Consistent Shape Maps via Semidefinite Programming
Recent advances in shape matching have shown that jointly optimizing the maps among the shapes in a collection can lead to significant improvements when compared to estimating maps between pairs of shapes in isolation. These methods typically invoke a cycle‐consistency criterion — the fact that comp...
        Saved in:
      
    
          | Published in | Computer graphics forum Vol. 32; no. 5; pp. 177 - 186 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford, UK
          Blackwell Publishing Ltd
    
        01.08.2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0167-7055 1467-8659  | 
| DOI | 10.1111/cgf.12184 | 
Cover
| Abstract | Recent advances in shape matching have shown that jointly optimizing the maps among the shapes in a collection can lead to significant improvements when compared to estimating maps between pairs of shapes in isolation. These methods typically invoke a cycle‐consistency criterion — the fact that compositions of maps along a cycle of shapes should approximate the identity map. This condition regularizes the network and allows for the correction of errors and imperfections in individual maps. In particular, it encourages the estimation of maps between dissimilar shapes by compositions of maps along a path of more similar shapes.
In this paper, we introduce a novel approach for obtaining consistent shape maps in a collection that formulates the cycle‐consistency constraint as the solution to a semidefinite program (SDP). The proposed approach is based on the observation that, if the ground truth maps between the shapes are cycle‐consistent, then the matrix that stores all pair‐wise maps in blocks is low‐rank and positive semidefinite. Motivated by recent advances in techniques for low‐rank matrix recovery via semidefinite programming, we formulate the problem of estimating cycle‐consistent maps as finding the closest positive semidefinite matrix to an input matrix that stores all the initial maps. By analyzing the Karush‐Kuhn‐Tucker (KKT) optimality condition of this program, we derive theoretical guarantees for the proposed algorithm, ensuring the correctness of the recovery when the errors in the inputs maps do not exceed certain thresholds. Besides this theoretical guarantee, experimental results on benchmark datasets show that the proposed approach outperforms state‐of‐the‐art multiple shape matching methods. | 
    
|---|---|
| AbstractList | Recent advances in shape matching have shown that jointly optimizing the maps among the shapes in a collection can lead to significant improvements when compared to estimating maps between pairs of shapes in isolation. These methods typically invoke a cycle‐consistency criterion — the fact that compositions of maps along a cycle of shapes should approximate the identity map. This condition regularizes the network and allows for the correction of errors and imperfections in individual maps. In particular, it encourages the estimation of maps between dissimilar shapes by compositions of maps along a path of more similar shapes.
In this paper, we introduce a novel approach for obtaining consistent shape maps in a collection that formulates the cycle‐consistency constraint as the solution to a semidefinite program (SDP). The proposed approach is based on the observation that, if the ground truth maps between the shapes are cycle‐consistent, then the matrix that stores all pair‐wise maps in blocks is low‐rank and positive semidefinite. Motivated by recent advances in techniques for low‐rank matrix recovery via semidefinite programming, we formulate the problem of estimating cycle‐consistent maps as finding the closest positive semidefinite matrix to an input matrix that stores all the initial maps. By analyzing the Karush‐Kuhn‐Tucker (KKT) optimality condition of this program, we derive theoretical guarantees for the proposed algorithm, ensuring the correctness of the recovery when the errors in the inputs maps do not exceed certain thresholds. Besides this theoretical guarantee, experimental results on benchmark datasets show that the proposed approach outperforms state‐of‐the‐art multiple shape matching methods. Recent advances in shape matching have shown that jointly optimizing the maps among the shapes in a collection can lead to significant improvements when compared to estimating maps between pairs of shapes in isolation. These methods typically invoke a cycle-consistency criterion -- the fact that compositions of maps along a cycle of shapes should approximate the identity map. This condition regularizes the network and allows for the correction of errors and imperfections in individual maps. In particular, it encourages the estimation of maps between dissimilar shapes by compositions of maps along a path of more similar shapes. In this paper, we introduce a novel approach for obtaining consistent shape maps in a collection that formulates the cycle-consistency constraint as the solution to a semidefinite program (SDP). The proposed approach is based on the observation that, if the ground truth maps between the shapes are cycle-consistent, then the matrix that stores all pair-wise maps in blocks is low-rank and positive semidefinite. Motivated by recent advances in techniques for low-rank matrix recovery via semidefinite programming, we formulate the problem of estimating cycle-consistent maps as finding the closest positive semidefinite matrix to an input matrix that stores all the initial maps. By analyzing the Karush-Kuhn-Tucker (KKT) optimality condition of this program, we derive theoretical guarantees for the proposed algorithm, ensuring the correctness of the recovery when the errors in the inputs maps do not exceed certain thresholds. Besides this theoretical guarantee, experimental results on benchmark datasets show that the proposed approach outperforms state-of-the-art multiple shape matching methods. [PUBLICATION ABSTRACT] Recent advances in shape matching have shown that jointly optimizing the maps among the shapes in a collection can lead to significant improvements when compared to estimating maps between pairs of shapes in isolation. These methods typically invoke a cycle-consistency criterion - the fact that compositions of maps along a cycle of shapes should approximate the identity map. This condition regularizes the network and allows for the correction of errors and imperfections in individual maps. In particular, it encourages the estimation of maps between dissimilar shapes by compositions of maps along a path of more similar shapes. In this paper, we introduce a novel approach for obtaining consistent shape maps in a collection that formulates the cycle-consistency constraint as the solution to a semidefinite program (SDP). The proposed approach is based on the observation that, if the ground truth maps between the shapes are cycle-consistent, then the matrix that stores all pair-wise maps in blocks is low-rank and positive semidefinite. Motivated by recent advances in techniques for low-rank matrix recovery via semidefinite programming, we formulate the problem of estimating cycle-consistent maps as finding the closest positive semidefinite matrix to an input matrix that stores all the initial maps. By analyzing the Karush-Kuhn-Tucker (KKT) optimality condition of this program, we derive theoretical guarantees for the proposed algorithm, ensuring the correctness of the recovery when the errors in the inputs maps do not exceed certain thresholds. Besides this theoretical guarantee, experimental results on benchmark datasets show that the proposed approach outperforms state-of-the-art multiple shape matching methods.  | 
    
| Author | Huang, Qi-Xing Guibas, Leonidas  | 
    
| Author_xml | – sequence: 1 givenname: Qi-Xing surname: Huang fullname: Huang, Qi-Xing organization: Computer Science Department, Stanford University, Stanford, CA – sequence: 2 givenname: Leonidas surname: Guibas fullname: Guibas, Leonidas organization: Computer Science Department, Stanford University, Stanford, CA  | 
    
| BookMark | eNp9kL1OwzAURi1UJNrCwBtEYoEhrZ34JxlRRAtSKUgNZbSc2CkuiRPsFOjbk1JgQIK73Duc79PVGYCeqY0C4BTBEepmnK-KEQpQhA9AH2HK_IiSuAf6EHU3g4QcgYFzawghZpT0QZDUxmnXKtN6iyfRKO9WNM571cJbqEpLVWijW-Xd23plRVVpszoGh4UonTr52kPwMLlKk2t_dje9SS5nfk4Yxj4jMcI4ExSGCDIY4UBmQmJJFcEsZ4ioAGUCywzGEsdCFjjGhGaQMiSlUGE4BOf73sbWLxvlWl5pl6uyFEbVG8cRDmPGCIxhh579Qtf1xpruu44KKAooDIKOuthTua2ds6rgjdWVsFuOIN_Z4509_mmvY8e_2Fy3otW1aa3Q5X-JN12q7d_VPJlOvhP-PrHz__6TEPaZUxYywh_nU55OURqlyzlfhh9BuI9w | 
    
| CitedBy_id | crossref_primary_10_1002_cpa_21638 crossref_primary_10_1109_TVCG_2021_3109392 crossref_primary_10_1089_cmb_2016_0025 crossref_primary_10_1109_TPAMI_2024_3463966 crossref_primary_10_1007_s11263_020_01359_2 crossref_primary_10_1109_TIP_2020_2973511 crossref_primary_10_1111_cgf_12701 crossref_primary_10_2139_ssrn_4120722 crossref_primary_10_3390_sym10070294 crossref_primary_10_1007_s12652_024_04868_x crossref_primary_10_1109_TIP_2021_3077138 crossref_primary_10_3389_fdata_2019_00003 crossref_primary_10_1016_j_neucom_2020_07_124 crossref_primary_10_1177_0278364920917465 crossref_primary_10_1007_s11263_022_01596_7 crossref_primary_10_1007_s00371_015_1136_5 crossref_primary_10_1109_TIP_2021_3139178 crossref_primary_10_1007_s10851_014_0538_8 crossref_primary_10_1109_TMM_2022_3145666 crossref_primary_10_1111_cgf_12698 crossref_primary_10_1109_TCSVT_2023_3328371 crossref_primary_10_1109_TIT_2019_2920637 crossref_primary_10_1111_cgf_12694 crossref_primary_10_1137_19M1290000 crossref_primary_10_1214_21_AOS2066 crossref_primary_10_1007_s00371_019_01760_0 crossref_primary_10_1088_1361_6420_ab7d2c crossref_primary_10_1145_2999535 crossref_primary_10_1145_3366786 crossref_primary_10_1109_TPAMI_2020_2989928 crossref_primary_10_1137_21M1467845 crossref_primary_10_1007_s10489_022_04389_0 crossref_primary_10_1109_TPAMI_2020_3005590 crossref_primary_10_1111_cgf_14074 crossref_primary_10_1145_2816795_2818088 crossref_primary_10_1016_j_cviu_2019_03_008 crossref_primary_10_1109_TPAMI_2016_2605097 crossref_primary_10_1177_0278364920929398 crossref_primary_10_1109_TIT_2016_2600566 crossref_primary_10_3390_electronics13214191 crossref_primary_10_1007_s10208_021_09532_w crossref_primary_10_1111_cgf_13786 crossref_primary_10_1111_cgf_13787 crossref_primary_10_1109_TNSE_2014_2368716 crossref_primary_10_1111_cgf_13502 crossref_primary_10_1109_TPAMI_2015_2477832 crossref_primary_10_1109_ACCESS_2018_2825397 crossref_primary_10_3390_s23031548 crossref_primary_10_1109_TBME_2019_2927157 crossref_primary_10_1007_s10107_016_1059_6 crossref_primary_10_1109_TIP_2023_3311917 crossref_primary_10_1111_cgf_12480 crossref_primary_10_1145_2601097_2601142 crossref_primary_10_1145_3072959_2999535 crossref_primary_10_1007_s10107_022_01896_3 crossref_primary_10_1109_TCSVT_2021_3076078 crossref_primary_10_1007_s00371_019_01655_0 crossref_primary_10_1145_2601097_2601159 crossref_primary_10_1007_s10107_023_01932_w crossref_primary_10_1016_j_cviu_2021_103225 crossref_primary_10_1109_TPAMI_2021_3098052 crossref_primary_10_1002_cpa_21760 crossref_primary_10_1007_s11263_022_01686_6 crossref_primary_10_1111_cgf_13794 crossref_primary_10_1137_20M1389571 crossref_primary_10_3390_su15086692 crossref_primary_10_1109_TMM_2019_2959925 crossref_primary_10_1109_TNNLS_2021_3105543 crossref_primary_10_1111_cgf_12796 crossref_primary_10_1002_ar_23700 crossref_primary_10_1109_TIP_2016_2540810 crossref_primary_10_1093_imaiai_iaw017 crossref_primary_10_1111_cgf_12790 crossref_primary_10_1007_s41095_021_0241_9 crossref_primary_10_1145_2601097_2601111 crossref_primary_10_1016_j_acha_2022_02_003 crossref_primary_10_1002_mrm_27627  | 
    
| Cites_doi | 10.1145/1141911.1141925 10.21136/CMJ.1973.101168 10.1145/571647.571648 10.1109/CVPR.2010.5539801 10.1111/j.1467-8659.2009.01515.x 10.1561/2200000016 10.1145/2366145.2366186 10.1145/1186822.1073207 10.1111/j.1467-8659.2011.02022.x 10.1214/10-AAP677 10.1145/2010324.1964974 10.1145/1970392.1970395 10.1145/1531326.1531378 10.1109/TIT.2005.858979 10.1007/s10208-009-9045-5  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd. | 
    
| Copyright_xml | – notice: 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd. | 
    
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3  | 
    
| DOI | 10.1111/cgf.12184 | 
    
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts Technology Research Database CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1467-8659 | 
    
| EndPage | 186 | 
    
| ExternalDocumentID | 3048788471 10_1111_cgf_12184 CGF12184 ark_67375_WNG_TG1T8TVN_V  | 
    
| Genre | article Feature  | 
    
| GeographicLocations | United States--US | 
    
| GeographicLocations_xml | – name: United States--US | 
    
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3  | 
    
| ID | FETCH-LOGICAL-c5744-759144ba6031070842dbad4d6e547c715e21ba4db09d49adf49456b0671ddae33 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0167-7055 | 
    
| IngestDate | Fri Sep 05 12:21:22 EDT 2025 Fri Jul 25 23:47:13 EDT 2025 Wed Oct 01 03:05:00 EDT 2025 Thu Apr 24 22:51:52 EDT 2025 Wed Aug 20 07:26:23 EDT 2025 Sun Sep 21 06:22:08 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c5744-759144ba6031070842dbad4d6e547c715e21ba4db09d49adf49456b0671ddae33 | 
    
| Notes | ark:/67375/WNG-TG1T8TVN-V istex:8BFB389DE5A9DD25775DAF47EB77B55C8548C374 ArticleID:CGF12184 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23  | 
    
| PQID | 1426126022 | 
    
| PQPubID | 30877 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_1439775090 proquest_journals_1426126022 crossref_primary_10_1111_cgf_12184 crossref_citationtrail_10_1111_cgf_12184 wiley_primary_10_1111_cgf_12184_CGF12184 istex_primary_ark_67375_WNG_TG1T8TVN_V  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2013 | 
    
| PublicationDateYYYYMMDD | 2013-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2013 text: August 2013  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Oxford, UK | 
    
| PublicationPlace_xml | – name: Oxford, UK – name: Oxford  | 
    
| PublicationTitle | Computer graphics forum | 
    
| PublicationYear | 2013 | 
    
| Publisher | Blackwell Publishing Ltd | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd | 
    
| References | Candès E. J., Li X., Ma Y., Wright J.: Robust principal component analysis? J. ACM 58, 3 (June 2011), 11:1-11:37. 2,5,6. Candes E. J., Tao T.: Decoding by linear programming. Trans. Inf. Theor. 51, 12 (Dec. 2005), 4203-4215. 1. Kim V. G., Lipman Y., Funkhouser T.: Blended intrinsic maps. ACM Trans. Graph. 30, 4 (Aug. 2011), 79:1-79:12. 2, 8. Ovsianikov M., Ben-Chen M., Solomon L., Butscher A., Guibas L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31, 4 (July 2012), 30:1-30:11. 10. Schrijver A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New York , NY , USA , 1986. 5. Osada R., Funkhouser L., Chazelle B., Dobkin D.: Shape distributions. ACM Tram. Graph. 21 (October 2002), 807-832. 8. Huang Q.-X., Flöry S., Gelfand N., Hofer M., Pottmann H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25, 3 (2006), 569-578. 2. Lipman Y., Funkhouser T.: Mobius voting for surface correspondence. ACM Trans. Graph. 28, 3 (July 2009), 72:1-72:12. 2. Wen Z., Goldfarb D., Yin W.: Alternating direction augmented lagrangian methods for semidefinite programming. Math. Prog. Comput. 2, 3-4 (2010), 203-230. 5. Huang Q.-X., Zhang G.-X., Gao L., Hu S.-M., Butscher A., Guibas L.: An optimization approach for extracting and encoding consistent maps in a shape collection. ACM Trans. Graph. 31, 6 (Nov. 2012), 167:1-167:11. 1, 2, 8, 9. Boyd S., Parikh N., Chu E., Peleato B., Eckstein I.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1 (Ian. 2011), 1-122. 5. Bronstein A., Bronstein M., Kimmel R.: Numerical Geometry of Non-Rigid Shapes, 1 ed. Springer Publishing Company, Incorporated, 2008. 2, 8. Fiedler M.: Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal 23 (1973), 298-305. 6. GIORGI D., BIASDTTI S., PARABOSCHI L.: Shrec: shape retreval contex: Watertight models track, 2007. 2. Candès E. J., Recht B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 6 (Dec. 2009). 717-772. 2, 5, 6. July 2012; 31 December 2002 July 2009; 28 2012 June 2011; 58 2011 2010 1973; 23 2006; 25 Aug. 2011; 30 2009 2008 Ian. 2011; 3 Dec. 2005; 51 October 2002; 21 1986 2007 2005 Nov. 2012; 31 2010; 2 Dec. 2009; 9 e_1_2_10_11_2 e_1_2_10_8_2 e_1_2_10_12_2 e_1_2_10_23_2 e_1_2_10_21_2 Schrijver A. (e_1_2_10_20_2) 1986 Wen Z. (e_1_2_10_22_2) 2010; 2 Ovsianikov M. (e_1_2_10_18_2) 2012; 31 GIORGI D. (e_1_2_10_10_2); 2007 Bronstein A. (e_1_2_10_3_2) 2008 e_1_2_10_19_2 e_1_2_10_17_2 e_1_2_10_2_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_7_2 Fiedler M. (e_1_2_10_9_2) 1973; 23 e_1_2_10_13_2 e_1_2_10_24_2 e_1_2_10_6_2 e_1_2_10_14_2  | 
    
| References_xml | – reference: Osada R., Funkhouser L., Chazelle B., Dobkin D.: Shape distributions. ACM Tram. Graph. 21 (October 2002), 807-832. 8. – reference: Boyd S., Parikh N., Chu E., Peleato B., Eckstein I.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1 (Ian. 2011), 1-122. 5. – reference: Lipman Y., Funkhouser T.: Mobius voting for surface correspondence. ACM Trans. Graph. 28, 3 (July 2009), 72:1-72:12. 2. – reference: Kim V. G., Lipman Y., Funkhouser T.: Blended intrinsic maps. ACM Trans. Graph. 30, 4 (Aug. 2011), 79:1-79:12. 2, 8. – reference: Candès E. J., Li X., Ma Y., Wright J.: Robust principal component analysis? J. ACM 58, 3 (June 2011), 11:1-11:37. 2,5,6. – reference: Bronstein A., Bronstein M., Kimmel R.: Numerical Geometry of Non-Rigid Shapes, 1 ed. Springer Publishing Company, Incorporated, 2008. 2, 8. – reference: Candès E. J., Recht B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 6 (Dec. 2009). 717-772. 2, 5, 6. – reference: GIORGI D., BIASDTTI S., PARABOSCHI L.: Shrec: shape retreval contex: Watertight models track, 2007. 2. – reference: Huang Q.-X., Zhang G.-X., Gao L., Hu S.-M., Butscher A., Guibas L.: An optimization approach for extracting and encoding consistent maps in a shape collection. ACM Trans. Graph. 31, 6 (Nov. 2012), 167:1-167:11. 1, 2, 8, 9. – reference: Candes E. J., Tao T.: Decoding by linear programming. Trans. Inf. Theor. 51, 12 (Dec. 2005), 4203-4215. 1. – reference: Fiedler M.: Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal 23 (1973), 298-305. 6. – reference: Wen Z., Goldfarb D., Yin W.: Alternating direction augmented lagrangian methods for semidefinite programming. Math. Prog. Comput. 2, 3-4 (2010), 203-230. 5. – reference: Schrijver A.: Theory of linear and integer programming. John Wiley & Sons, Inc., New York , NY , USA , 1986. 5. – reference: Ovsianikov M., Ben-Chen M., Solomon L., Butscher A., Guibas L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31, 4 (July 2012), 30:1-30:11. 10. – reference: Huang Q.-X., Flöry S., Gelfand N., Hofer M., Pottmann H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25, 3 (2006), 569-578. 2. – year: 1986 – start-page: 2086 year: 2010 end-page: 2117 – start-page: 1426 year: 2010 end-page: 1433 – volume: 2007 publication-title: Shrec: shape retreval contex: Watertight models track – year: December 2002 – year: 2008 – volume: 21 start-page: 807 year: October 2002 end-page: 832 article-title: Shape distributions publication-title: ACM Tram. Graph. – start-page: 1383 year: 2009 end-page: 1392 – start-page: 408 year: 2005 end-page: 416 – volume: 3 start-page: 1 issue: 1 year: Ian. 2011 end-page: 122 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends Mach. Learn. – volume: 9 start-page: 717 issue: 6 year: Dec. 2009 end-page: 772 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. – volume: 51 start-page: 4203 issue: 12 year: Dec. 2005 end-page: 4215 article-title: Decoding by linear programming publication-title: Trans. Inf. Theor. – volume: 30 start-page: 79:1 issue: 4 year: Aug. 2011 end-page: 79:12 article-title: Blended intrinsic maps publication-title: ACM Trans. Graph. – volume: 28 start-page: 72:1 issue: 3 year: July 2009 end-page: 72:12 article-title: Mobius voting for surface correspondence publication-title: ACM Trans. Graph. – volume: 31 start-page: 167:1 issue: 6 year: Nov. 2012 end-page: 167:11 article-title: An optimization approach for extracting and encoding consistent maps in a shape collection publication-title: ACM Trans. Graph. – volume: 31 start-page: 30:1 issue: 4 year: July 2012 end-page: 30:11 article-title: Functional maps: a flexible representation of maps between shapes publication-title: ACM Trans. Graph. – volume: 25 start-page: 569 issue: 3 year: 2006 end-page: 578 article-title: Reassembling fractured objects by geometric matching publication-title: ACM Trans. Graph. – start-page: 1481 year: 2011 end-page: 1491 – volume: 23 start-page: 298 year: 1973 end-page: 305 article-title: Algebraic Connectivity of Graphs. publication-title: Czechoslovak Mathematical Journal – volume: 58 start-page: 11:1 issue: 3 year: June 2011 end-page: 11:37 article-title: Robust principal component analysis? publication-title: J. ACM – volume: 2 start-page: 3 year: 2010 end-page: 4 article-title: Alternating direction augmented lagrangian methods for semidefinite programming publication-title: Math. Prog. Comput. – year: 2012 – ident: e_1_2_10_11_2 doi: 10.1145/1141911.1141925 – volume-title: Theory of linear and integer programming year: 1986 ident: e_1_2_10_20_2 – ident: e_1_2_10_23_2 – volume: 23 start-page: 298 year: 1973 ident: e_1_2_10_9_2 article-title: Algebraic Connectivity of Graphs. publication-title: Czechoslovak Mathematical Journal doi: 10.21136/CMJ.1973.101168 – ident: e_1_2_10_19_2 doi: 10.1145/571647.571648 – ident: e_1_2_10_24_2 doi: 10.1109/CVPR.2010.5539801 – ident: e_1_2_10_21_2 doi: 10.1111/j.1467-8659.2009.01515.x – ident: e_1_2_10_4_2 doi: 10.1561/2200000016 – ident: e_1_2_10_15_2 – ident: e_1_2_10_12_2 – ident: e_1_2_10_13_2 doi: 10.1145/2366145.2366186 – volume: 2 start-page: 3 year: 2010 ident: e_1_2_10_22_2 article-title: Alternating direction augmented lagrangian methods for semidefinite programming publication-title: Math. Prog. Comput. – volume: 31 start-page: 30:1 issue: 4 year: 2012 ident: e_1_2_10_18_2 article-title: Functional maps: a flexible representation of maps between shapes publication-title: ACM Trans. Graph. – ident: e_1_2_10_2_2 doi: 10.1145/1186822.1073207 – ident: e_1_2_10_17_2 doi: 10.1111/j.1467-8659.2011.02022.x – ident: e_1_2_10_8_2 doi: 10.1214/10-AAP677 – ident: e_1_2_10_14_2 doi: 10.1145/2010324.1964974 – ident: e_1_2_10_5_2 doi: 10.1145/1970392.1970395 – volume-title: Numerical Geometry of Non‐Rigid Shapes year: 2008 ident: e_1_2_10_3_2 – ident: e_1_2_10_16_2 doi: 10.1145/1531326.1531378 – ident: e_1_2_10_7_2 doi: 10.1109/TIT.2005.858979 – volume: 2007 ident: e_1_2_10_10_2 publication-title: Shrec: shape retreval contex: Watertight models track – ident: e_1_2_10_6_2 doi: 10.1007/s10208-009-9045-5  | 
    
| SSID | ssj0004765 | 
    
| Score | 2.5016506 | 
    
| Snippet | Recent advances in shape matching have shown that jointly optimizing the maps among the shapes in a collection can lead to significant improvements when... | 
    
| SourceID | proquest crossref wiley istex  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 177 | 
    
| SubjectTerms | 1.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation Computer graphics Computer science Error correction Estimating Matching Mathematical programming Optimization Recovery Semidefinite programming Stores Studies  | 
    
| Title | Consistent Shape Maps via Semidefinite Programming | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-TG1T8TVN-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12184 https://www.proquest.com/docview/1426126022 https://www.proquest.com/docview/1439775090  | 
    
| Volume | 32 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-8659 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: ABDBF dateStart: 19980301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1467-8659 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0167-7055 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB5EX_TBW6wXUUR8iTTpJunik1crgkW0Hg9CmD2iRY3FtiL-enc2h1UUxLdAZmEys7P7TXb2G4BNT0hG9zXdkJtMh9WrgcsFopnLOuKSYy0RdBv5tBUeX7KTm-BmBHaLuzAZP0T5w40iw67XFOAoekNBLu8SokaoExeoVwttOnX-SR3FojAoeL2JMSZnFaIqnnLkl71ojMz69gVoDsNVu980puC20DQrM3nYGfTFjnz_RuL4z0-Zhskchzp72cSZgRGdzsLEEDvhHPi2madRN-07F_fY1c4pdnvOawedC_3UUTrpEGB1zrISryczaB4uG0ftg2M3b7HgyiBizI0CbjIqgdRr2gR_nflKoGIq1AGLZOQF2vcEMiWqXDGOKmHcIC5htjhPKdS12gKMps-pXgQHJWFFP0E6yuReInyNJvlOuJYqTFRYge3C2LHM-cepDcZjXOQhxgyxNUMFNkrRbka68ZPQlvVYKYEvD1SlFgXxdasZt5teu96-asVXFVgpXBrnAdozGQ9xp4UGwVRgvXxtQovOSzDVzwOSIXRsEFXV6G7997s28UGzYR-W_i66DOO-ba5B5YQrMNp_GehVA3H6Yg3G9vYP9xtrdk5_AEUt9fw | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7xOAAHCrSIFAouQlUvjmJnbWelXipEklISITCUC1rty21EMREkVdVf35n1g4BaqerNkmel8cyO95vd2W8ADgKlGd3X9GOOmQ7rtCKfKylxLtuEay7bmaLbyINh3L9gx1fR1Rx8qO7CFPwQ9YYbRYb7X1OA04b0TJTrrxlxI3TYPCyyGPMUgkRnj-RRLImjitmbOGNKXiGq46mHPlmNFsmwP59AzVnA6lac7gu4rnQtCk1umtOJaupfz2gc__dj1mC1hKLex2LurMOczTdgZYag8CWErp8n6ptPvPNvcmy9gRw_eD9G0ju3tyNjsxFhVu-0qPK6xUGv4KJ7lB72_bLLgq-jhDE_iTgmVUpSu2mM_w4LjZKGmdhGLNFJENkwUJIZ1eKGcWkyxhF0KVzlAmOkbbc3YSG_y-0WeFITXAwzSaeZPMhUaCXm3xm32sSZiRvwvrK20CUFOXXC-C6qVATNIJwZGrBfi44L3o0_Cb1zLqsl5P0NFaolkfgy7Im0F6Sd9HIoLhuwU_lUlDH6gEkP0afFCGIa8LZ-jdFFRyYyt3dTkiGAjKCqhbo7B_5dG3HY67qH1_8uugdL_XRwIk4-DT9vw3Loem1QdeEOLEzup_YNIp6J2nUT-zf3BPir | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-sgtiHtlqlZ9VGkdKXyCW3m2ShL6Le-XmInh8vsuynHmo89K6U_vXd2Xz0LBWkb4HMwmRmZ_c32dnfAKxHUhG8rxkmzGU6JGvSkEkh3Fw2KVNMtKzE28hH3WT3jOxf0ssJ-F7dhSn4IeofbhgZfr3GADcDbceiXF1b5EbIyBuYIpRlWNC3ffKHPIqkCa2YvZEzpuQVwjqeeuiz3WgKDfvzGdQcB6x-x2m_h6tK16LQ5HZjNJQb6tdfNI7_-zEf4F0JRYPNYu7MwoTJ5-DtGEHhR4h9P0-nbz4MTm_EwARHYvAU_OiL4NTc97WxfcSswXFR5XXvBs3DWXunt7Ubll0WQkVTQsKUMpdUSYHtpl38ZyTWUmiiE0NJqtKImjiSgmjZZJowoS1hDnRJt8tFWgvTai3AZP6Qm08QCIVwMbYCTzNZZGVshMu_LTNKJ1YnDfhWWZurkoIcO2Hc8SoVcWbg3gwNWKtFBwXvxr-EvnqX1RLi8RYL1VLKL7od3utEvax33uXnDViqfMrLGH1ySQ_SpyUOxDRgtX7toguPTERuHkYogwDZgaqm09078GVt-Fan7R8WXy_6BaaPt9v8cK978BlmYt9qA4sLl2By-Dgyyw7wDOWKn9e_Aahj-C8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consistent+Shape+Maps+via+Semidefinite+Programming&rft.jtitle=Computer+graphics+forum&rft.au=Huang%2C+Qi%E2%80%90Xing&rft.au=Guibas%2C+Leonidas&rft.date=2013-08-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=32&rft.issue=5&rft.spage=177&rft.epage=186&rft_id=info:doi/10.1111%2Fcgf.12184&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12184 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |