Tendon matrix composition and turnover in relation to functional requirements
Summary Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious commons features tendons from different locations within the body show remarkable variation in terms of their morphological, molecula...
Saved in:
Published in | International journal of experimental pathology Vol. 88; no. 4; pp. 241 - 248 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.08.2007
Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0959-9673 1365-2613 |
DOI | 10.1111/j.1365-2613.2007.00552.x |
Cover
Abstract | Summary
Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious commons features tendons from different locations within the body show remarkable variation in terms of their morphological, molecular and mechanical properties which relates to their specialized function. An appreciation of these differences is necessary to understand all aspects of tendon biology in health and disease. In our work, we have used a combination of mechanical assessment, histological measurements and molecular analysis of matrix in functionally distinct tendons to determine relationships between function and structure. We have found significant differences in material and molecular properties between spring‐like tendons that are subjected to high strains during locomotion and positional tendons which are subjected to much lower strains. Furthermore, we have data to suggest that not only is the matrix composition different but also the ability of cells to synthesize and degrade the matrix (matrix turnover) varies between tendon types. We propose that these differences relate to the magnitude of strain that the tendon experiences during normal activities in life. Tendon cells may be preprogrammed during embryological development for the strain they will encounter in life or may simply respond to the particular strain environment they are subjected to. The elucidation of controlling mechanisms resulting in tendon cell specialization will have important consequences for cell based therapies and engineering strategies to repair damaged tendons. |
---|---|
AbstractList | Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious commons features tendons from different locations within the body show remarkable variation in terms of their morphological, molecular and mechanical properties which relates to their specialized function. An appreciation of these differences is necessary to understand all aspects of tendon biology in health and disease. In our work, we have used a combination of mechanical assessment, histological measurements and molecular analysis of matrix in functionally distinct tendons to determine relationships between function and structure. We have found significant differences in material and molecular properties between spring‐like tendons that are subjected to high strains during locomotion and positional tendons which are subjected to much lower strains. Furthermore, we have data to suggest that not only is the matrix composition different but also the ability of cells to synthesize and degrade the matrix (matrix turnover) varies between tendon types. We propose that these differences relate to the magnitude of strain that the tendon experiences during normal activities in life. Tendon cells may be preprogrammed during embryological development for the strain they will encounter in life or may simply respond to the particular strain environment they are subjected to. The elucidation of controlling mechanisms resulting in tendon cell specialization will have important consequences for cell based therapies and engineering strategies to repair damaged tendons. Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious commons features tendons from different locations within the body show remarkable variation in terms of their morphological, molecular and mechanical properties which relates to their specialized function. An appreciation of these differences is necessary to understand all aspects of tendon biology in health and disease. In our work, we have used a combination of mechanical assessment, histological measurements and molecular analysis of matrix in functionally distinct tendons to determine relationships between function and structure. We have found significant differences in material and molecular properties between spring-like tendons that are subjected to high strains during locomotion and positional tendons which are subjected to much lower strains. Furthermore, we have data to suggest that not only is the matrix composition different but also the ability of cells to synthesize and degrade the matrix (matrix turnover) varies between tendon types. We propose that these differences relate to the magnitude of strain that the tendon experiences during normal activities in life. Tendon cells may be preprogrammed during embryological development for the strain they will encounter in life or may simply respond to the particular strain environment they are subjected to. The elucidation of controlling mechanisms resulting in tendon cell specialization will have important consequences for cell based therapies and engineering strategies to repair damaged tendons.Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious commons features tendons from different locations within the body show remarkable variation in terms of their morphological, molecular and mechanical properties which relates to their specialized function. An appreciation of these differences is necessary to understand all aspects of tendon biology in health and disease. In our work, we have used a combination of mechanical assessment, histological measurements and molecular analysis of matrix in functionally distinct tendons to determine relationships between function and structure. We have found significant differences in material and molecular properties between spring-like tendons that are subjected to high strains during locomotion and positional tendons which are subjected to much lower strains. Furthermore, we have data to suggest that not only is the matrix composition different but also the ability of cells to synthesize and degrade the matrix (matrix turnover) varies between tendon types. We propose that these differences relate to the magnitude of strain that the tendon experiences during normal activities in life. Tendon cells may be preprogrammed during embryological development for the strain they will encounter in life or may simply respond to the particular strain environment they are subjected to. The elucidation of controlling mechanisms resulting in tendon cell specialization will have important consequences for cell based therapies and engineering strategies to repair damaged tendons. Summary Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious commons features tendons from different locations within the body show remarkable variation in terms of their morphological, molecular and mechanical properties which relates to their specialized function. An appreciation of these differences is necessary to understand all aspects of tendon biology in health and disease. In our work, we have used a combination of mechanical assessment, histological measurements and molecular analysis of matrix in functionally distinct tendons to determine relationships between function and structure. We have found significant differences in material and molecular properties between spring‐like tendons that are subjected to high strains during locomotion and positional tendons which are subjected to much lower strains. Furthermore, we have data to suggest that not only is the matrix composition different but also the ability of cells to synthesize and degrade the matrix (matrix turnover) varies between tendon types. We propose that these differences relate to the magnitude of strain that the tendon experiences during normal activities in life. Tendon cells may be preprogrammed during embryological development for the strain they will encounter in life or may simply respond to the particular strain environment they are subjected to. The elucidation of controlling mechanisms resulting in tendon cell specialization will have important consequences for cell based therapies and engineering strategies to repair damaged tendons. |
Author | Birch, Helen L. |
Author_xml | – sequence: 1 givenname: Helen L. surname: Birch fullname: Birch, Helen L. organization: Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17696905$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUk1PGzEQtSqqEgJ_odpTb7v1R2zHEqpUURqQaOEA4jhyHG_rsGsHe5eGf483gfTjUixLHs34vTee5wO054O3CBUEVySvj8uKMMFLKgirKMaywphzWq3foNGusIdGWHFVKiHZPjpIaYkxYZTId2ifSKGEwnyEvl1bvwi-aHUX3bowoV2F5DqXU9oviq6PPjzYWDhfRNvoTaELRd17M8S6yen73kXbWt-lQ_S21k2yR8_nGN18Pb0-OSsvLmfnJ58vSsMlp6XSlvAJkwYbTLUgE23lVOUXSCrNdGFqiudEY0lZbZQhc6lorbGd51ua1oqxMfq05V3189YuTNaOuoFVdK2OjxC0g78r3v2EH-EBKCeS5T1GH54JYrjvbeqgdcnYptHehj6BmBIxkXmKY_T-T6WdxMsEf7diYkgp2hqM6zZzysKuAYJhsAyWMDgDgzMwWAYby2CdCab_EOw0_g893kJ_ucY-vhoH56dXOcjwcgt3qbPrHVzHO8h_RnK4_T6DL4LI2e1ZZmBPjny-gQ |
CitedBy_id | crossref_primary_10_1098_rsif_2012_0362 crossref_primary_10_1155_2016_3919030 crossref_primary_10_1002_vms3_1205 crossref_primary_10_1111_joa_12485 crossref_primary_10_1016_j_mbplus_2023_100129 crossref_primary_10_1519_SSC_0b013e3181e928f9 crossref_primary_10_1002_jemt_23944 crossref_primary_10_1098_rsif_2013_1058 crossref_primary_10_1007_s11538_013_9850_5 crossref_primary_10_1111_iep_12027 crossref_primary_10_1007_s40843_023_2809_x crossref_primary_10_1016_j_matbio_2024_12_001 crossref_primary_10_1016_S0716_8640_12_70312_7 crossref_primary_10_1016_j_jmu_2017_03_011 crossref_primary_10_1016_j_actbio_2020_09_056 crossref_primary_10_3390_ma11071116 crossref_primary_10_1016_j_ymthe_2017_07_015 crossref_primary_10_3389_fphys_2017_00132 crossref_primary_10_1016_j_actbio_2022_03_025 crossref_primary_10_1002_adhm_202100741 crossref_primary_10_1016_j_actbio_2022_11_018 crossref_primary_10_1002_jor_23629 crossref_primary_10_1002_term_3030 crossref_primary_10_1002_jor_22818 crossref_primary_10_1016_j_matt_2022_09_011 crossref_primary_10_1519_SSC_0000000000000376 crossref_primary_10_5606_tftrd_2021_5118 crossref_primary_10_1002_jor_26060 crossref_primary_10_1016_j_mbplus_2019_100013 crossref_primary_10_1186_s12860_018_0166_z crossref_primary_10_1177_03635465211047861 crossref_primary_10_1002_jor_25961 crossref_primary_10_1093_icvts_ivw020 crossref_primary_10_1111_j_2042_3306_2011_00471_x crossref_primary_10_3389_fspor_2022_1081129 crossref_primary_10_2147_IJN_S466363 crossref_primary_10_1016_j_jmbbm_2019_05_002 crossref_primary_10_1016_j_jmbbm_2015_01_021 crossref_primary_10_1111_evj_12346 crossref_primary_10_3390_ijms21062150 crossref_primary_10_5937_timsact14_27070 crossref_primary_10_1152_japplphysiol_90935_2008 crossref_primary_10_2746_042516409X480395 crossref_primary_10_54133_ajms_v6i2_715 crossref_primary_10_1016_j_matbio_2019_07_008 crossref_primary_10_3389_fphys_2018_00867 crossref_primary_10_1152_japplphysiol_00477_2010 crossref_primary_10_1371_journal_pone_0215830 crossref_primary_10_1002_jemt_22402 crossref_primary_10_1177_0954411913509977 crossref_primary_10_3390_ijms21186726 crossref_primary_10_1074_jbc_M109_077503 crossref_primary_10_3390_cells1041010 crossref_primary_10_1111_evj_13169 crossref_primary_10_1016_j_medengphy_2012_04_004 crossref_primary_10_1111_j_2042_3306_2010_00175_x crossref_primary_10_1016_j_jbiomech_2019_109321 crossref_primary_10_3390_biomedicines12112634 crossref_primary_10_1002_adfm_202316540 crossref_primary_10_1002_adma_201904511 crossref_primary_10_1111_sms_12160 crossref_primary_10_1016_j_actbio_2017_08_032 crossref_primary_10_1186_1749_799X_3_32 crossref_primary_10_7717_peerj_18143 crossref_primary_10_1177_0363546509350915 crossref_primary_10_1016_j_bioactmat_2021_06_007 crossref_primary_10_1007_s13770_023_00550_z crossref_primary_10_1152_japplphysiol_00396_2016 crossref_primary_10_1002_jor_24407 crossref_primary_10_1111_evj_13331 crossref_primary_10_1038_s41598_018_22741_8 crossref_primary_10_3389_fbioe_2024_1449372 crossref_primary_10_1016_j_jbiomech_2017_06_045 crossref_primary_10_1299_jbse_4_481 crossref_primary_10_1016_j_actbio_2014_04_008 crossref_primary_10_1111_vsu_13658 crossref_primary_10_7554_eLife_63204 crossref_primary_10_1111_j_1600_0838_2010_01162_x crossref_primary_10_1080_07328303_2018_1428988 crossref_primary_10_1177_0363546512470617 crossref_primary_10_1152_japplphysiol_00649_2018 crossref_primary_10_3390_cells7120251 crossref_primary_10_1038_srep20455 crossref_primary_10_1115_1_4037932 crossref_primary_10_1016_j_ijbiomac_2020_03_082 crossref_primary_10_34133_2022_9842169 crossref_primary_10_1016_j_morpho_2020_09_003 crossref_primary_10_1113_JP279646 crossref_primary_10_1016_j_jbiomech_2013_04_022 crossref_primary_10_1096_fj_201701569R crossref_primary_10_1039_D4TB01255K crossref_primary_10_3892_ijmm_2023_5273 crossref_primary_10_1016_j_jcz_2019_11_002 crossref_primary_10_1139_cjpp_2016_0133 crossref_primary_10_1111_evj_14447 crossref_primary_10_1093_ilar_ilu004 crossref_primary_10_3389_fphys_2023_1122348 crossref_primary_10_1016_j_actbio_2018_01_034 crossref_primary_10_1016_j_jcpa_2012_05_010 crossref_primary_10_1016_j_jbiomech_2013_10_023 crossref_primary_10_3390_pr10030485 crossref_primary_10_1016_j_actbio_2016_06_017 crossref_primary_10_1016_j_actbio_2021_07_019 crossref_primary_10_1007_s40430_024_05068_6 crossref_primary_10_1002_ar_20953 crossref_primary_10_1302_2046_3758_1111_BJR_2021_0548_R2 crossref_primary_10_1155_2022_6884370 crossref_primary_10_1302_2046_3758_29_2000196 crossref_primary_10_1016_j_aanat_2022_151978 crossref_primary_10_7554_eLife_58075 crossref_primary_10_1016_j_actbio_2016_06_012 crossref_primary_10_1016_j_cmpb_2024_108398 crossref_primary_10_1016_j_bioactmat_2022_04_003 crossref_primary_10_1089_ten_tec_2020_0032 crossref_primary_10_1016_j_actbio_2013_05_004 crossref_primary_10_1098_rsif_2017_0261 crossref_primary_10_1242_jeb_182741 crossref_primary_10_3109_03008207_2010_534208 crossref_primary_10_1371_journal_pone_0119974 crossref_primary_10_1007_s00223_024_01183_7 crossref_primary_10_3390_biology12030456 crossref_primary_10_1007_s00167_014_3442_2 crossref_primary_10_1016_j_jbiomech_2022_111315 crossref_primary_10_1021_acsbiomaterials_9b01716 |
Cites_doi | 10.3109/03008207809152283 10.2746/0425164044890580 10.1074/jbc.274.14.9636 10.1016/S1095-6433(02)00171-X 10.1242/jeb.01950 10.1023/A:1025348417078 10.1093/rheumatology/kel046 10.1371/journal.pgen.0020119 10.1038/414895a 10.1016/S1095-6433(02)00143-5 10.3109/17453679608996672 10.1152/ajpcell.1987.252.1.C1 10.1111/j.2042-3306.1999.tb03838.x 10.1136/ard.53.6.359 10.1016/j.fcl.2005.01.007 10.1136/bmj.329.7478.1328 10.1046/j.1365-201X.2003.01048.x 10.1242/jeb.203.8.1317 10.1002/jmor.10113 10.1016/S0021-9290(03)00135-0 10.1177/107110079301400803 10.1016/S0021-9290(00)00099-3 10.1083/jcb.136.3.729 10.1080/00480169.2005.36503 10.1111/j.2042-3306.1998.tb04530.x 10.2106/00004623-199173100-00009 10.1016/j.jbiomech.2004.05.003 10.2746/0425164044890607 |
ContentType | Journal Article |
Copyright | 2007 The Author Journal compilation © 2007 Blackwell Publishing Ltd 2007 |
Copyright_xml | – notice: 2007 The Author Journal compilation © 2007 Blackwell Publishing Ltd 2007 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1111/j.1365-2613.2007.00552.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1365-2613 |
EndPage | 248 |
ExternalDocumentID | PMC2517317 17696905 10_1111_j_1365_2613_2007_00552_x IEP552 ark_67375_WNG_D617GWH3_2 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29J 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAKDD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIACR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPT ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D Q.N Q11 QB0 Q~Q R.K ROL RPM RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR X7M XG1 YFH YUY ZGI ZXP ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c5752-9ae15437c0c02a614ae789552727c8dcf20b1a0723fc9c1b792fa0ebe78a2f933 |
IEDL.DBID | DR2 |
ISSN | 0959-9673 |
IngestDate | Thu Aug 21 13:18:10 EDT 2025 Fri Jul 11 04:20:56 EDT 2025 Mon Jul 21 05:43:54 EDT 2025 Tue Jul 01 03:08:53 EDT 2025 Thu Apr 24 23:11:04 EDT 2025 Wed Aug 20 07:26:08 EDT 2025 Sun Sep 21 06:22:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5752-9ae15437c0c02a614ae789552727c8dcf20b1a0723fc9c1b792fa0ebe78a2f933 |
Notes | ArticleID:IEP552 istex:9E6EDC0A72BF489ABD6682424BCDF85F2297A2AC ark:/67375/WNG-D617GWH3-2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2517317 |
PMID | 17696905 |
PQID | 68164761 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2517317 proquest_miscellaneous_68164761 pubmed_primary_17696905 crossref_citationtrail_10_1111_j_1365_2613_2007_00552_x crossref_primary_10_1111_j_1365_2613_2007_00552_x wiley_primary_10_1111_j_1365_2613_2007_00552_x_IEP552 istex_primary_ark_67375_WNG_D617GWH3_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2007 |
PublicationDateYYYYMMDD | 2007-08-01 |
PublicationDate_xml | – month: 08 year: 2007 text: August 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | International journal of experimental pathology |
PublicationTitleAlternate | Int J Exp Pathol |
PublicationYear | 2007 |
Publisher | Blackwell Publishing Ltd Blackwell Science Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Science Inc |
References | Birch H.L., Bailey A.J., Goodship A.E. (1998) Macroscopic 'degeneration' of equine superficial digital flexor tendon is accompanied by a change in extracellular matrix composition. Equine Vet. J. 30, 534-539. Rinn J.L., Bondre C., Gladstone H.B., Brown P.O., Chang H.Y. (2006) Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2, e119. Vora A.M., Myerson M.S., Oliva F., Maffulli N. (2005) Tendinopathy of the main body of the Achilles tendon. Foot Ankle Clin. 10, 293-308. Ker R.F. (2002) The implications of the adaptable fatigue quality of tendons for their construction, repair and function. Comp. Biochem. Physiol., A Mol. Integr. Physiol. 133, 987-1000. Laurent G.J. (1987) Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am. J. Physiol. 252, C1-C9. Kastelic J., Galeski A., Baer E. (1978) The multicomposite structure of tendon. Connect. Tissue Res. 6, 11-23. Moller A., Astron M., Westlin N. (1996) Increasing incidence of Achilles tendon rupture. Acta Orthop. Scand. 67, 479-481. Kasashima Y., Takahashi T., Smith R.K. et al. (2004) Prevalence of superficial digital flexor tendonitis and suspensory desmitis in Japanese Thoroughbred flat racehorses in 1999. Equine Vet. J. 36, 346-350. Kohls-Gatzoulis J., Angel J.C., Singh D., Haddad F., Livingstone J., Berry G. (2004) Tibialis posterior dysfunction: a common and treatable cause of adult acquired flatfoot. BMJ 329, 1328-1333. Silver F.H., Freeman J.W., Seehra G.P. (2003) Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 36, 1529-1553. Ely E.R., Verheyen K.L., Wood J.L. (2004) Fractures and tendon injuries in National Hunt horses in training in the UK: a pilot study. Equine Vet. J. 36, 365-367. Ker R.F., Wang X.T., Pike A.V. (2000) Fatigue quality of mammalian tendons. J. Exp. Biol. 203, 1317-1327. Kannus P. & Jozsa L. (1991) Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J. Bone Joint Surg. Am. 73, 1507-1525. Perkins N.R., Reid S.W., Morris R.S. (2005) Risk factors for injury to the superficial digital flexor tendon and suspensory apparatus in Thoroughbred racehorses in New Zealand. N. Z. Vet. J. 53, 184-192. Wapner K.L., Pavlock G.S., Hecht P.J., Naselli F., Walther R. (1993) Repair of chronic Achilles tendon rupture with flexor hallucis longus tendon transfer. Foot Ankle 14, 443-449. Brown N.A., Kawcak C.E., McIlwraith C.W., Pandy M.G. (2003) Architectural properties of distal forelimb muscles in horses. Equus caballus. J. Morphol. 258, 106-114. Magnusson S.P., Hansen P., Aagaard P. et al. (2003) Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo. Acta Physiol. Scand. 177, 185-195. Maganaris C.N. & Paul J.P. (2000) In vivo human tendinous tissue stretch upon maximum muscle force generation. J. Biomech. 33, 1453-1459. Rees J.D., Wilson A.M., Wolman R.L. (2006) Current concepts in the management of tendon disorders. Rheumatology (Oxford) 45, 508-521. Svensson L., Aszodi A., Reinholt F.P., Fassler R., Heinegard D., Oldberg A. (1999) Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J. Biol. Chem. 274, 9636-9647. Stephens P.R., Nunamaker D.M., Butterweck D.M. (1989) Application of a Hall-effect transducer for measurement of tendon strains in horses. Am. J. Vet. Res. 50, 1089-1095. Riley G.P., Harrall R.L., Constant C.R., Chard M.D., Cawston T.E., Hazleman B.L. (1994) Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis. Ann. Rheum. Dis. 53, 359-366. Goodship A.E. & Birch H.L. (2005) Cross sectional area measurement of tendon and ligament in vitro: a simple, rapid, non-destructive technique. J. Biomech. 38, 605-608. Chakravarti S. (2002) Functions of lumican and fibromodulin: lessons from knockout mice. Glycoconj. J. 19, 287-293. Birch H.L., Bailey J.V., Bailey A.J., Goodship A.E. (1999) Age-related changes to the molecular and cellular components of equine flexor tendons. Equine Vet. J. 31, 391-396. Lichtwark G.A. & Wilson A.M. (2005) In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J. Exp. Biol. 208, 4715-4725. Alexander R.M. (2002) Tendon elasticity and muscle function. Comp. Biochem. Physiol., A Mol. Integr. Physiol. 133, 1001-1011. Danielson K.G., Baribault H., Holmes D.F., Graham H., Kadler K.E., Iozzo R.V. (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J. Cell Biol. 136, 729-743. Wilson A.M., McGuigan M.P., Su A., Van Den Bogert A.J. (2001) Horses damp the spring in their step. Nature 414, 895-899. 1997; 136 2002; 19 2002; 133 1991; 73 2003; 36 2006 2006; 2 2003; 258 2004; 329 2003; 177 1978; 6 1987; 252 1993; 14 1989; 50 2001 2006; 45 2000; 203 2004; 36 2000; 33 1999; 274 2005; 208 2005; 53 2005; 10 1999; 31 1998; 30 2005; 38 1996; 67 2001; 414 1994; 53 e_1_2_2_4_1 e_1_2_2_25_1 e_1_2_2_24_1 Birch H.L. (e_1_2_2_5_1) 2001 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_22_1 e_1_2_2_21_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_8_1 e_1_2_2_27_1 e_1_2_2_26_1 e_1_2_2_14_1 e_1_2_2_13_1 e_1_2_2_12_1 e_1_2_2_11_1 Stephens P.R. (e_1_2_2_28_1) 1989; 50 e_1_2_2_10_1 e_1_2_2_30_1 e_1_2_2_31_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_18_1 e_1_2_2_17_1 e_1_2_2_16_1 Ker R.F. (e_1_2_2_15_1) 2000; 203 8037494 - Ann Rheum Dis. 1994 Jun;53(6):359-66 8948254 - Acta Orthop Scand. 1996 Oct;67(5):479-81 10505954 - Equine Vet J. 1999 Sep;31(5):391-6 14499302 - J Biomech. 2003 Oct;36(10):1529-53 3544859 - Am J Physiol. 1987 Jan;252(1 Pt 1):C1-9 9844973 - Equine Vet J. 1998 Nov;30(6):534-9 15576744 - BMJ. 2004 Dec 4;329(7478):1328-33 10940404 - J Biomech. 2000 Nov;33(11):1453-9 9024701 - J Cell Biol. 1997 Feb 10;136(3):729-43 15652560 - J Biomech. 2005 Mar;38(3):605-8 16490749 - Rheumatology (Oxford). 2006 May;45(5):508-21 149646 - Connect Tissue Res. 1978;6(1):11-23 12975607 - Glycoconj J. 2002 May-Jun;19(4-5):287-93 12485689 - Comp Biochem Physiol A Mol Integr Physiol. 2002 Dec;133(4):1001-11 15922920 - Foot Ankle Clin. 2005 Jun;10(2):293-308 10729280 - J Exp Biol. 2000 Apr;203(Pt 8):1317-27 11780059 - Nature. 2001 Dec 20-27;414(6866):895-9 12485688 - Comp Biochem Physiol A Mol Integr Physiol. 2002 Dec;133(4):987-1000 16895450 - PLoS Genet. 2006 Jul;2(7):e119 12558555 - Acta Physiol Scand. 2003 Feb;177(2):185-95 12905538 - J Morphol. 2003 Oct;258(1):106-14 2774333 - Am J Vet Res. 1989 Jul;50(7):1089-95 16012588 - N Z Vet J. 2005 Jun;53(3):184-92 15163047 - Equine Vet J. 2004 May;36(4):365-7 1748700 - J Bone Joint Surg Am. 1991 Dec;73(10):1507-25 15163043 - Equine Vet J. 2004 May;36(4):346-50 10092650 - J Biol Chem. 1999 Apr 2;274(14):9636-47 8253436 - Foot Ankle. 1993 Oct;14(8):443-9 16326953 - J Exp Biol. 2005 Dec;208(Pt 24):4715-25 |
References_xml | – reference: Riley G.P., Harrall R.L., Constant C.R., Chard M.D., Cawston T.E., Hazleman B.L. (1994) Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis. Ann. Rheum. Dis. 53, 359-366. – reference: Rinn J.L., Bondre C., Gladstone H.B., Brown P.O., Chang H.Y. (2006) Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2, e119. – reference: Maganaris C.N. & Paul J.P. (2000) In vivo human tendinous tissue stretch upon maximum muscle force generation. J. Biomech. 33, 1453-1459. – reference: Svensson L., Aszodi A., Reinholt F.P., Fassler R., Heinegard D., Oldberg A. (1999) Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J. Biol. Chem. 274, 9636-9647. – reference: Kastelic J., Galeski A., Baer E. (1978) The multicomposite structure of tendon. Connect. Tissue Res. 6, 11-23. – reference: Perkins N.R., Reid S.W., Morris R.S. (2005) Risk factors for injury to the superficial digital flexor tendon and suspensory apparatus in Thoroughbred racehorses in New Zealand. N. Z. Vet. J. 53, 184-192. – reference: Wapner K.L., Pavlock G.S., Hecht P.J., Naselli F., Walther R. (1993) Repair of chronic Achilles tendon rupture with flexor hallucis longus tendon transfer. Foot Ankle 14, 443-449. – reference: Silver F.H., Freeman J.W., Seehra G.P. (2003) Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 36, 1529-1553. – reference: Birch H.L., Bailey A.J., Goodship A.E. (1998) Macroscopic 'degeneration' of equine superficial digital flexor tendon is accompanied by a change in extracellular matrix composition. Equine Vet. J. 30, 534-539. – reference: Ker R.F., Wang X.T., Pike A.V. (2000) Fatigue quality of mammalian tendons. J. Exp. Biol. 203, 1317-1327. – reference: Kasashima Y., Takahashi T., Smith R.K. et al. (2004) Prevalence of superficial digital flexor tendonitis and suspensory desmitis in Japanese Thoroughbred flat racehorses in 1999. Equine Vet. J. 36, 346-350. – reference: Lichtwark G.A. & Wilson A.M. (2005) In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J. Exp. Biol. 208, 4715-4725. – reference: Laurent G.J. (1987) Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am. J. Physiol. 252, C1-C9. – reference: Chakravarti S. (2002) Functions of lumican and fibromodulin: lessons from knockout mice. Glycoconj. J. 19, 287-293. – reference: Goodship A.E. & Birch H.L. (2005) Cross sectional area measurement of tendon and ligament in vitro: a simple, rapid, non-destructive technique. J. Biomech. 38, 605-608. – reference: Kannus P. & Jozsa L. (1991) Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J. Bone Joint Surg. Am. 73, 1507-1525. – reference: Moller A., Astron M., Westlin N. (1996) Increasing incidence of Achilles tendon rupture. Acta Orthop. Scand. 67, 479-481. – reference: Rees J.D., Wilson A.M., Wolman R.L. (2006) Current concepts in the management of tendon disorders. Rheumatology (Oxford) 45, 508-521. – reference: Vora A.M., Myerson M.S., Oliva F., Maffulli N. (2005) Tendinopathy of the main body of the Achilles tendon. Foot Ankle Clin. 10, 293-308. – reference: Birch H.L., Bailey J.V., Bailey A.J., Goodship A.E. (1999) Age-related changes to the molecular and cellular components of equine flexor tendons. Equine Vet. J. 31, 391-396. – reference: Ker R.F. (2002) The implications of the adaptable fatigue quality of tendons for their construction, repair and function. Comp. Biochem. Physiol., A Mol. Integr. Physiol. 133, 987-1000. – reference: Stephens P.R., Nunamaker D.M., Butterweck D.M. (1989) Application of a Hall-effect transducer for measurement of tendon strains in horses. Am. J. Vet. Res. 50, 1089-1095. – reference: Magnusson S.P., Hansen P., Aagaard P. et al. (2003) Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo. Acta Physiol. Scand. 177, 185-195. – reference: Wilson A.M., McGuigan M.P., Su A., Van Den Bogert A.J. (2001) Horses damp the spring in their step. Nature 414, 895-899. – reference: Danielson K.G., Baribault H., Holmes D.F., Graham H., Kadler K.E., Iozzo R.V. (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J. Cell Biol. 136, 729-743. – reference: Ely E.R., Verheyen K.L., Wood J.L. (2004) Fractures and tendon injuries in National Hunt horses in training in the UK: a pilot study. Equine Vet. J. 36, 365-367. – reference: Alexander R.M. (2002) Tendon elasticity and muscle function. Comp. Biochem. Physiol., A Mol. Integr. Physiol. 133, 1001-1011. – reference: Kohls-Gatzoulis J., Angel J.C., Singh D., Haddad F., Livingstone J., Berry G. (2004) Tibialis posterior dysfunction: a common and treatable cause of adult acquired flatfoot. BMJ 329, 1328-1333. – reference: Brown N.A., Kawcak C.E., McIlwraith C.W., Pandy M.G. (2003) Architectural properties of distal forelimb muscles in horses. Equus caballus. J. Morphol. 258, 106-114. – volume: 252 start-page: C1 year: 1987 end-page: C9 article-title: Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass publication-title: Am. J. Physiol. – volume: 38 start-page: 605 year: 2005 end-page: 608 article-title: Cross sectional area measurement of tendon and ligament in vitro: a simple, rapid, non‐destructive technique publication-title: J. Biomech. – volume: 6 start-page: 11 year: 1978 end-page: 23 article-title: The multicomposite structure of tendon publication-title: Connect. Tissue Res. – volume: 36 start-page: 1529 year: 2003 end-page: 1553 article-title: Collagen self‐assembly and the development of tendon mechanical properties publication-title: J. Biomech. – volume: 31 start-page: 391 year: 1999 end-page: 396 article-title: Age‐related changes to the molecular and cellular components of equine flexor tendons publication-title: Equine Vet. J. – year: 2001 – volume: 33 start-page: 1453 year: 2000 end-page: 1459 article-title: In vivo human tendinous tissue stretch upon maximum muscle force generation publication-title: J. Biomech. – volume: 2 start-page: e119 year: 2006 article-title: Anatomic demarcation by positional variation in fibroblast gene expression programs publication-title: PLoS Genet. – volume: 19 start-page: 287 year: 2002 end-page: 293 article-title: Functions of lumican and fibromodulin: lessons from knockout mice publication-title: Glycoconj. J. – volume: 274 start-page: 9636 year: 1999 end-page: 9647 article-title: Fibromodulin‐null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon publication-title: J. Biol. Chem. – volume: 208 start-page: 4715 year: 2005 end-page: 4725 article-title: In vivo mechanical properties of the human Achilles tendon during one‐legged hopping publication-title: J. Exp. Biol. – volume: 329 start-page: 1328 year: 2004 end-page: 1333 article-title: Tibialis posterior dysfunction: a common and treatable cause of adult acquired flatfoot publication-title: BMJ – volume: 133 start-page: 987 year: 2002 end-page: 1000 article-title: The implications of the adaptable fatigue quality of tendons for their construction, repair and function publication-title: Comp. Biochem. Physiol., A Mol. Integr. Physiol. – volume: 36 start-page: 346 year: 2004 end-page: 350 article-title: Prevalence of superficial digital flexor tendonitis and suspensory desmitis in Japanese Thoroughbred flat racehorses in 1999 publication-title: Equine Vet. J. – volume: 30 start-page: 534 year: 1998 end-page: 539 article-title: Macroscopic ‘degeneration’ of equine superficial digital flexor tendon is accompanied by a change in extracellular matrix composition publication-title: Equine Vet. J. – volume: 136 start-page: 729 year: 1997 end-page: 743 article-title: Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility publication-title: J. Cell Biol. – volume: 414 start-page: 895 year: 2001 end-page: 899 article-title: Horses damp the spring in their step publication-title: Nature – volume: 45 start-page: 508 year: 2006 end-page: 521 article-title: Current concepts in the management of tendon disorders publication-title: Rheumatology (Oxford) – volume: 258 start-page: 106 year: 2003 end-page: 114 article-title: Architectural properties of distal forelimb muscles in horses publication-title: J. Morphol. – volume: 73 start-page: 1507 year: 1991 end-page: 1525 article-title: Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients publication-title: J. Bone Joint Surg. Am. – volume: 177 start-page: 185 year: 2003 end-page: 195 article-title: Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo publication-title: Acta Physiol. Scand. – volume: 67 start-page: 479 year: 1996 end-page: 481 article-title: Increasing incidence of Achilles tendon rupture publication-title: Acta Orthop. Scand. – volume: 53 start-page: 184 year: 2005 end-page: 192 article-title: Risk factors for injury to the superficial digital flexor tendon and suspensory apparatus in Thoroughbred racehorses in New Zealand publication-title: N. Z. Vet. J. – year: 2006 – volume: 53 start-page: 359 year: 1994 end-page: 366 article-title: Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis publication-title: Ann. Rheum. Dis. – volume: 14 start-page: 443 year: 1993 end-page: 449 article-title: Repair of chronic Achilles tendon rupture with flexor hallucis longus tendon transfer publication-title: Foot Ankle – volume: 133 start-page: 1001 year: 2002 end-page: 1011 article-title: Tendon elasticity and muscle function publication-title: Comp. Biochem. Physiol., A Mol. Integr. Physiol. – volume: 36 start-page: 365 year: 2004 end-page: 367 article-title: Fractures and tendon injuries in National Hunt horses in training in the UK: a pilot study publication-title: Equine Vet. J. – volume: 203 start-page: 1317 year: 2000 end-page: 1327 article-title: Fatigue quality of mammalian tendons publication-title: J. Exp. Biol. – volume: 50 start-page: 1089 year: 1989 end-page: 1095 article-title: Application of a Hall‐effect transducer for measurement of tendon strains in horses publication-title: Am. J. Vet. Res. – volume: 10 start-page: 293 year: 2005 end-page: 308 article-title: Tendinopathy of the main body of the Achilles tendon publication-title: Foot Ankle Clin. – ident: e_1_2_2_13_1 doi: 10.3109/03008207809152283 – ident: e_1_2_2_12_1 doi: 10.2746/0425164044890580 – ident: e_1_2_2_29_1 doi: 10.1074/jbc.274.14.9636 – ident: e_1_2_2_14_1 doi: 10.1016/S1095-6433(02)00171-X – ident: e_1_2_2_27_1 – ident: e_1_2_2_18_1 doi: 10.1242/jeb.01950 – ident: e_1_2_2_7_1 doi: 10.1023/A:1025348417078 – volume-title: Transactions of the 47th Annual Meeting of the Orthopaedic Research Society year: 2001 ident: e_1_2_2_5_1 – ident: e_1_2_2_23_1 doi: 10.1093/rheumatology/kel046 – ident: e_1_2_2_25_1 doi: 10.1371/journal.pgen.0020119 – ident: e_1_2_2_32_1 doi: 10.1038/414895a – ident: e_1_2_2_2_1 doi: 10.1016/S1095-6433(02)00143-5 – ident: e_1_2_2_21_1 doi: 10.3109/17453679608996672 – ident: e_1_2_2_17_1 doi: 10.1152/ajpcell.1987.252.1.C1 – ident: e_1_2_2_4_1 doi: 10.1111/j.2042-3306.1999.tb03838.x – ident: e_1_2_2_24_1 doi: 10.1136/ard.53.6.359 – ident: e_1_2_2_30_1 doi: 10.1016/j.fcl.2005.01.007 – ident: e_1_2_2_16_1 doi: 10.1136/bmj.329.7478.1328 – ident: e_1_2_2_20_1 doi: 10.1046/j.1365-201X.2003.01048.x – volume: 50 start-page: 1089 year: 1989 ident: e_1_2_2_28_1 article-title: Application of a Hall‐effect transducer for measurement of tendon strains in horses publication-title: Am. J. Vet. Res. – volume: 203 start-page: 1317 year: 2000 ident: e_1_2_2_15_1 article-title: Fatigue quality of mammalian tendons publication-title: J. Exp. Biol. doi: 10.1242/jeb.203.8.1317 – ident: e_1_2_2_6_1 doi: 10.1002/jmor.10113 – ident: e_1_2_2_26_1 doi: 10.1016/S0021-9290(03)00135-0 – ident: e_1_2_2_31_1 doi: 10.1177/107110079301400803 – ident: e_1_2_2_19_1 doi: 10.1016/S0021-9290(00)00099-3 – ident: e_1_2_2_8_1 doi: 10.1083/jcb.136.3.729 – ident: e_1_2_2_22_1 doi: 10.1080/00480169.2005.36503 – ident: e_1_2_2_3_1 doi: 10.1111/j.2042-3306.1998.tb04530.x – ident: e_1_2_2_11_1 doi: 10.2106/00004623-199173100-00009 – ident: e_1_2_2_10_1 doi: 10.1016/j.jbiomech.2004.05.003 – ident: e_1_2_2_9_1 doi: 10.2746/0425164044890607 – reference: 12905538 - J Morphol. 2003 Oct;258(1):106-14 – reference: 10940404 - J Biomech. 2000 Nov;33(11):1453-9 – reference: 15922920 - Foot Ankle Clin. 2005 Jun;10(2):293-308 – reference: 10729280 - J Exp Biol. 2000 Apr;203(Pt 8):1317-27 – reference: 2774333 - Am J Vet Res. 1989 Jul;50(7):1089-95 – reference: 10505954 - Equine Vet J. 1999 Sep;31(5):391-6 – reference: 16326953 - J Exp Biol. 2005 Dec;208(Pt 24):4715-25 – reference: 15163047 - Equine Vet J. 2004 May;36(4):365-7 – reference: 12975607 - Glycoconj J. 2002 May-Jun;19(4-5):287-93 – reference: 149646 - Connect Tissue Res. 1978;6(1):11-23 – reference: 15576744 - BMJ. 2004 Dec 4;329(7478):1328-33 – reference: 1748700 - J Bone Joint Surg Am. 1991 Dec;73(10):1507-25 – reference: 8037494 - Ann Rheum Dis. 1994 Jun;53(6):359-66 – reference: 8253436 - Foot Ankle. 1993 Oct;14(8):443-9 – reference: 9844973 - Equine Vet J. 1998 Nov;30(6):534-9 – reference: 11780059 - Nature. 2001 Dec 20-27;414(6866):895-9 – reference: 12485688 - Comp Biochem Physiol A Mol Integr Physiol. 2002 Dec;133(4):987-1000 – reference: 3544859 - Am J Physiol. 1987 Jan;252(1 Pt 1):C1-9 – reference: 15652560 - J Biomech. 2005 Mar;38(3):605-8 – reference: 12485689 - Comp Biochem Physiol A Mol Integr Physiol. 2002 Dec;133(4):1001-11 – reference: 14499302 - J Biomech. 2003 Oct;36(10):1529-53 – reference: 12558555 - Acta Physiol Scand. 2003 Feb;177(2):185-95 – reference: 10092650 - J Biol Chem. 1999 Apr 2;274(14):9636-47 – reference: 16490749 - Rheumatology (Oxford). 2006 May;45(5):508-21 – reference: 15163043 - Equine Vet J. 2004 May;36(4):346-50 – reference: 8948254 - Acta Orthop Scand. 1996 Oct;67(5):479-81 – reference: 9024701 - J Cell Biol. 1997 Feb 10;136(3):729-43 – reference: 16012588 - N Z Vet J. 2005 Jun;53(3):184-92 – reference: 16895450 - PLoS Genet. 2006 Jul;2(7):e119 |
SSID | ssj0013217 |
Score | 2.201655 |
SecondaryResourceType | review_article |
Snippet | Summary
Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these... Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 241 |
SubjectTerms | Animals collagen Elasticity Extracellular Matrix - physiology function Horses - physiology Humans matrix mechanics metabolism Review Stress, Mechanical tendon Tendons - metabolism Tendons - physiology |
Title | Tendon matrix composition and turnover in relation to functional requirements |
URI | https://api.istex.fr/ark:/67375/WNG-D617GWH3-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2613.2007.00552.x https://www.ncbi.nlm.nih.gov/pubmed/17696905 https://www.proquest.com/docview/68164761 https://pubmed.ncbi.nlm.nih.gov/PMC2517317 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hVkJc-IYGSvEBccsqcRI7PrZstwtSK4RatTfLdmJRLc2i_ZBW_HpmnOx2Az1UiFuUZJLYmYmfxy9vAD4Upix4XlH1strHueEiNkaIGGcO3gtb2qoOap9nYnyRf7kqrjr-E_0L0-pDbBJuFBnhe00Bbuy8H-QtQyvN1kqERcEHhCfxAMnoD7_xrQWFUHw3ZL2UkFmf1HPnhXoj1S51-uouGPo3m3Ib5YZhavQEJusGtuyUyWC5sAP36w_tx__TA0_hcYdm2WHrfs_gQd08h4en3Xr9Czg9r6laCLuhQgArRvz1jiTGTFMxHO4aopCy64bNOlYeW0wZDbZtjhJ3E1U55DDnL-FidHz-aRx3BRxihyiQx8rUiNAy6RKXcINAwNSyVKT5xqUrK-d5YlOTSJ55p1xqpeLeJOhWsjTcqyx7BTvNtKn3gPHKc4NQ04vc5t6mKs-EUo6XVe5pGhaBXL8s7Tp1cyqy8UNvzXKwtzT1FtXepGV3fBK9iiDdWP5sFT7uYfMx-MPGwMwmxJCThb48O9FDhIUnl2O0ieD92mE0xi0txpimni7nWpSk5CbSCF637nN7cymUUEmBTeo51uYEUgTvH2muvwdlcNKfQ0AYQRH85t7t0Z-Pv-LGm3-0ewuP2pQ38SL3YWcxW9bvEKst7AHsHh4Nj0YHIRp_A9j3MRU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6hTQJe2PgdGMwPiLdUiZPY8SOCbR2sFUKdtjfLcWwxbaSoa6WKv353Tloa2MOEeIuSXlo7d_Xnuy_fAbwrTFnwvKbuZc7HueEiNkaIGHcO3ouqrGoX1D7HYniafz4vzrt2QPQuTKsPsU64UWSE_2sKcEpI96O8pWil2UqKsCj4AAHldo64I9Rsv_GNkkJovxvyXkrIrE_rufVOvbVqm6Z9eRsQ_ZtPuYlzw0J1uANXqyG2_JTLwWJeDeyvP9Qf_9Mc7MKjDtCyD60HPoZ7rnkC90ddyf4pjCaOGoawH9QLYMmIwt7xxJhpaoYrXkMsUnbRsFlHzGPzKaP1tk1T4mliK4c05vUzOD08mHwcxl0Ph9giEOSxMg5BWiZtYhNuEAsYJ0tFsm9c2rK2nidVahLJM2-VTSupuDcJepYsDfcqy57DVjNt3EtgvPbcINr0Iq9yX6Uqz4RSlpd17mknFoFcPS1tO4Fz6rNxpTc2OjhbmmaL2m9S5R1_iV5GkK4tf7YiH3eweR8cYm1gZpdEkpOFPhsf6U-IDI_OhmgTwf7KYzSGLtVjTOOmi2stShJzE2kEL1r_-f3lUiihkgKH1POs9QdIFLx_pbn4HsTBSYIOMWEERXCcO49HHx98xYNX_2i3Dw-Gk9GJPjkef3kND9sMONEk92BrPlu4Nwjd5tXbEJI3U9IzwQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCaGFih22fvh7lEdht0c2LItWcdhbZpua1AMLdqbIMsSWmRzijQBgv76kbKTxVsPxbCbYYdOJJPhJ-rzR4APhSkLntfUvcz5ODdcxMYIEePKwXtRlVXtgtrnWIzO8i8XxUXHf6J3YVp9iHXBjSIj_F9TgF_Xvh_kLUMrzVZKhEXBB4gnt3OBiY0A0ne-saMQuu-GspcSMuuzeu68Uy9VbdOsL-_CoX_TKTdhbshTw8cwWY2wpadMBot5NbC3f4g__p8peAKPOjjLPrX-9xQeuOYZ7Bx3G_bP4fjUUbsQ9pM6ASwZEdg7lhgzTc0w3zXEIWVXDZt1tDw2nzLKtm2REk8TVzkUMW9ewNnw4PTzKO46OMQWYSCPlXEI0TJpE5twg0jAOFkqEn3j0pa19TypUpNInnmrbFpJxb1J0K9kabhXWfYStppp414D47XnBrGmF3mV-ypVeSaUsrysc0_rsAjk6mFp28mbU5eNH3pjmYOzpWm2qPkm7bvjL9HLCNK15XUr8XEPm4_BH9YGZjYhipws9Pn4UO8jLjw8H6FNBHsrh9EYuLQbYxo3XdxoUZKUm0gjeNW6z-8vl0IJlRQ4pJ5jrT9AkuD9K83VZZAGJwE6RIQRFMFv7j0efXRwgge7_2i3Bzsn-0P97Wj89Q08bMvfxJF8C1vz2cK9Q9w2r96HgPwFft0ycA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tendon+matrix+composition+and+turnover+in+relation+to+functional+requirements&rft.jtitle=International+journal+of+experimental+pathology&rft.au=Birch%2C+Helen+L&rft.date=2007-08-01&rft.issn=0959-9673&rft.volume=88&rft.issue=4&rft.spage=241&rft_id=info:doi/10.1111%2Fj.1365-2613.2007.00552.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-9673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-9673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-9673&client=summon |