Consistent Shape Maps via Semidefinite Programming

Recent advances in shape matching have shown that jointly optimizing the maps among the shapes in a collection can lead to significant improvements when compared to estimating maps between pairs of shapes in isolation. These methods typically invoke a cycle‐consistency criterion — the fact that comp...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 32; no. 5; pp. 177 - 186
Main Authors Huang, Qi-Xing, Guibas, Leonidas
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2013
Subjects
Online AccessGet full text
ISSN0167-7055
1467-8659
DOI10.1111/cgf.12184

Cover

Abstract Recent advances in shape matching have shown that jointly optimizing the maps among the shapes in a collection can lead to significant improvements when compared to estimating maps between pairs of shapes in isolation. These methods typically invoke a cycle‐consistency criterion — the fact that compositions of maps along a cycle of shapes should approximate the identity map. This condition regularizes the network and allows for the correction of errors and imperfections in individual maps. In particular, it encourages the estimation of maps between dissimilar shapes by compositions of maps along a path of more similar shapes. In this paper, we introduce a novel approach for obtaining consistent shape maps in a collection that formulates the cycle‐consistency constraint as the solution to a semidefinite program (SDP). The proposed approach is based on the observation that, if the ground truth maps between the shapes are cycle‐consistent, then the matrix that stores all pair‐wise maps in blocks is low‐rank and positive semidefinite. Motivated by recent advances in techniques for low‐rank matrix recovery via semidefinite programming, we formulate the problem of estimating cycle‐consistent maps as finding the closest positive semidefinite matrix to an input matrix that stores all the initial maps. By analyzing the Karush‐Kuhn‐Tucker (KKT) optimality condition of this program, we derive theoretical guarantees for the proposed algorithm, ensuring the correctness of the recovery when the errors in the inputs maps do not exceed certain thresholds. Besides this theoretical guarantee, experimental results on benchmark datasets show that the proposed approach outperforms state‐of‐the‐art multiple shape matching methods.
AbstractList Recent advances in shape matching have shown that jointly optimizing the maps among the shapes in a collection can lead to significant improvements when compared to estimating maps between pairs of shapes in isolation. These methods typically invoke a cycle‐consistency criterion — the fact that compositions of maps along a cycle of shapes should approximate the identity map. This condition regularizes the network and allows for the correction of errors and imperfections in individual maps. In particular, it encourages the estimation of maps between dissimilar shapes by compositions of maps along a path of more similar shapes. In this paper, we introduce a novel approach for obtaining consistent shape maps in a collection that formulates the cycle‐consistency constraint as the solution to a semidefinite program (SDP). The proposed approach is based on the observation that, if the ground truth maps between the shapes are cycle‐consistent, then the matrix that stores all pair‐wise maps in blocks is low‐rank and positive semidefinite. Motivated by recent advances in techniques for low‐rank matrix recovery via semidefinite programming, we formulate the problem of estimating cycle‐consistent maps as finding the closest positive semidefinite matrix to an input matrix that stores all the initial maps. By analyzing the Karush‐Kuhn‐Tucker (KKT) optimality condition of this program, we derive theoretical guarantees for the proposed algorithm, ensuring the correctness of the recovery when the errors in the inputs maps do not exceed certain thresholds. Besides this theoretical guarantee, experimental results on benchmark datasets show that the proposed approach outperforms state‐of‐the‐art multiple shape matching methods.
Recent advances in shape matching have shown that jointly optimizing the maps among the shapes in a collection can lead to significant improvements when compared to estimating maps between pairs of shapes in isolation. These methods typically invoke a cycle-consistency criterion -- the fact that compositions of maps along a cycle of shapes should approximate the identity map. This condition regularizes the network and allows for the correction of errors and imperfections in individual maps. In particular, it encourages the estimation of maps between dissimilar shapes by compositions of maps along a path of more similar shapes. In this paper, we introduce a novel approach for obtaining consistent shape maps in a collection that formulates the cycle-consistency constraint as the solution to a semidefinite program (SDP). The proposed approach is based on the observation that, if the ground truth maps between the shapes are cycle-consistent, then the matrix that stores all pair-wise maps in blocks is low-rank and positive semidefinite. Motivated by recent advances in techniques for low-rank matrix recovery via semidefinite programming, we formulate the problem of estimating cycle-consistent maps as finding the closest positive semidefinite matrix to an input matrix that stores all the initial maps. By analyzing the Karush-Kuhn-Tucker (KKT) optimality condition of this program, we derive theoretical guarantees for the proposed algorithm, ensuring the correctness of the recovery when the errors in the inputs maps do not exceed certain thresholds. Besides this theoretical guarantee, experimental results on benchmark datasets show that the proposed approach outperforms state-of-the-art multiple shape matching methods. [PUBLICATION ABSTRACT]
Recent advances in shape matching have shown that jointly optimizing the maps among the shapes in a collection can lead to significant improvements when compared to estimating maps between pairs of shapes in isolation. These methods typically invoke a cycle-consistency criterion - the fact that compositions of maps along a cycle of shapes should approximate the identity map. This condition regularizes the network and allows for the correction of errors and imperfections in individual maps. In particular, it encourages the estimation of maps between dissimilar shapes by compositions of maps along a path of more similar shapes. In this paper, we introduce a novel approach for obtaining consistent shape maps in a collection that formulates the cycle-consistency constraint as the solution to a semidefinite program (SDP). The proposed approach is based on the observation that, if the ground truth maps between the shapes are cycle-consistent, then the matrix that stores all pair-wise maps in blocks is low-rank and positive semidefinite. Motivated by recent advances in techniques for low-rank matrix recovery via semidefinite programming, we formulate the problem of estimating cycle-consistent maps as finding the closest positive semidefinite matrix to an input matrix that stores all the initial maps. By analyzing the Karush-Kuhn-Tucker (KKT) optimality condition of this program, we derive theoretical guarantees for the proposed algorithm, ensuring the correctness of the recovery when the errors in the inputs maps do not exceed certain thresholds. Besides this theoretical guarantee, experimental results on benchmark datasets show that the proposed approach outperforms state-of-the-art multiple shape matching methods.
Author Huang, Qi-Xing
Guibas, Leonidas
Author_xml – sequence: 1
  givenname: Qi-Xing
  surname: Huang
  fullname: Huang, Qi-Xing
  organization: Computer Science Department, Stanford University, Stanford, CA
– sequence: 2
  givenname: Leonidas
  surname: Guibas
  fullname: Guibas, Leonidas
  organization: Computer Science Department, Stanford University, Stanford, CA
BookMark eNp9kL1OwzAURi1UJNrCwBtEYoEhrZ34JxlRRAtSKUgNZbSc2CkuiRPsFOjbk1JgQIK73Duc79PVGYCeqY0C4BTBEepmnK-KEQpQhA9AH2HK_IiSuAf6EHU3g4QcgYFzawghZpT0QZDUxmnXKtN6iyfRKO9WNM571cJbqEpLVWijW-Xd23plRVVpszoGh4UonTr52kPwMLlKk2t_dje9SS5nfk4Yxj4jMcI4ExSGCDIY4UBmQmJJFcEsZ4ioAGUCywzGEsdCFjjGhGaQMiSlUGE4BOf73sbWLxvlWl5pl6uyFEbVG8cRDmPGCIxhh579Qtf1xpruu44KKAooDIKOuthTua2ds6rgjdWVsFuOIN_Z4509_mmvY8e_2Fy3otW1aa3Q5X-JN12q7d_VPJlOvhP-PrHz__6TEPaZUxYywh_nU55OURqlyzlfhh9BuI9w
CitedBy_id crossref_primary_10_1002_cpa_21638
crossref_primary_10_1109_TVCG_2021_3109392
crossref_primary_10_1089_cmb_2016_0025
crossref_primary_10_1109_TPAMI_2024_3463966
crossref_primary_10_1007_s11263_020_01359_2
crossref_primary_10_1109_TIP_2020_2973511
crossref_primary_10_1111_cgf_12701
crossref_primary_10_2139_ssrn_4120722
crossref_primary_10_3390_sym10070294
crossref_primary_10_1007_s12652_024_04868_x
crossref_primary_10_1109_TIP_2021_3077138
crossref_primary_10_3389_fdata_2019_00003
crossref_primary_10_1016_j_neucom_2020_07_124
crossref_primary_10_1177_0278364920917465
crossref_primary_10_1007_s11263_022_01596_7
crossref_primary_10_1007_s00371_015_1136_5
crossref_primary_10_1109_TIP_2021_3139178
crossref_primary_10_1007_s10851_014_0538_8
crossref_primary_10_1109_TMM_2022_3145666
crossref_primary_10_1111_cgf_12698
crossref_primary_10_1109_TCSVT_2023_3328371
crossref_primary_10_1109_TIT_2019_2920637
crossref_primary_10_1111_cgf_12694
crossref_primary_10_1137_19M1290000
crossref_primary_10_1214_21_AOS2066
crossref_primary_10_1007_s00371_019_01760_0
crossref_primary_10_1088_1361_6420_ab7d2c
crossref_primary_10_1145_2999535
crossref_primary_10_1145_3366786
crossref_primary_10_1109_TPAMI_2020_2989928
crossref_primary_10_1137_21M1467845
crossref_primary_10_1007_s10489_022_04389_0
crossref_primary_10_1109_TPAMI_2020_3005590
crossref_primary_10_1111_cgf_14074
crossref_primary_10_1145_2816795_2818088
crossref_primary_10_1016_j_cviu_2019_03_008
crossref_primary_10_1109_TPAMI_2016_2605097
crossref_primary_10_1177_0278364920929398
crossref_primary_10_1109_TIT_2016_2600566
crossref_primary_10_3390_electronics13214191
crossref_primary_10_1007_s10208_021_09532_w
crossref_primary_10_1111_cgf_13786
crossref_primary_10_1111_cgf_13787
crossref_primary_10_1109_TNSE_2014_2368716
crossref_primary_10_1111_cgf_13502
crossref_primary_10_1109_TPAMI_2015_2477832
crossref_primary_10_1109_ACCESS_2018_2825397
crossref_primary_10_3390_s23031548
crossref_primary_10_1109_TBME_2019_2927157
crossref_primary_10_1007_s10107_016_1059_6
crossref_primary_10_1109_TIP_2023_3311917
crossref_primary_10_1111_cgf_12480
crossref_primary_10_1145_2601097_2601142
crossref_primary_10_1145_3072959_2999535
crossref_primary_10_1007_s10107_022_01896_3
crossref_primary_10_1109_TCSVT_2021_3076078
crossref_primary_10_1007_s00371_019_01655_0
crossref_primary_10_1145_2601097_2601159
crossref_primary_10_1007_s10107_023_01932_w
crossref_primary_10_1016_j_cviu_2021_103225
crossref_primary_10_1109_TPAMI_2021_3098052
crossref_primary_10_1002_cpa_21760
crossref_primary_10_1007_s11263_022_01686_6
crossref_primary_10_1111_cgf_13794
crossref_primary_10_1137_20M1389571
crossref_primary_10_3390_su15086692
crossref_primary_10_1109_TMM_2019_2959925
crossref_primary_10_1109_TNNLS_2021_3105543
crossref_primary_10_1111_cgf_12796
crossref_primary_10_1002_ar_23700
crossref_primary_10_1109_TIP_2016_2540810
crossref_primary_10_1093_imaiai_iaw017
crossref_primary_10_1111_cgf_12790
crossref_primary_10_1007_s41095_021_0241_9
crossref_primary_10_1145_2601097_2601111
crossref_primary_10_1016_j_acha_2022_02_003
crossref_primary_10_1002_mrm_27627
Cites_doi 10.1145/1141911.1141925
10.21136/CMJ.1973.101168
10.1145/571647.571648
10.1109/CVPR.2010.5539801
10.1111/j.1467-8659.2009.01515.x
10.1561/2200000016
10.1145/2366145.2366186
10.1145/1186822.1073207
10.1111/j.1467-8659.2011.02022.x
10.1214/10-AAP677
10.1145/2010324.1964974
10.1145/1970392.1970395
10.1145/1531326.1531378
10.1109/TIT.2005.858979
10.1007/s10208-009-9045-5
ContentType Journal Article
Copyright 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12184
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Computer and Information Systems Abstracts
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1467-8659
EndPage 186
ExternalDocumentID 3048788471
10_1111_cgf_12184
CGF12184
ark_67375_WNG_TG1T8TVN_V
Genre article
Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c5744-759144ba6031070842dbad4d6e547c715e21ba4db09d49adf49456b0671ddae33
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Fri Sep 05 12:21:22 EDT 2025
Fri Jul 25 23:47:13 EDT 2025
Wed Oct 01 03:05:00 EDT 2025
Thu Apr 24 22:51:52 EDT 2025
Wed Aug 20 07:26:23 EDT 2025
Sun Sep 21 06:22:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5744-759144ba6031070842dbad4d6e547c715e21ba4db09d49adf49456b0671ddae33
Notes ark:/67375/WNG-TG1T8TVN-V
istex:8BFB389DE5A9DD25775DAF47EB77B55C8548C374
ArticleID:CGF12184
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1426126022
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1439775090
proquest_journals_1426126022
crossref_primary_10_1111_cgf_12184
crossref_citationtrail_10_1111_cgf_12184
wiley_primary_10_1111_cgf_12184_CGF12184
istex_primary_ark_67375_WNG_TG1T8TVN_V
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2013
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: August 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Candès E. J., Li X., Ma Y., Wright J.: Robust principal component analysis? J. ACM 58, 3 (June 2011), 11:1-11:37. 2,5,6.
Candes E. J., Tao T.: Decoding by linear programming. Trans. Inf. Theor. 51, 12 (Dec. 2005), 4203-4215. 1.
Kim V. G., Lipman Y., Funkhouser T.: Blended intrinsic maps. ACM Trans. Graph. 30, 4 (Aug. 2011), 79:1-79:12. 2, 8.
Ovsianikov M., Ben-Chen M., Solomon L., Butscher A., Guibas L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31, 4 (July 2012), 30:1-30:11. 10.
Schrijver A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New York , NY , USA , 1986. 5.
Osada R., Funkhouser L., Chazelle B., Dobkin D.: Shape distributions. ACM Tram. Graph. 21 (October 2002), 807-832. 8.
Huang Q.-X., Flöry S., Gelfand N., Hofer M., Pottmann H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25, 3 (2006), 569-578. 2.
Lipman Y., Funkhouser T.: Mobius voting for surface correspondence. ACM Trans. Graph. 28, 3 (July 2009), 72:1-72:12. 2.
Wen Z., Goldfarb D., Yin W.: Alternating direction augmented lagrangian methods for semidefinite programming. Math. Prog. Comput. 2, 3-4 (2010), 203-230. 5.
Huang Q.-X., Zhang G.-X., Gao L., Hu S.-M., Butscher A., Guibas L.: An optimization approach for extracting and encoding consistent maps in a shape collection. ACM Trans. Graph. 31, 6 (Nov. 2012), 167:1-167:11. 1, 2, 8, 9.
Boyd S., Parikh N., Chu E., Peleato B., Eckstein I.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1 (Ian. 2011), 1-122. 5.
Bronstein A., Bronstein M., Kimmel R.: Numerical Geometry of Non-Rigid Shapes, 1 ed. Springer Publishing Company, Incorporated, 2008. 2, 8.
Fiedler M.: Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal 23 (1973), 298-305. 6.
GIORGI D., BIASDTTI S., PARABOSCHI L.: Shrec: shape retreval contex: Watertight models track, 2007. 2.
Candès E. J., Recht B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 6 (Dec. 2009). 717-772. 2, 5, 6.
July 2012; 31
December 2002
July 2009; 28
2012
June 2011; 58
2011
2010
1973; 23
2006; 25
Aug. 2011; 30
2009
2008
Ian. 2011; 3
Dec. 2005; 51
October 2002; 21
1986
2007
2005
Nov. 2012; 31
2010; 2
Dec. 2009; 9
e_1_2_10_11_2
e_1_2_10_8_2
e_1_2_10_12_2
e_1_2_10_23_2
e_1_2_10_21_2
Schrijver A. (e_1_2_10_20_2) 1986
Wen Z. (e_1_2_10_22_2) 2010; 2
Ovsianikov M. (e_1_2_10_18_2) 2012; 31
GIORGI D. (e_1_2_10_10_2); 2007
Bronstein A. (e_1_2_10_3_2) 2008
e_1_2_10_19_2
e_1_2_10_17_2
e_1_2_10_2_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_7_2
Fiedler M. (e_1_2_10_9_2) 1973; 23
e_1_2_10_13_2
e_1_2_10_24_2
e_1_2_10_6_2
e_1_2_10_14_2
References_xml – reference: Osada R., Funkhouser L., Chazelle B., Dobkin D.: Shape distributions. ACM Tram. Graph. 21 (October 2002), 807-832. 8.
– reference: Boyd S., Parikh N., Chu E., Peleato B., Eckstein I.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1 (Ian. 2011), 1-122. 5.
– reference: Lipman Y., Funkhouser T.: Mobius voting for surface correspondence. ACM Trans. Graph. 28, 3 (July 2009), 72:1-72:12. 2.
– reference: Kim V. G., Lipman Y., Funkhouser T.: Blended intrinsic maps. ACM Trans. Graph. 30, 4 (Aug. 2011), 79:1-79:12. 2, 8.
– reference: Candès E. J., Li X., Ma Y., Wright J.: Robust principal component analysis? J. ACM 58, 3 (June 2011), 11:1-11:37. 2,5,6.
– reference: Bronstein A., Bronstein M., Kimmel R.: Numerical Geometry of Non-Rigid Shapes, 1 ed. Springer Publishing Company, Incorporated, 2008. 2, 8.
– reference: Candès E. J., Recht B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 6 (Dec. 2009). 717-772. 2, 5, 6.
– reference: GIORGI D., BIASDTTI S., PARABOSCHI L.: Shrec: shape retreval contex: Watertight models track, 2007. 2.
– reference: Huang Q.-X., Zhang G.-X., Gao L., Hu S.-M., Butscher A., Guibas L.: An optimization approach for extracting and encoding consistent maps in a shape collection. ACM Trans. Graph. 31, 6 (Nov. 2012), 167:1-167:11. 1, 2, 8, 9.
– reference: Candes E. J., Tao T.: Decoding by linear programming. Trans. Inf. Theor. 51, 12 (Dec. 2005), 4203-4215. 1.
– reference: Fiedler M.: Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal 23 (1973), 298-305. 6.
– reference: Wen Z., Goldfarb D., Yin W.: Alternating direction augmented lagrangian methods for semidefinite programming. Math. Prog. Comput. 2, 3-4 (2010), 203-230. 5.
– reference: Schrijver A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New York , NY , USA , 1986. 5.
– reference: Ovsianikov M., Ben-Chen M., Solomon L., Butscher A., Guibas L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31, 4 (July 2012), 30:1-30:11. 10.
– reference: Huang Q.-X., Flöry S., Gelfand N., Hofer M., Pottmann H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25, 3 (2006), 569-578. 2.
– year: 1986
– start-page: 2086
  year: 2010
  end-page: 2117
– start-page: 1426
  year: 2010
  end-page: 1433
– volume: 2007
  publication-title: Shrec: shape retreval contex: Watertight models track
– year: December 2002
– year: 2008
– volume: 21
  start-page: 807
  year: October 2002
  end-page: 832
  article-title: Shape distributions
  publication-title: ACM Tram. Graph.
– start-page: 1383
  year: 2009
  end-page: 1392
– start-page: 408
  year: 2005
  end-page: 416
– volume: 3
  start-page: 1
  issue: 1
  year: Ian. 2011
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
– volume: 9
  start-page: 717
  issue: 6
  year: Dec. 2009
  end-page: 772
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
– volume: 51
  start-page: 4203
  issue: 12
  year: Dec. 2005
  end-page: 4215
  article-title: Decoding by linear programming
  publication-title: Trans. Inf. Theor.
– volume: 30
  start-page: 79:1
  issue: 4
  year: Aug. 2011
  end-page: 79:12
  article-title: Blended intrinsic maps
  publication-title: ACM Trans. Graph.
– volume: 28
  start-page: 72:1
  issue: 3
  year: July 2009
  end-page: 72:12
  article-title: Mobius voting for surface correspondence
  publication-title: ACM Trans. Graph.
– volume: 31
  start-page: 167:1
  issue: 6
  year: Nov. 2012
  end-page: 167:11
  article-title: An optimization approach for extracting and encoding consistent maps in a shape collection
  publication-title: ACM Trans. Graph.
– volume: 31
  start-page: 30:1
  issue: 4
  year: July 2012
  end-page: 30:11
  article-title: Functional maps: a flexible representation of maps between shapes
  publication-title: ACM Trans. Graph.
– volume: 25
  start-page: 569
  issue: 3
  year: 2006
  end-page: 578
  article-title: Reassembling fractured objects by geometric matching
  publication-title: ACM Trans. Graph.
– start-page: 1481
  year: 2011
  end-page: 1491
– volume: 23
  start-page: 298
  year: 1973
  end-page: 305
  article-title: Algebraic Connectivity of Graphs.
  publication-title: Czechoslovak Mathematical Journal
– volume: 58
  start-page: 11:1
  issue: 3
  year: June 2011
  end-page: 11:37
  article-title: Robust principal component analysis?
  publication-title: J. ACM
– volume: 2
  start-page: 3
  year: 2010
  end-page: 4
  article-title: Alternating direction augmented lagrangian methods for semidefinite programming
  publication-title: Math. Prog. Comput.
– year: 2012
– ident: e_1_2_10_11_2
  doi: 10.1145/1141911.1141925
– volume-title: Theory of linear and integer programming
  year: 1986
  ident: e_1_2_10_20_2
– ident: e_1_2_10_23_2
– volume: 23
  start-page: 298
  year: 1973
  ident: e_1_2_10_9_2
  article-title: Algebraic Connectivity of Graphs.
  publication-title: Czechoslovak Mathematical Journal
  doi: 10.21136/CMJ.1973.101168
– ident: e_1_2_10_19_2
  doi: 10.1145/571647.571648
– ident: e_1_2_10_24_2
  doi: 10.1109/CVPR.2010.5539801
– ident: e_1_2_10_21_2
  doi: 10.1111/j.1467-8659.2009.01515.x
– ident: e_1_2_10_4_2
  doi: 10.1561/2200000016
– ident: e_1_2_10_15_2
– ident: e_1_2_10_12_2
– ident: e_1_2_10_13_2
  doi: 10.1145/2366145.2366186
– volume: 2
  start-page: 3
  year: 2010
  ident: e_1_2_10_22_2
  article-title: Alternating direction augmented lagrangian methods for semidefinite programming
  publication-title: Math. Prog. Comput.
– volume: 31
  start-page: 30:1
  issue: 4
  year: 2012
  ident: e_1_2_10_18_2
  article-title: Functional maps: a flexible representation of maps between shapes
  publication-title: ACM Trans. Graph.
– ident: e_1_2_10_2_2
  doi: 10.1145/1186822.1073207
– ident: e_1_2_10_17_2
  doi: 10.1111/j.1467-8659.2011.02022.x
– ident: e_1_2_10_8_2
  doi: 10.1214/10-AAP677
– ident: e_1_2_10_14_2
  doi: 10.1145/2010324.1964974
– ident: e_1_2_10_5_2
  doi: 10.1145/1970392.1970395
– volume-title: Numerical Geometry of Non‐Rigid Shapes
  year: 2008
  ident: e_1_2_10_3_2
– ident: e_1_2_10_16_2
  doi: 10.1145/1531326.1531378
– ident: e_1_2_10_7_2
  doi: 10.1109/TIT.2005.858979
– volume: 2007
  ident: e_1_2_10_10_2
  publication-title: Shrec: shape retreval contex: Watertight models track
– ident: e_1_2_10_6_2
  doi: 10.1007/s10208-009-9045-5
SSID ssj0004765
Score 2.5016506
Snippet Recent advances in shape matching have shown that jointly optimizing the maps among the shapes in a collection can lead to significant improvements when...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 177
SubjectTerms 1.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation
Computer graphics
Computer science
Error correction
Estimating
Matching
Mathematical programming
Optimization
Recovery
Semidefinite programming
Stores
Studies
Title Consistent Shape Maps via Semidefinite Programming
URI https://api.istex.fr/ark:/67375/WNG-TG1T8TVN-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12184
https://www.proquest.com/docview/1426126022
https://www.proquest.com/docview/1439775090
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8659
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: ABDBF
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0167-7055
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB5EX_TBW6wXUUR8iTTpJunik1crgkW0Hg9CmD2iRY3FtiL-enc2h1UUxLdAZmEys7P7TXb2G4BNT0hG9zXdkJtMh9WrgcsFopnLOuKSYy0RdBv5tBUeX7KTm-BmBHaLuzAZP0T5w40iw67XFOAoekNBLu8SokaoExeoVwttOnX-SR3FojAoeL2JMSZnFaIqnnLkl71ojMz69gVoDsNVu980puC20DQrM3nYGfTFjnz_RuL4z0-Zhskchzp72cSZgRGdzsLEEDvhHPi2madRN-07F_fY1c4pdnvOawedC_3UUTrpEGB1zrISryczaB4uG0ftg2M3b7HgyiBizI0CbjIqgdRr2gR_nflKoGIq1AGLZOQF2vcEMiWqXDGOKmHcIC5htjhPKdS12gKMps-pXgQHJWFFP0E6yuReInyNJvlOuJYqTFRYge3C2LHM-cepDcZjXOQhxgyxNUMFNkrRbka68ZPQlvVYKYEvD1SlFgXxdasZt5teu96-asVXFVgpXBrnAdozGQ9xp4UGwVRgvXxtQovOSzDVzwOSIXRsEFXV6G7997s28UGzYR-W_i66DOO-ba5B5YQrMNp_GehVA3H6Yg3G9vYP9xtrdk5_AEUt9fw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xOAAHCrSIFAouQlUvjmJnbWelXipEklISITCUC1rty21EMREkVdVf35n1g4BaqerNkmel8cyO95vd2W8ADgKlGd3X9GOOmQ7rtCKfKylxLtuEay7bmaLbyINh3L9gx1fR1Rx8qO7CFPwQ9YYbRYb7X1OA04b0TJTrrxlxI3TYPCyyGPMUgkRnj-RRLImjitmbOGNKXiGq46mHPlmNFsmwP59AzVnA6lac7gu4rnQtCk1umtOJaupfz2gc__dj1mC1hKLex2LurMOczTdgZYag8CWErp8n6ptPvPNvcmy9gRw_eD9G0ju3tyNjsxFhVu-0qPK6xUGv4KJ7lB72_bLLgq-jhDE_iTgmVUpSu2mM_w4LjZKGmdhGLNFJENkwUJIZ1eKGcWkyxhF0KVzlAmOkbbc3YSG_y-0WeFITXAwzSaeZPMhUaCXm3xm32sSZiRvwvrK20CUFOXXC-C6qVATNIJwZGrBfi44L3o0_Cb1zLqsl5P0NFaolkfgy7Im0F6Sd9HIoLhuwU_lUlDH6gEkP0afFCGIa8LZ-jdFFRyYyt3dTkiGAjKCqhbo7B_5dG3HY67qH1_8uugdL_XRwIk4-DT9vw3Loem1QdeEOLEzup_YNIp6J2nUT-zf3BPir
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-sgtiHtlqlZ9VGkdKXyCW3m2ShL6Le-XmInh8vsuynHmo89K6U_vXd2Xz0LBWkb4HMwmRmZ_c32dnfAKxHUhG8rxkmzGU6JGvSkEkh3Fw2KVNMtKzE28hH3WT3jOxf0ssJ-F7dhSn4IeofbhgZfr3GADcDbceiXF1b5EbIyBuYIpRlWNC3ffKHPIqkCa2YvZEzpuQVwjqeeuiz3WgKDfvzGdQcB6x-x2m_h6tK16LQ5HZjNJQb6tdfNI7_-zEf4F0JRYPNYu7MwoTJ5-DtGEHhR4h9P0-nbz4MTm_EwARHYvAU_OiL4NTc97WxfcSswXFR5XXvBs3DWXunt7Ubll0WQkVTQsKUMpdUSYHtpl38ZyTWUmiiE0NJqtKImjiSgmjZZJowoS1hDnRJt8tFWgvTai3AZP6Qm08QCIVwMbYCTzNZZGVshMu_LTNKJ1YnDfhWWZurkoIcO2Hc8SoVcWbg3gwNWKtFBwXvxr-EvnqX1RLi8RYL1VLKL7od3utEvax33uXnDViqfMrLGH1ySQ_SpyUOxDRgtX7toguPTERuHkYogwDZgaqm09078GVt-Fan7R8WXy_6BaaPt9v8cK978BlmYt9qA4sLl2By-Dgyyw7wDOWKn9e_Aahj-C8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consistent+Shape+Maps+via+Semidefinite+Programming&rft.jtitle=Computer+graphics+forum&rft.au=Huang%2C+Qi%E2%80%90Xing&rft.au=Guibas%2C+Leonidas&rft.date=2013-08-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=32&rft.issue=5&rft.spage=177&rft.epage=186&rft_id=info:doi/10.1111%2Fcgf.12184&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon