 |
| SubjectTerms | Algorithms Artificial Intelligence Business metrics Computer Simulation covariate model building covariate modeling covariate screening Datasets Drug development Genetic algorithms Humans Life Sciences machine learning Methods Models, Biological Pharmaceutical sciences Pharmacokinetics Pharmacology pharmacometrics Population population pharmacokinetic Review Systematic review Systemic Review |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQLnBB_CYw0AOmHdDC0sRxHW6hWlUQRZG6SbtZduJsiJJUazvogf-d95wsazRpXLhFieUkfs_P35Ofv4-xPWMTkWib-2E0pCM5tvRljFfEXFQGREhl6aDw9JuYnPAvp_HpltQX1YQ19MDNwB3yYalpldFSSI7BNAlNSHLe2FViCuvYSwOZbCVTLgaT0FwSdHyk4eFiueAfMCEjaaOtFcgR9eO6ck5lkDcx5s1SybvraqE3v_R83oezbj0aP2D3WyAJafMDD9kdWz1i-1nDRL05gOPrg1XLA9iH7JqjevOY_RnVl5glI9AEUkObw8zp4aCRIG1Zxu0SENBC1il8dV38QGRK3X6EFGYdEzQ02wxQl3D0myJHdQZTp0-N7x9f1D9hNprCqob08xN2Mj46Hk38VonBzxHOCT8elEVujLGywOCpdWAiHemhjhMuch6FtLnIJaIFK4zVJdeSm0LoWEojED8E0VO2U9WVfc6gCINQY5IT0YnbQVRohKRCigKhSJ4Uwnjs3ZV11KIh3FANtXKoyIbK2dBjn8hwXQsiyXY30HVU6zrqX67jsbdo9l4fk_Sronu0H4pfLy8HHtu98grVTu-lwriFUDdGdOSxN91jnJi026IrW6-pDQ4dwtEh99izxom6V0WJjIhpzGOy5169b-k_qb6fO_LvARXBYRLqsb3OE28dqPfOSW9porJZxt3Vi_8xqi_ZvZA0kl110y7bWV2s7SsEbivz2s3Rv-qTPNc priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5N3QO8AOPXAhsyMO0BLV2bOK7DW6hWFUSnSF2l8RTZibOhlaRa20GR-N-5S9JsYVLFm2U7tmOf7c-6u-8ADrTxha9MbDtuj1xyTGpLD1PEXJR2iJDKkKPw6FQMJ_zLuXe-Be_WvjBN_b1zPJvPeBvfUcSqvS08xNst2J6chsE3ihqHYMKWWFbzjt79oHHTFIT8eH9ckrnjfSx53yTywTKbqdVPNZ02YWtx7wweQ3894tLc5Kq9XOh2_PsfMsfNv_QEHlWwkwWlnOzAlsmewmFY8lavjtjZrRvW_IgdsvCW0Xr1DP708xt8UyMsZRQ7bcrGRfQcXFIWVJzkZs4Q_rKwjgdWN3GFOJaa_cgCNq55o1mplGB5yk5-0TmTXbBREc0a-x9c5z_YuD9ii5wFn5_DZHBy1h_aVdwGO0bwJ2yvmyax1trIBI9apTraVa7qKc_nIuauQ6pILhFbGKGNSrmSXCdCeVJqgWij476AVpZnZhdY4nQchU8il_xzu26iEMAKKRIELrGfCG3B-_UaR7OSniMqiZidiOY5KubZgk-0_HUNotQuMnBZomqHRryXKoIzSgrJ8db2He1Q3HiUWV8nxrNQSHHv321jGHyNKI-0pzh6edO1YG8tW1F1GMwjPOUQGHuIpSx4WxfjNibdjMpMvqQ6OHUIXnvcgpelKNZdub50iZfMAtkQ0sZYmiXZ98uCKrxLJnP4ZLXgoJbnjRP1oRD1DVWicBzyIvXq_9p8DQ8diplcWDvtQWtxvTT7COQW-k21k_8Cnz9CaA priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcoAL4k2gIANVD6ihieN4HcQlrLpaEIsibSv1ZtmJ0yKWZLWPwh7478w42ayiSpW4WcnEjjwz9ufHfEPIobGJSLTNfRYNMCTHlr6MoYTMRWWAhFQWA4Un38X4nH-9iC_2yKdtLEzDD9FtuKFnuPEaHVyb5cmONHS-nPMPsMJCvu07IQAZtG_Gs26HJcBkc26ThQHo8CVIdvyk7GT3eW9GcsT9MM9c4bXIm5jz5tXJu-tqrje_9WzWh7dufho9IPdbYEnTxhIekj1bPSJHWcNMvTmmZ7tAq-UxPaLZjrN685j8HdbXsGoG4EkxO9qMTl1-HFAaTVvWcbukAHBp1mX86qr4CX2J1X6kKZ12zNC0OXagdUlP_-BIUl3SictXDe2PFvUvOh1O6Kqm6Zcn5Hx0ejYc-21mBj8HeCf8OCyL3BhjZQGDqdaBiXSkBzpOuMh5xPCwkUtAD1YYq0uuJTeF0LGURgCeCKKnZL-qK_uc0IIFTMOiJ8II3DAqNEBUIUUB0CRPCmE88m6rHTVvCDhUQ7XMFOpQOR165DMqrpNA0mz3oF5cqtYHFR-UGgGLlkJymJcTZhhmhgerTExhY4-8BbX36hin3xQ-w_NR-Ht5HXrkYGsVqnX3pYJxDKBvDGjJI2-61-CoePqiK1uvUQa6DuDpgHvkWWNEXVNRIiNkHvOI7JlX71_6b6ofV44MPMRLcbAo9chhZ4m3dtR7Z6S3iKhsmnFXevE_wi_JPYa5kd2tpgOyv1qs7SsAbCvz2vnlP_zKOE8 priority: 102 providerName: Wiley-Blackwell |
| Title | Covariate Model Selection Approaches for Population Pharmacokinetics: A Systematic Review of Existing Methods, From SCM to AI |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpsp4.13306 https://www.ncbi.nlm.nih.gov/pubmed/39831409 https://www.proquest.com/docview/3190545181 https://www.proquest.com/docview/3157551474 https://hal.science/hal-04905888 https://pubmed.ncbi.nlm.nih.gov/PMC12001260 https://doi.org/10.1002/psp4.13306 https://doaj.org/article/47fa2415a868412892b2239493f9bde5 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2163-8306 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000740190 issn: 2163-8306 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2163-8306 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000740190 issn: 2163-8306 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2163-8306 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000740190 issn: 2163-8306 databaseCode: ABDBF dateStart: 20150501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2163-8306 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000740190 issn: 2163-8306 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2163-8306 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000740190 issn: 2163-8306 databaseCode: GX1 dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2163-8306 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000740190 issn: 2163-8306 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2163-8306 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000740190 issn: 2163-8306 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2163-8306 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000740190 issn: 2163-8306 databaseCode: 7X7 dateStart: 20120901 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2163-8306 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000740190 issn: 2163-8306 databaseCode: BENPR dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2163-8306 dateEnd: 20250731 omitProxy: true ssIdentifier: ssj0000740190 issn: 2163-8306 databaseCode: M48 dateStart: 20120901 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2163-8306 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000740190 issn: 2163-8306 databaseCode: AVUZU dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2163-8306 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000740190 issn: 2163-8306 databaseCode: 24P dateStart: 20120101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLXG9gAviG8yRmVg2gNaRps4joOEUFa1FESriK5S9xTZjbOhlaT0Y6wP_HfuddKMaGjiJYpix458r-1zY_scQvaVDngg9cR2XB-P5OjUFh7cIXNR2kRCKo0HhfsD3huxL2NvvEU2-p1lAy7-GdqhntRoPj26-rn-CB3-Q0kg-m62mLEjiLWQeXsHZqgAJRz6Jcw3IzLKzpnfLQ7AD1tAzoqp9O_Xa3OTofCHGeccN0jeRJ83N1HeXWUzuf4lp9M60DUzVfcBuV9CTBoWPvGQbOnsETmICo7q9SE9uT5ytTikBzS6Zq9ePya_2_klxM8AQSnqpE3p0CjlgPloWPKP6wUFqEujSvurKuICMCsW-56GdFhxRNNiAYLmKe1c4ZiSndG-Ua6G-rvz_Acdtvt0mdPw8xMy6nZO2j271GiwJwD0uO210mSilNIigWFVyqZypSt96QWMT5jr4LIjE4AjNFdapkwKphIuPSEUB2TRdJ-S7SzP9HNCE6fpSAh_XDyL23ITCWCVC54ASJkECVcWebOxTjwrqDjignTZidGGsbGhRY7RcFUOpM82D_L5WVz2xpj5qUToIgUXDGbowFEOasSDfwYq0Z5FXoPZa2X0wq8xPsOVUvh6cdmyyN7GK-KN38YwogEI9gA3WeRVlQxdFtdhZKbzFeaBpgOg6jOLPCucqKrKDYSLHGQWETX3qn1LPSX7fm5owVu4PQ7CU4vsV554a0O9NU56S5Y4GkbM3O3-V9u_IPcclEc2G5v2yPZyvtIvAbMtVYPccVgEV3_sN8jOcWcQfWuY_x9w_TRuNUyHhZTRIApP_wDSaEKf |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQeBgviG8CAwxMe0ALaxzHdXgL1aoO2ilSO2lvlt04G1qXVP0Y9IH_nTsnSxVNmsRblFycyHdn_2zf_Y6QfWNjEWs79VnYxZQcm_sygitkLso7SEhlMVF4dCoGZ_zHeXRex-ZgLkzFD9FsuKFnuPEaHRw3pI-2rKHz5Zx_hSUWEm4_5CIQuPZiPG22WDpYbc7tsjBAHb4EyYaglB1tX29NSY65HyaaS4yLvAs678ZO7q6Lud781rNZG9-6Car_hDyukSVNKlN4Sh7Y4hk5SCtq6s0hnWwzrZaH9ICmW9LqzXPyt1fewLIZkCfF8mgzOnYFckBrNKlpx-2SAsKlaVPyq2niCjoTm_1GEzpuqKFpde5Ay5we_8GhpLigI1ewGr7fX5TXdNwb0VVJk5MX5Kx_POkN_Lo0gz8FfCf8KMizqTHGygxGU607JtSh7uoo5mLKQ4anjVwCfLDCWJ1zLbnJhI6kNAIARSd8SXaKsrCvCc1Yh2lY9YSYghuEmQaMKqTIAJtM40wYj3y-1Y6aVwwcquJaZgp1qJwOPfIdFddIIGu2u1EuLlTthIp3c42IRUshOUzMMTMMS8ODWcYms5FHPoHaW20MkqHCe3hACn8vbwKP7N1ahar9falgIAPsGwFc8sjH5jF4Kh6_6MKWa5SBrgN82uUeeVUZUfOpMJYhUo95RLbMq_Uv7SfFr0vHBh5gVBysSj2y31jivR31xRnpPSIqHafcXb35H-EPZHcwGQ3V8OT051vyiGGhZBfitEd2Vou1fQfobWXeOx_9B8o3O7s |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwEviG8yBhiY9oAWliaO6_AWyqoO1ilSVzTxYtmJs02UpOrHoA_879w5Wapo0iTeIufkRL47-2f77neE7GoT8UiZ1PWDHqbkmNwVITwhc1HuISGVwUTh0QkfTtjXs_Csjs3BXJiKH6I5cEPPsPM1OriZZfnBhjV0tpixj7DFQsLtLVjIPdYhW_H3yY9Jc8jiYb05e87iA-5wBcg2FKX-waaD1qJkufthqbnAyMibsPNm9OS9VTFT699qOm0jXLtEDR6SBzW2pHFlDI_IHVM8JntJRU693qenm1yrxT7do8mGtnr9hPztl1ewcQbsSbFA2pSObYkc0BuNa-Jxs6CAcWnSFP1quvgJw4ndfqIxHTfk0LS6eaBlTg__4GRSnNORLVkN3x_My1903B_RZUnjo6dkMjg87Q_dujiDmwLC427YzbNUa21EBvOpUp4OVKB6KowYT1ng430jEwAgDNdG5UwJpjOuQiE0B0jhBc9IpygL84LQzPd8BfueAJNwu0GmAKVywTNAJ2mUce2Q99fakbOKg0NWbMu-RB1Kq0OHfEbFNRLIm20byvm5rN1Qsl6uELMowQWDpTnytY_F4cEwI52Z0CHvQO2tPobxscQ2vCKFvxdXXYfsXFuFrD1-IWEqA_QbAmByyNvmNfgqXsCowpQrlIGhA4TaYw55XhlR86kgEgGSjzlEtMyr9S_tN8XlheUD72JcHOxLHbLbWOKtA_XBGuktIjIZJ8w-bf-P8BtyN_kykMdHJ99ekvs-Vkq2MU47pLOcr8wrgG9L_bp20n8hfT0P |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5N3QO8AOPXAhsyMO0BLV2bOK7DW6hWFUSnSF2l8RTZibOhlaRa20GR-N-5S9JsYVLFm2U7tmOf7c-6u-8ADrTxha9MbDtuj1xyTGpLD1PEXJR2iJDKkKPw6FQMJ_zLuXe-Be_WvjBN_b1zPJvPeBvfUcSqvS08xNst2J6chsE3ihqHYMKWWFbzjt79oHHTFIT8eH9ckrnjfSx53yTywTKbqdVPNZ02YWtx7wweQ3894tLc5Kq9XOh2_PsfMsfNv_QEHlWwkwWlnOzAlsmewmFY8lavjtjZrRvW_IgdsvCW0Xr1DP708xt8UyMsZRQ7bcrGRfQcXFIWVJzkZs4Q_rKwjgdWN3GFOJaa_cgCNq55o1mplGB5yk5-0TmTXbBREc0a-x9c5z_YuD9ii5wFn5_DZHBy1h_aVdwGO0bwJ2yvmyax1trIBI9apTraVa7qKc_nIuauQ6pILhFbGKGNSrmSXCdCeVJqgWij476AVpZnZhdY4nQchU8il_xzu26iEMAKKRIELrGfCG3B-_UaR7OSniMqiZidiOY5KubZgk-0_HUNotQuMnBZomqHRryXKoIzSgrJ8db2He1Q3HiUWV8nxrNQSHHv321jGHyNKI-0pzh6edO1YG8tW1F1GMwjPOUQGHuIpSx4WxfjNibdjMpMvqQ6OHUIXnvcgpelKNZdub50iZfMAtkQ0sZYmiXZ98uCKrxLJnP4ZLXgoJbnjRP1oRD1DVWicBzyIvXq_9p8DQ8diplcWDvtQWtxvTT7COQW-k21k_8Cnz9CaA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covariate+Model+Selection+Approaches+for+Population+Pharmacokinetics%3A+A+Systematic+Review+of+Existing+Methods%2C+From+SCM+to+AI&rft.jtitle=CPT%3A+pharmacometrics+and+systems+pharmacology&rft.au=Karlsen%2C+M%C3%A9lanie&rft.au=Khier%2C+Sonia&rft.au=Fabre%2C+David&rft.au=Marchionni%2C+David&rft.date=2025-04-01&rft.issn=2163-8306&rft.eissn=2163-8306&rft.volume=14&rft.issue=4&rft.spage=621&rft.epage=639&rft_id=info:doi/10.1002%2Fpsp4.13306&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_psp4_13306 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2163-8306&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2163-8306&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2163-8306&client=summon |