Tendon matrix composition and turnover in relation to functional requirements

Summary Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious commons features tendons from different locations within the body show remarkable variation in terms of their morphological, molecula...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of experimental pathology Vol. 88; no. 4; pp. 241 - 248
Main Author Birch, Helen L.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2007
Blackwell Science Inc
Subjects
Online AccessGet full text
ISSN0959-9673
1365-2613
DOI10.1111/j.1365-2613.2007.00552.x

Cover

Abstract Summary Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious commons features tendons from different locations within the body show remarkable variation in terms of their morphological, molecular and mechanical properties which relates to their specialized function. An appreciation of these differences is necessary to understand all aspects of tendon biology in health and disease. In our work, we have used a combination of mechanical assessment, histological measurements and molecular analysis of matrix in functionally distinct tendons to determine relationships between function and structure. We have found significant differences in material and molecular properties between spring‐like tendons that are subjected to high strains during locomotion and positional tendons which are subjected to much lower strains. Furthermore, we have data to suggest that not only is the matrix composition different but also the ability of cells to synthesize and degrade the matrix (matrix turnover) varies between tendon types. We propose that these differences relate to the magnitude of strain that the tendon experiences during normal activities in life. Tendon cells may be preprogrammed during embryological development for the strain they will encounter in life or may simply respond to the particular strain environment they are subjected to. The elucidation of controlling mechanisms resulting in tendon cell specialization will have important consequences for cell based therapies and engineering strategies to repair damaged tendons.
AbstractList Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious commons features tendons from different locations within the body show remarkable variation in terms of their morphological, molecular and mechanical properties which relates to their specialized function. An appreciation of these differences is necessary to understand all aspects of tendon biology in health and disease. In our work, we have used a combination of mechanical assessment, histological measurements and molecular analysis of matrix in functionally distinct tendons to determine relationships between function and structure. We have found significant differences in material and molecular properties between spring‐like tendons that are subjected to high strains during locomotion and positional tendons which are subjected to much lower strains. Furthermore, we have data to suggest that not only is the matrix composition different but also the ability of cells to synthesize and degrade the matrix (matrix turnover) varies between tendon types. We propose that these differences relate to the magnitude of strain that the tendon experiences during normal activities in life. Tendon cells may be preprogrammed during embryological development for the strain they will encounter in life or may simply respond to the particular strain environment they are subjected to. The elucidation of controlling mechanisms resulting in tendon cell specialization will have important consequences for cell based therapies and engineering strategies to repair damaged tendons.
Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious commons features tendons from different locations within the body show remarkable variation in terms of their morphological, molecular and mechanical properties which relates to their specialized function. An appreciation of these differences is necessary to understand all aspects of tendon biology in health and disease. In our work, we have used a combination of mechanical assessment, histological measurements and molecular analysis of matrix in functionally distinct tendons to determine relationships between function and structure. We have found significant differences in material and molecular properties between spring-like tendons that are subjected to high strains during locomotion and positional tendons which are subjected to much lower strains. Furthermore, we have data to suggest that not only is the matrix composition different but also the ability of cells to synthesize and degrade the matrix (matrix turnover) varies between tendon types. We propose that these differences relate to the magnitude of strain that the tendon experiences during normal activities in life. Tendon cells may be preprogrammed during embryological development for the strain they will encounter in life or may simply respond to the particular strain environment they are subjected to. The elucidation of controlling mechanisms resulting in tendon cell specialization will have important consequences for cell based therapies and engineering strategies to repair damaged tendons.Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious commons features tendons from different locations within the body show remarkable variation in terms of their morphological, molecular and mechanical properties which relates to their specialized function. An appreciation of these differences is necessary to understand all aspects of tendon biology in health and disease. In our work, we have used a combination of mechanical assessment, histological measurements and molecular analysis of matrix in functionally distinct tendons to determine relationships between function and structure. We have found significant differences in material and molecular properties between spring-like tendons that are subjected to high strains during locomotion and positional tendons which are subjected to much lower strains. Furthermore, we have data to suggest that not only is the matrix composition different but also the ability of cells to synthesize and degrade the matrix (matrix turnover) varies between tendon types. We propose that these differences relate to the magnitude of strain that the tendon experiences during normal activities in life. Tendon cells may be preprogrammed during embryological development for the strain they will encounter in life or may simply respond to the particular strain environment they are subjected to. The elucidation of controlling mechanisms resulting in tendon cell specialization will have important consequences for cell based therapies and engineering strategies to repair damaged tendons.
Summary Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious commons features tendons from different locations within the body show remarkable variation in terms of their morphological, molecular and mechanical properties which relates to their specialized function. An appreciation of these differences is necessary to understand all aspects of tendon biology in health and disease. In our work, we have used a combination of mechanical assessment, histological measurements and molecular analysis of matrix in functionally distinct tendons to determine relationships between function and structure. We have found significant differences in material and molecular properties between spring‐like tendons that are subjected to high strains during locomotion and positional tendons which are subjected to much lower strains. Furthermore, we have data to suggest that not only is the matrix composition different but also the ability of cells to synthesize and degrade the matrix (matrix turnover) varies between tendon types. We propose that these differences relate to the magnitude of strain that the tendon experiences during normal activities in life. Tendon cells may be preprogrammed during embryological development for the strain they will encounter in life or may simply respond to the particular strain environment they are subjected to. The elucidation of controlling mechanisms resulting in tendon cell specialization will have important consequences for cell based therapies and engineering strategies to repair damaged tendons.
Author Birch, Helen L.
Author_xml – sequence: 1
  givenname: Helen L.
  surname: Birch
  fullname: Birch, Helen L.
  organization: Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17696905$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1PGzEQtSqqEgJ_odpTb7v1R2zHEqpUURqQaOEA4jhyHG_rsGsHe5eGf483gfTjUixLHs34vTee5wO054O3CBUEVySvj8uKMMFLKgirKMaywphzWq3foNGusIdGWHFVKiHZPjpIaYkxYZTId2ifSKGEwnyEvl1bvwi-aHUX3bowoV2F5DqXU9oviq6PPjzYWDhfRNvoTaELRd17M8S6yen73kXbWt-lQ_S21k2yR8_nGN18Pb0-OSsvLmfnJ58vSsMlp6XSlvAJkwYbTLUgE23lVOUXSCrNdGFqiudEY0lZbZQhc6lorbGd51ua1oqxMfq05V3189YuTNaOuoFVdK2OjxC0g78r3v2EH-EBKCeS5T1GH54JYrjvbeqgdcnYptHehj6BmBIxkXmKY_T-T6WdxMsEf7diYkgp2hqM6zZzysKuAYJhsAyWMDgDgzMwWAYby2CdCab_EOw0_g893kJ_ucY-vhoH56dXOcjwcgt3qbPrHVzHO8h_RnK4_T6DL4LI2e1ZZmBPjny-gQ
CitedBy_id crossref_primary_10_1098_rsif_2012_0362
crossref_primary_10_1155_2016_3919030
crossref_primary_10_1002_vms3_1205
crossref_primary_10_1111_joa_12485
crossref_primary_10_1016_j_mbplus_2023_100129
crossref_primary_10_1519_SSC_0b013e3181e928f9
crossref_primary_10_1002_jemt_23944
crossref_primary_10_1098_rsif_2013_1058
crossref_primary_10_1007_s11538_013_9850_5
crossref_primary_10_1111_iep_12027
crossref_primary_10_1007_s40843_023_2809_x
crossref_primary_10_1016_j_matbio_2024_12_001
crossref_primary_10_1016_S0716_8640_12_70312_7
crossref_primary_10_1016_j_jmu_2017_03_011
crossref_primary_10_1016_j_actbio_2020_09_056
crossref_primary_10_3390_ma11071116
crossref_primary_10_1016_j_ymthe_2017_07_015
crossref_primary_10_3389_fphys_2017_00132
crossref_primary_10_1016_j_actbio_2022_03_025
crossref_primary_10_1002_adhm_202100741
crossref_primary_10_1016_j_actbio_2022_11_018
crossref_primary_10_1002_jor_23629
crossref_primary_10_1002_term_3030
crossref_primary_10_1002_jor_22818
crossref_primary_10_1016_j_matt_2022_09_011
crossref_primary_10_1519_SSC_0000000000000376
crossref_primary_10_5606_tftrd_2021_5118
crossref_primary_10_1002_jor_26060
crossref_primary_10_1016_j_mbplus_2019_100013
crossref_primary_10_1186_s12860_018_0166_z
crossref_primary_10_1177_03635465211047861
crossref_primary_10_1002_jor_25961
crossref_primary_10_1093_icvts_ivw020
crossref_primary_10_1111_j_2042_3306_2011_00471_x
crossref_primary_10_3389_fspor_2022_1081129
crossref_primary_10_2147_IJN_S466363
crossref_primary_10_1016_j_jmbbm_2019_05_002
crossref_primary_10_1016_j_jmbbm_2015_01_021
crossref_primary_10_1111_evj_12346
crossref_primary_10_3390_ijms21062150
crossref_primary_10_5937_timsact14_27070
crossref_primary_10_1152_japplphysiol_90935_2008
crossref_primary_10_2746_042516409X480395
crossref_primary_10_54133_ajms_v6i2_715
crossref_primary_10_1016_j_matbio_2019_07_008
crossref_primary_10_3389_fphys_2018_00867
crossref_primary_10_1152_japplphysiol_00477_2010
crossref_primary_10_1371_journal_pone_0215830
crossref_primary_10_1002_jemt_22402
crossref_primary_10_1177_0954411913509977
crossref_primary_10_3390_ijms21186726
crossref_primary_10_1074_jbc_M109_077503
crossref_primary_10_3390_cells1041010
crossref_primary_10_1111_evj_13169
crossref_primary_10_1016_j_medengphy_2012_04_004
crossref_primary_10_1111_j_2042_3306_2010_00175_x
crossref_primary_10_1016_j_jbiomech_2019_109321
crossref_primary_10_3390_biomedicines12112634
crossref_primary_10_1002_adfm_202316540
crossref_primary_10_1002_adma_201904511
crossref_primary_10_1111_sms_12160
crossref_primary_10_1016_j_actbio_2017_08_032
crossref_primary_10_1186_1749_799X_3_32
crossref_primary_10_7717_peerj_18143
crossref_primary_10_1177_0363546509350915
crossref_primary_10_1016_j_bioactmat_2021_06_007
crossref_primary_10_1007_s13770_023_00550_z
crossref_primary_10_1152_japplphysiol_00396_2016
crossref_primary_10_1002_jor_24407
crossref_primary_10_1111_evj_13331
crossref_primary_10_1038_s41598_018_22741_8
crossref_primary_10_3389_fbioe_2024_1449372
crossref_primary_10_1016_j_jbiomech_2017_06_045
crossref_primary_10_1299_jbse_4_481
crossref_primary_10_1016_j_actbio_2014_04_008
crossref_primary_10_1111_vsu_13658
crossref_primary_10_7554_eLife_63204
crossref_primary_10_1111_j_1600_0838_2010_01162_x
crossref_primary_10_1080_07328303_2018_1428988
crossref_primary_10_1177_0363546512470617
crossref_primary_10_1152_japplphysiol_00649_2018
crossref_primary_10_3390_cells7120251
crossref_primary_10_1038_srep20455
crossref_primary_10_1115_1_4037932
crossref_primary_10_1016_j_ijbiomac_2020_03_082
crossref_primary_10_34133_2022_9842169
crossref_primary_10_1016_j_morpho_2020_09_003
crossref_primary_10_1113_JP279646
crossref_primary_10_1016_j_jbiomech_2013_04_022
crossref_primary_10_1096_fj_201701569R
crossref_primary_10_1039_D4TB01255K
crossref_primary_10_3892_ijmm_2023_5273
crossref_primary_10_1016_j_jcz_2019_11_002
crossref_primary_10_1139_cjpp_2016_0133
crossref_primary_10_1111_evj_14447
crossref_primary_10_1093_ilar_ilu004
crossref_primary_10_3389_fphys_2023_1122348
crossref_primary_10_1016_j_actbio_2018_01_034
crossref_primary_10_1016_j_jcpa_2012_05_010
crossref_primary_10_1016_j_jbiomech_2013_10_023
crossref_primary_10_3390_pr10030485
crossref_primary_10_1016_j_actbio_2016_06_017
crossref_primary_10_1016_j_actbio_2021_07_019
crossref_primary_10_1007_s40430_024_05068_6
crossref_primary_10_1002_ar_20953
crossref_primary_10_1302_2046_3758_1111_BJR_2021_0548_R2
crossref_primary_10_1155_2022_6884370
crossref_primary_10_1302_2046_3758_29_2000196
crossref_primary_10_1016_j_aanat_2022_151978
crossref_primary_10_7554_eLife_58075
crossref_primary_10_1016_j_actbio_2016_06_012
crossref_primary_10_1016_j_cmpb_2024_108398
crossref_primary_10_1016_j_bioactmat_2022_04_003
crossref_primary_10_1089_ten_tec_2020_0032
crossref_primary_10_1016_j_actbio_2013_05_004
crossref_primary_10_1098_rsif_2017_0261
crossref_primary_10_1242_jeb_182741
crossref_primary_10_3109_03008207_2010_534208
crossref_primary_10_1371_journal_pone_0119974
crossref_primary_10_1007_s00223_024_01183_7
crossref_primary_10_3390_biology12030456
crossref_primary_10_1007_s00167_014_3442_2
crossref_primary_10_1016_j_jbiomech_2022_111315
crossref_primary_10_1021_acsbiomaterials_9b01716
Cites_doi 10.3109/03008207809152283
10.2746/0425164044890580
10.1074/jbc.274.14.9636
10.1016/S1095-6433(02)00171-X
10.1242/jeb.01950
10.1023/A:1025348417078
10.1093/rheumatology/kel046
10.1371/journal.pgen.0020119
10.1038/414895a
10.1016/S1095-6433(02)00143-5
10.3109/17453679608996672
10.1152/ajpcell.1987.252.1.C1
10.1111/j.2042-3306.1999.tb03838.x
10.1136/ard.53.6.359
10.1016/j.fcl.2005.01.007
10.1136/bmj.329.7478.1328
10.1046/j.1365-201X.2003.01048.x
10.1242/jeb.203.8.1317
10.1002/jmor.10113
10.1016/S0021-9290(03)00135-0
10.1177/107110079301400803
10.1016/S0021-9290(00)00099-3
10.1083/jcb.136.3.729
10.1080/00480169.2005.36503
10.1111/j.2042-3306.1998.tb04530.x
10.2106/00004623-199173100-00009
10.1016/j.jbiomech.2004.05.003
10.2746/0425164044890607
ContentType Journal Article
Copyright 2007 The Author Journal compilation © 2007 Blackwell Publishing Ltd 2007
Copyright_xml – notice: 2007 The Author Journal compilation © 2007 Blackwell Publishing Ltd 2007
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1111/j.1365-2613.2007.00552.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1365-2613
EndPage 248
ExternalDocumentID PMC2517317
17696905
10_1111_j_1365_2613_2007_00552_x
IEP552
ark_67375_WNG_D617GWH3_2
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29J
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAKDD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
Q~Q
R.K
ROL
RPM
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c5752-9ae15437c0c02a614ae789552727c8dcf20b1a0723fc9c1b792fa0ebe78a2f933
IEDL.DBID DR2
ISSN 0959-9673
IngestDate Thu Aug 21 13:18:10 EDT 2025
Fri Jul 11 04:20:56 EDT 2025
Mon Jul 21 05:43:54 EDT 2025
Tue Jul 01 03:08:53 EDT 2025
Thu Apr 24 23:11:04 EDT 2025
Wed Aug 20 07:26:08 EDT 2025
Sun Sep 21 06:22:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5752-9ae15437c0c02a614ae789552727c8dcf20b1a0723fc9c1b792fa0ebe78a2f933
Notes ArticleID:IEP552
istex:9E6EDC0A72BF489ABD6682424BCDF85F2297A2AC
ark:/67375/WNG-D617GWH3-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2517317
PMID 17696905
PQID 68164761
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2517317
proquest_miscellaneous_68164761
pubmed_primary_17696905
crossref_citationtrail_10_1111_j_1365_2613_2007_00552_x
crossref_primary_10_1111_j_1365_2613_2007_00552_x
wiley_primary_10_1111_j_1365_2613_2007_00552_x_IEP552
istex_primary_ark_67375_WNG_D617GWH3_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2007
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: August 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle International journal of experimental pathology
PublicationTitleAlternate Int J Exp Pathol
PublicationYear 2007
Publisher Blackwell Publishing Ltd
Blackwell Science Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Science Inc
References Birch H.L., Bailey A.J., Goodship A.E. (1998) Macroscopic 'degeneration' of equine superficial digital flexor tendon is accompanied by a change in extracellular matrix composition. Equine Vet. J. 30, 534-539.
Rinn J.L., Bondre C., Gladstone H.B., Brown P.O., Chang H.Y. (2006) Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2, e119.
Vora A.M., Myerson M.S., Oliva F., Maffulli N. (2005) Tendinopathy of the main body of the Achilles tendon. Foot Ankle Clin. 10, 293-308.
Ker R.F. (2002) The implications of the adaptable fatigue quality of tendons for their construction, repair and function. Comp. Biochem. Physiol., A Mol. Integr. Physiol. 133, 987-1000.
Laurent G.J. (1987) Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am. J. Physiol. 252, C1-C9.
Kastelic J., Galeski A., Baer E. (1978) The multicomposite structure of tendon. Connect. Tissue Res. 6, 11-23.
Moller A., Astron M., Westlin N. (1996) Increasing incidence of Achilles tendon rupture. Acta Orthop. Scand. 67, 479-481.
Kasashima Y., Takahashi T., Smith R.K. et al. (2004) Prevalence of superficial digital flexor tendonitis and suspensory desmitis in Japanese Thoroughbred flat racehorses in 1999. Equine Vet. J. 36, 346-350.
Kohls-Gatzoulis J., Angel J.C., Singh D., Haddad F., Livingstone J., Berry G. (2004) Tibialis posterior dysfunction: a common and treatable cause of adult acquired flatfoot. BMJ 329, 1328-1333.
Silver F.H., Freeman J.W., Seehra G.P. (2003) Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 36, 1529-1553.
Ely E.R., Verheyen K.L., Wood J.L. (2004) Fractures and tendon injuries in National Hunt horses in training in the UK: a pilot study. Equine Vet. J. 36, 365-367.
Ker R.F., Wang X.T., Pike A.V. (2000) Fatigue quality of mammalian tendons. J. Exp. Biol. 203, 1317-1327.
Kannus P. & Jozsa L. (1991) Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J. Bone Joint Surg. Am. 73, 1507-1525.
Perkins N.R., Reid S.W., Morris R.S. (2005) Risk factors for injury to the superficial digital flexor tendon and suspensory apparatus in Thoroughbred racehorses in New Zealand. N. Z. Vet. J. 53, 184-192.
Wapner K.L., Pavlock G.S., Hecht P.J., Naselli F., Walther R. (1993) Repair of chronic Achilles tendon rupture with flexor hallucis longus tendon transfer. Foot Ankle 14, 443-449.
Brown N.A., Kawcak C.E., McIlwraith C.W., Pandy M.G. (2003) Architectural properties of distal forelimb muscles in horses. Equus caballus. J. Morphol. 258, 106-114.
Magnusson S.P., Hansen P., Aagaard P. et al. (2003) Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo. Acta Physiol. Scand. 177, 185-195.
Maganaris C.N. & Paul J.P. (2000) In vivo human tendinous tissue stretch upon maximum muscle force generation. J. Biomech. 33, 1453-1459.
Rees J.D., Wilson A.M., Wolman R.L. (2006) Current concepts in the management of tendon disorders. Rheumatology (Oxford) 45, 508-521.
Svensson L., Aszodi A., Reinholt F.P., Fassler R., Heinegard D., Oldberg A. (1999) Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J. Biol. Chem. 274, 9636-9647.
Stephens P.R., Nunamaker D.M., Butterweck D.M. (1989) Application of a Hall-effect transducer for measurement of tendon strains in horses. Am. J. Vet. Res. 50, 1089-1095.
Riley G.P., Harrall R.L., Constant C.R., Chard M.D., Cawston T.E., Hazleman B.L. (1994) Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis. Ann. Rheum. Dis. 53, 359-366.
Goodship A.E. & Birch H.L. (2005) Cross sectional area measurement of tendon and ligament in vitro: a simple, rapid, non-destructive technique. J. Biomech. 38, 605-608.
Chakravarti S. (2002) Functions of lumican and fibromodulin: lessons from knockout mice. Glycoconj. J. 19, 287-293.
Birch H.L., Bailey J.V., Bailey A.J., Goodship A.E. (1999) Age-related changes to the molecular and cellular components of equine flexor tendons. Equine Vet. J. 31, 391-396.
Lichtwark G.A. & Wilson A.M. (2005) In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J. Exp. Biol. 208, 4715-4725.
Alexander R.M. (2002) Tendon elasticity and muscle function. Comp. Biochem. Physiol., A Mol. Integr. Physiol. 133, 1001-1011.
Danielson K.G., Baribault H., Holmes D.F., Graham H., Kadler K.E., Iozzo R.V. (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J. Cell Biol. 136, 729-743.
Wilson A.M., McGuigan M.P., Su A., Van Den Bogert A.J. (2001) Horses damp the spring in their step. Nature 414, 895-899.
1997; 136
2002; 19
2002; 133
1991; 73
2003; 36
2006
2006; 2
2003; 258
2004; 329
2003; 177
1978; 6
1987; 252
1993; 14
1989; 50
2001
2006; 45
2000; 203
2004; 36
2000; 33
1999; 274
2005; 208
2005; 53
2005; 10
1999; 31
1998; 30
2005; 38
1996; 67
2001; 414
1994; 53
e_1_2_2_4_1
e_1_2_2_25_1
e_1_2_2_24_1
Birch H.L. (e_1_2_2_5_1) 2001
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_22_1
e_1_2_2_21_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_3_1
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_8_1
e_1_2_2_27_1
e_1_2_2_26_1
e_1_2_2_14_1
e_1_2_2_13_1
e_1_2_2_12_1
e_1_2_2_11_1
Stephens P.R. (e_1_2_2_28_1) 1989; 50
e_1_2_2_10_1
e_1_2_2_30_1
e_1_2_2_31_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_18_1
e_1_2_2_17_1
e_1_2_2_16_1
Ker R.F. (e_1_2_2_15_1) 2000; 203
8037494 - Ann Rheum Dis. 1994 Jun;53(6):359-66
8948254 - Acta Orthop Scand. 1996 Oct;67(5):479-81
10505954 - Equine Vet J. 1999 Sep;31(5):391-6
14499302 - J Biomech. 2003 Oct;36(10):1529-53
3544859 - Am J Physiol. 1987 Jan;252(1 Pt 1):C1-9
9844973 - Equine Vet J. 1998 Nov;30(6):534-9
15576744 - BMJ. 2004 Dec 4;329(7478):1328-33
10940404 - J Biomech. 2000 Nov;33(11):1453-9
9024701 - J Cell Biol. 1997 Feb 10;136(3):729-43
15652560 - J Biomech. 2005 Mar;38(3):605-8
16490749 - Rheumatology (Oxford). 2006 May;45(5):508-21
149646 - Connect Tissue Res. 1978;6(1):11-23
12975607 - Glycoconj J. 2002 May-Jun;19(4-5):287-93
12485689 - Comp Biochem Physiol A Mol Integr Physiol. 2002 Dec;133(4):1001-11
15922920 - Foot Ankle Clin. 2005 Jun;10(2):293-308
10729280 - J Exp Biol. 2000 Apr;203(Pt 8):1317-27
11780059 - Nature. 2001 Dec 20-27;414(6866):895-9
12485688 - Comp Biochem Physiol A Mol Integr Physiol. 2002 Dec;133(4):987-1000
16895450 - PLoS Genet. 2006 Jul;2(7):e119
12558555 - Acta Physiol Scand. 2003 Feb;177(2):185-95
12905538 - J Morphol. 2003 Oct;258(1):106-14
2774333 - Am J Vet Res. 1989 Jul;50(7):1089-95
16012588 - N Z Vet J. 2005 Jun;53(3):184-92
15163047 - Equine Vet J. 2004 May;36(4):365-7
1748700 - J Bone Joint Surg Am. 1991 Dec;73(10):1507-25
15163043 - Equine Vet J. 2004 May;36(4):346-50
10092650 - J Biol Chem. 1999 Apr 2;274(14):9636-47
8253436 - Foot Ankle. 1993 Oct;14(8):443-9
16326953 - J Exp Biol. 2005 Dec;208(Pt 24):4715-25
References_xml – reference: Riley G.P., Harrall R.L., Constant C.R., Chard M.D., Cawston T.E., Hazleman B.L. (1994) Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis. Ann. Rheum. Dis. 53, 359-366.
– reference: Rinn J.L., Bondre C., Gladstone H.B., Brown P.O., Chang H.Y. (2006) Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2, e119.
– reference: Maganaris C.N. & Paul J.P. (2000) In vivo human tendinous tissue stretch upon maximum muscle force generation. J. Biomech. 33, 1453-1459.
– reference: Svensson L., Aszodi A., Reinholt F.P., Fassler R., Heinegard D., Oldberg A. (1999) Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J. Biol. Chem. 274, 9636-9647.
– reference: Kastelic J., Galeski A., Baer E. (1978) The multicomposite structure of tendon. Connect. Tissue Res. 6, 11-23.
– reference: Perkins N.R., Reid S.W., Morris R.S. (2005) Risk factors for injury to the superficial digital flexor tendon and suspensory apparatus in Thoroughbred racehorses in New Zealand. N. Z. Vet. J. 53, 184-192.
– reference: Wapner K.L., Pavlock G.S., Hecht P.J., Naselli F., Walther R. (1993) Repair of chronic Achilles tendon rupture with flexor hallucis longus tendon transfer. Foot Ankle 14, 443-449.
– reference: Silver F.H., Freeman J.W., Seehra G.P. (2003) Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 36, 1529-1553.
– reference: Birch H.L., Bailey A.J., Goodship A.E. (1998) Macroscopic 'degeneration' of equine superficial digital flexor tendon is accompanied by a change in extracellular matrix composition. Equine Vet. J. 30, 534-539.
– reference: Ker R.F., Wang X.T., Pike A.V. (2000) Fatigue quality of mammalian tendons. J. Exp. Biol. 203, 1317-1327.
– reference: Kasashima Y., Takahashi T., Smith R.K. et al. (2004) Prevalence of superficial digital flexor tendonitis and suspensory desmitis in Japanese Thoroughbred flat racehorses in 1999. Equine Vet. J. 36, 346-350.
– reference: Lichtwark G.A. & Wilson A.M. (2005) In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J. Exp. Biol. 208, 4715-4725.
– reference: Laurent G.J. (1987) Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am. J. Physiol. 252, C1-C9.
– reference: Chakravarti S. (2002) Functions of lumican and fibromodulin: lessons from knockout mice. Glycoconj. J. 19, 287-293.
– reference: Goodship A.E. & Birch H.L. (2005) Cross sectional area measurement of tendon and ligament in vitro: a simple, rapid, non-destructive technique. J. Biomech. 38, 605-608.
– reference: Kannus P. & Jozsa L. (1991) Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J. Bone Joint Surg. Am. 73, 1507-1525.
– reference: Moller A., Astron M., Westlin N. (1996) Increasing incidence of Achilles tendon rupture. Acta Orthop. Scand. 67, 479-481.
– reference: Rees J.D., Wilson A.M., Wolman R.L. (2006) Current concepts in the management of tendon disorders. Rheumatology (Oxford) 45, 508-521.
– reference: Vora A.M., Myerson M.S., Oliva F., Maffulli N. (2005) Tendinopathy of the main body of the Achilles tendon. Foot Ankle Clin. 10, 293-308.
– reference: Birch H.L., Bailey J.V., Bailey A.J., Goodship A.E. (1999) Age-related changes to the molecular and cellular components of equine flexor tendons. Equine Vet. J. 31, 391-396.
– reference: Ker R.F. (2002) The implications of the adaptable fatigue quality of tendons for their construction, repair and function. Comp. Biochem. Physiol., A Mol. Integr. Physiol. 133, 987-1000.
– reference: Stephens P.R., Nunamaker D.M., Butterweck D.M. (1989) Application of a Hall-effect transducer for measurement of tendon strains in horses. Am. J. Vet. Res. 50, 1089-1095.
– reference: Magnusson S.P., Hansen P., Aagaard P. et al. (2003) Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo. Acta Physiol. Scand. 177, 185-195.
– reference: Wilson A.M., McGuigan M.P., Su A., Van Den Bogert A.J. (2001) Horses damp the spring in their step. Nature 414, 895-899.
– reference: Danielson K.G., Baribault H., Holmes D.F., Graham H., Kadler K.E., Iozzo R.V. (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J. Cell Biol. 136, 729-743.
– reference: Ely E.R., Verheyen K.L., Wood J.L. (2004) Fractures and tendon injuries in National Hunt horses in training in the UK: a pilot study. Equine Vet. J. 36, 365-367.
– reference: Alexander R.M. (2002) Tendon elasticity and muscle function. Comp. Biochem. Physiol., A Mol. Integr. Physiol. 133, 1001-1011.
– reference: Kohls-Gatzoulis J., Angel J.C., Singh D., Haddad F., Livingstone J., Berry G. (2004) Tibialis posterior dysfunction: a common and treatable cause of adult acquired flatfoot. BMJ 329, 1328-1333.
– reference: Brown N.A., Kawcak C.E., McIlwraith C.W., Pandy M.G. (2003) Architectural properties of distal forelimb muscles in horses. Equus caballus. J. Morphol. 258, 106-114.
– volume: 252
  start-page: C1
  year: 1987
  end-page: C9
  article-title: Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass
  publication-title: Am. J. Physiol.
– volume: 38
  start-page: 605
  year: 2005
  end-page: 608
  article-title: Cross sectional area measurement of tendon and ligament in vitro: a simple, rapid, non‐destructive technique
  publication-title: J. Biomech.
– volume: 6
  start-page: 11
  year: 1978
  end-page: 23
  article-title: The multicomposite structure of tendon
  publication-title: Connect. Tissue Res.
– volume: 36
  start-page: 1529
  year: 2003
  end-page: 1553
  article-title: Collagen self‐assembly and the development of tendon mechanical properties
  publication-title: J. Biomech.
– volume: 31
  start-page: 391
  year: 1999
  end-page: 396
  article-title: Age‐related changes to the molecular and cellular components of equine flexor tendons
  publication-title: Equine Vet. J.
– year: 2001
– volume: 33
  start-page: 1453
  year: 2000
  end-page: 1459
  article-title: In vivo human tendinous tissue stretch upon maximum muscle force generation
  publication-title: J. Biomech.
– volume: 2
  start-page: e119
  year: 2006
  article-title: Anatomic demarcation by positional variation in fibroblast gene expression programs
  publication-title: PLoS Genet.
– volume: 19
  start-page: 287
  year: 2002
  end-page: 293
  article-title: Functions of lumican and fibromodulin: lessons from knockout mice
  publication-title: Glycoconj. J.
– volume: 274
  start-page: 9636
  year: 1999
  end-page: 9647
  article-title: Fibromodulin‐null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon
  publication-title: J. Biol. Chem.
– volume: 208
  start-page: 4715
  year: 2005
  end-page: 4725
  article-title: In vivo mechanical properties of the human Achilles tendon during one‐legged hopping
  publication-title: J. Exp. Biol.
– volume: 329
  start-page: 1328
  year: 2004
  end-page: 1333
  article-title: Tibialis posterior dysfunction: a common and treatable cause of adult acquired flatfoot
  publication-title: BMJ
– volume: 133
  start-page: 987
  year: 2002
  end-page: 1000
  article-title: The implications of the adaptable fatigue quality of tendons for their construction, repair and function
  publication-title: Comp. Biochem. Physiol., A Mol. Integr. Physiol.
– volume: 36
  start-page: 346
  year: 2004
  end-page: 350
  article-title: Prevalence of superficial digital flexor tendonitis and suspensory desmitis in Japanese Thoroughbred flat racehorses in 1999
  publication-title: Equine Vet. J.
– volume: 30
  start-page: 534
  year: 1998
  end-page: 539
  article-title: Macroscopic ‘degeneration’ of equine superficial digital flexor tendon is accompanied by a change in extracellular matrix composition
  publication-title: Equine Vet. J.
– volume: 136
  start-page: 729
  year: 1997
  end-page: 743
  article-title: Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility
  publication-title: J. Cell Biol.
– volume: 414
  start-page: 895
  year: 2001
  end-page: 899
  article-title: Horses damp the spring in their step
  publication-title: Nature
– volume: 45
  start-page: 508
  year: 2006
  end-page: 521
  article-title: Current concepts in the management of tendon disorders
  publication-title: Rheumatology (Oxford)
– volume: 258
  start-page: 106
  year: 2003
  end-page: 114
  article-title: Architectural properties of distal forelimb muscles in horses
  publication-title: J. Morphol.
– volume: 73
  start-page: 1507
  year: 1991
  end-page: 1525
  article-title: Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients
  publication-title: J. Bone Joint Surg. Am.
– volume: 177
  start-page: 185
  year: 2003
  end-page: 195
  article-title: Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo
  publication-title: Acta Physiol. Scand.
– volume: 67
  start-page: 479
  year: 1996
  end-page: 481
  article-title: Increasing incidence of Achilles tendon rupture
  publication-title: Acta Orthop. Scand.
– volume: 53
  start-page: 184
  year: 2005
  end-page: 192
  article-title: Risk factors for injury to the superficial digital flexor tendon and suspensory apparatus in Thoroughbred racehorses in New Zealand
  publication-title: N. Z. Vet. J.
– year: 2006
– volume: 53
  start-page: 359
  year: 1994
  end-page: 366
  article-title: Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis
  publication-title: Ann. Rheum. Dis.
– volume: 14
  start-page: 443
  year: 1993
  end-page: 449
  article-title: Repair of chronic Achilles tendon rupture with flexor hallucis longus tendon transfer
  publication-title: Foot Ankle
– volume: 133
  start-page: 1001
  year: 2002
  end-page: 1011
  article-title: Tendon elasticity and muscle function
  publication-title: Comp. Biochem. Physiol., A Mol. Integr. Physiol.
– volume: 36
  start-page: 365
  year: 2004
  end-page: 367
  article-title: Fractures and tendon injuries in National Hunt horses in training in the UK: a pilot study
  publication-title: Equine Vet. J.
– volume: 203
  start-page: 1317
  year: 2000
  end-page: 1327
  article-title: Fatigue quality of mammalian tendons
  publication-title: J. Exp. Biol.
– volume: 50
  start-page: 1089
  year: 1989
  end-page: 1095
  article-title: Application of a Hall‐effect transducer for measurement of tendon strains in horses
  publication-title: Am. J. Vet. Res.
– volume: 10
  start-page: 293
  year: 2005
  end-page: 308
  article-title: Tendinopathy of the main body of the Achilles tendon
  publication-title: Foot Ankle Clin.
– ident: e_1_2_2_13_1
  doi: 10.3109/03008207809152283
– ident: e_1_2_2_12_1
  doi: 10.2746/0425164044890580
– ident: e_1_2_2_29_1
  doi: 10.1074/jbc.274.14.9636
– ident: e_1_2_2_14_1
  doi: 10.1016/S1095-6433(02)00171-X
– ident: e_1_2_2_27_1
– ident: e_1_2_2_18_1
  doi: 10.1242/jeb.01950
– ident: e_1_2_2_7_1
  doi: 10.1023/A:1025348417078
– volume-title: Transactions of the 47th Annual Meeting of the Orthopaedic Research Society
  year: 2001
  ident: e_1_2_2_5_1
– ident: e_1_2_2_23_1
  doi: 10.1093/rheumatology/kel046
– ident: e_1_2_2_25_1
  doi: 10.1371/journal.pgen.0020119
– ident: e_1_2_2_32_1
  doi: 10.1038/414895a
– ident: e_1_2_2_2_1
  doi: 10.1016/S1095-6433(02)00143-5
– ident: e_1_2_2_21_1
  doi: 10.3109/17453679608996672
– ident: e_1_2_2_17_1
  doi: 10.1152/ajpcell.1987.252.1.C1
– ident: e_1_2_2_4_1
  doi: 10.1111/j.2042-3306.1999.tb03838.x
– ident: e_1_2_2_24_1
  doi: 10.1136/ard.53.6.359
– ident: e_1_2_2_30_1
  doi: 10.1016/j.fcl.2005.01.007
– ident: e_1_2_2_16_1
  doi: 10.1136/bmj.329.7478.1328
– ident: e_1_2_2_20_1
  doi: 10.1046/j.1365-201X.2003.01048.x
– volume: 50
  start-page: 1089
  year: 1989
  ident: e_1_2_2_28_1
  article-title: Application of a Hall‐effect transducer for measurement of tendon strains in horses
  publication-title: Am. J. Vet. Res.
– volume: 203
  start-page: 1317
  year: 2000
  ident: e_1_2_2_15_1
  article-title: Fatigue quality of mammalian tendons
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.203.8.1317
– ident: e_1_2_2_6_1
  doi: 10.1002/jmor.10113
– ident: e_1_2_2_26_1
  doi: 10.1016/S0021-9290(03)00135-0
– ident: e_1_2_2_31_1
  doi: 10.1177/107110079301400803
– ident: e_1_2_2_19_1
  doi: 10.1016/S0021-9290(00)00099-3
– ident: e_1_2_2_8_1
  doi: 10.1083/jcb.136.3.729
– ident: e_1_2_2_22_1
  doi: 10.1080/00480169.2005.36503
– ident: e_1_2_2_3_1
  doi: 10.1111/j.2042-3306.1998.tb04530.x
– ident: e_1_2_2_11_1
  doi: 10.2106/00004623-199173100-00009
– ident: e_1_2_2_10_1
  doi: 10.1016/j.jbiomech.2004.05.003
– ident: e_1_2_2_9_1
  doi: 10.2746/0425164044890607
– reference: 12905538 - J Morphol. 2003 Oct;258(1):106-14
– reference: 10940404 - J Biomech. 2000 Nov;33(11):1453-9
– reference: 15922920 - Foot Ankle Clin. 2005 Jun;10(2):293-308
– reference: 10729280 - J Exp Biol. 2000 Apr;203(Pt 8):1317-27
– reference: 2774333 - Am J Vet Res. 1989 Jul;50(7):1089-95
– reference: 10505954 - Equine Vet J. 1999 Sep;31(5):391-6
– reference: 16326953 - J Exp Biol. 2005 Dec;208(Pt 24):4715-25
– reference: 15163047 - Equine Vet J. 2004 May;36(4):365-7
– reference: 12975607 - Glycoconj J. 2002 May-Jun;19(4-5):287-93
– reference: 149646 - Connect Tissue Res. 1978;6(1):11-23
– reference: 15576744 - BMJ. 2004 Dec 4;329(7478):1328-33
– reference: 1748700 - J Bone Joint Surg Am. 1991 Dec;73(10):1507-25
– reference: 8037494 - Ann Rheum Dis. 1994 Jun;53(6):359-66
– reference: 8253436 - Foot Ankle. 1993 Oct;14(8):443-9
– reference: 9844973 - Equine Vet J. 1998 Nov;30(6):534-9
– reference: 11780059 - Nature. 2001 Dec 20-27;414(6866):895-9
– reference: 12485688 - Comp Biochem Physiol A Mol Integr Physiol. 2002 Dec;133(4):987-1000
– reference: 3544859 - Am J Physiol. 1987 Jan;252(1 Pt 1):C1-9
– reference: 15652560 - J Biomech. 2005 Mar;38(3):605-8
– reference: 12485689 - Comp Biochem Physiol A Mol Integr Physiol. 2002 Dec;133(4):1001-11
– reference: 14499302 - J Biomech. 2003 Oct;36(10):1529-53
– reference: 12558555 - Acta Physiol Scand. 2003 Feb;177(2):185-95
– reference: 10092650 - J Biol Chem. 1999 Apr 2;274(14):9636-47
– reference: 16490749 - Rheumatology (Oxford). 2006 May;45(5):508-21
– reference: 15163043 - Equine Vet J. 2004 May;36(4):346-50
– reference: 8948254 - Acta Orthop Scand. 1996 Oct;67(5):479-81
– reference: 9024701 - J Cell Biol. 1997 Feb 10;136(3):729-43
– reference: 16012588 - N Z Vet J. 2005 Jun;53(3):184-92
– reference: 16895450 - PLoS Genet. 2006 Jul;2(7):e119
SSID ssj0013217
Score 2.201655
SecondaryResourceType review_article
Snippet Summary Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these...
Tendons are dense regular connective tissue structures that are defined based on their anatomical position of connecting muscle to bone. Despite these obvious...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 241
SubjectTerms Animals
collagen
Elasticity
Extracellular Matrix - physiology
function
Horses - physiology
Humans
matrix
mechanics
metabolism
Review
Stress, Mechanical
tendon
Tendons - metabolism
Tendons - physiology
Title Tendon matrix composition and turnover in relation to functional requirements
URI https://api.istex.fr/ark:/67375/WNG-D617GWH3-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2613.2007.00552.x
https://www.ncbi.nlm.nih.gov/pubmed/17696905
https://www.proquest.com/docview/68164761
https://pubmed.ncbi.nlm.nih.gov/PMC2517317
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hVkJc-IYGSvEBccsqcRI7PrZstwtSK4RatTfLdmJRLc2i_ZBW_HpmnOx2Az1UiFuUZJLYmYmfxy9vAD4Upix4XlH1strHueEiNkaIGGcO3gtb2qoOap9nYnyRf7kqrjr-E_0L0-pDbBJuFBnhe00Bbuy8H-QtQyvN1kqERcEHhCfxAMnoD7_xrQWFUHw3ZL2UkFmf1HPnhXoj1S51-uouGPo3m3Ib5YZhavQEJusGtuyUyWC5sAP36w_tx__TA0_hcYdm2WHrfs_gQd08h4en3Xr9Czg9r6laCLuhQgArRvz1jiTGTFMxHO4aopCy64bNOlYeW0wZDbZtjhJ3E1U55DDnL-FidHz-aRx3BRxihyiQx8rUiNAy6RKXcINAwNSyVKT5xqUrK-d5YlOTSJ55p1xqpeLeJOhWsjTcqyx7BTvNtKn3gPHKc4NQ04vc5t6mKs-EUo6XVe5pGhaBXL8s7Tp1cyqy8UNvzXKwtzT1FtXepGV3fBK9iiDdWP5sFT7uYfMx-MPGwMwmxJCThb48O9FDhIUnl2O0ieD92mE0xi0txpimni7nWpSk5CbSCF637nN7cymUUEmBTeo51uYEUgTvH2muvwdlcNKfQ0AYQRH85t7t0Z-Pv-LGm3-0ewuP2pQ38SL3YWcxW9bvEKst7AHsHh4Nj0YHIRp_A9j3MRU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6hTQJe2PgdGMwPiLdUiZPY8SOCbR2sFUKdtjfLcWwxbaSoa6WKv353Tloa2MOEeIuSXlo7d_Xnuy_fAbwrTFnwvKbuZc7HueEiNkaIGHcO3ouqrGoX1D7HYniafz4vzrt2QPQuTKsPsU64UWSE_2sKcEpI96O8pWil2UqKsCj4AAHldo64I9Rsv_GNkkJovxvyXkrIrE_rufVOvbVqm6Z9eRsQ_ZtPuYlzw0J1uANXqyG2_JTLwWJeDeyvP9Qf_9Mc7MKjDtCyD60HPoZ7rnkC90ddyf4pjCaOGoawH9QLYMmIwt7xxJhpaoYrXkMsUnbRsFlHzGPzKaP1tk1T4mliK4c05vUzOD08mHwcxl0Ph9giEOSxMg5BWiZtYhNuEAsYJ0tFsm9c2rK2nidVahLJM2-VTSupuDcJepYsDfcqy57DVjNt3EtgvPbcINr0Iq9yX6Uqz4RSlpd17mknFoFcPS1tO4Fz6rNxpTc2OjhbmmaL2m9S5R1_iV5GkK4tf7YiH3eweR8cYm1gZpdEkpOFPhsf6U-IDI_OhmgTwf7KYzSGLtVjTOOmi2stShJzE2kEL1r_-f3lUiihkgKH1POs9QdIFLx_pbn4HsTBSYIOMWEERXCcO49HHx98xYNX_2i3Dw-Gk9GJPjkef3kND9sMONEk92BrPlu4Nwjd5tXbEJI3U9IzwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCaGFih22fvh7lEdht0c2LItWcdhbZpua1AMLdqbIMsSWmRzijQBgv76kbKTxVsPxbCbYYdOJJPhJ-rzR4APhSkLntfUvcz5ODdcxMYIEePKwXtRlVXtgtrnWIzO8i8XxUXHf6J3YVp9iHXBjSIj_F9TgF_Xvh_kLUMrzVZKhEXBB4gnt3OBiY0A0ne-saMQuu-GspcSMuuzeu68Uy9VbdOsL-_CoX_TKTdhbshTw8cwWY2wpadMBot5NbC3f4g__p8peAKPOjjLPrX-9xQeuOYZ7Bx3G_bP4fjUUbsQ9pM6ASwZEdg7lhgzTc0w3zXEIWVXDZt1tDw2nzLKtm2REk8TVzkUMW9ewNnw4PTzKO46OMQWYSCPlXEI0TJpE5twg0jAOFkqEn3j0pa19TypUpNInnmrbFpJxb1J0K9kabhXWfYStppp414D47XnBrGmF3mV-ypVeSaUsrysc0_rsAjk6mFp28mbU5eNH3pjmYOzpWm2qPkm7bvjL9HLCNK15XUr8XEPm4_BH9YGZjYhipws9Pn4UO8jLjw8H6FNBHsrh9EYuLQbYxo3XdxoUZKUm0gjeNW6z-8vl0IJlRQ4pJ5jrT9AkuD9K83VZZAGJwE6RIQRFMFv7j0efXRwgge7_2i3Bzsn-0P97Wj89Q08bMvfxJF8C1vz2cK9Q9w2r96HgPwFft0ycA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tendon+matrix+composition+and+turnover+in+relation+to+functional+requirements&rft.jtitle=International+journal+of+experimental+pathology&rft.au=Birch%2C+Helen+L&rft.date=2007-08-01&rft.issn=0959-9673&rft.volume=88&rft.issue=4&rft.spage=241&rft_id=info:doi/10.1111%2Fj.1365-2613.2007.00552.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-9673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-9673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-9673&client=summon