Householder methods for quantum circuit design
Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder’s theorem to the tensor-product character of multi-qubit state vectors and translate it to a combin...
Saved in:
| Published in | Canadian journal of physics Vol. 94; no. 2; pp. 150 - 157 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Ottawa
NRC Research Press
01.02.2016
Canadian Science Publishing NRC Research Press |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0008-4204 1208-6045 1208-6045 |
| DOI | 10.1139/cjp-2015-0490 |
Cover
| Abstract | Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder’s theorem to the tensor-product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of 2
n
,
∏
j
=
1
2
n
(
j
!
)
. Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure —factorization, gate assembling, and Gray ordering — is illustrated on an array of three qubits. |
|---|---|
| AbstractList | Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder's theorem to the tensor- product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of [2.sup.n], [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure--factorization, gate assembling, and Gray ordering--is illustrated on an array of three qubits. Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder’s theorem to the tensor-product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of 2n, ∏j=12n(j!). Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure —factorization, gate assembling, and Gray ordering — is illustrated on an array of three qubits. Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder's theorem to the tensor-product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of ... Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure -- factorization, gate assembling, and Gray ordering -- is illustrated on an array of three qubits. (ProQuest: ... denotes formulae/symbols omitted.) Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder's theorem to the tensor- product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of [2.sup.n], [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure--factorization, gate assembling, and Gray ordering--is illustrated on an array of three qubits. Key words: Householder factorizations in tensor-product spaces, algorithmic synthesis of quantum circuits, quantum simulators. Les algorithmes pour reduire les transformations unitaires de qubits multiples en une sequence d'operations simples sur des sous-systemes a un qubit sont primordiaux pour les simulateurs de circuits quantiques. Nous adaptons le theoreme de Householder au caractere du produit tensoriel de vecteurs d'etat a qubits multiples et l'amenons a une procedure combinatoire pour assembler les cascades de portes quantiques qui recreent toute operation unitaire U agissant sur un systeme a n qubits. On peut recreer U par toute cascade a partir d'un ensemble d'options combinatoires qui, en nombre, sont non moins que la super-factorielle de [2.sup.n], [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. Les cascades sont assemblees avec des portes controlees a un qubit d'un seul type. Nous completons la procedure d'assemblage avec un nouvel algorithme pour generer les codes de Gray qui reduisent les options combinatoires a des cascades avec le plus petit nombre de portes CNOT. Nous illustrons la suite de la procedure sur un ensemble de trois qubits: la factorisation, l'assemblage des portes et l'ordre de Gray. [Traduit par la Redaction] Mots-cles: factorisation de Householder dans les espaces de produits tensoriels, synyhese algorithmique des circuits quantiques, simulateurs quantiques. PACS Nos.: 03.67.Ac, 03.65.Fd. Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder’s theorem to the tensor-product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of 2 n , ∏ j = 1 2 n ( j ! ) . Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure —factorization, gate assembling, and Gray ordering — is illustrated on an array of three qubits. Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder’s theorem to the tensor-product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of 2 n , [Formula: see text]. Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure —factorization, gate assembling, and Gray ordering — is illustrated on an array of three qubits. |
| Abstract_FL | Les algorithmes pour réduire les transformations unitaires de qubits multiples en une séquence d’opérations simples sur des sous-systèmes à un qubit sont primordiaux pour les simulateurs de circuits quantiques. Nous adaptons le théorème de Householder au caractère du produit tensoriel de vecteurs d’état à qubits multiples et l’amenons à une procédure combinatoire pour assembler les cascades de portes quantiques qui recréent toute opération unitaire U agissant sur un système à n qubits. On peut recréer U par toute cascade à partir d’un ensemble d’options combinatoires qui, en nombre, sont non moins que la super-factorielle de 2
n
,
∏
j
=
1
2
n
(
j
!
)
. Les cascades sont assemblées avec des portes contrôlées à un qubit d’un seul type. Nous complétons la procédure d’assemblage avec un nouvel algorithme pour générer les codes de Gray qui réduisent les options combinatoires à des cascades avec le plus petit nombre de portes CNOT. Nous illustrons la suite de la procédure sur un ensemble de trois qubits: la factorisation, l’assemblage des portes et l’ordre de Gray. [Traduit par la Rédaction] |
| Audience | Academic |
| Author | Quiñones, Diego A. Urías, Jesús |
| Author_xml | – sequence: 1 fullname: Urias, Jesus – sequence: 2 fullname: Quinones, Diego A |
| BookMark | eNqVkc9r2zAYhsVoYWm74-5mO-3gTJ8ly9axlG0tlA267Sxk-XOiYMuOJNP1v59CCm1GtjJ00A-e50Mv7xk5caNDQt4CXQIw-dFsprygUOaUS_qKLKCgdS4oL0_IgtJ05gXlr8lZCJt0rQDqBVlej3PA9di36LMB43psQ9aNPtvO2sV5yIz1ZrYxazHYlbsgp53uA7553M_Jz8-fflxd57ffvtxcXd7mpqxYzCUWAiWXNTdSGFNq6JBrVhtRiKbpODLWgIG2kghGoICqk2XD66ZpayFky87Jcj93dpN-uNd9ryZvB-0fFFC1S6tSWrVLq3Zpk_B-L0x-3M4YotqMs3fpj4oBB854zeS_KKhEJWQtgT1RK92jsq4bo9dmsMGoS84LSSsKVaLyI9QKHXrdp2I6m54P-HdHeDPZrXoOLY9AabU4WHN06ocDITERf8WVnkNQN9_v_oP9esiyPWv8GILHThkbdbRJ8dr2f20h_8N6qTW65503HgNqb9YvKL8Bu9jilA |
| CODEN | CJPHAD |
| CitedBy_id | crossref_primary_10_1016_j_chemphys_2018_01_002 crossref_primary_10_1016_j_cpc_2019_107001 crossref_primary_10_1080_00268976_2019_1580392 |
| Cites_doi | 10.1038/nchem.483 10.1063/1.3451111 10.1103/PhysRevLett.73.58 10.1038/nature08812 10.1038/nphys2253 10.1088/0034-4885/75/2/024401 10.1103/PhysRevA.74.022323 10.1103/PhysRevLett.79.2586 10.1038/nature08688 10.1103/PhysRevLett.92.177902 10.1126/science.1177838 10.1103/PhysRevA.83.032302 10.1088/1367-2630/14/10/103017 10.1126/science.1207239 10.1038/nature09071 10.1103/PhysRevLett.93.130502 10.1126/science.273.5278.1073 10.1103/PhysRevA.87.012325 10.1063/1.3575402 10.1126/science.1208001 10.1002/j.1538-7305.1958.tb03887.x |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2016 NRC Research Press Copyright Canadian Science Publishing NRC Research Press Feb 2016 2016 Published by NRC Research Press |
| Copyright_xml | – notice: COPYRIGHT 2016 NRC Research Press – notice: Copyright Canadian Science Publishing NRC Research Press Feb 2016 – notice: 2016 Published by NRC Research Press |
| DBID | AAYXX CITATION ISN ISR 7U5 8FD H8D L7M ADTOC UNPAY |
| DOI | 10.1139/cjp-2015-0490 |
| DatabaseName | CrossRef Gale In Context: Canada Gale In Context: Science Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database Aerospace Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1208-6045 |
| EndPage | 157 |
| ExternalDocumentID | oai:localhost:1807/70432 3961858781 A442907017 10_1139_cjp_2015_0490 cjp-2015-0490 |
| Genre | Quantum theory and quantum computing Feature |
| GeographicLocations | Canada |
| GeographicLocations_xml | – name: Canada |
| GroupedDBID | -DZ -~X .4S .DC 00T 0R~ 29B 3V. 4.4 5GY 5RP 6J9 6TJ 88I 8AF 8FE 8FG 8FH 8FQ 8G5 AAIKC AAMNW ABDBF ABDPE ABJNI ABTAH ABUWG ACGFO ACGFS ACGOD ACNCT AEGXH AENEX AFFNX AFKRA AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCR BENPR BGLVJ BHPHI BKSAR BLC BPHCQ CAG CCPQU COF CS3 D8U DATHI DU5 DWQXO EAD EAP EAS EBC EBD EBS ECC EDH EDO EJD EMK EPL EST ESX F5P GNUQQ GUQSH HCIFZ HZ~ I-F IAO ICQ IEA IGS IOF IPNFZ ISN ISR ITC LK5 M2O M2P M2Q M3C M3G M7R MV1 MVM NMEPN NRXXU NYCZX O9- OHT ONR OVD P2P P62 PADUT PCBAR PQQKQ PRG PROAC PV9 QF4 QM1 QN7 QO4 QRP RIG RNS RRCRK RRP RZL S10 TAE TEORI TN5 TUS TWZ U5U VOH WH7 ZCG ZY4 ~02 AAYXX ACUHS AETEA AEUYN CITATION PHGZM PHGZT PQGLB PUEGO 7U5 8FD H8D L7M ADTOC UNPAY |
| ID | FETCH-LOGICAL-c573t-9e26e94984c96cc5a1fe4a38c626bbf4e33b1c1d79e1c6e617f95b48bbd8669d3 |
| IEDL.DBID | UNPAY |
| ISSN | 0008-4204 1208-6045 |
| IngestDate | Sun Oct 26 04:15:52 EDT 2025 Sat Aug 16 21:25:18 EDT 2025 Sat Aug 16 04:30:51 EDT 2025 Wed Mar 19 01:57:30 EDT 2025 Fri Mar 14 02:23:42 EDT 2025 Tue Jun 10 15:33:25 EDT 2025 Sat Mar 08 18:22:22 EST 2025 Wed Mar 05 04:25:43 EST 2025 Wed Mar 05 04:28:04 EST 2025 Wed Oct 01 05:47:21 EDT 2025 Thu Apr 24 23:08:19 EDT 2025 Sat Dec 07 06:43:46 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c573t-9e26e94984c96cc5a1fe4a38c626bbf4e33b1c1d79e1c6e617f95b48bbd8669d3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://utoronto.scholaris.ca/bitstreams/a2ac5892-91c0-4b55-b0b3-a19e4132ad08/download |
| PQID | 1767698913 |
| PQPubID | 47725 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_1767698913 crossref_citationtrail_10_1139_cjp_2015_0490 gale_infotracmisc_A442907017 gale_incontextgauss_ISN_A442907017 gale_infotraccpiq_442907017 gale_infotracacademiconefile_A442907017 nrcresearch_primary_10_1139_cjp_2015_0490 gale_incontextgauss_ISR_A442907017 unpaywall_primary_10_1139_cjp_2015_0490 gale_infotracgeneralonefile_A442907017 proquest_journals_3141434839 crossref_primary_10_1139_cjp_2015_0490 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-02-01 |
| PublicationDateYYYYMMDD | 2016-02-01 |
| PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Ottawa |
| PublicationPlace_xml | – name: Ottawa |
| PublicationSubtitle | Journal Canadien de Physique |
| PublicationTitle | Canadian journal of physics |
| PublicationYear | 2016 |
| Publisher | NRC Research Press Canadian Science Publishing NRC Research Press |
| Publisher_xml | – sequence: 0 name: NRC Research Press – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
| References | refg3/ref3a refg7/ref7 refg4/ref4 refg10/ref10 refg12/ref12 refg1/ref1 refg3/ref3b refg4/ref4a refg9/ref9 refg4/ref4b refg11/ref11 refg6/ref6 refg3/ref3 refg1/ref1a refg8/ref8 Aspuru-Guzik A. (refg2/ref2a) 2012; 8 refg1/ref1c refg5/ref5 refg1/ref1b refg2/ref2 refg1/ref1e refg1/ref1d refg2/ref2b |
| References_xml | – ident: refg1/ref1a doi: 10.1038/nchem.483 – ident: refg6/ref6 doi: 10.1063/1.3451111 – ident: refg7/ref7 doi: 10.1103/PhysRevLett.73.58 – ident: refg2/ref2 doi: 10.1038/nature08812 – volume: 8 start-page: 285291 year: 2012 ident: refg2/ref2a publication-title: Nature Phys. doi: 10.1038/nphys2253 – ident: refg10/ref10 – ident: refg2/ref2b doi: 10.1088/0034-4885/75/2/024401 – ident: refg8/ref8 doi: 10.1103/PhysRevA.74.022323 – ident: refg1/ref1 doi: 10.1103/PhysRevLett.79.2586 – ident: refg1/ref1b doi: 10.1038/nature08688 – ident: refg4/ref4 doi: 10.1103/PhysRevLett.92.177902 – ident: refg3/ref3a doi: 10.1126/science.1177838 – ident: refg9/ref9 doi: 10.1103/PhysRevA.83.032302 – ident: refg3/ref3 doi: 10.1088/1367-2630/14/10/103017 – ident: refg1/ref1e doi: 10.1126/science.1207239 – ident: refg1/ref1c doi: 10.1038/nature09071 – ident: refg4/ref4a doi: 10.1103/PhysRevLett.93.130502 – ident: refg3/ref3b doi: 10.1126/science.273.5278.1073 – ident: refg4/ref4b doi: 10.1103/PhysRevA.87.012325 – ident: refg5/ref5 doi: 10.1063/1.3575402 – ident: refg12/ref12 – ident: refg1/ref1d doi: 10.1126/science.1208001 – ident: refg11/ref11 doi: 10.1002/j.1538-7305.1958.tb03887.x |
| SSID | ssj0007118 |
| Score | 2.1022766 |
| Snippet | Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of... |
| SourceID | unpaywall proquest gale crossref nrcresearch |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 150 |
| SubjectTerms | 03.65.Fd 03.67.Ac algorithmic synthesis of quantum circuits Algorithms Assembling Circuit design Combinatorial analysis factorisation de Householder dans les espaces de produits tensoriels Factorization Gates Gates (circuits) Householder factorizations in tensor-product spaces Methods Physics Quantum computing Quantum physics quantum simulators Qubits (quantum computing) simulateurs quantiques Simulators State vectors Subsystems synyhèse algorithmique des circuits quantiques Tensors |
| Title | Householder methods for quantum circuit design |
| URI | http://www.nrcresearchpress.com/doi/abs/10.1139/cjp-2015-0490 https://www.proquest.com/docview/1767698913 https://www.proquest.com/docview/3141434839 https://utoronto.scholaris.ca/bitstreams/a2ac5892-91c0-4b55-b0b3-a19e4132ad08/download |
| UnpaywallVersion | acceptedVersion |
| Volume | 94 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1208-6045 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0007118 issn: 1208-6045 databaseCode: ABDBF dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZGKwQ88BsxVqYIoSEk3OaHncSPHVANJCoEFI0ny744o9ClXZNogr-ec-NWDdqAB94s-VOSy53Pn-XzZ0KeqtwwYUJBc1CGsjj3qUqTkBrGwdc4NLPVVsy7cXw0YW-P-fEO-bw-C7M5uO_WdlYDUA30tLJHJ9RpOVChAp6KEEcp-JRpzqn2dURVIAwm5FBlfjrIrND8XGVXSDfmyNE7pDsZvx9-abhwSlm4ulcwCLEdI6lZi29GYgDfFhg5Aad2S6w1WbmUfaNYghPi-dqipdfqYqF-nKvZbGuGGt0i52vbmsKU7_260n34-Zvs4_83_ja56UitN2yi8A7ZMcVdcnVVXArlPdI_mtelsftcZuk1V1aXHpJl76xGv9anHkyXUE8rL1uVk9wnk9HrTy-PqLungQJPooqir2MjmEgZiBiAqwADQEUp4GJJ65yZKNIBBFkiTACxQc6UC65ZqnWWxrHIogekU8wL85B4acQ0y3wTQmK1ArVAc-NIKa7THHC1vkterB0iwYmY27s0ZnK1mImERP9J6z9p_bdLDjbwRaPecRnwifWutIoYhS25OVF1Wco3H8dyyHDKxsQYJJeCPrRAzxwon-OXgXLHHNA-q7TVQu61kLCYnsmt3oNW70mjQn7RY3otIKYHaHU_3wrYv_2F3jqcpUtlpQwSWwVtd7Mv7I4ChpSbIc9Gyzcj4M_vefTPyD1yHduuTL5HOtWyNo-RBVZ6n3SHh68OR_tuaP8C96hW8Q |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZGJwQ88BsxVlCE0BASbpPYTuLHCjEVJCoEDI0ny744o9ClXZNogr-ec-NWDdqAB94s-VOSy53Pn-XzZ0Ke6cJyaWNJC9CW8qQIqc7SmFouIDQ4NPPVVsy7STI-4m-PxfEO-bw-C7M5uO_Xdk4DUA_NtHZHJ_RpNdSxBpHJGEcphJQbIagJDaM6khYTcqzzMBvmTmh-rvMrZDcRyNF7ZPdo8n70peXCGeXx6l7BKMZ2gqRmLb7J5BC-LTByIkHdllhnsvIp-0a5BC_E87VDS6815UL_ONez2dYMdXiLnK9tawtTvg-a2gzg52-yj__f-Nvkpie1waiNwjtkx5Z3ydVVcSlU98hgPG8q6_a57DJor6yuAiTLwVmDfm1OA5guoZnWQb4qJ7lPjg5ff3o1pv6eBgoiZTVFXydWcplxkAmA0BEGgGYZ4GLJmIJbxkwEUZ5KG0FikTMVUhieGZNnSSJz9oD0ynlpH5IgY9zwPLQxpE4r0Eg0N2FaC5MVgKv1PfJy7RAFXsTc3aUxU6vFDJMK_aec_5Tz3x452MAXrXrHZcCnzrvKKWKUruTmRDdVpd58nKgRxykbE2OUXgr60AE996Bijl8G2h9zQPuc0lYHud9BwmJ6prZ6Dzq9J60K-UWP6XeAmB6g0_1iK2D_9hf663BWPpVVKkpdFbTbzb6wm0UcKTdHno2Wb0bAn9_z6J-R--Q6tn2ZfJ_06mVjHyMLrM0TP6R_AUiRVX8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Householder+methods+for+quantum+circuit+design&rft.jtitle=Canadian+journal+of+physics&rft.au=Urias%2C+Jesus&rft.au=Quinones%2C+Diego+A&rft.date=2016-02-01&rft.pub=NRC+Research+Press&rft.issn=0008-4204&rft.spage=150&rft_id=info:doi/10.1139%2Fcjp-2015-0490&rft.externalDocID=A442907017 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4204&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4204&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4204&client=summon |