An Improved Method for the Estimation and Visualization of Velocity Fields from Gastric High-Resolution Electrical Mapping

High-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing velocities of gastric electrical activity in a reliable and accurate manner can provide additional valuable information for quantitatively and qua...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 59; no. 3; pp. 882 - 889
Main Authors Paskaranandavadivel, Niranchan, OrGrady, Gregory, Du, Peng, Pullan, Andrew J., Cheng, Leo K.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2011.2181845

Cover

Abstract High-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing velocities of gastric electrical activity in a reliable and accurate manner can provide additional valuable information for quantitatively and qualitatively comparing features across and within subjects, particularly during gastric dysrhythmias. In this study, we compared three methods of estimating velocities from HR recordings to determine which method was the most reliable for use with gastric HR electrical mapping. The three methods were 1) simple finite difference (FD) 2) smoothed finite difference (FDSM), and 3) a polynomial-based method. With synthetic data, the accuracy of the simple FD method resulted in velocity errors almost twice that of the FDSM and the polynomial-based method, in the presence of activation time error up to 0.5 s. With three synthetic cases under various noise types and levels, the FDSM resulted in average speed error of 3.2% and an average angle error of 2.0 ° and the polynomial-based method had an average speed error of 3.3% and an average angle error of 1.7 ° . With experimental gastric slow wave recordings performed in pigs, the three methods estimated similar velocities (6.3-7.3 mm/s), but the FDSM method had a lower standard deviation in its velocity estimate than the simple FD and the polynomial-based method, leading it to be the method of choice for velocity estimation in gastric slow wave propagation. An improved method for visualizing velocity fields is also presented.
AbstractList High-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing velocities of gastric electrical activity in a reliable and accurate manner can provide additional valuable information for quantitatively and qualitatively comparing features across and within subjects, particularly during gastric dysrhythmias. In this study, we compared three methods of estimating velocities from HR recordings to determine which method was the most reliable for use with gastric HR electrical mapping. The three methods were 1) simple finite difference (FD) 2) smoothed finite difference (FDSM), and 3) a polynomial-based method. With synthetic data, the accuracy of the simple FD method resulted in velocity errors almost twice that of the FDSM and the polynomial-based method, in the presence of activation time error up to 0.5 s. With three synthetic cases under various noise types and levels, the FDSM resulted in average speed error of 3.2% and an average angle error of 2.0 [compfn] and the polynomial-based method had an average speed error of 3.3% and an average angle error of 1.7 [compfn] . With experimental gastric slow wave recordings performed in pigs, the three methods estimated similar velocities (6.3-7.3 mm/s), but the FDSM method had a lower standard deviation in its velocity estimate than the simple FD and the polynomial-based method, leading it to be the method of choice for velocity estimation in gastric slow wave propagation. An improved method for visualizing velocity fields is also presented.
High-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing velocities of gastric electrical activity in a reliable and accurate manner can provide additional valuable information for quantitatively and qualitatively comparing features across and within subjects, particularly during gastric dysrhythmias. In this study, we compared three methods of estimating velocities from HR recordings to determine which method was the most reliable for use with gastric HR electrical mapping. The three methods were 1) simple finite difference (FD) 2) smoothed finite difference (FDSM), and 3) a polynomial-based method. With synthetic data, the accuracy of the simple FD method resulted in velocity errors almost twice that of the FDSM and the polynomial-based method, in the presence of activation time error up to 0.5 s. With three synthetic cases under various noise types and levels, the FDSM resulted in average speed error of 3.2% and an average angle error of 2.0 ° and the polynomial-based method had an average speed error of 3.3% and an average angle error of 1.7 ° . With experimental gastric slow wave recordings performed in pigs, the three methods estimated similar velocities (6.3-7.3 mm/s), but the FDSM method had a lower standard deviation in its velocity estimate than the simple FD and the polynomial-based method, leading it to be the method of choice for velocity estimation in gastric slow wave propagation. An improved method for visualizing velocity fields is also presented.
High-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing velocities of gastric electrical activity in a reliable and accurate manner can provide additional valuable information for quantitatively and qualitatively comparing features across and within subjects, particularly during gastric dysrhythmias. In this study, we compared three methods of estimating velocities from HR recordings to determine which method was the most reliable for use with gastric HR electrical mapping. The three methods were 1) simple finite difference (FD) 2) smoothed finite difference (FDSM), and 3) a polynomial-based method. With synthetic data, the accuracy of the simple FD method resulted in velocity errors almost twice that of the FDSM and the polynomial-based method, in the presence of activation time error up to 0.5 s. With three synthetic cases under various noise types and levels, the FDSM resulted in average speed error of 3.2% and an average angle error of 2.0° and the polynomial-based method had an average speed error of 3.3% and an average angle error of 1.7°. With experimental gastric slow wave recordings performed in pigs, the three methods estimated similar velocities (6.3-7.3 mm/s), but the FDSM method had a lower standard deviation in its velocity estimate than the simple FD and the polynomial-based method, leading it to be the method of choice for velocity estimation in gastric slow wave propagation. An improved method for visualizing velocity fields is also presented.
High-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing velocities of gastric electrical activity in a reliable and accurate manner can provide additional valuable information for quantitatively and qualitatively comparing features across and within subjects, particularly during gastric dysrhythmias. In this study we compared three methods of estimating velocities from HR recordings to determine which method was the most reliable for use with gastric HR electrical mapping. The three methods were i) Simple finite difference ii) Smoothed finite difference and a iii) Polynomial based method. With synthetic data, the accuracy of the simple finite difference method resulted in velocity errors almost twice that of the smoothed finite difference and the polynomial based method, in the presence of activation time error up to 0.5s. With three synthetic cases under various noise types and levels, the smoothed finite difference resulted in average speed error of 3.2% and an average angle error of 2.0° and the polynomial based method had an average speed error of 3.3% and an average angle error of 1.7°. With experimental gastric slow wave recordings performed in pigs, the three methods estimated similar velocities (6.3-7.3 mm/s), but the smoothed finite difference method had a lower standard deviation in its velocity estimate than the simple finite difference and the polynomial based method, leading it to be the method of choice for velocity estimation in gastric slow wave propagation. An improved method for visualizing velocity fields is also presented.
High-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing velocities of gastric electrical activity in a reliable and accurate manner can provide additional valuable information for quantitatively and qualitatively comparing features across and within subjects, particularly during gastric dysrhythmias. In this study, we compared three methods of estimating velocities from HR recordings to determine which method was the most reliable for use with gastric HR electrical mapping. The three methods were 1) simple finite difference (FD) 2) smoothed finite difference (FDSM), and 3) a polynomial-based method. With synthetic data, the accuracy of the simple FD method resulted in velocity errors almost twice that of the FDSM and the polynomial-based method, in the presence of activation time error up to 0.5 s. With three synthetic cases under various noise types and levels, the FDSM resulted in average speed error of 3.2% and an average angle error of 2.0° and the polynomial-based method had an average speed error of 3.3% and an average angle error of 1.7°. With experimental gastric slow wave recordings performed in pigs, the three methods estimated similar velocities (6.3-7.3 mm/s), but the FDSM method had a lower standard deviation in its velocity estimate than the simple FD and the polynomial-based method, leading it to be the method of choice for velocity estimation in gastric slow wave propagation. An improved method for visualizing velocity fields is also presented.High-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing velocities of gastric electrical activity in a reliable and accurate manner can provide additional valuable information for quantitatively and qualitatively comparing features across and within subjects, particularly during gastric dysrhythmias. In this study, we compared three methods of estimating velocities from HR recordings to determine which method was the most reliable for use with gastric HR electrical mapping. The three methods were 1) simple finite difference (FD) 2) smoothed finite difference (FDSM), and 3) a polynomial-based method. With synthetic data, the accuracy of the simple FD method resulted in velocity errors almost twice that of the FDSM and the polynomial-based method, in the presence of activation time error up to 0.5 s. With three synthetic cases under various noise types and levels, the FDSM resulted in average speed error of 3.2% and an average angle error of 2.0° and the polynomial-based method had an average speed error of 3.3% and an average angle error of 1.7°. With experimental gastric slow wave recordings performed in pigs, the three methods estimated similar velocities (6.3-7.3 mm/s), but the FDSM method had a lower standard deviation in its velocity estimate than the simple FD and the polynomial-based method, leading it to be the method of choice for velocity estimation in gastric slow wave propagation. An improved method for visualizing velocity fields is also presented.
High-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing velocities of gastric electrical activity in a reliable and accurate manner can provide additional valuable information for quantitatively and qualitatively comparing features across and within subjects, particularly during gastric dysrhythmias. In this study, we compared three methods of estimating velocities from HR recordings to determine which method was the most reliable for use with gastric HR electrical mapping. The three methods were 1) simple finite difference (FD) 2) smoothed finite difference (FDSM), and 3) a polynomial-based method. With synthetic data, the accuracy of the simple FD method resulted in velocity errors almost twice that of the FDSM and the polynomial-based method, in the presence of activation time error up to 0.5 s. With three synthetic cases under various noise types and levels, the FDSM resulted in average speed error of 3.2% and an average angle error of 2.0[Formula Omitted] and the polynomial-based method had an average speed error of 3.3% and an average angle error of 1.7 [Formula Omitted]. With experimental gastric slow wave recordings performed in pigs, the three methods estimated similar velocities (6.3-7.3 mm/s), but the FDSM method had a lower standard deviation in its velocity estimate than the simple FD and the polynomial-based method, leading it to be the method of choice for velocity estimation in gastric slow wave propagation. An improved method for visualizing velocity fields is also presented.
Author Paskaranandavadivel, Niranchan
Du, Peng
OrGrady, Gregory
Pullan, Andrew J.
Cheng, Leo K.
Author_xml – sequence: 1
  givenname: Niranchan
  surname: Paskaranandavadivel
  fullname: Paskaranandavadivel, Niranchan
  email: npas004@aucklanduni.ac.nz
  organization: Auckland Bioengineering Institute , The University of Auckland, Auckland, New Zealand
– sequence: 2
  givenname: Gregory
  surname: OrGrady
  fullname: OrGrady, Gregory
  email: gog@ps.gen.nz
  organization: Department of Surgery and Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
– sequence: 3
  givenname: Peng
  surname: Du
  fullname: Du, Peng
  email: peng.du@auckland.ac.nz
  organization: Auckland Bioengineering Institute , The University of Auckland, Auckland, New Zealand
– sequence: 4
  givenname: Andrew J.
  surname: Pullan
  fullname: Pullan, Andrew J.
  email: a.pullan@auckland.ac.nz
  organization: Department of Engineering Science and Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
– sequence: 5
  givenname: Leo K.
  surname: Cheng
  fullname: Cheng, Leo K.
  email: l.cheng@auckland.ac.nz
  organization: Auckland Bioengineering Institute , The University of Auckland, Auckland, New Zealand
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25565178$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22207635$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1r2zAUhsXoWNNuP2AMhhiUXTnThy3bN4OupB_QMBhdb4UsS4mKIrmS3ZH--spNlm5hF7sS0nne8_EeHYED550C4D1GU4xR_eXm23w2JQjjKcEVrvLiFZjgoqgyUlB8ACYI4SqrSZ0fgqMY79I1r3L2BhwSQlDJaDEBj6cOXq264B9UC-eqX_oWah9gv1RwFnuzEr3xDgrXwlsTB2HN4-bFa3irrJemX8Nzo2wboQ5-BS9E7IOR8NIsltkPFb0dnvmZVXIMCAvnouuMW7wFr7WwUb3bnsfg5_ns5uwyu_5-cXV2ep3JoqR91pRII0xyJqmQTVOXSgvUspq2DJVS6FZoppBUFS0blBPaSEorTZMdFUFtXtJjQDZ5B9eJ9S9hLe9CGiysOUZ8NJL3zUrx0Ui-NTKJvm5E3ZBirVSuD-JF6IXhf0ecWfKFf-A5RqzGdUrweZsg-PtBxZ6vTJTKWuGUHyKvCavq1GL-HyQpEMEIJfLTHnnnh-CSeSOEUuVqLPzxz853Lf_eeQJOtoCIaR06CCdNfOGKghW4rBJXbjgZfIxBaZ6W_bz8NLCxO_PGX7hvHt5T7hv-L82HjcYopXY8w5iwMqdPTkHm9A
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_gtc_2014_11_013
crossref_primary_10_1007_s00464_016_4936_4
crossref_primary_10_1007_s10439_020_02457_5
crossref_primary_10_1088_1361_6579_aaad51
crossref_primary_10_1007_s10439_013_0906_3
crossref_primary_10_5056_jnm21183
crossref_primary_10_1007_s11517_022_02621_0
crossref_primary_10_1053_j_gastro_2015_04_003
crossref_primary_10_1111_j_1365_2982_2012_01932_x
crossref_primary_10_1152_ajpgi_00332_2021
crossref_primary_10_1111_1440_1681_12288
crossref_primary_10_14814_phy2_14659
crossref_primary_10_1152_ajpgi_00255_2016
crossref_primary_10_1109_TBME_2016_2548940
crossref_primary_10_1109_TBME_2015_2502065
crossref_primary_10_1152_ajpgi_00254_2023
crossref_primary_10_1111_ner_12454
crossref_primary_10_1152_physiol_00022_2013
crossref_primary_10_1093_imammb_dqu023
crossref_primary_10_1111_nmo_13152
crossref_primary_10_1109_RBME_2018_2867555
crossref_primary_10_1109_TBME_2021_3112955
crossref_primary_10_1111_nmo_13010
crossref_primary_10_1111_nmo_13670
crossref_primary_10_1111_nmo_13310
crossref_primary_10_1152_ajpgi_00258_2022
crossref_primary_10_1111_nmo_12637
crossref_primary_10_1111_nmo_14723
crossref_primary_10_1007_s11695_017_2597_6
crossref_primary_10_1152_ajpgi_00127_2017
crossref_primary_10_5056_jnm_2013_19_2_179
crossref_primary_10_1016_j_compbiomed_2015_04_027
crossref_primary_10_1109_TBME_2021_3063685
crossref_primary_10_1113_jphysiol_2013_254292
crossref_primary_10_1111_nmo_12085
crossref_primary_10_1111_apha_12406
crossref_primary_10_1152_ajpgi_00448_2020
crossref_primary_10_1053_j_gastro_2012_05_036
Cites_doi 10.1139/y05-084
10.1152/ajpgi.90380.2008
10.1109/IEMBS.2010.5626616
10.1007/s10439-009-9654-9
10.1007/s10439-009-9870-3
10.1109/10.668746
10.1007/BF02087897
10.1007/s10439-010-0170-8
10.1111/j.1365-2982.2011.01756.x
10.1161/CIRCEP.111.962662
10.1016/j.hrthm.2009.02.023
10.1109/IEMBS.2011.6090497
10.1053/j.gastro.2008.07.020
10.1152/ajpgi.00389.2009
10.1111/j.1365-2982.2011.01739.x
10.1109/TBME.2004.839636
10.1152/ajpgi.00125.2010
10.1109/TBME.2004.826670
10.1111/j.1572-0241.1999.01007.x
10.1111/j.1365-2982.2010.01538.x
10.1114/1.1543936
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1109/TBME.2011.2181845
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Engineering Research Database

MEDLINE

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Applied Sciences
EISSN 1558-2531
EndPage 889
ExternalDocumentID oai:pubmedcentral.nih.gov:4106919
PMC4106919
2589001681
22207635
25565178
10_1109_TBME_2011_2181845
6112674
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK64775
– fundername: NIDDK NIH HHS
  grantid: R01 DK064775
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c573t-b70f01246c3acbb97efa0d693d607cafdaf6e0ce837b0423bc338f3184820d473
IEDL.DBID UNPAY
ISSN 0018-9294
1558-2531
IngestDate Wed Oct 29 12:17:12 EDT 2025
Tue Sep 30 16:34:59 EDT 2025
Tue Oct 07 09:20:40 EDT 2025
Thu Oct 02 04:45:15 EDT 2025
Mon Jun 30 08:34:44 EDT 2025
Thu Apr 03 07:01:44 EDT 2025
Mon Jul 21 09:13:34 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Wed Oct 01 02:57:14 EDT 2025
Wed Aug 27 02:53:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Cartography
Stomach
Visualization
slow waves
High resolution
Dysrhythmia
Motion estimation
Digestive system
Speed measurement
Travelling wave tube
multielec
Mapping
Velocity distribution
finite difference (FD)
polynomial fitting
ode
Polynomial interpolation
Signal processing
Slow wave structure
Biomedical engineering
Finite difference method
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-b70f01246c3acbb97efa0d693d607cafdaf6e0ce837b0423bc338f3184820d473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
SourceType-Conference Papers & Proceedings-2
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1109/TBME.2011.2181845
PMID 22207635
PQID 922010689
PQPubID 85474
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_TBME_2011_2181845
proquest_miscellaneous_922502100
pascalfrancis_primary_25565178
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4106919
ieee_primary_6112674
proquest_miscellaneous_926894824
proquest_journals_922010689
unpaywall_primary_10_1109_tbme_2011_2181845
crossref_primary_10_1109_TBME_2011_2181845
pubmed_primary_22207635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref2
ref1
ref17
ref16
du (ref10) 2011
ref18
du (ref21) 2009
ref24
ref23
ref26
gaudette (ref13) 1997
ref25
isaak (ref20) 1989
ref22
(ref19) 0
ref8
ref7
ref9
ref4
ref3
ref6
ref5
9581054 - IEEE Trans Biomed Eng. 1998 May;45(5):563-71
19329365 - Heart Rhythm. 2009 May;6(5):587-91
19224368 - Ann Biomed Eng. 2009 Apr;37(4):839-46
21096180 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2608-11
16391712 - Can J Physiol Pharmacol. 2005 Nov;83(11):1031-43
18713627 - Gastroenterology. 2008 Nov;135(5):1601-11
19926815 - Am J Physiol Gastrointest Liver Physiol. 2010 Feb;298(2):G314-21
20618830 - Neurogastroenterol Motil. 2010 Oct;22(10):e292-300
18988693 - Am J Physiol Gastrointest Liver Physiol. 2009 Jan;296(1):G1-8
10201477 - Am J Gastroenterol. 1999 Apr;94(4):1023-8
15651561 - IEEE Trans Biomed Eng. 2005 Jan;52(1):19-29
12680723 - Ann Biomed Eng. 2003 Mar;31(3):250-61
19964973 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2527-30
20595620 - Am J Physiol Gastrointest Liver Physiol. 2010 Sep;299(3):G585-92
22255315 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:4402-5
8769276 - Dig Dis Sci. 1996 Aug;41(8):1538-45
21505175 - Circ Arrhythm Electrophysiol. 2011 Apr;4(2):125-7
22254662 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1737-40
21714831 - Neurogastroenterol Motil. 2011 Sep;23(9):e345-55
21838727 - Neurogastroenterol Motil. 2011 Sep;23(9):815-8
15132512 - IEEE Trans Biomed Eng. 2004 May;51(5):847-55
20024624 - Ann Biomed Eng. 2010 Apr;38(4):1511-29
20927594 - Ann Biomed Eng. 2011 Jan;39(1):469-83
References_xml – ident: ref18
  doi: 10.1139/y05-084
– ident: ref1
  doi: 10.1152/ajpgi.90380.2008
– ident: ref23
  doi: 10.1109/IEMBS.2010.5626616
– ident: ref7
  doi: 10.1007/s10439-009-9654-9
– ident: ref15
  doi: 10.1007/s10439-009-9870-3
– ident: ref11
  doi: 10.1109/10.668746
– ident: ref3
  doi: 10.1007/BF02087897
– ident: ref14
  doi: 10.1007/s10439-010-0170-8
– start-page: 4402
  year: 2011
  ident: ref10
  article-title: Quantification of velocity anisotropy during gastric electrical arrhythmia
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: ref5
  doi: 10.1111/j.1365-2982.2011.01756.x
– ident: ref26
  doi: 10.1161/CIRCEP.111.962662
– ident: ref25
  doi: 10.1016/j.hrthm.2009.02.023
– ident: ref17
  doi: 10.1109/IEMBS.2011.6090497
– start-page: 2527
  year: 2009
  ident: ref21
  article-title: Automated detection of gastric slow wave events and estimation of propagation velocity vector fields from serosal high-resolution mapping
  publication-title: Proc Conf Proc IEEE Eng Med Biol Soc
– ident: ref8
  doi: 10.1053/j.gastro.2008.07.020
– ident: ref6
  doi: 10.1152/ajpgi.00389.2009
– ident: ref9
  doi: 10.1111/j.1365-2982.2011.01739.x
– year: 0
  ident: ref19
– ident: ref24
  doi: 10.1109/TBME.2004.839636
– ident: ref2
  doi: 10.1152/ajpgi.00125.2010
– ident: ref22
  doi: 10.1109/TBME.2004.826670
– ident: ref4
  doi: 10.1111/j.1572-0241.1999.01007.x
– ident: ref16
  doi: 10.1111/j.1365-2982.2010.01538.x
– start-page: 339
  year: 1997
  ident: ref13
  publication-title: Computers in Cardiology
– year: 1989
  ident: ref20
  publication-title: An Introduction to Applied Geostatistics
– ident: ref12
  doi: 10.1114/1.1543936
– reference: 21505175 - Circ Arrhythm Electrophysiol. 2011 Apr;4(2):125-7
– reference: 22255315 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:4402-5
– reference: 16391712 - Can J Physiol Pharmacol. 2005 Nov;83(11):1031-43
– reference: 21096180 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2608-11
– reference: 20927594 - Ann Biomed Eng. 2011 Jan;39(1):469-83
– reference: 21838727 - Neurogastroenterol Motil. 2011 Sep;23(9):815-8
– reference: 19926815 - Am J Physiol Gastrointest Liver Physiol. 2010 Feb;298(2):G314-21
– reference: 9581054 - IEEE Trans Biomed Eng. 1998 May;45(5):563-71
– reference: 22254662 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1737-40
– reference: 10201477 - Am J Gastroenterol. 1999 Apr;94(4):1023-8
– reference: 8769276 - Dig Dis Sci. 1996 Aug;41(8):1538-45
– reference: 15132512 - IEEE Trans Biomed Eng. 2004 May;51(5):847-55
– reference: 19964973 - Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2527-30
– reference: 18713627 - Gastroenterology. 2008 Nov;135(5):1601-11
– reference: 20024624 - Ann Biomed Eng. 2010 Apr;38(4):1511-29
– reference: 18988693 - Am J Physiol Gastrointest Liver Physiol. 2009 Jan;296(1):G1-8
– reference: 19224368 - Ann Biomed Eng. 2009 Apr;37(4):839-46
– reference: 20595620 - Am J Physiol Gastrointest Liver Physiol. 2010 Sep;299(3):G585-92
– reference: 12680723 - Ann Biomed Eng. 2003 Mar;31(3):250-61
– reference: 19329365 - Heart Rhythm. 2009 May;6(5):587-91
– reference: 20618830 - Neurogastroenterol Motil. 2010 Oct;22(10):e292-300
– reference: 15651561 - IEEE Trans Biomed Eng. 2005 Jan;52(1):19-29
– reference: 21714831 - Neurogastroenterol Motil. 2011 Sep;23(9):e345-55
SSID ssj0014846
Score 2.2488832
Snippet High-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing...
High-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 882
SubjectTerms Algorithms
Animals
Applied sciences
Arrays
Detection, estimation, filtering, equalization, prediction
Dysrhythmia
Electrodes
Electrophysiological Phenomena
Estimation
Exact sciences and technology
finite difference (FD)
Image processing
Information, signal and communications theory
multielectrode
Muscle Contraction - physiology
Muscle, Smooth - physiology
Noise
polynomial fitting
Polynomials
Propagation
Reliability
Reproducibility of Results
Signal and communications theory
Signal processing
Signal Processing, Computer-Assisted
Signal, noise
slow waves
Stomach - physiology
Swine
Telecommunications and information theory
Wave propagation
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB61PfA48Gh5mEK1B06A03W83rWPBSVUSObUVr1Z-4SKyKlIIkR_PTNexzS0qrhF2rFj7367M-OZ-QbgrdaOOy9kmqkQUmFDkRqvZaryQmfjjmGN6p3rr_L4VHw5L8634MNQC-O975LP_Ih-drF8N7cr-lR2KKneRYlt2FaljLVaQ8RAlLEoh2e4gceV6COYGa8OTz7Wk0jWSfqsFNStBtUiJy62DXXU9Veh7Ei9wAkKsbPFbabnzQzK-6v2Uv_-pWeza-pp-hjq9YvFrJQfo9XSjOzVP5yP__vmT-BRb6eyowisp7Dl2114eI29cBfu1X1cfg-ujloWP094x-quKTVDa5ihdckmeIjE-kimW8fOLhZUxxmrP9k8sDOP-hR9ATalZLoFo4IX9llTPxHLKA0lpRBD3CBs0nXtIWCxWhO1xLdncDqdnHw6TvuuDqktVL5MjeIBtaKQNtfWmEr5oLmTVe4kV1YHp4P03Hr0nA0l7RiLXnTAo0egseKEyp_DTjtv_Utgxgf0dlxuM5MLn-cGgWWL0qMd4tAMlQnw9eI2tqc8p84bs6ZzfXjVEDQagkbTQyOBd8Mll5Hv4y7hPVqqQbBfpQQONhA0jBPdW5GpMoH9NaSa_shYNNWYEhNkWSXAhlHc6xTA0a2frzqRgnx0fpcI3gFnCh_iRYTo33_vIZ-A2gDvIEBM45sj7cX3jnFc4INVGT7Z-wHmN2ZniRduzM6r22dnHx6g1Djm8b2GneXPlX-Dht3SHHQ7-g8r6Uk3
  priority: 102
  providerName: IEEE
Title An Improved Method for the Estimation and Visualization of Velocity Fields from Gastric High-Resolution Electrical Mapping
URI https://ieeexplore.ieee.org/document/6112674
https://www.ncbi.nlm.nih.gov/pubmed/22207635
https://www.proquest.com/docview/922010689
https://www.proquest.com/docview/922502100
https://www.proquest.com/docview/926894824
https://pubmed.ncbi.nlm.nih.gov/PMC4106919
http://doi.org/10.1109/TBME.2011.2181845
UnpaywallVersion submittedVersion
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 1558-2531
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk2A88LExCIPKDzyBsiWNYzePBbVMSJl4WKfxFPkTJqp0Iq0Q--u5s7OsUdEQj5EvjnM5--5yd78j5K2UJjGW8TgVzsVMuzxWVvJYZLlMRx5hDeudy1N-MmefL_KL2_8dm-H7NCmOzz6U04CziapozPL7ZIfnYHUPyM789MvkazhoYc-OfM9D0I7w4UGu2gAmzrECvdKbo6eCfE8VzIiUDTDFhW4WfzM3t7MmH67rK_n7l1wsNlTS7EnAR2o8kiFmovw4Wq_Ukb7exnn859s-JY9bu5ROgiA9I_dsvUcebaAV7pEHZRuH3yfXk5qG3xHW0NI3oaZg_VKwJukUDo1QD0llbej5ZYN1m6Haky4dPbegP8H2pzNMnmsoFrjQTxL7h2iKaScxhhTChqBT36UHBYmWEqEkvj0n89n07ONJ3HZxiHUuslWsROJACzKuM6mVKoR1MjG8yAxPhJbOSMdtoi14ygqTdJQGr9nBUcPAODFMZAdkUC9r-5JQZR14NybTqcqYzTIFgqTzsQW7w4DZySOS3HzYSrcQ59hpY1F5VycpKuRwhRyuWg5H5F13y1XA97iLeB-lpSPkWH8lWESGPenpxhHeLU_FOCKHN-JUtUdEUxUjTETg4yIitBuFvY0BG1nb5dqT5OiTJ3eRwAzAKVjEiyCet0-HByDcYERET3A7AkQW74_Ul989wjiDhRUprOx9J-Jb3MFt1ePOq_-iPiS7cDkK6XyvyWD1c23fgH23UkNfhDlsN_gfVgpHeg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VIlE48GgLmELZAyfA6Tpev44FJQSoe0qr3qx9QkXkVMQRor-eGa9jGlpV3CLtrrPe_XZnxjPzDcAbKQ03VqRhlDkXCu2SUFmZhlmcyGjYMqxRvnN5nE5OxJez5GwD3ve5MNbaNvjMDuhn68s3c72kT2UHKeW7ZOIO3E2EEInP1up9BiL3aTk8wiM8LETnw4x4cTD9UI48XSdJtFxQvRoUjJzY2NYEUlthheIj5QKXyPnaFjcpn9djKLeW9YX8_UvOZlcE1PgRlKtX83EpPwbLRg305T-sj__77o_hYaepskMPrSewYetteHCFv3Ab7pWdZ34HLg9r5j9QWMPKtiw1Q32YoX7JRniN-AxJJmvDTs8XlMnp8z_Z3LFTixIVrQE2pnC6BaOUF_ZJUkURzSgQJSQngz8ibNTW7SFosVISucS3XTgZj6YfJ2FX1yHUSRY3ocq4Q7koUh1LrVSRWSe5SYvYpDzT0hnpUsu1RdtZUdiO0mhHO7x8BKorRmTxU9is57V9DkxZh_aOiXWkYmHjWCG0dJJb1EQMKqJpAHy1uZXuSM-p9sasao0fXlQEjYqgUXXQCOBtP-TCM37c1nmHtqrv2O1SAPtrCOrbifAtibI8gL0VpKru0lhUxZBCE9K8CID1rXjayYUjaztftl0SstL5bV3wCbhSOIlnHqJ__72DfADZGnj7DsQ1vt5Sn39vOccFTqyIcGbvephfW50GB66tzoubV-c1bE2m5VF19Pn46x7cxxFDH9X3Ejabn0v7CtW8Ru23p_sPd41MhA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9RADLZgK_E48Gh5hEI1B06gtMkmmdkcF7RLhZSKQ7cqp2ieULHKViQrRH89diZNN1pUxDEaZzJxPGM7tj8DvJXSRMamPIyFc2GqXRYqK3kokkzG4xZhjeqdixN-vEg_n2fnN_87NsP3cZQfnX4oZh5nk1TRJM3uwg7P0Ooewc7i5Mv0qz9occ-O256HqB3xw6NcdQFMmqNBvTKYY6CC2p4qlBEpa2SK890s_mZubmdN3l9Xl_L3L7lcbqik-WOPj1S3SIaUifLjcN2oQ321jfP4z7d9Ao86u5RNvSA9hTu22oWHG2iFu3Cv6OLwe3A1rZj_HWENK9om1AytX4bWJJvhoeHrIZmsDDu7qKlu01d7spVjZxb1J9r-bE7JczWjAhf2SVL_EM0o7SSkkILfEGzWdukhQWKFJCiJb89gMZ-dfjwOuy4Ooc5E0oRKRA61YMp1IrVSubBORobnieGR0NIZ6biNtEVPWVGSjtLoNTs8alI0TkwqkucwqlaVfQlMWYfejUl0rJLUJolCQdLZxKLdYdDs5AFE1x-21B3EOXXaWJatqxPlJXG4JA6XHYcDeNffcunxPW4j3iNp6Qk51V-JNICDgfT04wTvlsViEsD-tTiV3RFRl_mYEhH4JA-A9aO4tylgIyu7WrckGfnk0W0kOANyChfxwovnzdPxAQQ3GIAYCG5PQMjiw5Hq4nuLMJ7iwvIYV_a-F_Et7tC2GnDn1X9R78MDvBz7dL7XMGp-ru0btO8addBt7T-uoUZ5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Method+for+the+Estimation+and+Visualization+of+Velocity+Fields+from+Gastric+High-Resolution+Electrical+Mapping&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Paskaranandavadivel%2C+Niranchan&rft.au=O%27Grady%2C+Gregory&rft.au=Du%2C+Peng&rft.au=Pullan%2C+Andrew+J&rft.date=2012-03-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=59&rft.issue=3&rft.spage=882&rft.epage=889&rft_id=info:doi/10.1109%2FTBME.2011.2181845&rft_id=info%3Apmid%2F22207635&rft.externalDocID=PMC4106919
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon