Householder methods for quantum circuit design

Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder’s theorem to the tensor-product character of multi-qubit state vectors and translate it to a combin...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of physics Vol. 94; no. 2; pp. 150 - 157
Main Authors Urias, Jesus, Quinones, Diego A
Format Journal Article
LanguageEnglish
Published Ottawa NRC Research Press 01.02.2016
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text
ISSN0008-4204
1208-6045
1208-6045
DOI10.1139/cjp-2015-0490

Cover

Abstract Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder’s theorem to the tensor-product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of 2 n , ∏ j = 1 2 n ( j ! ) . Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure —factorization, gate assembling, and Gray ordering — is illustrated on an array of three qubits.
AbstractList Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder's theorem to the tensor- product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of [2.sup.n], [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure--factorization, gate assembling, and Gray ordering--is illustrated on an array of three qubits.
Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder’s theorem to the tensor-product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of 2n, ∏j=12n(j!). Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure —factorization, gate assembling, and Gray ordering — is illustrated on an array of three qubits.
Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder's theorem to the tensor-product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of ... Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure -- factorization, gate assembling, and Gray ordering -- is illustrated on an array of three qubits. (ProQuest: ... denotes formulae/symbols omitted.)
Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder's theorem to the tensor- product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of [2.sup.n], [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure--factorization, gate assembling, and Gray ordering--is illustrated on an array of three qubits. Key words: Householder factorizations in tensor-product spaces, algorithmic synthesis of quantum circuits, quantum simulators. Les algorithmes pour reduire les transformations unitaires de qubits multiples en une sequence d'operations simples sur des sous-systemes a un qubit sont primordiaux pour les simulateurs de circuits quantiques. Nous adaptons le theoreme de Householder au caractere du produit tensoriel de vecteurs d'etat a qubits multiples et l'amenons a une procedure combinatoire pour assembler les cascades de portes quantiques qui recreent toute operation unitaire U agissant sur un systeme a n qubits. On peut recreer U par toute cascade a partir d'un ensemble d'options combinatoires qui, en nombre, sont non moins que la super-factorielle de [2.sup.n], [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. Les cascades sont assemblees avec des portes controlees a un qubit d'un seul type. Nous completons la procedure d'assemblage avec un nouvel algorithme pour generer les codes de Gray qui reduisent les options combinatoires a des cascades avec le plus petit nombre de portes CNOT. Nous illustrons la suite de la procedure sur un ensemble de trois qubits: la factorisation, l'assemblage des portes et l'ordre de Gray. [Traduit par la Redaction] Mots-cles: factorisation de Householder dans les espaces de produits tensoriels, synyhese algorithmique des circuits quantiques, simulateurs quantiques. PACS Nos.: 03.67.Ac, 03.65.Fd.
Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder’s theorem to the tensor-product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of 2 n , ∏ j = 1 2 n ( j ! ) . Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure —factorization, gate assembling, and Gray ordering — is illustrated on an array of three qubits.
Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder’s theorem to the tensor-product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of 2 n , [Formula: see text]. Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure —factorization, gate assembling, and Gray ordering — is illustrated on an array of three qubits.
Abstract_FL Les algorithmes pour réduire les transformations unitaires de qubits multiples en une séquence d’opérations simples sur des sous-systèmes à un qubit sont primordiaux pour les simulateurs de circuits quantiques. Nous adaptons le théorème de Householder au caractère du produit tensoriel de vecteurs d’état à qubits multiples et l’amenons à une procédure combinatoire pour assembler les cascades de portes quantiques qui recréent toute opération unitaire U agissant sur un système à n qubits. On peut recréer U par toute cascade à partir d’un ensemble d’options combinatoires qui, en nombre, sont non moins que la super-factorielle de 2 n , ∏ j = 1 2 n ( j ! ) . Les cascades sont assemblées avec des portes contrôlées à un qubit d’un seul type. Nous complétons la procédure d’assemblage avec un nouvel algorithme pour générer les codes de Gray qui réduisent les options combinatoires à des cascades avec le plus petit nombre de portes CNOT. Nous illustrons la suite de la procédure sur un ensemble de trois qubits: la factorisation, l’assemblage des portes et l’ordre de Gray. [Traduit par la Rédaction]
Audience Academic
Author Quiñones, Diego A.
Urías, Jesús
Author_xml – sequence: 1
  fullname: Urias, Jesus
– sequence: 2
  fullname: Quinones, Diego A
BookMark eNqVkc9r2zAYhsVoYWm74-5mO-3gTJ8ly9axlG0tlA267Sxk-XOiYMuOJNP1v59CCm1GtjJ00A-e50Mv7xk5caNDQt4CXQIw-dFsprygUOaUS_qKLKCgdS4oL0_IgtJ05gXlr8lZCJt0rQDqBVlej3PA9di36LMB43psQ9aNPtvO2sV5yIz1ZrYxazHYlbsgp53uA7553M_Jz8-fflxd57ffvtxcXd7mpqxYzCUWAiWXNTdSGFNq6JBrVhtRiKbpODLWgIG2kghGoICqk2XD66ZpayFky87Jcj93dpN-uNd9ryZvB-0fFFC1S6tSWrVLq3Zpk_B-L0x-3M4YotqMs3fpj4oBB854zeS_KKhEJWQtgT1RK92jsq4bo9dmsMGoS84LSSsKVaLyI9QKHXrdp2I6m54P-HdHeDPZrXoOLY9AabU4WHN06ocDITERf8WVnkNQN9_v_oP9esiyPWv8GILHThkbdbRJ8dr2f20h_8N6qTW65503HgNqb9YvKL8Bu9jilA
CODEN CJPHAD
CitedBy_id crossref_primary_10_1016_j_chemphys_2018_01_002
crossref_primary_10_1016_j_cpc_2019_107001
crossref_primary_10_1080_00268976_2019_1580392
Cites_doi 10.1038/nchem.483
10.1063/1.3451111
10.1103/PhysRevLett.73.58
10.1038/nature08812
10.1038/nphys2253
10.1088/0034-4885/75/2/024401
10.1103/PhysRevA.74.022323
10.1103/PhysRevLett.79.2586
10.1038/nature08688
10.1103/PhysRevLett.92.177902
10.1126/science.1177838
10.1103/PhysRevA.83.032302
10.1088/1367-2630/14/10/103017
10.1126/science.1207239
10.1038/nature09071
10.1103/PhysRevLett.93.130502
10.1126/science.273.5278.1073
10.1103/PhysRevA.87.012325
10.1063/1.3575402
10.1126/science.1208001
10.1002/j.1538-7305.1958.tb03887.x
ContentType Journal Article
Copyright COPYRIGHT 2016 NRC Research Press
Copyright Canadian Science Publishing NRC Research Press Feb 2016
2016 Published by NRC Research Press
Copyright_xml – notice: COPYRIGHT 2016 NRC Research Press
– notice: Copyright Canadian Science Publishing NRC Research Press Feb 2016
– notice: 2016 Published by NRC Research Press
DBID AAYXX
CITATION
ISN
ISR
7U5
8FD
H8D
L7M
ADTOC
UNPAY
DOI 10.1139/cjp-2015-0490
DatabaseName CrossRef
Gale In Context: Canada
Gale In Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
Aerospace Database





CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1208-6045
EndPage 157
ExternalDocumentID oai:localhost:1807/70432
3961858781
A442907017
10_1139_cjp_2015_0490
cjp-2015-0490
Genre Quantum theory and quantum computing
Feature
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID -DZ
-~X
.4S
.DC
00T
0R~
29B
3V.
4.4
5GY
5RP
6J9
6TJ
88I
8AF
8FE
8FG
8FH
8FQ
8G5
AAIKC
AAMNW
ABDBF
ABDPE
ABJNI
ABTAH
ABUWG
ACGFO
ACGFS
ACGOD
ACNCT
AEGXH
AENEX
AFFNX
AFKRA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCR
BENPR
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
CAG
CCPQU
COF
CS3
D8U
DATHI
DU5
DWQXO
EAD
EAP
EAS
EBC
EBD
EBS
ECC
EDH
EDO
EJD
EMK
EPL
EST
ESX
F5P
GNUQQ
GUQSH
HCIFZ
HZ~
I-F
IAO
ICQ
IEA
IGS
IOF
IPNFZ
ISN
ISR
ITC
LK5
M2O
M2P
M2Q
M3C
M3G
M7R
MV1
MVM
NMEPN
NRXXU
NYCZX
O9-
OHT
ONR
OVD
P2P
P62
PADUT
PCBAR
PQQKQ
PRG
PROAC
PV9
QF4
QM1
QN7
QO4
QRP
RIG
RNS
RRCRK
RRP
RZL
S10
TAE
TEORI
TN5
TUS
TWZ
U5U
VOH
WH7
ZCG
ZY4
~02
AAYXX
ACUHS
AETEA
AEUYN
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7U5
8FD
H8D
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c573t-9e26e94984c96cc5a1fe4a38c626bbf4e33b1c1d79e1c6e617f95b48bbd8669d3
IEDL.DBID UNPAY
ISSN 0008-4204
1208-6045
IngestDate Sun Oct 26 04:15:52 EDT 2025
Sat Aug 16 21:25:18 EDT 2025
Sat Aug 16 04:30:51 EDT 2025
Wed Mar 19 01:57:30 EDT 2025
Fri Mar 14 02:23:42 EDT 2025
Tue Jun 10 15:33:25 EDT 2025
Sat Mar 08 18:22:22 EST 2025
Wed Mar 05 04:25:43 EST 2025
Wed Mar 05 04:28:04 EST 2025
Wed Oct 01 05:47:21 EDT 2025
Thu Apr 24 23:08:19 EDT 2025
Sat Dec 07 06:43:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-9e26e94984c96cc5a1fe4a38c626bbf4e33b1c1d79e1c6e617f95b48bbd8669d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://proxy.k.utb.cz/login?url=https://utoronto.scholaris.ca/bitstreams/a2ac5892-91c0-4b55-b0b3-a19e4132ad08/download
PQID 1767698913
PQPubID 47725
PageCount 8
ParticipantIDs proquest_journals_1767698913
crossref_citationtrail_10_1139_cjp_2015_0490
gale_infotracmisc_A442907017
gale_incontextgauss_ISN_A442907017
gale_infotraccpiq_442907017
gale_infotracacademiconefile_A442907017
nrcresearch_primary_10_1139_cjp_2015_0490
gale_incontextgauss_ISR_A442907017
unpaywall_primary_10_1139_cjp_2015_0490
gale_infotracgeneralonefile_A442907017
proquest_journals_3141434839
crossref_primary_10_1139_cjp_2015_0490
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Ottawa
PublicationPlace_xml – name: Ottawa
PublicationSubtitle Journal Canadien de Physique
PublicationTitle Canadian journal of physics
PublicationYear 2016
Publisher NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – sequence: 0
  name: NRC Research Press
– name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References refg3/ref3a
refg7/ref7
refg4/ref4
refg10/ref10
refg12/ref12
refg1/ref1
refg3/ref3b
refg4/ref4a
refg9/ref9
refg4/ref4b
refg11/ref11
refg6/ref6
refg3/ref3
refg1/ref1a
refg8/ref8
Aspuru-Guzik A. (refg2/ref2a) 2012; 8
refg1/ref1c
refg5/ref5
refg1/ref1b
refg2/ref2
refg1/ref1e
refg1/ref1d
refg2/ref2b
References_xml – ident: refg1/ref1a
  doi: 10.1038/nchem.483
– ident: refg6/ref6
  doi: 10.1063/1.3451111
– ident: refg7/ref7
  doi: 10.1103/PhysRevLett.73.58
– ident: refg2/ref2
  doi: 10.1038/nature08812
– volume: 8
  start-page: 285291
  year: 2012
  ident: refg2/ref2a
  publication-title: Nature Phys.
  doi: 10.1038/nphys2253
– ident: refg10/ref10
– ident: refg2/ref2b
  doi: 10.1088/0034-4885/75/2/024401
– ident: refg8/ref8
  doi: 10.1103/PhysRevA.74.022323
– ident: refg1/ref1
  doi: 10.1103/PhysRevLett.79.2586
– ident: refg1/ref1b
  doi: 10.1038/nature08688
– ident: refg4/ref4
  doi: 10.1103/PhysRevLett.92.177902
– ident: refg3/ref3a
  doi: 10.1126/science.1177838
– ident: refg9/ref9
  doi: 10.1103/PhysRevA.83.032302
– ident: refg3/ref3
  doi: 10.1088/1367-2630/14/10/103017
– ident: refg1/ref1e
  doi: 10.1126/science.1207239
– ident: refg1/ref1c
  doi: 10.1038/nature09071
– ident: refg4/ref4a
  doi: 10.1103/PhysRevLett.93.130502
– ident: refg3/ref3b
  doi: 10.1126/science.273.5278.1073
– ident: refg4/ref4b
  doi: 10.1103/PhysRevA.87.012325
– ident: refg5/ref5
  doi: 10.1063/1.3575402
– ident: refg12/ref12
– ident: refg1/ref1d
  doi: 10.1126/science.1208001
– ident: refg11/ref11
  doi: 10.1002/j.1538-7305.1958.tb03887.x
SSID ssj0007118
Score 2.1022766
Snippet Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of...
SourceID unpaywall
proquest
gale
crossref
nrcresearch
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 150
SubjectTerms 03.65.Fd
03.67.Ac
algorithmic synthesis of quantum circuits
Algorithms
Assembling
Circuit design
Combinatorial analysis
factorisation de Householder dans les espaces de produits tensoriels
Factorization
Gates
Gates (circuits)
Householder factorizations in tensor-product spaces
Methods
Physics
Quantum computing
Quantum physics
quantum simulators
Qubits (quantum computing)
simulateurs quantiques
Simulators
State vectors
Subsystems
synyhèse algorithmique des circuits quantiques
Tensors
Title Householder methods for quantum circuit design
URI http://www.nrcresearchpress.com/doi/abs/10.1139/cjp-2015-0490
https://www.proquest.com/docview/1767698913
https://www.proquest.com/docview/3141434839
https://utoronto.scholaris.ca/bitstreams/a2ac5892-91c0-4b55-b0b3-a19e4132ad08/download
UnpaywallVersion acceptedVersion
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1208-6045
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0007118
  issn: 1208-6045
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZGKwQ88BsxVqYIoSEk3OaHncSPHVANJCoEFI0ny744o9ClXZNogr-ec-NWDdqAB94s-VOSy53Pn-XzZ0KeqtwwYUJBc1CGsjj3qUqTkBrGwdc4NLPVVsy7cXw0YW-P-fEO-bw-C7M5uO_WdlYDUA30tLJHJ9RpOVChAp6KEEcp-JRpzqn2dURVIAwm5FBlfjrIrND8XGVXSDfmyNE7pDsZvx9-abhwSlm4ulcwCLEdI6lZi29GYgDfFhg5Aad2S6w1WbmUfaNYghPi-dqipdfqYqF-nKvZbGuGGt0i52vbmsKU7_260n34-Zvs4_83_ja56UitN2yi8A7ZMcVdcnVVXArlPdI_mtelsftcZuk1V1aXHpJl76xGv9anHkyXUE8rL1uVk9wnk9HrTy-PqLungQJPooqir2MjmEgZiBiAqwADQEUp4GJJ65yZKNIBBFkiTACxQc6UC65ZqnWWxrHIogekU8wL85B4acQ0y3wTQmK1ArVAc-NIKa7THHC1vkterB0iwYmY27s0ZnK1mImERP9J6z9p_bdLDjbwRaPecRnwifWutIoYhS25OVF1Wco3H8dyyHDKxsQYJJeCPrRAzxwon-OXgXLHHNA-q7TVQu61kLCYnsmt3oNW70mjQn7RY3otIKYHaHU_3wrYv_2F3jqcpUtlpQwSWwVtd7Mv7I4ChpSbIc9Gyzcj4M_vefTPyD1yHduuTL5HOtWyNo-RBVZ6n3SHh68OR_tuaP8C96hW8Q
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZGJwQ88BsxVlCE0BASbpPYTuLHCjEVJCoEDI0ny744o9ClXZNogr-ec-NWDdqAB94s-VOSy53Pn-XzZ0Ke6cJyaWNJC9CW8qQIqc7SmFouIDQ4NPPVVsy7STI-4m-PxfEO-bw-C7M5uO_Xdk4DUA_NtHZHJ_RpNdSxBpHJGEcphJQbIagJDaM6khYTcqzzMBvmTmh-rvMrZDcRyNF7ZPdo8n70peXCGeXx6l7BKMZ2gqRmLb7J5BC-LTByIkHdllhnsvIp-0a5BC_E87VDS6815UL_ONez2dYMdXiLnK9tawtTvg-a2gzg52-yj__f-Nvkpie1waiNwjtkx5Z3ydVVcSlU98hgPG8q6_a57DJor6yuAiTLwVmDfm1OA5guoZnWQb4qJ7lPjg5ff3o1pv6eBgoiZTVFXydWcplxkAmA0BEGgGYZ4GLJmIJbxkwEUZ5KG0FikTMVUhieGZNnSSJz9oD0ynlpH5IgY9zwPLQxpE4r0Eg0N2FaC5MVgKv1PfJy7RAFXsTc3aUxU6vFDJMK_aec_5Tz3x452MAXrXrHZcCnzrvKKWKUruTmRDdVpd58nKgRxykbE2OUXgr60AE996Bijl8G2h9zQPuc0lYHud9BwmJ6prZ6Dzq9J60K-UWP6XeAmB6g0_1iK2D_9hf663BWPpVVKkpdFbTbzb6wm0UcKTdHno2Wb0bAn9_z6J-R--Q6tn2ZfJ_06mVjHyMLrM0TP6R_AUiRVX8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Householder+methods+for+quantum+circuit+design&rft.jtitle=Canadian+journal+of+physics&rft.au=Urias%2C+Jesus&rft.au=Quinones%2C+Diego+A&rft.date=2016-02-01&rft.pub=NRC+Research+Press&rft.issn=0008-4204&rft.spage=150&rft_id=info:doi/10.1139%2Fcjp-2015-0490&rft.externalDocID=A442907017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4204&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4204&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4204&client=summon