Relationship between retinal blood flow and arterial oxygen

Key points Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in PO2. Previous studies in the retina have not accurately quantified ret...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 594; no. 3; pp. 625 - 640
Main Authors Cheng, Richard W., Yusof, Firdaus, Tsui, Edmund, Jong, Monica, Duffin, James, Flanagan, John G., Fisher, Joseph A., Hudson, Chris
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.02.2016
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
1469-7793
DOI10.1113/JP271182

Cover

Abstract Key points Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in PO2. Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple PaO2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen. The present study modelled the relationship between retinal blood flow and PaO2, showing them to be a combined linear and hyperbolic function. This model demonstrates that the resting tonus of the vessels is at the mid‐point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a P ETC O2 of 32–37 mmHg but being limited below this threshold. Retinal blood flow (RBF) increases in response to a reduction in oxygen (hypoxia) but decreases in response to increased oxygen (hyperoxia). However, the relationship between blood flow and the arterial partial pressure of oxygen has not been quantified and modelled in the retina, particularly in the vascular reserve and resting tonus of the vessels. The present study aimed to determine the limitations of the retinal vasculature by modelling the relationship between RBF and oxygen. Retinal vascular responses were measured in 13 subjects for eight different blood gas conditions, with the end‐tidal partial pressure of oxygen (P ETC O2) ranging from 40–500 mmHg. Retinal vascular response measurements were repeated twice; using the Canon laser blood flowmeter (Canon Inc., Tokyo, Japan) during the first visit and using Doppler spectral domain optical coherence tomography during the second visit. We determined that the relationship between RBF and PaO2 can be modelled as a combination of hyperbolic and linear functions. We concluded that RBF compensated for decreases in arterial oxygen content for all stages of hypoxia used in the present study but can no longer compensate below a P ETC O2 of 32–37 mmHg. These vessels have a great vascular range of adjustment, increasing diameter (8.5% arteriolar and 21% total venous area) with hypoxia (40 mmHg P ETC O2; P < 0.001) and decreasing diameter (6.9% arteriolar and 23% total venous area) with hyperoxia (500 mmHg P ETC O2; P < 0.001) to the same extent. This indicates that the resting tonus is near the mid‐point of the adjustment ranges at resting PaO2 where sensitivity is maximum. Key points Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in PO2. Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple PaO2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen. The present study modelled the relationship between retinal blood flow and PaO2, showing them to be a combined linear and hyperbolic function. This model demonstrates that the resting tonus of the vessels is at the mid‐point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a P ETC O2 of 32–37 mmHg but being limited below this threshold.
AbstractList Key points Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in PO2. Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple PaO2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen. The present study modelled the relationship between retinal blood flow and PaO2, showing them to be a combined linear and hyperbolic function. This model demonstrates that the resting tonus of the vessels is at the mid‐point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a P ETC O2 of 32–37 mmHg but being limited below this threshold. Retinal blood flow (RBF) increases in response to a reduction in oxygen (hypoxia) but decreases in response to increased oxygen (hyperoxia). However, the relationship between blood flow and the arterial partial pressure of oxygen has not been quantified and modelled in the retina, particularly in the vascular reserve and resting tonus of the vessels. The present study aimed to determine the limitations of the retinal vasculature by modelling the relationship between RBF and oxygen. Retinal vascular responses were measured in 13 subjects for eight different blood gas conditions, with the end‐tidal partial pressure of oxygen (P ETC O2) ranging from 40–500 mmHg. Retinal vascular response measurements were repeated twice; using the Canon laser blood flowmeter (Canon Inc., Tokyo, Japan) during the first visit and using Doppler spectral domain optical coherence tomography during the second visit. We determined that the relationship between RBF and PaO2 can be modelled as a combination of hyperbolic and linear functions. We concluded that RBF compensated for decreases in arterial oxygen content for all stages of hypoxia used in the present study but can no longer compensate below a P ETC O2 of 32–37 mmHg. These vessels have a great vascular range of adjustment, increasing diameter (8.5% arteriolar and 21% total venous area) with hypoxia (40 mmHg P ETC O2; P < 0.001) and decreasing diameter (6.9% arteriolar and 23% total venous area) with hyperoxia (500 mmHg P ETC O2; P < 0.001) to the same extent. This indicates that the resting tonus is near the mid‐point of the adjustment ranges at resting PaO2 where sensitivity is maximum. Key points Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in PO2. Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple PaO2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen. The present study modelled the relationship between retinal blood flow and PaO2, showing them to be a combined linear and hyperbolic function. This model demonstrates that the resting tonus of the vessels is at the mid‐point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a P ETC O2 of 32–37 mmHg but being limited below this threshold.
Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in . Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen. The present study modelled the relationship between retinal blood flow and , showing them to be a combined linear and hyperbolic function. This model demonstrates that the resting tonus of the vessels is at the mid‐point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a of 32–37 mmHg but being limited below this threshold.
Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in PO2. Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple PaO2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen. The present study modelled the relationship between retinal blood flow and PaO2, showing them to be a combined linear and hyperbolic function. This model demonstrates that the resting tonus of the vessels is at the mid-point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a PETCO2 of 32-37 mmHg but being limited below this threshold. Retinal blood flow (RBF) increases in response to a reduction in oxygen (hypoxia) but decreases in response to increased oxygen (hyperoxia). However, the relationship between blood flow and the arterial partial pressure of oxygen has not been quantified and modelled in the retina, particularly in the vascular reserve and resting tonus of the vessels. The present study aimed to determine the limitations of the retinal vasculature by modelling the relationship between RBF and oxygen. Retinal vascular responses were measured in 13 subjects for eight different blood gas conditions, with the end-tidal partial pressure of oxygen (PETCO2) ranging from 40-500 mmHg. Retinal vascular response measurements were repeated twice; using the Canon laser blood flowmeter (Canon Inc., Tokyo, Japan) during the first visit and using Doppler spectral domain optical coherence tomography during the second visit. We determined that the relationship between RBF and PaO2 can be modelled as a combination of hyperbolic and linear functions. We concluded that RBF compensated for decreases in arterial oxygen content for all stages of hypoxia used in the present study but can no longer compensate below a PETCO2 of 32-37 mmHg. These vessels have a great vascular range of adjustment, increasing diameter (8.5% arteriolar and 21% total venous area) with hypoxia (40 mmHg P ETC O2; P < 0.001) and decreasing diameter (6.9% arteriolar and 23% total venous area) with hyperoxia (500 mmHg PETCO2; P < 0.001) to the same extent. This indicates that the resting tonus is near the mid-point of the adjustment ranges at resting PaO2 where sensitivity is maximum.
KEY POINTSVascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in PO2. Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple PaO2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen. The present study modelled the relationship between retinal blood flow and PaO2, showing them to be a combined linear and hyperbolic function. This model demonstrates that the resting tonus of the vessels is at the mid-point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a PETCO2 of 32-37 mmHg but being limited below this threshold. Retinal blood flow (RBF) increases in response to a reduction in oxygen (hypoxia) but decreases in response to increased oxygen (hyperoxia). However, the relationship between blood flow and the arterial partial pressure of oxygen has not been quantified and modelled in the retina, particularly in the vascular reserve and resting tonus of the vessels. The present study aimed to determine the limitations of the retinal vasculature by modelling the relationship between RBF and oxygen. Retinal vascular responses were measured in 13 subjects for eight different blood gas conditions, with the end-tidal partial pressure of oxygen (PETCO2) ranging from 40-500 mmHg. Retinal vascular response measurements were repeated twice; using the Canon laser blood flowmeter (Canon Inc., Tokyo, Japan) during the first visit and using Doppler spectral domain optical coherence tomography during the second visit. We determined that the relationship between RBF and PaO2 can be modelled as a combination of hyperbolic and linear functions. We concluded that RBF compensated for decreases in arterial oxygen content for all stages of hypoxia used in the present study but can no longer compensate below a PETCO2 of 32-37 mmHg. These vessels have a great vascular range of adjustment, increasing diameter (8.5% arteriolar and 21% total venous area) with hypoxia (40 mmHg P ETC O2; P < 0.001) and decreasing diameter (6.9% arteriolar and 23% total venous area) with hyperoxia (500 mmHg PETCO2; P < 0.001) to the same extent. This indicates that the resting tonus is near the mid-point of the adjustment ranges at resting PaO2 where sensitivity is maximum.
Key points Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in P O 2. Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple P a O 2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen. The present study modelled the relationship between retinal blood flow and P a O 2, showing them to be a combined linear and hyperbolic function. This model demonstrates that the resting tonus of the vessels is at the mid-point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a P ETC O 2 of 32-37 mmHg but being limited below this threshold. Retinal blood flow (RBF) increases in response to a reduction in oxygen (hypoxia) but decreases in response to increased oxygen (hyperoxia). However, the relationship between blood flow and the arterial partial pressure of oxygen has not been quantified and modelled in the retina, particularly in the vascular reserve and resting tonus of the vessels. The present study aimed to determine the limitations of the retinal vasculature by modelling the relationship between RBF and oxygen. Retinal vascular responses were measured in 13 subjects for eight different blood gas conditions, with the end-tidal partial pressure of oxygen (P ETC O 2) ranging from 40-500 mmHg. Retinal vascular response measurements were repeated twice; using the Canon laser blood flowmeter (Canon Inc., Tokyo, Japan) during the first visit and using Doppler spectral domain optical coherence tomography during the second visit. We determined that the relationship between RBF and P a O 2 can be modelled as a combination of hyperbolic and linear functions. We concluded that RBF compensated for decreases in arterial oxygen content for all stages of hypoxia used in the present study but can no longer compensate below a P ETC O 2 of 32-37 mmHg. These vessels have a great vascular range of adjustment, increasing diameter (8.5% arteriolar and 21% total venous area) with hypoxia (40 mmHg P ETC O 2; P < 0.001) and decreasing diameter (6.9% arteriolar and 23% total venous area) with hyperoxia (500 mmHg P ETC O 2; P < 0.001) to the same extent. This indicates that the resting tonus is near the mid-point of the adjustment ranges at resting P a O 2 where sensitivity is maximum. Key points Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in P O 2. Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple P a O 2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen. The present study modelled the relationship between retinal blood flow and P a O 2, showing them to be a combined linear and hyperbolic function. This model demonstrates that the resting tonus of the vessels is at the mid-point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a P ETC O 2 of 32-37 mmHg but being limited below this threshold.
Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment in which the vessels are able to compensate for changes in PO2.Previous studies in the retina have not accurately quantified retinal vascular responses and precisely targeted multiple PaO2 stimuli at the same time as controlling the level of carbon dioxide, thus precluding them from modelling the relationship between retinal blood flow and oxygen.The present study modelled the relationship between retinal blood flow and PaO2, showing them to be a combined linear and hyperbolic function.This model demonstrates that the resting tonus of the vessels is at the mid‐point and that they have great vascular range of adjustment, compensating for decreases in oxygen above a P ETC O2 of 32–37 mmHg but being limited below this threshold.
Author Hudson, Chris
Tsui, Edmund
Fisher, Joseph A.
Cheng, Richard W.
Jong, Monica
Duffin, James
Yusof, Firdaus
Flanagan, John G.
AuthorAffiliation 3 School of Optometry and Vision Science University of Waterloo Waterloo Ontario Canada
5 Department of Optometry and Visual Science International Islamic University of Malaysia Bandar Indera Mahkota Pahang Malaysia
6 Brien Holden Vision Institute University of New South Wales Sydney NSW Australia
4 Institute of Medical Science University of Toronto Toronto ON Canada
2 Department of Physiology University of Toronto Toronto ON Canada
8 School of Optometry University of California Berkeley Berkeley CA USA
7 Thornhill Research Inc Toronto ON Canada
1 Department of Ophthalmology and Vision Sciences, Toronto Western Hospital University Health Network Toronto Ontario Canada
9 Department of Anesthesiology Toronto General Hospital Toronto ON Canada
AuthorAffiliation_xml – name: 7 Thornhill Research Inc Toronto ON Canada
– name: 6 Brien Holden Vision Institute University of New South Wales Sydney NSW Australia
– name: 5 Department of Optometry and Visual Science International Islamic University of Malaysia Bandar Indera Mahkota Pahang Malaysia
– name: 9 Department of Anesthesiology Toronto General Hospital Toronto ON Canada
– name: 1 Department of Ophthalmology and Vision Sciences, Toronto Western Hospital University Health Network Toronto Ontario Canada
– name: 4 Institute of Medical Science University of Toronto Toronto ON Canada
– name: 3 School of Optometry and Vision Science University of Waterloo Waterloo Ontario Canada
– name: 2 Department of Physiology University of Toronto Toronto ON Canada
– name: 8 School of Optometry University of California Berkeley Berkeley CA USA
Author_xml – sequence: 1
  givenname: Richard W.
  surname: Cheng
  fullname: Cheng, Richard W.
  organization: University of Waterloo
– sequence: 2
  givenname: Firdaus
  surname: Yusof
  fullname: Yusof, Firdaus
  organization: International Islamic University of Malaysia
– sequence: 3
  givenname: Edmund
  surname: Tsui
  fullname: Tsui, Edmund
  organization: University Health Network
– sequence: 4
  givenname: Monica
  surname: Jong
  fullname: Jong, Monica
  organization: Brien Holden Vision Institute
– sequence: 5
  givenname: James
  surname: Duffin
  fullname: Duffin, James
  organization: Toronto General Hospital
– sequence: 6
  givenname: John G.
  surname: Flanagan
  fullname: Flanagan, John G.
  organization: University of California Berkeley
– sequence: 7
  givenname: Joseph A.
  surname: Fisher
  fullname: Fisher, Joseph A.
  organization: Toronto General Hospital
– sequence: 8
  givenname: Chris
  surname: Hudson
  fullname: Hudson, Chris
  organization: University of Toronto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26607393$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rFTEQhoNU7GkV_AWy4I1ebM3XbhKEghS1loJF6nVIdmfbHHKSNdn1eP69saff6lVg8rzvzLyzh3ZCDIDQS4IPCCHs3ckZFYRI-gQtCG9VLYRiO2iBMaU1Ew3ZRXs5LzEmDCv1DO3StsWCKbZA77-BN5OLIV-6sbIwrQFClWBywfjK-hj7avBxXZnQVyZNkFypx1-bCwjP0dPB-Awvrt999P3Tx_Oj4_r06-cvRx9O664RvKl7BpYxwoxVA_S9arnpJeWiU9ZYbmUDtBODJUayZuDC0lKl3BTFIKXsO7aP3m595zCazdp4r8fkViZtNMH6TwB6OW4DKOzhlh1nu4K-gzAlc8dH4_TDn-Au9UX8qRvGiSC8GLy5Nkjxxwx50iuXO_DeBIhz1kS0tKCKyYK-foQu45xKblcUYYI2Chfq1f2Jbke5ucFdxy7FnBMMf213c96CHjxCOzddna_s4vy_BPVWsHYeNv811ucnZ62SDfsNLOiyog
CODEN JPHYA7
CitedBy_id crossref_primary_10_1111_aos_13797
crossref_primary_10_1002_brb3_70342
crossref_primary_10_1111_aos_13897
crossref_primary_10_3390_jcm9092829
crossref_primary_10_1111_aos_13932
crossref_primary_10_1111_aos_14625
crossref_primary_10_1111_ceo_13846
crossref_primary_10_1038_s41598_017_02344_5
crossref_primary_10_1186_s40942_024_00611_y
crossref_primary_10_1177_11206721211027069
crossref_primary_10_3389_fnins_2019_00566
crossref_primary_10_1016_j_oret_2017_07_022
crossref_primary_10_1167_tvst_10_6_4
crossref_primary_10_1097_ICB_0000000000000985
crossref_primary_10_1111_aos_15077
crossref_primary_10_1364_BOE_524944
crossref_primary_10_1016_j_pdpdt_2021_102674
crossref_primary_10_1016_j_survophthal_2018_03_003
crossref_primary_10_1016_j_survophthal_2024_11_008
crossref_primary_10_1038_s41598_021_02554_y
crossref_primary_10_1111_aos_13622
crossref_primary_10_1038_s41598_017_14118_0
crossref_primary_10_1136_bjo_2024_325715
crossref_primary_10_1016_j_eclinm_2020_100550
crossref_primary_10_1152_japplphysiol_00132_2022
crossref_primary_10_1167_tvst_10_3_23
crossref_primary_10_3390_app142210132
crossref_primary_10_1038_s41598_020_75296_y
crossref_primary_10_3390_bioengineering11050411
crossref_primary_10_1016_j_preteyeres_2017_01_003
crossref_primary_10_1016_j_ajo_2021_08_022
crossref_primary_10_1016_j_preteyeres_2021_101033
crossref_primary_10_1167_iovs_61_6_49
crossref_primary_10_1167_iovs_66_3_47
Cites_doi 10.1007/s00424-012-1148-1
10.1167/iovs.06-1016
10.1136/bjo.86.10.1143
10.1152/ajpregu.00744.2001
10.1152/japplphysiol.90904.2008
10.1001/archopht.1975.01010020409001
10.1016/S0161-6420(85)33978-7
10.1093/sleep/33.6.811
10.1159/000331418
10.1113/jphysiol.2012.228551
10.1167/iovs.04-1216
10.1006/mvre.2002.2402
10.1016/j.preteyeres.2008.02.002
10.1001/archinte.1971.00310160186014
10.1161/01.RES.60.6.861
10.1167/iovs.09-3630
10.1007/BF02764309
10.1136/bjo.2008.150276
10.1016/S0026-2862(03)00007-4
10.1016/j.exer.2013.05.005
10.1161/01.RES.26.2.163
10.1161/01.CIR.33.2.302
10.1152/ajpheart.01012.2005
10.1007/s00417-004-1083-8
10.1113/jphysiol.2008.154716
10.1113/jphysiol.1980.sp013310
10.1113/jphysiol.2007.129395
10.1167/iovs.13-11887
10.1371/journal.pone.0045876
10.1364/AO.18.002301
10.1038/eye.1989.120
10.3109/02713688408997205
10.1152/ajpheart.01037.2004
10.1152/ajpheart.1994.267.1.H326
10.1016/S1350-9462(02)00044-7
10.1016/j.mvr.2011.11.002
10.1167/iovs.05-0694
10.1117/1.2772871
ContentType Journal Article
Copyright 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society
2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Journal compilation © 2016 The Physiological Society
Copyright_xml – notice: 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society
– notice: 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
– notice: Journal compilation © 2016 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1113/JP271182
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate R. W. Cheng and others
EISSN 1469-7793
EndPage 640
ExternalDocumentID 10.1113/jp271182
PMC5341714
3938226571
26607393
10_1113_JP271182
TJP6985
Genre article
Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
0YM
10A
123
18M
1OB
1OC
24P
29L
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
YBU
YHG
YKV
YQT
YSK
YZZ
ZZTAW
~IA
~WT
.55
.GJ
.Y3
31~
3EH
3O-
AAYJJ
AAYXX
ADXHL
AEYWJ
AFFNX
AGHNM
AGYGG
C1A
CAG
CHEAL
CITATION
COF
FA8
H13
HF~
H~9
MVM
NEJ
OHT
UKR
WHG
X7M
XOL
YXB
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ABUFD
ADTOC
UNPAY
ID FETCH-LOGICAL-c5745-d3eb3313ab9fedd964ad8247c9bab4b85e2c7fb1a835f47b2ab424a313f888dc3
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Sun Oct 26 04:15:01 EDT 2025
Tue Sep 30 15:49:04 EDT 2025
Thu Jul 10 22:56:14 EDT 2025
Fri Jul 25 12:13:01 EDT 2025
Mon Jul 21 06:03:24 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Wed Oct 01 05:06:16 EDT 2025
Wed Jan 22 16:20:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5745-d3eb3313ab9fedd964ad8247c9bab4b85e2c7fb1a835f47b2ab424a313f888dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP271182
PMID 26607393
PQID 1761372590
PQPubID 1086388
PageCount 16
ParticipantIDs unpaywall_primary_10_1113_jp271182
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5341714
proquest_miscellaneous_1762341938
proquest_journals_1761372590
pubmed_primary_26607393
crossref_primary_10_1113_JP271182
crossref_citationtrail_10_1113_JP271182
wiley_primary_10_1113_JP271182_TJP6985
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 February 2016
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 1 February 2016
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2016
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1989; 3
2012; 83
2010; 33
1990; 228
1979; 18
2012; 464
1973; 12
2000; 41
2007; 581
1971; 127
1975; 14
2006; 290
1999; 40
2008; 586
1975; 93
1966; 33
2012; 227
1996; 37
2007; 12
2005; 46
1990; 61
2012; 590
1994; 267
1980; 304
1993; 34
2002; 282
1987; 60
1984; 3
2002; 64
2002; 86
2013; 54
2005; 243
2005; 288
2009; 93
2002; 43
2008; 27
2013; 112
1985; 92
2012; 7
2012; 67
1970; 26
2003; 65
2010; 51
2007; 48
2003; 22
2009; 106
e_1_2_7_6_1
e_1_2_7_4_1
Frayser R (e_1_2_7_10_1) 1971; 127
e_1_2_7_9_1
Gidday JM (e_1_2_7_11_1) 1993; 34
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_45_1
Nagaoka T (e_1_2_7_28_1) 2002; 43
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Delaey C (e_1_2_7_5_1) 2000; 41
Brinchmann‐Hansen O (e_1_2_7_3_1) 1990; 61
Kergoat H (e_1_2_7_20_1) 1999; 40
Tan O (e_1_2_7_35_1) 2012; 67
Eperon G (e_1_2_7_8_1) 1975; 14
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_36_1
e_1_2_7_38_1
Tsacopoulos M (e_1_2_7_37_1) 1973; 12
e_1_2_7_39_1
Takagi C (e_1_2_7_34_1) 1996; 37
5555497 - Arch Intern Med. 1971 Apr;127(4):708-11
12711255 - Microvasc Res. 2003 May;65(3):145-51
22961068 - Pflugers Arch. 2012 Oct;464(4):345-51
5412532 - Circ Res. 1970 Feb;26(2):163-70
7441549 - J Physiol. 1980 Jul;304:59-81
25823104 - Circulation. 1966 Feb;33(2):302-16
23701974 - Exp Eye Res. 2013 Jul;112:134-8
1126823 - Invest Ophthalmol. 1975 May;14 (5):342-52
17867804 - J Biomed Opt. 2007 Jul-Aug;12(4):041215
16299264 - Am J Physiol Heart Circ Physiol. 2006 Mar;290(3):H925-34
16303972 - Invest Ophthalmol Vis Sci. 2005 Dec;46(12):4728-33
2630361 - Eye (Lond). 1989;3 ( Pt 6):768-76
15708962 - Am J Physiol Heart Circ Physiol. 2005 Jun;288(6):H2912-7
8048598 - Am J Physiol. 1994 Jul;267(1 Pt 2):H326-32
8344793 - Invest Ophthalmol Vis Sci. 1993 Aug;34(9):2713-9
17389507 - Invest Ophthalmol Vis Sci. 2007 Apr;48(4):1744-50
12604056 - Prog Retin Eye Res. 2003 Mar;22(2):135-69
18565992 - J Physiol. 2008 Aug 1;586(15):3675-82
18448380 - Prog Retin Eye Res. 2008 May;27(3):284-330
20212650 - Appl Opt. 1979 Jul 1;18(13):2301-6
12074633 - Microvasc Res. 2002 Jul;64(1):75-85
12234896 - Br J Ophthalmol. 2002 Oct;86(10):1143-7
19168468 - Br J Ophthalmol. 2009 May;93(5):634-7
17446225 - J Physiol. 2007 Jun 15;581(Pt 3):1207-19
1131077 - Arch Ophthalmol. 1975 Jun;93(6):395-400
20550022 - Sleep. 2010 Jun;33(6):811-8
21952513 - Ophthalmologica. 2012;227(3):115-31
4196690 - Invest Ophthalmol. 1973 May;12(5):335-47
10549651 - Invest Ophthalmol Vis Sci. 1999 Nov;40(12):2906-11
3594758 - Circ Res. 1987 Jun;60(6):861-70
2310357 - Aviat Space Environ Med. 1990 Feb;61(2):112-6
11959667 - Am J Physiol Regul Integr Comp Physiol. 2002 May;282(5):R1280-5
23022957 - J Vis Exp. 2012 Sep 18;(67):e3524
11006252 - Invest Ophthalmol Vis Sci. 2000 Oct;41(11):3555-60
23821203 - Invest Ophthalmol Vis Sci. 2013 Jul 24;54(7):5012-9
23029289 - PLoS One. 2012;7(9):e45876
19057000 - J Appl Physiol (1985). 2009 Feb;106(2):454-60
6690224 - Curr Eye Res. 1984 Jan;3(1):239-41
15657773 - Graefes Arch Clin Exp Ophthalmol. 2005 Jul;243(7):646-52
22100560 - Microvasc Res. 2012 Mar;83(2):200-4
22495584 - J Physiol. 2012 Jul 15;590(14 ):3261-75
2338252 - Graefes Arch Clin Exp Ophthalmol. 1990;228(2):143-50
19907031 - Invest Ophthalmol Vis Sci. 2010 Apr;51(4):2043-50
8814149 - Invest Ophthalmol Vis Sci. 1996 Sep;37(10 ):2099-109
15851573 - Invest Ophthalmol Vis Sci. 2005 May;46(5):1714-20
12202527 - Invest Ophthalmol Vis Sci. 2002 Sep;43(9):3037-44
4011146 - Ophthalmology. 1985 May;92(5):701-5
References_xml – volume: 34
  start-page: 2713
  year: 1993
  end-page: 2719
  article-title: Adenosine‐mediated autoregulation of retinal arteriolar tone in the piglet
  publication-title: Invest Ophthalmol Vis Sci
– volume: 227
  start-page: 115
  year: 2012
  end-page: 131
  article-title: Oxygen sensing in retinal health and disease
  publication-title: Ophthalmologica
– volume: 127
  start-page: 708
  year: 1971
  end-page: 711
  article-title: The response of the retinal circulation to altitude
  publication-title: Arch Intern Med
– volume: 37
  start-page: 2099
  year: 1996
  end-page: 2109
  article-title: Endothelin‐1 action via endothelin receptors is a primary mechanism modulating retinal circulatory response to hyperoxia
  publication-title: Invest Ophthalmol Vis Sci
– volume: 590
  start-page: 3261
  year: 2012
  end-page: 3275
  article-title: Regional brain blood flow in man during acute changes in arterial blood gases
  publication-title: J Physiol
– volume: 22
  start-page: 135
  year: 2003
  end-page: 169
  article-title: Isolated preparations of ocular vasculature and their applications in ophthalmic research
  publication-title: Prog Retin Eye Res
– volume: 60
  start-page: 861
  year: 1987
  end-page: 870
  article-title: Myogenic vasoregulation overrides local metabolic control in resting rat skeletal muscle
  publication-title: Circ Res
– volume: 41
  start-page: 3555
  year: 2000
  end-page: 3560
  article-title: A retinal‐derived relaxing factor mediates the hypoxic vasodilation of retinal arteries
  publication-title: Invest Ophthalmol Vis Sci
– volume: 26
  start-page: 163
  year: 1970
  end-page: 170
  article-title: Propagated vasodilation in the microcirculation of the hamster cheek pouch
  publication-title: Circ Res
– volume: 48
  start-page: 1744
  year: 2007
  end-page: 1750
  article-title: Retinal arteriolar diameter, blood velocity, and blood flow response to an isocapnic hyperoxic provocation in early sight‐threatening diabetic retinopathy
  publication-title: Invest Ophthalmol Vis Sci
– volume: 64
  start-page: 75
  year: 2002
  end-page: 85
  article-title: Retinal blood flow during hyperoxia in humans revisited: concerted results using different measurement techniques
  publication-title: Microvasc Res
– volume: 3
  start-page: 768
  year: 1989
  end-page: 776
  article-title: Retinal vessel responses to exercise and hypoxia before and after high altitude acclimatisation
  publication-title: Eye
– volume: 46
  start-page: 1714
  year: 2005
  end-page: 1720
  article-title: Systemic hyperoxia and retinal vasomotor responses
  publication-title: Invest Ophthalmol Vis Sci
– volume: 106
  start-page: 454
  year: 2009
  end-page: 460
  article-title: New insights into ocular blood flow at very high altitudes
  publication-title: J Appl Physiol
– volume: 243
  start-page: 646
  year: 2005
  end-page: 652
  article-title: Response of retinal blood flow to systemic hyperoxia in smokers and nonsmokers
  publication-title: Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Für Klin Exp Ophthalmol
– volume: 112
  start-page: 134
  year: 2013
  end-page: 138
  article-title: The impact of topical mydriatic ophthalmic solutions on retinal vascular reactivity and blood flow
  publication-title: Exp Eye Res
– volume: 228
  start-page: 143
  year: 1990
  end-page: 150
  article-title: Electrophysiological consequences of retinal hypoxia
  publication-title: Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Für Klin Exp Ophthalmol
– volume: 14
  start-page: 342
  year: 1975
  end-page: 352
  article-title: The effect of arterial PO on relative retinal blood flow in monkeys
  publication-title: Invest Ophthalmol Vis Sci
– volume: 3
  start-page: 239
  year: 1984
  end-page: 241
  article-title: Effect of pure O ‐breathing on retinal blood flow in normals and in patients with background diabetic retinopathy
  publication-title: Curr Eye Res
– volume: 40
  start-page: 2906
  year: 1999
  end-page: 2911
  article-title: Effects of oxygen and carbogen breathing on choroidal hemodynamics in humans
  publication-title: Invest Ophthalmol Vis Sci
– volume: 54
  start-page: 5012
  year: 2013
  end-page: 5019
  article-title: Inner retinal oxygen delivery and metabolism under normoxia and hypoxia in rat
  publication-title: Invest Ophthalmol Vis Sci
– volume: 12
  start-page: 041215
  year: 2007
  end-page: 041215
  article-title: In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography
  publication-title: J Biomed Opt
– volume: 7
  start-page: e45876
  year: 2012
  article-title: Response of retinal blood flow to systemic hyperoxia as measured with dual‐beam bidirectional Doppler Fourier‐domain optical coherence tomography
  publication-title: PLoS ONE
– volume: 93
  start-page: 634
  year: 2009
  end-page: 637
  article-title: Measurement of total blood flow in the normal human retina using Doppler Fourier‐domain optical coherence tomography
  publication-title: Br J Ophthalmol
– volume: 33
  start-page: 302
  year: 1966
  article-title: Studies of retinal circulation in man – observations on vessel diameter arteriovenous oxygen difference and mean circulation time
  publication-title: Circulation
– volume: 86
  start-page: 1143
  year: 2002
  end-page: 1147
  article-title: Effect of inhalation of different mixtures of O and CO on retinal blood flow
  publication-title: Br J Ophthalmol
– volume: 43
  start-page: 3037
  year: 2002
  end-page: 3044
  article-title: The effect of nitric oxide on retinal blood flow during hypoxia in cats
  publication-title: Invest Ophthalmol Vis Sci
– volume: 61
  start-page: 112
  year: 1990
  end-page: 116
  article-title: Vascular response of retinal arteries and veins to acute hypoxia of 8,000, 10,000, 12,500, and 15,000 feet of simulated altitude
  publication-title: Aviat Space Environ Med
– volume: 464
  start-page: 345
  year: 2012
  end-page: 351
  article-title: The interaction of carbon dioxide and hypoxia in the control of cerebral blood flow
  publication-title: Pflügers Arch
– volume: 586
  start-page: 3675
  year: 2008
  end-page: 3682
  article-title: Non‐invasive prospective targeting of arterial PCO in subjects at rest
  publication-title: J Physiol
– volume: 304
  start-page: 59
  year: 1980
  end-page: 81
  article-title: The contrast sensitivity of cat retinal ganglion cells at reduced oxygen tensions
  publication-title: J Physiol
– volume: 65
  start-page: 145
  year: 2003
  end-page: 151
  article-title: Variability and repeatability of retinal blood flow measurements using the Canon laser blood flowmeter
  publication-title: Microvasc Res
– volume: 93
  start-page: 395
  year: 1975
  end-page: 400
  article-title: Retinal changes in Himalayan climbers
  publication-title: Arch Ophthalmol
– volume: 18
  start-page: 2301
  year: 1979
  article-title: Bidirectional LDV system for absolute measurement of blood speed in retinal vessels
  publication-title: Appl Opt
– volume: 267
  start-page: H326
  year: 1994
  end-page: H332
  article-title: Corelease of nitric oxide and prostaglandins mediates flow‐dependent dilation of rat gracilis muscle arterioles
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 288
  start-page: H2912
  year: 2005
  end-page: H2917
  article-title: Retinal arteriolar diameter, blood velocity, and blood flow response to an isocapnic hyperoxic provocation
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 67
  start-page: e3524
  year: 2012
  article-title: Doppler optical coherence tomography of retinal circulation
  publication-title: J Vis Exp
– volume: 282
  start-page: R1280
  year: 2002
  end-page: R1285
  article-title: Venular‐arteriolar communication in the regulation of blood flow
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 33
  start-page: 811
  year: 2010
  end-page: 818
  article-title: Choroidal blood‐flow responses to hyperoxia and hypercapnia in men with obstructive sleep apnea
  publication-title: Sleep
– volume: 581
  start-page: 1207
  year: 2007
  end-page: 1219
  article-title: Prospective targeting and control of end‐tidal CO and O concentrations
  publication-title: J Physiol
– volume: 290
  start-page: H925
  year: 2006
  end-page: H934
  article-title: Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 12
  start-page: 335
  year: 1973
  end-page: 347
  article-title: The effect of arterial PCO on relative retinal blood flow in monkeys
  publication-title: Invest Ophthalmol Vis Sci
– volume: 27
  start-page: 284
  year: 2008
  end-page: 330
  article-title: Regulation of retinal blood flow in health and disease
  publication-title: Prog Retin Eye Res
– volume: 92
  start-page: 701
  year: 1985
  end-page: 705
  article-title: Retinal vascular autoregulation in conditions of hyperoxia and hypoxia using the blue field entoptic phenomenon
  publication-title: Ophthalmology
– volume: 51
  start-page: 2043
  year: 2010
  end-page: 2050
  article-title: Retinal arteriolar vascular reactivity in untreated and progressive primary open‐angle glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– volume: 83
  start-page: 200
  year: 2012
  end-page: 204
  article-title: Relative magnitude of vascular reactivity in the major arterioles of the retina
  publication-title: Microvasc Res
– volume: 46
  start-page: 4728
  year: 2005
  end-page: 4733
  article-title: Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperoxia
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_7_26_1
  doi: 10.1007/s00424-012-1148-1
– volume: 61
  start-page: 112
  year: 1990
  ident: e_1_2_7_3_1
  article-title: Vascular response of retinal arteries and veins to acute hypoxia of 8,000, 10,000, 12,500, and 15,000 feet of simulated altitude
  publication-title: Aviat Space Environ Med
– ident: e_1_2_7_12_1
  doi: 10.1167/iovs.06-1016
– ident: e_1_2_7_25_1
  doi: 10.1136/bjo.86.10.1143
– volume: 14
  start-page: 342
  year: 1975
  ident: e_1_2_7_8_1
  article-title: The effect of arterial PO2 on relative retinal blood flow in monkeys
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_7_16_1
  doi: 10.1152/ajpregu.00744.2001
– ident: e_1_2_7_2_1
  doi: 10.1152/japplphysiol.90904.2008
– ident: e_1_2_7_30_1
  doi: 10.1001/archopht.1975.01010020409001
– ident: e_1_2_7_9_1
  doi: 10.1016/S0161-6420(85)33978-7
– ident: e_1_2_7_36_1
  doi: 10.1093/sleep/33.6.811
– ident: e_1_2_7_23_1
  doi: 10.1159/000331418
– ident: e_1_2_7_44_1
  doi: 10.1113/jphysiol.2012.228551
– ident: e_1_2_7_19_1
  doi: 10.1167/iovs.04-1216
– ident: e_1_2_7_21_1
  doi: 10.1006/mvre.2002.2402
– ident: e_1_2_7_29_1
  doi: 10.1016/j.preteyeres.2008.02.002
– volume: 127
  start-page: 708
  year: 1971
  ident: e_1_2_7_10_1
  article-title: The response of the retinal circulation to altitude
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.1971.00310160186014
– volume: 41
  start-page: 3555
  year: 2000
  ident: e_1_2_7_5_1
  article-title: A retinal‐derived relaxing factor mediates the hypoxic vasodilation of retinal arteries
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_7_27_1
  doi: 10.1161/01.RES.60.6.861
– ident: e_1_2_7_39_1
  doi: 10.1167/iovs.09-3630
– volume: 34
  start-page: 2713
  year: 1993
  ident: e_1_2_7_11_1
  article-title: Adenosine‐mediated autoregulation of retinal arteriolar tone in the piglet
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_7_24_1
  doi: 10.1007/BF02764309
– ident: e_1_2_7_42_1
  doi: 10.1136/bjo.2008.150276
– ident: e_1_2_7_15_1
  doi: 10.1016/S0026-2862(03)00007-4
– volume: 43
  start-page: 3037
  year: 2002
  ident: e_1_2_7_28_1
  article-title: The effect of nitric oxide on retinal blood flow during hypoxia in cats
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_7_38_1
  doi: 10.1016/j.exer.2013.05.005
– ident: e_1_2_7_6_1
  doi: 10.1161/01.RES.26.2.163
– ident: e_1_2_7_17_1
  doi: 10.1161/01.CIR.33.2.302
– ident: e_1_2_7_46_1
  doi: 10.1152/ajpheart.01012.2005
– ident: e_1_2_7_45_1
  doi: 10.1007/s00417-004-1083-8
– ident: e_1_2_7_18_1
  doi: 10.1113/jphysiol.2008.154716
– ident: e_1_2_7_7_1
  doi: 10.1113/jphysiol.1980.sp013310
– ident: e_1_2_7_33_1
  doi: 10.1113/jphysiol.2007.129395
– ident: e_1_2_7_40_1
  doi: 10.1167/iovs.13-11887
– ident: e_1_2_7_43_1
  doi: 10.1371/journal.pone.0045876
– ident: e_1_2_7_31_1
  doi: 10.1364/AO.18.002301
– ident: e_1_2_7_4_1
  doi: 10.1038/eye.1989.120
– ident: e_1_2_7_14_1
  doi: 10.3109/02713688408997205
– volume: 40
  start-page: 2906
  year: 1999
  ident: e_1_2_7_20_1
  article-title: Effects of oxygen and carbogen breathing on choroidal hemodynamics in humans
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_7_13_1
  doi: 10.1152/ajpheart.01037.2004
– ident: e_1_2_7_22_1
  doi: 10.1152/ajpheart.1994.267.1.H326
– ident: e_1_2_7_48_1
  doi: 10.1016/S1350-9462(02)00044-7
– ident: e_1_2_7_32_1
  doi: 10.1016/j.mvr.2011.11.002
– volume: 37
  start-page: 2099
  year: 1996
  ident: e_1_2_7_34_1
  article-title: Endothelin‐1 action via endothelin receptors is a primary mechanism modulating retinal circulatory response to hyperoxia
  publication-title: Invest Ophthalmol Vis Sci
– volume: 67
  start-page: e3524
  year: 2012
  ident: e_1_2_7_35_1
  article-title: Doppler optical coherence tomography of retinal circulation
  publication-title: J Vis Exp
– volume: 12
  start-page: 335
  year: 1973
  ident: e_1_2_7_37_1
  article-title: The effect of arterial PCO2 on relative retinal blood flow in monkeys
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_7_47_1
  doi: 10.1167/iovs.05-0694
– ident: e_1_2_7_41_1
  doi: 10.1117/1.2772871
– reference: 22961068 - Pflugers Arch. 2012 Oct;464(4):345-51
– reference: 6690224 - Curr Eye Res. 1984 Jan;3(1):239-41
– reference: 11006252 - Invest Ophthalmol Vis Sci. 2000 Oct;41(11):3555-60
– reference: 15851573 - Invest Ophthalmol Vis Sci. 2005 May;46(5):1714-20
– reference: 5555497 - Arch Intern Med. 1971 Apr;127(4):708-11
– reference: 10549651 - Invest Ophthalmol Vis Sci. 1999 Nov;40(12):2906-11
– reference: 23022957 - J Vis Exp. 2012 Sep 18;(67):e3524
– reference: 2630361 - Eye (Lond). 1989;3 ( Pt 6):768-76
– reference: 1131077 - Arch Ophthalmol. 1975 Jun;93(6):395-400
– reference: 19907031 - Invest Ophthalmol Vis Sci. 2010 Apr;51(4):2043-50
– reference: 12074633 - Microvasc Res. 2002 Jul;64(1):75-85
– reference: 7441549 - J Physiol. 1980 Jul;304:59-81
– reference: 4011146 - Ophthalmology. 1985 May;92(5):701-5
– reference: 2338252 - Graefes Arch Clin Exp Ophthalmol. 1990;228(2):143-50
– reference: 12234896 - Br J Ophthalmol. 2002 Oct;86(10):1143-7
– reference: 23029289 - PLoS One. 2012;7(9):e45876
– reference: 4196690 - Invest Ophthalmol. 1973 May;12(5):335-47
– reference: 21952513 - Ophthalmologica. 2012;227(3):115-31
– reference: 8814149 - Invest Ophthalmol Vis Sci. 1996 Sep;37(10 ):2099-109
– reference: 3594758 - Circ Res. 1987 Jun;60(6):861-70
– reference: 17389507 - Invest Ophthalmol Vis Sci. 2007 Apr;48(4):1744-50
– reference: 16303972 - Invest Ophthalmol Vis Sci. 2005 Dec;46(12):4728-33
– reference: 25823104 - Circulation. 1966 Feb;33(2):302-16
– reference: 15657773 - Graefes Arch Clin Exp Ophthalmol. 2005 Jul;243(7):646-52
– reference: 19057000 - J Appl Physiol (1985). 2009 Feb;106(2):454-60
– reference: 20212650 - Appl Opt. 1979 Jul 1;18(13):2301-6
– reference: 19168468 - Br J Ophthalmol. 2009 May;93(5):634-7
– reference: 12202527 - Invest Ophthalmol Vis Sci. 2002 Sep;43(9):3037-44
– reference: 12604056 - Prog Retin Eye Res. 2003 Mar;22(2):135-69
– reference: 23821203 - Invest Ophthalmol Vis Sci. 2013 Jul 24;54(7):5012-9
– reference: 18448380 - Prog Retin Eye Res. 2008 May;27(3):284-330
– reference: 1126823 - Invest Ophthalmol. 1975 May;14 (5):342-52
– reference: 8344793 - Invest Ophthalmol Vis Sci. 1993 Aug;34(9):2713-9
– reference: 2310357 - Aviat Space Environ Med. 1990 Feb;61(2):112-6
– reference: 11959667 - Am J Physiol Regul Integr Comp Physiol. 2002 May;282(5):R1280-5
– reference: 5412532 - Circ Res. 1970 Feb;26(2):163-70
– reference: 15708962 - Am J Physiol Heart Circ Physiol. 2005 Jun;288(6):H2912-7
– reference: 12711255 - Microvasc Res. 2003 May;65(3):145-51
– reference: 20550022 - Sleep. 2010 Jun;33(6):811-8
– reference: 22100560 - Microvasc Res. 2012 Mar;83(2):200-4
– reference: 16299264 - Am J Physiol Heart Circ Physiol. 2006 Mar;290(3):H925-34
– reference: 18565992 - J Physiol. 2008 Aug 1;586(15):3675-82
– reference: 8048598 - Am J Physiol. 1994 Jul;267(1 Pt 2):H326-32
– reference: 23701974 - Exp Eye Res. 2013 Jul;112:134-8
– reference: 17446225 - J Physiol. 2007 Jun 15;581(Pt 3):1207-19
– reference: 17867804 - J Biomed Opt. 2007 Jul-Aug;12(4):041215
– reference: 22495584 - J Physiol. 2012 Jul 15;590(14 ):3261-75
SSID ssj0013099
Score 2.3850682
Snippet Key points Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of...
Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of adjustment...
Key points Vascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of...
KEY POINTSVascular reactivity, the response of the vessels to a vasoactive stimulus such as hypoxia and hyperoxia, can be used to assess the vascular range of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 625
SubjectTerms Adult
Cardiovascular
Cardiovascular Physiology
Humans
Hypoxia
Hypoxia - physiopathology
Oxygen - physiology
Regional Blood Flow - physiology
Research Paper
Retina - physiology
Retinal Vessels - physiology
Vasculature
Young Adult
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SzSG9pI-0jds0qKWkJ29iS5ZselpKQlho2EMW0pPRwyKPrde0u4T013cky4btJhDI1XrYY83I38ifPgF8waQilZk1cYXoO2ZK57Gkhse6MAnNOcI5L-L644yfTtn4IrvYgONuL4zL5-d62MpE9OtuLkD8tO3ivDG2ne5DxNPD8SQVDig_g02eISQfwOb0bDL62SuFC38MI04KBaLJggYRWtf0ummbrn6W1rDmOmVya1k38u5WzmarsNZ_l05etPwRb5Gno9wMlws11H__E3t8sskvYTsgVzJqXe0VbFT1a9gZ1Zi1_7ojB8RzSf0i_Q586zl2l1cNCVww4jZMui48WZ7Y2fyWyNoQzyrFMCBoAbrzG5ieHJ9_P43DMQ2xzgTLYkMxIacJlaqwlTEFZ9LkKRO6UFIxlWdVqoVViUSwZ5lQKV5NmcQWFtNvo-lbGNTzutoFknCpRa41P5IpM0oWllvBjNQVzzGVExF87Uap1EHD3B2lMSvbXIaW3XuJ4FNfs2l1O-6ps9cNdBki90-ZCAQ4ApPCI-yiL8aYcz9SZF3Nl75O6nTwaB7Bu9Yv-psg4PEqgxGIFY_pKzg979WS-urS63pn2KdIWASfe99ae_bOXyM48C7yoHHl-XjCizx7_5jePsBzBIKBjb4Hg8XvZfURwdZC7YdQ-gfYqigO
  priority: 102
  providerName: Unpaywall
Title Relationship between retinal blood flow and arterial oxygen
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2FJP271182
https://www.ncbi.nlm.nih.gov/pubmed/26607393
https://www.proquest.com/docview/1761372590
https://www.proquest.com/docview/1762341938
https://pubmed.ncbi.nlm.nih.gov/PMC5341714
https://physoc.onlinelibrary.wiley.com/doi/pdfdirect/10.1113/JP271182
UnpaywallVersion publishedVersion
Volume 594
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 1469-7793
  databaseCode: DIK
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 1469-7793
  databaseCode: GX1
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 1469-7793
  databaseCode: RPM
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1469-7793
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1469-7793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013099
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5C4wFeuA1Y2KgMQuMpo77ETsRThZhGEVOFVmmIh8iXRLuUtGKtpvHrOXacoFKQEK_xsWMn5yTfsT9_BniFSQXTWe3SCtF3KozNU82dTG3hKM8lwrkg4vrpWB5Nxfg0O42sSr8XptWH6CfcfGSE77UPcG3iKSTUiw2MJ0x5dIyfX8plyKY-s18LCMOi6IXCVUaj7ixWfdNVXP8TbcDLTZbknVWz0DfXejZbR7LhV3R4H752g2gZKJcHq6U5sD9-03f8v1E-gHsRoZJR61IP4VbVPILtUYPZ-bcbsk8CZzRMxm_D255Ld3a-IJHzRfzGSN9EIMWTeja_JrpxJLBH0d0Jdhvd9jFMD9-fvDtK43EMqc2UyFLHMfHmlGtT1JVzhRTa5UwoWxhthMmzillVG6oR1NVCGYZXmdBYo8Y021n-BLaaeVPtAKFSW5VbK4eaCWd0UctaCadtJXNM2VQCr7tXU9qoVe6PzJiVbc7Cy-65JPCit1y0-hx_sNnr3m4ZI_SqpAqBjMLkb4hN9MUYW37BRDfVfBVsmNe743kCT1tn6G-CwCaoCSag1tykN_C63eslzflZ0O_OsE1FRQIve4fa6PvFouv7fnCPvw6uPBlPZJFnz_7VcBfuIuiLzPM92Fp-X1XPEVgtzQBD6MPHQQikAdyeHk9GX34C4gYgAA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPcCFtjxKWigGIThl2TiOnYgTQkXL8hBCi8QBKfIjEZQlu2p3heiv79h5oO0WCXFNxo4dz8TfOJ8_A-xgUkFllBs_Q_TtM6VjX4aG-zoxQRhzhHNOxPX8gneuWfcmupmBg3ovTKkP0Sy42chw32sb4HZBuopyqzbQvaTCwuNZ-MA4pikWEV3Rl18I7SRppMJFFFTKs1h2vy45ORdNAcxpnuT8uBjK5yfZ709iWTcZHX-E27obJQfloTUeqZb-84_C4zv7-QkWK5BKDkuv-gwzWbEEy4cFJuiPz2SXONqoW49fhoOGTnd3PyQV7YvYvZG2CseLJ3l_8ERkYYgjkKLHE2w3eu4KXB__6B11_OpEBl9HgkW-CTH3DoNQqiTPjEk4kyamTOhEScVUHGVUi1wFEnFdzoSieJUyiSVyzLSNDldhrhgU2RqQgEstYq15W1JmlExyngtmpM54jFmb8GCvHptUV3Ll9tSMflqmLWFavxcPthrLYSnR8R-b9Xp40ypIf6eBQCwjMP9rYxXNbQwv-89EFtlg7GyolbwLYw--lN7QPASxjRMU9EBM-EljYKW7J-8U93dOwjvCOkXAPNhuPGqq7T-Hddt3nX-82rm0173kSRx9favhJsx3eudn6dnJxek3WEAMWBHR12Fu9GucbSDOGqnvLp7-AgbhIXg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIgGXFiilgQIGoXJK2TiOnainirIqC1Qr1Eo9IEX-VEu32Qh2VZVfz9j5qJYFCXGNx46dzMRv7JdngNeYVFCZORNbRN8xUzqPZWp4rAuTpDlHOBdEXD8f8cMTNjrNTldgr_sXptGH6BfcfGSE77UPcFsb10a5VxsYjanw8PgW3GZZkXs-38EXerOFMCiKXipcZEmrPIt133Y1F-eiJYC5zJO8O69qeX0lJ5NFLBsmo-E6fO2G0XBQLnbnM7Wrf_6m8Pif47wPay1IJfuNVz2AFVs9hI39ChP0y2uyQwJtNKzHb8BeT6c7O69JS_si_t9I30TgxRM3mV4RWRkSCKTo8QT7jZ77CE6G74_fHcbtiQyxzgTLYpNi7p0mqVSFs8YUnEmTUyZ0oaRiKs8s1cKpRCKuc0woilcpk1jDYaZtdLoJq9W0sltAEi61yLXmA0mZUbJw3AlmpLY8x6xNRPCmezelbuXK_akZk7JJW9Kyey4RvOwt60ai4w82293rLdsg_VEmArGMwPxvgE30xRhefs9EVnY6DzbUS96leQSPG2_ob4LYJggKRiAW_KQ38NLdiyXV-VmQ8M6wTZGwCF71HrXU92911_ed4B9_HVx5PBpzDIAn_2r4Au6MD4blpw9HH5_CPYSALQ99G1Zn3-f2GcKsmXoewukXgtQg_A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SzSG9pI-0jds0qKWkJ29iS5ZselpKQlho2EMW0pPRwyKPrde0u4T013cky4btJhDI1XrYY83I38ifPgF8waQilZk1cYXoO2ZK57Gkhse6MAnNOcI5L-L644yfTtn4IrvYgONuL4zL5-d62MpE9OtuLkD8tO3ivDG2ne5DxNPD8SQVDig_g02eISQfwOb0bDL62SuFC38MI04KBaLJggYRWtf0ummbrn6W1rDmOmVya1k38u5WzmarsNZ_l05etPwRb5Gno9wMlws11H__E3t8sskvYTsgVzJqXe0VbFT1a9gZ1Zi1_7ojB8RzSf0i_Q586zl2l1cNCVww4jZMui48WZ7Y2fyWyNoQzyrFMCBoAbrzG5ieHJ9_P43DMQ2xzgTLYkMxIacJlaqwlTEFZ9LkKRO6UFIxlWdVqoVViUSwZ5lQKV5NmcQWFtNvo-lbGNTzutoFknCpRa41P5IpM0oWllvBjNQVzzGVExF87Uap1EHD3B2lMSvbXIaW3XuJ4FNfs2l1O-6ps9cNdBki90-ZCAQ4ApPCI-yiL8aYcz9SZF3Nl75O6nTwaB7Bu9Yv-psg4PEqgxGIFY_pKzg979WS-urS63pn2KdIWASfe99ae_bOXyM48C7yoHHl-XjCizx7_5jePsBzBIKBjb4Hg8XvZfURwdZC7YdQ-gfYqigO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationship+between+retinal+blood+flow+and+arterial+oxygen&rft.jtitle=The+Journal+of+physiology&rft.au=Cheng%2C+Richard+W.&rft.au=Yusof%2C+Firdaus&rft.au=Tsui%2C+Edmund&rft.au=Jong%2C+Monica&rft.date=2016-02-01&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=594&rft.issue=3&rft.spage=625&rft.epage=640&rft_id=info:doi/10.1113%2FJP271182&rft.externalDBID=10.1113%252FJP271182&rft.externalDocID=TJP6985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon