Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain
Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless,...
Saved in:
Published in | Brain research Vol. 1071; no. 1; pp. 10 - 23 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier B.V
03.02.2006
Amsterdam Elsevier New York, NY |
Subjects | |
Online Access | Get full text |
ISSN | 0006-8993 1872-6240 |
DOI | 10.1016/j.brainres.2005.11.035 |
Cover
Abstract | Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless, we now describe expression of CB2-receptor-like immunoreactivity in brain in neuronal patterns that support broader CNS roles for this receptor. Two anti-CB2 affinity purified polyclonal antibodies were raised in rabbits immunized with peptide conjugates that corresponded to amino acids 1–33 and 20–33. Western blot analyses revealed specific bands that were identified using these sera and were absent when the sera were preadsorbed with 8.3 μg/ml of the immunizing peptides. These studies, and initial RT-PCR analyses of brain CB1 and CB2 mRNAs, also support the expression of brain CB2 receptor transcripts at levels much lower than those of CB1 receptors. CB2 cannabinoid receptor mRNA was clearly expressed in the cerebellum of wild type but not in CB2 knockout mice. CB2 immunostaining was detected in the interpolar part of spinal 5th nucleus of wild type but not in CB2 knockout mice, using a mouse C-terminal CB2 receptor antibody. Immunohistochemical analyses revealed abundant immunostaining for CB2 receptors in apparent neuronal and glial processes in a number of rat brain areas. Cerebellar Purkinje cells and hippocampal pyramidal cells revealed substantial immunoreactivity that was absent when sections were stained with preadsorbed sera. CB2 immunoreactivity was also observed in olfactory tubercle, islands of Calleja, cerebral cortex, striatum, thalamic nuclei, hippocampus, amygdala, substantia nigra, periaqueductal gray, paratrochlear nucleus, paralemniscal nucleus, red nucleus, pontine nuclei, inferior colliculus and the parvocellular portion of the medial vestibular nucleus. In-vitro, CB2 immunoreactivity was also present in hippocampal cell cultures. The multifocal expression of CB2 immunoreactivity in glial and neuronal patterns in a number of brain regions suggests reevaluation of the possible roles that CB2 receptors may play in the brain. |
---|---|
AbstractList | Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless, we now describe expression of CB2-receptor-like immunoreactivity in brain in neuronal patterns that support broader CNS roles for this receptor. Two anti-CB2 affinity purified polyclonal antibodies were raised in rabbits immunized with peptide conjugates that corresponded to amino acids 1-33 and 20-33. Western blot analyses revealed specific bands that were identified using these sera and were absent when the sera were preadsorbed with 8.3 mug/ml of the immunizing peptides. These studies, and initial RT-PCR analyses of brain CB1 and CB2 mRNAs, also support the expression of brain CB2 receptor transcripts at levels much lower than those of CB1 receptors. CB2 cannabinoid receptor mRNA was clearly expressed in the cerebellum of wild type but not in CB2 knockout mice. CB2 immunostaining was detected in the interpolar part of spinal 5th nucleus of wild type but not in CB2 knockout mice, using a mouse C-terminal CB2 receptor antibody. Immunohistochemical analyses revealed abundant immunostaining for CB2 receptors in apparent neuronal and glial processes in a number of rat brain areas. Cerebellar Purkinje cells and hippocampal pyramidal cells revealed substantial immunoreactivity that was absent when sections were stained with preadsorbed sera. CB2 immunoreactivity was also observed in olfactory tubercle, islands of Calleja, cerebral cortex, striatum, thalamic nuclei, hippocampus, amygdala, substantia nigra, periaqueductal gray, paratrochlear nucleus, paralemniscal nucleus, red nucleus, pontine nuclei, inferior colliculus and the parvocellular portion of the medial vestibular nucleus. In-vitro, CB2 immunoreactivity was also present in hippocampal cell cultures. The multifocal expression of CB2 immunoreactivity in glial and neuronal patterns in a number of brain regions suggests reevaluation of the possible roles that CB2 receptors may play in the brain. Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless, we now describe expression of CB2-receptor-like immunoreactivity in brain in neuronal patterns that support broader CNS roles for this receptor. Two anti-CB2 affinity purified polyclonal antibodies were raised in rabbits immunized with peptide conjugates that corresponded to amino acids 1–33 and 20–33. Western blot analyses revealed specific bands that were identified using these sera and were absent when the sera were preadsorbed with 8.3 μg/ml of the immunizing peptides. These studies, and initial RT-PCR analyses of brain CB1 and CB2 mRNAs, also support the expression of brain CB2 receptor transcripts at levels much lower than those of CB1 receptors. CB2 cannabinoid receptor mRNA was clearly expressed in the cerebellum of wild type but not in CB2 knockout mice. CB2 immunostaining was detected in the interpolar part of spinal 5th nucleus of wild type but not in CB2 knockout mice, using a mouse C-terminal CB2 receptor antibody. Immunohistochemical analyses revealed abundant immunostaining for CB2 receptors in apparent neuronal and glial processes in a number of rat brain areas. Cerebellar Purkinje cells and hippocampal pyramidal cells revealed substantial immunoreactivity that was absent when sections were stained with preadsorbed sera. CB2 immunoreactivity was also observed in olfactory tubercle, islands of Calleja, cerebral cortex, striatum, thalamic nuclei, hippocampus, amygdala, substantia nigra, periaqueductal gray, paratrochlear nucleus, paralemniscal nucleus, red nucleus, pontine nuclei, inferior colliculus and the parvocellular portion of the medial vestibular nucleus. In-vitro, CB2 immunoreactivity was also present in hippocampal cell cultures. The multifocal expression of CB2 immunoreactivity in glial and neuronal patterns in a number of brain regions suggests reevaluation of the possible roles that CB2 receptors may play in the brain. Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless, we now describe expression of CB2-receptor-like immunoreactivity in brain in neuronal patterns that support broader CNS roles for this receptor. Two anti-CB2 affinity purified polyclonal antibodies were raised in rabbits immunized with peptide conjugates that corresponded to amino acids 1-33 and 20-33. Western blot analyses revealed specific bands that were identified using these sera and were absent when the sera were preadsorbed with 8.3 mug/ml of the immunizing peptides. These studies, and initial RT-PCR analyses of brain CB1 and CB2 mRNAs, also support the expression of brain CB2 receptor transcripts at levels much lower than those of CB1 receptors. CB2 cannabinoid receptor mRNA was clearly expressed in the cerebellum of wild type but not in CB2 knockout mice. CB2 immunostaining was detected in the interpolar part of spinal 5th nucleus of wild type but not in CB2 knockout mice, using a mouse C-terminal CB2 receptor antibody. Immunohistochemical analyses revealed abundant immunostaining for CB2 receptors in apparent neuronal and glial processes in a number of rat brain areas. Cerebellar Purkinje cells and hippocampal pyramidal cells revealed substantial immunoreactivity that was absent when sections were stained with preadsorbed sera. CB2 immunoreactivity was also observed in olfactory tubercle, islands of Calleja, cerebral cortex, striatum, thalamic nuclei, hippocampus, amygdala, substantia nigra, periaqueductal gray, paratrochlear nucleus, paralemniscal nucleus, red nucleus, pontine nuclei, inferior colliculus and the parvocellular portion of the medial vestibular nucleus. In-vitro, CB2 immunoreactivity was also present in hippocampal cell cultures. The multifocal expression of CB2 immunoreactivity in glial and neuronal patterns in a number of brain regions suggests reevaluation of the possible roles that CB2 receptors may play in the brain.Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless, we now describe expression of CB2-receptor-like immunoreactivity in brain in neuronal patterns that support broader CNS roles for this receptor. Two anti-CB2 affinity purified polyclonal antibodies were raised in rabbits immunized with peptide conjugates that corresponded to amino acids 1-33 and 20-33. Western blot analyses revealed specific bands that were identified using these sera and were absent when the sera were preadsorbed with 8.3 mug/ml of the immunizing peptides. These studies, and initial RT-PCR analyses of brain CB1 and CB2 mRNAs, also support the expression of brain CB2 receptor transcripts at levels much lower than those of CB1 receptors. CB2 cannabinoid receptor mRNA was clearly expressed in the cerebellum of wild type but not in CB2 knockout mice. CB2 immunostaining was detected in the interpolar part of spinal 5th nucleus of wild type but not in CB2 knockout mice, using a mouse C-terminal CB2 receptor antibody. Immunohistochemical analyses revealed abundant immunostaining for CB2 receptors in apparent neuronal and glial processes in a number of rat brain areas. Cerebellar Purkinje cells and hippocampal pyramidal cells revealed substantial immunoreactivity that was absent when sections were stained with preadsorbed sera. CB2 immunoreactivity was also observed in olfactory tubercle, islands of Calleja, cerebral cortex, striatum, thalamic nuclei, hippocampus, amygdala, substantia nigra, periaqueductal gray, paratrochlear nucleus, paralemniscal nucleus, red nucleus, pontine nuclei, inferior colliculus and the parvocellular portion of the medial vestibular nucleus. In-vitro, CB2 immunoreactivity was also present in hippocampal cell cultures. The multifocal expression of CB2 immunoreactivity in glial and neuronal patterns in a number of brain regions suggests reevaluation of the possible roles that CB2 receptors may play in the brain. Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless, we now describe expression of CB2-receptor-like immunoreactivity in brain in neuronal patterns that support broader CNS roles for this receptor. Two anti-CB2 affinity purified polyclonal antibodies were raised in rabbits immunized with peptide conjugates that corresponded to amino acids 1-33 and 20-33. Western blot analyses revealed specific bands that were identified using these sera and were absent when the sera were preadsorbed with 8.3 mu g/ml of the immunizing peptides. These studies, and initial RT-PCR analyses of brain CB1 and CB2 mRNAs, also support the expression of brain CB2 receptor transcripts at levels much lower than those of CB1 receptors. CB2 cannabinoid receptor mRNA was clearly expressed in the cerebellum of wild type but not in CB2 knockout mice. CB2 immunostaining was detected in the interpolar part of spinal 5th nucleus of wild type but not in CB2 knockout mice, using a mouse C-terminal CB2 receptor antibody. Immunohistochemical analyses revealed abundant immunostaining for CB2 receptors in apparent neuronal and glial processes in a number of rat brain areas. Cerebellar Purkinje cells and hippocampal pyramidal cells revealed substantial immunoreactivity that was absent when sections were stained with preadsorbed sera. CB2 immunoreactivity was also observed in olfactory tubercle, islands of Calleja, cerebral cortex, striatum, thalamic nuclei, hippocampus, amygdala, substantia nigra, periaqueductal gray, paratrochlear nucleus, paralemniscal nucleus, red nucleus, pontine nuclei, inferior colliculus and the parvocellular portion of the medial vestibular nucleus. In-vitro, CB2 immunoreactivity was also present in hippocampal cell cultures. The multifocal expression of CB2 immunoreactivity in glial and neuronal patterns in a number of brain regions suggests reevaluation of the possible roles that CB2 receptors may play in the brain. |
Author | Liu, Qing-Rong Gong, Jian-Ping Ishiguro, Hiroki Brusco, Alicia Uhl, George R. Tagliaferro, Patricia A. Onaivi, Emmanuel S. |
Author_xml | – sequence: 1 givenname: Jian-Ping surname: Gong fullname: Gong, Jian-Ping organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 20892, USA – sequence: 2 givenname: Emmanuel S. surname: Onaivi fullname: Onaivi, Emmanuel S. organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 20892, USA – sequence: 3 givenname: Hiroki surname: Ishiguro fullname: Ishiguro, Hiroki organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 20892, USA – sequence: 4 givenname: Qing-Rong surname: Liu fullname: Liu, Qing-Rong organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 20892, USA – sequence: 5 givenname: Patricia A. surname: Tagliaferro fullname: Tagliaferro, Patricia A. organization: Instituto de Biologia Celular y Neurociencias Prof. “E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Argentina – sequence: 6 givenname: Alicia surname: Brusco fullname: Brusco, Alicia organization: Instituto de Biologia Celular y Neurociencias Prof. “E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Argentina – sequence: 7 givenname: George R. surname: Uhl fullname: Uhl, George R. email: GUhl@intra.nida.nih.gov organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 20892, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17568027$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16472786$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVFvFCEUhYmpsdvqX2jmRd9mvDAD7BhjtBu1TZr4os-EgTsp6wyswJrUX1-2u9WkL-sLBPKdA_ecM3Lig0dCLig0FKh4u26GqJ2PmBoGwBtKG2j5M7KgS8lqwTo4IQsAEPWy79tTcpbSuhzbtocX5JSKTjK5FAtytdLe68H54Gy1umRVRIObHGJ6V13P89aHW5dyMLc4O6OnagpldX90dsFXzldR5-rhJy_J81FPCV8d9nPy48vn76ur-ubb1-vVp5vacNnmWkI7cis6g9IaFIxy0Vqw5aZDyiSlIwCzI-1BUDkOKAZuBt13wpQ5gPH2nLzZ-25i-LXFlNXsksFp0h7DNikhhZSC90dBKin0XOzAiwO4HWa0ahPdrOOdegypAK8PgE5l-jFqb1z6x0kulsBk4d7vORNDShFHZVx-SCqXhCZFQe26U2v12J3adacoVaW7IhdP5H9fOCb8uBdiyf23w6iScegNWlfazMoGd9ziwxMLMzm_a_wn3v2PwT213suh |
CODEN | BRREAP |
CitedBy_id | crossref_primary_10_1016_j_physbeh_2016_04_021 crossref_primary_10_1016_j_psyneuen_2009_04_007 crossref_primary_10_1007_s00125_007_0890_y crossref_primary_10_1007_s00018_016_2300_4 crossref_primary_10_1016_j_regpep_2013_12_004 crossref_primary_10_1016_j_pnpbp_2019_109677 crossref_primary_10_3389_fphar_2022_956886 crossref_primary_10_1021_acschemneuro_3c00345 crossref_primary_10_1016_j_neulet_2021_135883 crossref_primary_10_1155_2011_529851 crossref_primary_10_1038_bjp_2008_175 crossref_primary_10_1016_j_nlm_2016_07_031 crossref_primary_10_1111_j_1476_5381_2009_00629_x crossref_primary_10_1586_14737175_8_1_37 crossref_primary_10_1016_j_neuroscience_2012_09_080 crossref_primary_10_1111_acer_12845 crossref_primary_10_1016_j_brainres_2008_01_011 crossref_primary_10_1097_SHK_0000000000001763 crossref_primary_10_1016_j_pnpbp_2012_02_006 crossref_primary_10_1016_j_neuroscience_2016_08_047 crossref_primary_10_1371_journal_pone_0233020 crossref_primary_10_1016_j_phrs_2007_06_002 crossref_primary_10_1016_j_euroneuro_2009_02_001 crossref_primary_10_1111_j_1476_5381_2010_00729_x crossref_primary_10_1016_j_neulet_2013_05_039 crossref_primary_10_1016_j_euroneuro_2013_11_002 crossref_primary_10_1016_j_biopha_2018_11_039 crossref_primary_10_1016_j_neuroscience_2015_06_048 crossref_primary_10_1080_00016480701796944 crossref_primary_10_3389_fnbeh_2020_595315 crossref_primary_10_1177_0269881112450786 crossref_primary_10_1007_s12035_007_8007_7 crossref_primary_10_3390_ijms25031893 crossref_primary_10_1016_j_bbr_2016_11_029 crossref_primary_10_1016_j_euroneuro_2010_06_017 crossref_primary_10_3390_jcm12237201 crossref_primary_10_1016_j_neuropharm_2015_07_010 crossref_primary_10_1517_14728222_2013_754426 crossref_primary_10_1016_j_neubiorev_2018_12_026 crossref_primary_10_1016_j_neuroscience_2017_03_061 crossref_primary_10_1016_j_taap_2007_11_007 crossref_primary_10_1007_s40429_017_0174_7 crossref_primary_10_3390_biom13010162 crossref_primary_10_1016_j_heares_2010_05_015 crossref_primary_10_1016_j_tips_2013_08_008 crossref_primary_10_3390_ijms26010152 crossref_primary_10_1016_j_biopsych_2009_09_024 crossref_primary_10_4103_jmau_jmau_97_20 crossref_primary_10_1016_j_imbio_2010_03_009 crossref_primary_10_1016_j_yfrne_2016_01_003 crossref_primary_10_2174_2589977515666230502104021 crossref_primary_10_1016_j_pbb_2008_03_004 crossref_primary_10_1016_j_ejmech_2008_03_040 crossref_primary_10_1111_bph_12607 crossref_primary_10_1177_0269881111400652 crossref_primary_10_1093_ijnp_pyw102 crossref_primary_10_1002_syn_22061 crossref_primary_10_1016_j_pain_2008_06_007 crossref_primary_10_1002_dta_302 crossref_primary_10_1002_jnr_24770 crossref_primary_10_1016_j_expneurol_2016_06_014 crossref_primary_10_1089_can_2022_0151 crossref_primary_10_1159_000330205 crossref_primary_10_1016_j_phrs_2012_11_002 crossref_primary_10_1016_j_brainresbull_2018_06_012 crossref_primary_10_3390_biom9080326 crossref_primary_10_1007_s00216_010_4171_0 crossref_primary_10_1152_physrev_00019_2008 crossref_primary_10_3390_molecules25030652 crossref_primary_10_1016_j_neubiorev_2022_104801 crossref_primary_10_1016_j_neurop_2022_07_003 crossref_primary_10_1111_j_1476_5381_2009_00310_x crossref_primary_10_1124_jpet_111_188540 crossref_primary_10_1074_jbc_M111_335273 crossref_primary_10_1016_j_neuroscience_2011_06_062 crossref_primary_10_1002_jnr_23452 crossref_primary_10_1016_j_lfs_2007_04_024 crossref_primary_10_1111_j_1600_079X_2008_00597_x crossref_primary_10_1007_s00213_017_4537_5 crossref_primary_10_3390_biomedicines10030593 crossref_primary_10_1097_j_pain_0000000000001027 crossref_primary_10_1007_s10571_017_0482_4 crossref_primary_10_1007_s12035_022_02884_6 crossref_primary_10_1016_j_ejphar_2006_04_034 crossref_primary_10_3390_ijms23115908 crossref_primary_10_1016_j_nbd_2008_09_015 crossref_primary_10_1016_j_nrleng_2018_12_024 crossref_primary_10_1007_s00259_016_3457_7 crossref_primary_10_1016_j_pain_2009_08_013 crossref_primary_10_1139_cjpp_2016_0346 crossref_primary_10_3390_ph7030339 crossref_primary_10_2174_1570159X20666220201091006 crossref_primary_10_3390_ijms242115777 crossref_primary_10_1124_pr_58_3_2 crossref_primary_10_3390_ijms19082164 crossref_primary_10_1007_s10695_013_9783_9 crossref_primary_10_1016_j_neuron_2016_03_034 crossref_primary_10_1016_j_physbeh_2010_02_025 crossref_primary_10_1111_j_1476_5381_2010_01166_x crossref_primary_10_1124_pr_110_003004 crossref_primary_10_1074_jbc_M800524200 crossref_primary_10_1016_j_phrs_2021_105607 crossref_primary_10_1007_s00210_013_0930_8 crossref_primary_10_1016_j_phrs_2021_105729 crossref_primary_10_1016_j_pharmthera_2016_10_015 crossref_primary_10_1016_j_exger_2014_04_008 crossref_primary_10_3390_molecules29020473 crossref_primary_10_1016_j_neuint_2008_02_005 crossref_primary_10_3390_biomedicines11102642 crossref_primary_10_1097_FBP_0000000000000222 crossref_primary_10_1155_2009_625469 crossref_primary_10_1016_j_neuroscience_2006_11_016 crossref_primary_10_1002_jnr_24765 crossref_primary_10_1016_j_pbb_2011_04_003 crossref_primary_10_1007_s00216_006_0717_6 crossref_primary_10_1016_j_ejphar_2007_12_016 crossref_primary_10_1152_physrev_00002_2016 crossref_primary_10_3390_ph3103101 crossref_primary_10_1016_j_pnpbp_2023_110924 crossref_primary_10_1038_emm_2015_100 crossref_primary_10_1016_j_yhbeh_2009_10_005 crossref_primary_10_1038_npp_2014_297 crossref_primary_10_1002_hup_2779 crossref_primary_10_1016_j_neuropharm_2018_07_020 crossref_primary_10_3389_fncel_2022_832854 crossref_primary_10_1016_j_lfs_2012_10_006 crossref_primary_10_1016_j_bbr_2015_03_051 crossref_primary_10_3390_molecules24071350 crossref_primary_10_1016_j_pbb_2020_173059 crossref_primary_10_1080_10799893_2024_2431986 crossref_primary_10_1097_FBP_0000000000000073 crossref_primary_10_3389_fendo_2020_00114 crossref_primary_10_1016_j_nbd_2019_104526 crossref_primary_10_3389_fphar_2017_00200 crossref_primary_10_1016_j_pnpbp_2020_110031 crossref_primary_10_1016_j_drudis_2018_01_029 crossref_primary_10_1111_j_1471_4159_2010_06578_x crossref_primary_10_1016_j_ntt_2016_08_003 crossref_primary_10_1074_jbc_M113_454843 crossref_primary_10_1002_cne_22382 crossref_primary_10_3390_ijms25105378 crossref_primary_10_1016_j_phrs_2022_106560 crossref_primary_10_1186_2191_2858_2_32 crossref_primary_10_3389_fphar_2015_00006 crossref_primary_10_1093_abbs_gmv049 crossref_primary_10_4103_0019_5545_158134 crossref_primary_10_1111_j_1476_5381_2011_01625_x crossref_primary_10_1111_adb_12367 crossref_primary_10_1016_j_ejphar_2016_06_001 crossref_primary_10_1016_j_neuropharm_2025_110404 crossref_primary_10_1016_j_neuint_2008_08_005 crossref_primary_10_1016_j_neuint_2013_12_005 crossref_primary_10_3390_ijms23094764 crossref_primary_10_1016_j_neuroscience_2011_12_028 crossref_primary_10_1111_j_1460_9568_2009_07075_x crossref_primary_10_1002_syn_21626 crossref_primary_10_1016_j_neubiorev_2008_03_004 crossref_primary_10_1016_j_nucmedbio_2011_09_005 crossref_primary_10_1016_j_ejphar_2018_07_039 crossref_primary_10_1016_j_pbb_2010_03_004 crossref_primary_10_1016_j_freeradbiomed_2017_03_033 crossref_primary_10_1111_cns_13977 crossref_primary_10_3389_fnins_2016_00406 crossref_primary_10_1016_j_pharep_2016_07_004 crossref_primary_10_1016_j_pneurobio_2019_02_001 crossref_primary_10_1016_j_bbr_2023_114439 crossref_primary_10_1007_s10753_015_0168_3 crossref_primary_10_1016_j_jbior_2020_100774 crossref_primary_10_1089_can_2021_0085 crossref_primary_10_1016_j_bmc_2007_05_060 crossref_primary_10_1016_j_jad_2019_07_083 crossref_primary_10_2174_1871527320666210202121103 crossref_primary_10_1007_s11690_011_0291_8 crossref_primary_10_1089_can_2020_0004 crossref_primary_10_1155_2019_2878352 crossref_primary_10_1016_j_neuropharm_2017_06_015 crossref_primary_10_1007_s00213_015_3939_5 crossref_primary_10_1038_sj_bjp_0707527 crossref_primary_10_1186_s12974_016_0783_4 crossref_primary_10_1523_JNEUROSCI_5483_10_2011 crossref_primary_10_1073_pnas_1413210111 crossref_primary_10_1161_STROKEAHA_116_014793 crossref_primary_10_1016_j_brainresbull_2021_06_022 crossref_primary_10_1016_j_neurobiolaging_2010_09_012 crossref_primary_10_1002_glia_21061 crossref_primary_10_2174_1570159X18666200217140255 crossref_primary_10_3389_fnagi_2022_1018610 crossref_primary_10_1134_S1990747807010035 crossref_primary_10_1007_s12035_017_0689_x crossref_primary_10_1111_cbdd_13069 crossref_primary_10_3390_ijms19030833 crossref_primary_10_1016_j_pharma_2008_07_003 crossref_primary_10_1371_journal_pone_0070849 crossref_primary_10_1016_j_neubiorev_2020_10_018 crossref_primary_10_1016_j_prostaglandins_2008_12_002 crossref_primary_10_1007_s12640_015_9555_7 crossref_primary_10_1016_j_ejphar_2013_09_068 crossref_primary_10_1007_s12035_007_0005_2 crossref_primary_10_3834_uij_1944_5784_2013_10_06 crossref_primary_10_1371_journal_pone_0140592 crossref_primary_10_1517_14656566_2014_918102 crossref_primary_10_1016_j_ejphar_2008_02_099 crossref_primary_10_1515_revneuro_2021_0109 crossref_primary_10_2174_1570159X18666200429234430 crossref_primary_10_1007_s12031_020_01774_7 crossref_primary_10_1097_FBP_0000000000000277 crossref_primary_10_1038_sj_bjp_0707466 crossref_primary_10_3389_fpsyt_2022_866052 crossref_primary_10_3389_fpsyt_2021_803394 crossref_primary_10_1002_ardp_201300255 crossref_primary_10_1124_mol_107_042945 crossref_primary_10_1038_aps_2016_149 crossref_primary_10_1016_j_neubiorev_2014_02_006 crossref_primary_10_1016_j_imbio_2009_05_011 crossref_primary_10_1016_j_mehy_2017_10_025 crossref_primary_10_1042_BJ20100751 crossref_primary_10_1080_02713680600762747 crossref_primary_10_1016_j_ejphar_2013_01_077 crossref_primary_10_1016_j_neuroscience_2015_10_041 crossref_primary_10_1073_pnas_1118167109 crossref_primary_10_1007_s12035_009_8061_4 crossref_primary_10_1002_dmrr_764 crossref_primary_10_1016_j_baga_2016_06_001 crossref_primary_10_1038_bjp_2008_130 crossref_primary_10_1038_sj_bjp_0707456 crossref_primary_10_1016_j_ebiom_2019_03_040 crossref_primary_10_1038_s41598_018_22888_4 crossref_primary_10_1016_j_ejphar_2011_06_057 crossref_primary_10_3389_fimmu_2023_1285052 crossref_primary_10_1021_acs_jmedchem_4c00564 crossref_primary_10_1002_syn_20856 crossref_primary_10_1007_s12640_018_9910_6 crossref_primary_10_2174_1570159X20666220927115811 crossref_primary_10_1016_j_pain_2008_10_002 crossref_primary_10_1093_chemse_bjy068 crossref_primary_10_1016_j_biopha_2018_05_086 crossref_primary_10_3390_molecules28165980 crossref_primary_10_1210_en_2019_00024 crossref_primary_10_1038_sj_bjp_0707442 crossref_primary_10_1016_j_neuint_2007_07_014 crossref_primary_10_1111_jvim_16467 crossref_primary_10_1038_sj_bjp_0707440 crossref_primary_10_1155_2013_259676 crossref_primary_10_1007_s13311_018_0610_y crossref_primary_10_1111_liv_12263 crossref_primary_10_1016_j_brainresbull_2021_11_009 crossref_primary_10_1016_j_eplepsyres_2018_05_008 crossref_primary_10_1007_s00702_007_0660_5 crossref_primary_10_1074_jbc_M109_006338 crossref_primary_10_3390_biom12111560 crossref_primary_10_1016_j_euroneuro_2012_06_012 crossref_primary_10_3390_biom11111556 crossref_primary_10_1038_sj_tpj_6500431 crossref_primary_10_1016_j_lfs_2010_02_014 crossref_primary_10_15406_mojap_2017_03_00088 crossref_primary_10_1016_j_npep_2021_102196 crossref_primary_10_1002_alz_12244 crossref_primary_10_1016_j_exer_2016_11_015 crossref_primary_10_1002_syn_20714 crossref_primary_10_1038_npp_2011_262 crossref_primary_10_3389_fpsyt_2020_00315 crossref_primary_10_3390_molecules24173164 crossref_primary_10_3389_fnbeh_2014_00132 crossref_primary_10_1096_fj_06_6164fje crossref_primary_10_1113_jphysiol_2014_286633 crossref_primary_10_1016_j_neuropharm_2014_10_008 crossref_primary_10_1177_0269881110367732 crossref_primary_10_1038_npp_2017_126 crossref_primary_10_3389_fpsyt_2022_828895 crossref_primary_10_1038_s41398_020_0832_8 crossref_primary_10_1007_s11938_016_0111_1 crossref_primary_10_1016_j_psyneuen_2017_10_015 crossref_primary_10_1002_jat_2828 crossref_primary_10_37349_ent_2021_00006 crossref_primary_10_1016_j_bbr_2018_11_043 crossref_primary_10_1089_neu_2010_1652 crossref_primary_10_1002_jlcr_3579 crossref_primary_10_1016_j_bcp_2018_09_013 crossref_primary_10_3389_fphar_2022_1010296 crossref_primary_10_3389_fphar_2021_722476 crossref_primary_10_1016_j_molimm_2011_09_016 crossref_primary_10_1016_j_neulet_2006_11_057 crossref_primary_10_3109_15622975_2016_1151075 crossref_primary_10_1016_j_neulet_2010_12_031 crossref_primary_10_2174_1573407214666180703130525 crossref_primary_10_1017_S1462399409000957 crossref_primary_10_1080_10799890600942674 crossref_primary_10_3390_life10060086 crossref_primary_10_1016_j_pharmthera_2020_107495 crossref_primary_10_4199_C00151ED1V01Y201702ISP074 crossref_primary_10_1016_j_imbio_2009_12_005 crossref_primary_10_3389_fnins_2022_925792 crossref_primary_10_3390_ijms21041423 crossref_primary_10_1016_j_bbr_2019_112012 crossref_primary_10_1016_j_nrl_2018_12_004 crossref_primary_10_1371_journal_pone_0001640 crossref_primary_10_1159_000517425 crossref_primary_10_1111_j_1476_5381_2010_00721_x crossref_primary_10_1371_journal_pone_0129618 crossref_primary_10_1016_j_eplepsyres_2014_10_001 crossref_primary_10_1111_bph_14473 crossref_primary_10_1189_jlb_0306224 crossref_primary_10_3390_ijms242316728 crossref_primary_10_1111_bph_15208 crossref_primary_10_1016_j_biochi_2017_02_009 crossref_primary_10_1002_med_20135 crossref_primary_10_1007_s11481_015_9611_3 crossref_primary_10_1007_s11481_010_9239_2 crossref_primary_10_1038_s41401_021_00712_6 crossref_primary_10_1016_j_neubiorev_2020_04_020 crossref_primary_10_1186_1744_8069_5_59 crossref_primary_10_3390_biomedicines12010235 crossref_primary_10_1111_j_1476_5381_2008_00048_x crossref_primary_10_1111_j_1476_5381_2010_00710_x crossref_primary_10_1038_sj_npp_1301376 crossref_primary_10_1016_j_neuroscience_2008_11_015 crossref_primary_10_1007_s11884_017_0414_7 crossref_primary_10_1016_j_ejphar_2015_03_051 crossref_primary_10_1038_s41401_018_0037_3 crossref_primary_10_3389_fphar_2021_805758 crossref_primary_10_1016_j_pnpbp_2015_03_006 crossref_primary_10_1016_j_phrs_2025_107657 crossref_primary_10_1016_j_neuint_2007_06_033 crossref_primary_10_1111_fcp_12008 crossref_primary_10_1080_23262133_2015_1118177 crossref_primary_10_1016_j_neuropharm_2013_07_028 crossref_primary_10_1016_j_bcp_2018_08_016 crossref_primary_10_1016_j_nurt_2009_08_002 crossref_primary_10_1016_S1734_1140_11_70578_3 crossref_primary_10_1111_ejn_14103 crossref_primary_10_1016_j_pnpbp_2010_11_021 crossref_primary_10_1134_S0006297917110141 crossref_primary_10_1515_jbcpp_2015_0055 crossref_primary_10_1002_syn_20569 crossref_primary_10_1016_j_lfs_2015_12_053 crossref_primary_10_1089_jcr_2013_0010 crossref_primary_10_1016_j_diabet_2007_02_002 crossref_primary_10_3390_molecules26051448 crossref_primary_10_3390_ph17060689 crossref_primary_10_1038_npp_2012_22 crossref_primary_10_1186_1742_2094_11_120 crossref_primary_10_1371_journal_pone_0138986 crossref_primary_10_3389_fphar_2018_01496 crossref_primary_10_3390_nu15071702 crossref_primary_10_1523_ENEURO_0344_16_2017 crossref_primary_10_1002_cmdc_202400672 crossref_primary_10_1177_0269881110379507 crossref_primary_10_3390_molecules26082126 crossref_primary_10_1016_j_neuroscience_2021_06_012 crossref_primary_10_2337_db10_0962 crossref_primary_10_1038_s41401_020_00530_2 crossref_primary_10_1002_syn_20578 crossref_primary_10_1523_JNEUROSCI_2916_06_2007 crossref_primary_10_1111_febs_12125 crossref_primary_10_1038_nm_2722 crossref_primary_10_1016_j_bbr_2019_112297 crossref_primary_10_1016_j_nlm_2012_12_001 crossref_primary_10_1007_s11062_007_0040_7 crossref_primary_10_3389_fnbeh_2018_00041 crossref_primary_10_1016_j_neurobiolaging_2007_04_028 crossref_primary_10_1007_s00192_015_2802_x crossref_primary_10_1016_j_pnpbp_2018_11_007 crossref_primary_10_3390_biomedicines10123000 crossref_primary_10_1111_j_1476_5381_2010_00723_x crossref_primary_10_1371_journal_pone_0062511 crossref_primary_10_2174_1871527320666210211115007 crossref_primary_10_1007_s00429_014_0823_8 crossref_primary_10_1016_j_brainres_2011_03_020 crossref_primary_10_1517_14728222_10_5_653 crossref_primary_10_1111_bph_13186 crossref_primary_10_1007_s12035_007_0015_0 crossref_primary_10_1016_j_biopha_2008_02_007 crossref_primary_10_1111_j_1476_5381_2010_00819_x crossref_primary_10_1556_ABiol_58_2007_Suppl_9 crossref_primary_10_1002_cne_21774 crossref_primary_10_1111_adb_13249 crossref_primary_10_1007_s00213_008_1076_0 crossref_primary_10_1038_npp_2011_34 crossref_primary_10_1016_j_brainresbull_2017_01_018 crossref_primary_10_1002_dta_1440 crossref_primary_10_1016_j_bmcl_2012_08_004 crossref_primary_10_1016_j_plipres_2023_101239 crossref_primary_10_1021_acs_jmedchem_6b00397 crossref_primary_10_1089_neu_2010_1672 crossref_primary_10_1111_micc_12276 crossref_primary_10_1016_j_ejmech_2014_05_055 crossref_primary_10_1038_sj_bjp_0707399 crossref_primary_10_1111_j_1476_5381_2010_00735_x crossref_primary_10_1021_jm500220s crossref_primary_10_1021_jm800416m crossref_primary_10_1089_can_2020_0179 crossref_primary_10_1016_j_brainres_2019_146467 crossref_primary_10_1016_j_exger_2014_10_011 crossref_primary_10_1016_j_bbrc_2015_01_073 crossref_primary_10_3390_ijms23020975 crossref_primary_10_1016_j_ejphar_2021_174398 crossref_primary_10_1111_j_1601_183X_2009_00498_x crossref_primary_10_3389_fphar_2017_00516 crossref_primary_10_1089_can_2020_0059 crossref_primary_10_1111_j_1755_5949_2008_00065_x crossref_primary_10_1016_j_bmcl_2009_12_032 crossref_primary_10_1080_15440478_2013_861782 crossref_primary_10_3389_fncel_2021_629052 crossref_primary_10_1016_j_bmc_2013_09_040 crossref_primary_10_1111_j_1460_9568_2008_06162_x crossref_primary_10_1111_j_1476_5381_2011_01542_x crossref_primary_10_3390_ijms25115749 crossref_primary_10_1021_acschemneuro_9b00696 crossref_primary_10_1016_j_neuron_2016_05_012 crossref_primary_10_1016_j_pnpbp_2021_110438 crossref_primary_10_1002_ptr_3375 crossref_primary_10_1007_s00213_013_3117_6 crossref_primary_10_1016_j_clim_2011_02_010 crossref_primary_10_1016_j_pharmthera_2012_12_002 crossref_primary_10_1016_j_neuropharm_2012_04_024 crossref_primary_10_1016_j_neulet_2016_09_020 crossref_primary_10_1016_j_nlm_2009_05_005 crossref_primary_10_1016_j_brainres_2006_12_060 crossref_primary_10_1016_j_neuropharm_2015_09_009 crossref_primary_10_1007_s11064_017_2202_3 crossref_primary_10_1007_s11481_013_9494_0 crossref_primary_10_1007_s40263_019_00627_1 crossref_primary_10_1016_j_neuropharm_2014_07_006 crossref_primary_10_1007_s00702_011_0698_2 crossref_primary_10_1097_FBP_0000000000000639 crossref_primary_10_1080_09540260902782760 crossref_primary_10_1007_s00213_016_4481_9 crossref_primary_10_1155_2014_412354 crossref_primary_10_3390_cells13070615 crossref_primary_10_1002_dneu_22516 crossref_primary_10_1002_ptr_7709 crossref_primary_10_3390_cells11162569 crossref_primary_10_1186_s12974_018_1174_9 crossref_primary_10_3390_cancers13030419 crossref_primary_10_1002_hipo_20537 crossref_primary_10_1016_j_ajpath_2012_11_024 crossref_primary_10_3389_fpsyt_2020_587154 crossref_primary_10_1016_j_neuroscience_2014_05_007 crossref_primary_10_1016_j_neuroscience_2011_01_024 crossref_primary_10_2174_1381612825666190826162735 crossref_primary_10_1002_jnr_23114 crossref_primary_10_1016_j_mce_2012_01_014 crossref_primary_10_1017_neu_2022_23 crossref_primary_10_1111_j_1471_4159_2006_04346_x crossref_primary_10_3390_ph4081101 crossref_primary_10_1016_j_bmc_2016_08_055 crossref_primary_10_1002_syn_22139 crossref_primary_10_1111_j_1365_2826_2008_01785_x crossref_primary_10_1016_j_euroneuro_2017_09_006 crossref_primary_10_1111_j_1460_9568_2008_06041_x crossref_primary_10_1016_j_ddstr_2006_10_015 crossref_primary_10_1007_s00232_009_9174_4 crossref_primary_10_1111_bph_14625 crossref_primary_10_1111_j_1528_1167_2009_02173_x crossref_primary_10_4236_jbbs_2012_22017 crossref_primary_10_1097_JCP_0000000000000581 crossref_primary_10_3390_molecules24244626 crossref_primary_10_3389_fnins_2014_00044 crossref_primary_10_1016_j_phrs_2016_07_024 crossref_primary_10_3390_ijms242417516 crossref_primary_10_1016_j_jneumeth_2013_03_021 crossref_primary_10_5115_acb_2011_44_2_135 crossref_primary_10_1016_j_bmcl_2009_08_092 crossref_primary_10_1369_0022155414530995 crossref_primary_10_1016_j_neuropharm_2008_07_018 crossref_primary_10_1016_j_bcp_2018_07_041 crossref_primary_10_1038_nn_2874 crossref_primary_10_1016_j_neulet_2014_12_003 crossref_primary_10_3389_fnmol_2018_00079 crossref_primary_10_1002_glia_20757 crossref_primary_10_1007_s00213_014_3481_x crossref_primary_10_1007_s11481_013_9485_1 crossref_primary_10_1093_ijnp_pyv095 crossref_primary_10_14718_ACP_2014_17_2_7 crossref_primary_10_1016_j_neuroscience_2007_10_029 crossref_primary_10_1111_acer_12130 crossref_primary_10_3390_ph3103275 crossref_primary_10_1016_j_expneurol_2010_03_030 crossref_primary_10_1093_carcin_bgq151 crossref_primary_10_1111_j_1365_2826_2012_02325_x crossref_primary_10_1007_s00213_012_2834_6 crossref_primary_10_1196_annals_1369_052 crossref_primary_10_1371_journal_pone_0132487 crossref_primary_10_3390_ph3082661 crossref_primary_10_1016_j_neubiorev_2021_09_002 crossref_primary_10_3390_pharmaceutics15041151 crossref_primary_10_1016_j_mcn_2020_103582 crossref_primary_10_1038_s41386_020_00919_x crossref_primary_10_1196_annals_1432_036 crossref_primary_10_1111_cns_12277 crossref_primary_10_1016_j_pbb_2019_06_007 crossref_primary_10_1196_annals_1432_037 crossref_primary_10_1016_j_bmc_2010_05_058 crossref_primary_10_1016_j_bbr_2014_11_012 crossref_primary_10_1016_j_bbr_2021_113440 crossref_primary_10_1111_febs_15234 crossref_primary_10_3390_cancers2021013 crossref_primary_10_1016_j_neuropharm_2013_05_034 crossref_primary_10_1016_j_expneurol_2010_03_023 crossref_primary_10_1111_bph_14769 crossref_primary_10_3390_ijms21207693 crossref_primary_10_1097_WNR_0b013e3283318010 crossref_primary_10_1111_jnc_12354 crossref_primary_10_1080_15622975_2022_2039408 crossref_primary_10_1007_s00018_021_04002_6 crossref_primary_10_1007_s12264_011_1008_6 crossref_primary_10_1016_j_euroneuro_2014_11_002 crossref_primary_10_1111_j_1460_9568_2007_05782_x crossref_primary_10_1016_j_gene_2006_09_016 crossref_primary_10_1017_S1461145713000163 crossref_primary_10_1002_glia_20983 crossref_primary_10_1016_j_brainres_2005_12_089 crossref_primary_10_3390_biom10060855 crossref_primary_10_1016_j_mcn_2008_05_001 crossref_primary_10_1016_j_pbb_2009_09_021 crossref_primary_10_3390_ph3082517 crossref_primary_10_1016_j_physbeh_2014_06_003 crossref_primary_10_1016_j_neulet_2016_01_018 crossref_primary_10_1016_j_nucmedbio_2008_07_004 crossref_primary_10_1016_j_neuropharm_2008_07_038 crossref_primary_10_1038_nrn2253 crossref_primary_10_1016_j_neuropharm_2008_07_037 crossref_primary_10_1177_0269881111405362 crossref_primary_10_3389_fphar_2020_596572 crossref_primary_10_3390_molecules27020533 crossref_primary_10_1021_acs_chemrev_5b00411 crossref_primary_10_1016_j_pharmthera_2025_108799 crossref_primary_10_1080_00207454_2016_1257992 crossref_primary_10_1097_FBP_0000000000000621 crossref_primary_10_3390_ijms232113223 crossref_primary_10_1016_j_neuropharm_2018_05_030 crossref_primary_10_3390_nu12113273 crossref_primary_10_3390_pharmaceutics16020241 crossref_primary_10_1196_annals_1432_056 crossref_primary_10_1016_j_phrs_2007_09_005 crossref_primary_10_1016_j_phrs_2007_09_008 crossref_primary_10_1515_revneuro_2017_0101 crossref_primary_10_1111_j_1369_1600_2008_00108_x crossref_primary_10_1016_j_phrs_2007_09_003 crossref_primary_10_1016_j_neulet_2008_08_076 crossref_primary_10_1111_bph_12488 crossref_primary_10_1007_s00213_006_0500_6 crossref_primary_10_1007_s13167_020_00203_4 crossref_primary_10_4137_PMC_S32171 crossref_primary_10_1093_ijnp_pyu097 crossref_primary_10_1097_MNH_0b013e3282f29071 crossref_primary_10_3390_ph3092799 crossref_primary_10_1021_acsami_1c13718 |
Cites_doi | 10.1046/j.1460-9568.2003.02704.x 10.1093/ajcp/75.5.734 10.1038/nature03389 10.1016/S0009-3084(00)00189-4 10.4049/jimmunol.170.10.4953 10.1016/0014-5793(95)00746-V 10.1038/346561a0 10.1038/35069076 10.1016/S0306-4522(97)00436-3 10.3109/10425179509020870 10.1002/glia.20108 10.1016/S0022-3565(24)35367-4 10.1126/science.1115740 10.1523/JNEUROSCI.3923-04.2005 10.1016/S0301-0082(02)00007-2 10.1006/taap.1996.8034 10.1016/S1567-5769(01)00147-3 10.1038/365061a0 10.1074/jbc.275.1.605 10.1016/j.molbrainres.2004.08.025 10.1017/S0952523800171093 10.1073/pnas.93.9.3984 10.1016/S0014-2999(00)00211-9 10.1523/JNEUROSCI.23-35-11136.2003 10.1111/j.1432-1033.1995.tb20780.x 10.1016/S0165-6147(03)00107-X 10.1016/j.lfs.2004.03.026 10.1124/jpet.301.3.1020 10.1016/S0014-2999(98)00392-6 10.1126/science.1470919 10.1016/S0014-2999(99)00402-1 10.1073/pnas.061029898 10.1006/bbrc.1995.2437 10.1016/S0009-3084(00)00195-X 10.1073/pnas.92.8.3376 10.1002/syn.20050 |
ContentType | Journal Article |
Copyright | 2005 Elsevier B.V. 2006 INIST-CNRS |
Copyright_xml | – notice: 2005 Elsevier B.V. – notice: 2006 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 |
DOI | 10.1016/j.brainres.2005.11.035 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1872-6240 |
EndPage | 23 |
ExternalDocumentID | 16472786 17568027 10_1016_j_brainres_2005_11_035 S0006899305016239 |
Genre | Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GroupedDBID | --- --K --M -DZ -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 41~ 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYJJ AAYWO ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADIYS ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HVGLF HZ~ IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SES SEW SNS SPCBC SSN SSZ T5K VH1 WUQ X7M XPP Z5R ZGI ~G- AACTN AADPK AAIAV ABYKQ AFCTW AFKWA AFMIJ AHPSJ AJBFU AJOXV AMFUW EFLBG RIG AAYXX AGRNS BNPGV CITATION SSH IQODW CGR CUY CVF ECM EIF NPM 7TK ACLOT ~HD 7X8 |
ID | FETCH-LOGICAL-c573t-703f5d64ce7dce621563d0dd644e12711f002df190617fbe6b5cba946c8990253 |
IEDL.DBID | .~1 |
ISSN | 0006-8993 |
IngestDate | Thu Sep 04 22:35:34 EDT 2025 Sat Sep 27 17:51:05 EDT 2025 Wed Feb 19 01:44:05 EST 2025 Mon Jul 21 09:14:45 EDT 2025 Tue Jul 01 00:50:20 EDT 2025 Thu Apr 24 23:03:56 EDT 2025 Fri Feb 23 02:36:06 EST 2024 Tue Aug 26 16:40:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Immunohistochemistry eCBs Brain Cnr CB2 cannabinoid receptor Cnrs CB2 blocking peptide CB2 CB1 RT-PCR CB2 polyclonal antibody Hippocampal cultures EPCS In situ hybridization, mRNA CB2 knockout mice CB2 cannabinoid receptor Brain Immunohistochemistry CB2 polyclonal antibody CB2 blocking peptide Hippocampal cultures RT-PCR In situ hybridization Molecular hybridization Rat Rodentia Central nervous system mRNA CB2 knockout mice Encephalon Polymerase chain reaction Vertebrata Mammalia Mouse Animal Mutation Localization Hippocampus |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c573t-703f5d64ce7dce621563d0dd644e12711f002df190617fbe6b5cba946c8990253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 16472786 |
PQID | 17109569 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_67677659 proquest_miscellaneous_17109569 pubmed_primary_16472786 pascalfrancis_primary_17568027 crossref_citationtrail_10_1016_j_brainres_2005_11_035 crossref_primary_10_1016_j_brainres_2005_11_035 elsevier_sciencedirect_doi_10_1016_j_brainres_2005_11_035 elsevier_clinicalkey_doi_10_1016_j_brainres_2005_11_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-02-03 |
PublicationDateYYYYMMDD | 2006-02-03 |
PublicationDate_xml | – month: 02 year: 2006 text: 2006-02-03 day: 03 |
PublicationDecade | 2000 |
PublicationPlace | London Amsterdam New York, NY |
PublicationPlace_xml | – name: Amsterdam – name: London – name: New York, NY – name: Netherlands |
PublicationTitle | Brain research |
PublicationTitleAlternate | Brain Res |
PublicationYear | 2006 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Tsou, Brown, Sanudo-Pena, Mackie, Walker (bib36) 1998; 83 Steffens, Veillard, Arnaud, Pelli, Burger, Staub, Zimmer, Frossard, Mach (bib32) 2005; 434 Sugiura, Kondo, Kishimoto, Miyashita, Nakane, Kodata, Suhara, Waku (bib35) 2000; 275 Derocq, Segui, Marchand, Le Fur, Casellas (bib7) 1995; 369 Wilson, Nicoll (bib37) 2001; 410 Devane, Hanus, Breuer, Pertwee, Stevenson, Griffin, Gibson, Mandel-baum, Etinger, Mechoulam (bib8) 1992; 258 Sheng, Hu, Min, Cabral, Lokensgard, Peterson (bib30) 2005; 49 Kearn, Hilliard (bib17) 1997 Lu, Straiker, Lu, Maguire (bib18) 2000; 17 Skaper, Buriani, Dal Toso, Petrelli, Romanello, Facci, Leon (bib31) 1996; 93 Zhang, Hoffert, Vu, Groblewski, Ahmad, O'Donnell (bib39) 2003; 17 Golech, McCarron, Chen, Bembry, Lenz, Mechoulam, Shohami, Spatz (bib11) 2004; 132 Samson, Small-Howard, Shimoda, Koblan-Huberson, Stokes, Turner (bib28) 2003; 170 Benito, Nunez, Tolon, Carrier, Rabano, Hillard, Romero (bib1) 2003; 23 Buckley, McCoy, Mezey, Bonner, Zimmer, Felder, Glass, Zimmer (bib40) 2000 (May 19); 396 Griffin, Wray, Tao, McAllister, Rorrer, Aung, Martin, Abood (bib13) 1999; 377 Nunez, Benito, Pazos, Barbachano, Fajardo, Gonzalez, Tolon, Romero (bib22) 2004; 53 Facci, Dal Toso, Romanello, Buriani, Skaper, Leona (bib9) 1995; 92 Ben-Shabat, Fride, Sheskin, Tsippy, Rhee, Vogel, Bisogno, De Petrocellis, Di Marzo, Mechoulam (bib3) 1998; 353 Griffin, Tao, Abood (bib14) 2000; 292 Berdyshev (bib4) 2000; 108 Porter, Sauer, Knierman, Becker, Berna, Bao, Nomikos, Carter, Bymaster, Leese, Felder (bib27) 2002; 301 Hsu, Raine, Fanger (bib16) 1981; 75 Galiegue, Mary, Marchand, Dussossoy, Carriere, Carayon, Bouaboula, Shire, Le Fur, Casellas (bib10) 1995; 232 Mechoulam, Parker (bib20) 2003; 24 Paxinos, Watson (bib41) 1982 Carlisle, Marciano-Cabral, Staab, Ludwick, Cabral (bib5) 2002; 2 Gong, Onaivi, Uhl (bib12) 2005 Onaivi, E.S., Ishiguro, H., Sejal, P., Meozzi, P.A., Myers, L., Tagliaferro, P., Hope, B., Leonard, C.M., Uhl, G.R., Brusco, A., Gardner, E., in press. Methods to study the behavioral effects and expression of CB2 cannabinoid receptors and its gene transcripts in chronic mild stress model of depression. In: E.S. Onaivi (Ed.), Marijuana and Cannabinoid Research: Methods and Protocols. The Humana press Inc. Pettit, Harrison, Olson, Spencer, Cabral (bib26) 1998; 51 Suigiura, Waku (bib33) 2000; 108 Shatz, Lee, Condie, Pulaski, Kaminski (bib29) 1997; 142 Chakrabarti, Onaivi, Chaudhuri (bib6) 1995; 5 Van Sickle, Duncan, Kingsley, Mouihate, Urbani, Mackie, Stella, Makriyannis, Piomelli, Davison, Marnet, Di Marzo, Pittman, Patel, Sharkey (bib38) 2005; 310 Hanus, Abu-Lafi, Fride, Breuer, Vogel, Shalev, Kustanovich, Mechoulam (bib15) 2001; 98 Pazos, Nunez, Benito, Tolon, Romero (bib25) 2004; 75 Benito, Kim, Chavarria, Hillard, Mackie, Tolon, Williams, Romero (bib2) 2005; 25 Sugiura, Kondo, Sukagawa, Nakane, Shinoda, Itoh, Yamashita, Waku (bib34) 1995; 215 Matsuda, Lolait, Brownstein, Young, Bonner (bib19) 1990; 346 Munro, Thomas, Abu-Shaar (bib21) 1993; 365 Onaivi, Leonard, Ishiguro, Zhang, Lin, Akinshola, Uhl (bib23) 2002; 66 Mechoulam (10.1016/j.brainres.2005.11.035_bib20) 2003; 24 Steffens (10.1016/j.brainres.2005.11.035_bib32) 2005; 434 Hanus (10.1016/j.brainres.2005.11.035_bib15) 2001; 98 Gong (10.1016/j.brainres.2005.11.035_bib12) 2005 Nunez (10.1016/j.brainres.2005.11.035_bib22) 2004; 53 Van Sickle (10.1016/j.brainres.2005.11.035_bib38) 2005; 310 Griffin (10.1016/j.brainres.2005.11.035_bib13) 1999; 377 Pazos (10.1016/j.brainres.2005.11.035_bib25) 2004; 75 Sheng (10.1016/j.brainres.2005.11.035_bib30) 2005; 49 Galiegue (10.1016/j.brainres.2005.11.035_bib10) 1995; 232 Derocq (10.1016/j.brainres.2005.11.035_bib7) 1995; 369 Griffin (10.1016/j.brainres.2005.11.035_bib14) 2000; 292 Sugiura (10.1016/j.brainres.2005.11.035_bib35) 2000; 275 Benito (10.1016/j.brainres.2005.11.035_bib2) 2005; 25 Golech (10.1016/j.brainres.2005.11.035_bib11) 2004; 132 Kearn (10.1016/j.brainres.2005.11.035_bib17) 1997 Tsou (10.1016/j.brainres.2005.11.035_bib36) 1998; 83 Porter (10.1016/j.brainres.2005.11.035_bib27) 2002; 301 Benito (10.1016/j.brainres.2005.11.035_bib1) 2003; 23 Carlisle (10.1016/j.brainres.2005.11.035_bib5) 2002; 2 Samson (10.1016/j.brainres.2005.11.035_bib28) 2003; 170 Buckley (10.1016/j.brainres.2005.11.035_bib40) 2000; 396 Wilson (10.1016/j.brainres.2005.11.035_bib37) 2001; 410 Chakrabarti (10.1016/j.brainres.2005.11.035_bib6) 1995; 5 Pettit (10.1016/j.brainres.2005.11.035_bib26) 1998; 51 Munro (10.1016/j.brainres.2005.11.035_bib21) 1993; 365 Shatz (10.1016/j.brainres.2005.11.035_bib29) 1997; 142 10.1016/j.brainres.2005.11.035_bib24 Paxinos (10.1016/j.brainres.2005.11.035_bib41) 1982 Devane (10.1016/j.brainres.2005.11.035_bib8) 1992; 258 Hsu (10.1016/j.brainres.2005.11.035_bib16) 1981; 75 Skaper (10.1016/j.brainres.2005.11.035_bib31) 1996; 93 Lu (10.1016/j.brainres.2005.11.035_bib18) 2000; 17 Suigiura (10.1016/j.brainres.2005.11.035_bib33) 2000; 108 Facci (10.1016/j.brainres.2005.11.035_bib9) 1995; 92 Ben-Shabat (10.1016/j.brainres.2005.11.035_bib3) 1998; 353 Berdyshev (10.1016/j.brainres.2005.11.035_bib4) 2000; 108 Onaivi (10.1016/j.brainres.2005.11.035_bib23) 2002; 66 Matsuda (10.1016/j.brainres.2005.11.035_bib19) 1990; 346 Sugiura (10.1016/j.brainres.2005.11.035_bib34) 1995; 215 Zhang (10.1016/j.brainres.2005.11.035_bib39) 2003; 17 |
References_xml | – volume: 75 start-page: 734 year: 1981 end-page: 738 ident: bib16 article-title: A comparative study of the peroxidase–antiperoxidase method and an avidin–biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies publication-title: Am. J. Clin. Pathol. – volume: 434 start-page: 782 year: 2005 end-page: 786 ident: bib32 article-title: Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice publication-title: Nature – volume: 83 start-page: 393 year: 1998 end-page: 411 ident: bib36 article-title: Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system publication-title: Neuroscience – volume: 132 start-page: 87 year: 2004 end-page: 92 ident: bib11 article-title: Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors publication-title: Mol. Brain Res. – year: 2005 ident: bib12 article-title: Cannabinoid CB2 receptors: immunohistochemical localization in rat brain – volume: 353 start-page: 23 year: 1998 end-page: 31 ident: bib3 article-title: An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonyl-glycerol cannabinoid activity publication-title: Eur. J. Pharmacol. – volume: 292 start-page: 886 year: 2000 end-page: 894 ident: bib14 article-title: Cloning and pharmacological characterization of the rat CB2 cannabinoid receptor publication-title: J. Pharmacol. Exp. Ther. – volume: 215 start-page: 89 year: 1995 end-page: 97 ident: bib34 article-title: 2-Arachidonoylglycerol: a possible endogenous cannabinoid ligand in brain publication-title: Biochem. Biophys. Res. Commun. – volume: 17 start-page: 2750 year: 2003 end-page: 2754 ident: bib39 article-title: Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models publication-title: Eur. J. Neurosci. – volume: 170 start-page: 4953 year: 2003 end-page: 4962 ident: bib28 article-title: Differential roles of CB1 and CB2 cannabinoid receptors in mast cells publication-title: J. Immunol. – volume: 310 start-page: 329 year: 2005 end-page: 332 ident: bib38 article-title: Identification and functional characterization of brainstem cannabinoid CB2 receptors publication-title: Science – volume: 66 start-page: 307 year: 2002 end-page: 344 ident: bib23 article-title: Endocannabinoids and cannabinoid receptor genetics publication-title: Prog. Neurobiol. – start-page: 61 year: 1997 ident: bib17 article-title: Rat microglial cell express the peripheral-type cannabinoid receptor (CB2), which is negatively coupled to adenyly cyclase publication-title: ICRS 1997 Symposium on Cannabinoids – volume: 396 start-page: 141 year: 2000 (May 19) end-page: 149 ident: bib40 article-title: Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor publication-title: Eur. J. Pharmacol. – volume: 17 start-page: 91 year: 2000 end-page: 95 ident: bib18 article-title: Expression of CB2 cannabinoid receptor mRNA in adult rat retina publication-title: Vis. Neurosci. – volume: 365 start-page: 61 year: 1993 end-page: 65 ident: bib21 article-title: Molecular characterization of a peripheral cannabinoid receptor publication-title: Nature – volume: 49 start-page: 211 year: 2005 end-page: 219 ident: bib30 article-title: Synthetic cannabinoid WIN55212-2 inhibits generation of inflammatory mediators by IL-IB-stimulated human astrocytes publication-title: Glia – volume: 346 start-page: 561 year: 1990 end-page: 564 ident: bib19 article-title: Structure of a cannabinoid receptor and functional expression of the cloned cDNA publication-title: Nature – year: 1982 ident: bib41 article-title: The Rat Brain in Stereotaxic Coordinates – volume: 92 start-page: 3376 year: 1995 end-page: 3380 ident: bib9 article-title: Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide publication-title: Proc. Natl. Acad. Sci. – volume: 377 start-page: 117 year: 1999 end-page: 125 ident: bib13 article-title: Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528, further evidence for CB2 receptor absence in the rat central nervous system publication-title: Eur. J. Pharmacol. – volume: 108 start-page: 89 year: 2000 end-page: 106 ident: bib33 article-title: 2-Arachidonoylglycerol and cannabinoid receptors publication-title: Chem. Phys. Lipids – volume: 108 start-page: 169 year: 2000 end-page: 190 ident: bib4 article-title: Cannabinoid receptors and the regulation of immune response publication-title: Chem. Phys. Lipids – volume: 75 start-page: 1907 year: 2004 end-page: 1915 ident: bib25 article-title: Role of the endocannabinoid system in Alzheimer's disease: new perspectives publication-title: Life Sci. – volume: 51 start-page: 342 year: 1998 end-page: 391 ident: bib26 article-title: Immunohistochemical localization of the neural cannabinoid receptor in rat brain publication-title: Neurosci Res. – volume: 93 start-page: 3984 year: 1996 end-page: 3989 ident: bib31 article-title: The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebral granule neurons publication-title: Proc. Natl. Acad. Sci. – volume: 5 start-page: 385 year: 1995 end-page: 388 ident: bib6 article-title: Cloning and sequencing of a cDNA encoding the mouse brain-type cannabinoid receptor protein publication-title: DNA Sequence – volume: 53 start-page: 208 year: 2004 end-page: 213 ident: bib22 article-title: Cannabinoid CB2 receptors are expressed by perivascular microglia cells in the human brain: an immunohistochemical study publication-title: Synapse – reference: Onaivi, E.S., Ishiguro, H., Sejal, P., Meozzi, P.A., Myers, L., Tagliaferro, P., Hope, B., Leonard, C.M., Uhl, G.R., Brusco, A., Gardner, E., in press. Methods to study the behavioral effects and expression of CB2 cannabinoid receptors and its gene transcripts in chronic mild stress model of depression. In: E.S. Onaivi (Ed.), Marijuana and Cannabinoid Research: Methods and Protocols. The Humana press Inc. – volume: 24 start-page: 266 year: 2003 end-page: 268 ident: bib20 article-title: Cannabis and alcohol—A close friendship publication-title: Trends Pharmacol. Sci. – volume: 410 start-page: 588 year: 2001 end-page: 592 ident: bib37 article-title: Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses publication-title: Nature – volume: 275 start-page: 605 year: 2000 end-page: 612 ident: bib35 article-title: Evidence that 2-arachidonylglycerol but not publication-title: J. Biol. Chem. – volume: 23 start-page: 11136 year: 2003 end-page: 11141 ident: bib1 article-title: Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains publication-title: J. Neurosci. – volume: 369 start-page: 177 year: 1995 end-page: 182 ident: bib7 article-title: Cannabinoids enhance human B-cell growth at low nanomolar concentrations publication-title: FEBS Lett. – volume: 2 start-page: 69 year: 2002 end-page: 82 ident: bib5 article-title: Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation publication-title: Int. J. Immunopharmacol. – volume: 232 start-page: 54 year: 1995 end-page: 61 ident: bib10 article-title: Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations publication-title: Eur. J. Biochem – volume: 301 start-page: 1020 year: 2002 end-page: 1024 ident: bib27 article-title: Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor publication-title: J. Pharmacol. Exp. Ther. – volume: 25 start-page: 2530 year: 2005 end-page: 2536 ident: bib2 article-title: A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis publication-title: J. Neurosci. – volume: 258 start-page: 1946 year: 1992 end-page: 1949 ident: bib8 article-title: Isolation and structure of a brain constituent that binds to the cannabinoid receptor publication-title: Science – volume: 142 start-page: 278 year: 1997 end-page: 287 ident: bib29 article-title: Cannabinoid receptors CB1 and CB2, a characterization of expression and adenylate cyclase modulation within the immune system publication-title: Toxicol. Appl. Pharmacol. – volume: 98 start-page: 3662 year: 2001 end-page: 3665 ident: bib15 article-title: 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 17 start-page: 2750 year: 2003 ident: 10.1016/j.brainres.2005.11.035_bib39 article-title: Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.2003.02704.x – volume: 51 start-page: 342 year: 1998 ident: 10.1016/j.brainres.2005.11.035_bib26 article-title: Immunohistochemical localization of the neural cannabinoid receptor in rat brain publication-title: Neurosci Res. – start-page: 61 year: 1997 ident: 10.1016/j.brainres.2005.11.035_bib17 article-title: Rat microglial cell express the peripheral-type cannabinoid receptor (CB2), which is negatively coupled to adenyly cyclase – ident: 10.1016/j.brainres.2005.11.035_bib24 – volume: 75 start-page: 734 year: 1981 ident: 10.1016/j.brainres.2005.11.035_bib16 article-title: A comparative study of the peroxidase–antiperoxidase method and an avidin–biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies publication-title: Am. J. Clin. Pathol. doi: 10.1093/ajcp/75.5.734 – volume: 434 start-page: 782 year: 2005 ident: 10.1016/j.brainres.2005.11.035_bib32 article-title: Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice publication-title: Nature doi: 10.1038/nature03389 – volume: 108 start-page: 89 year: 2000 ident: 10.1016/j.brainres.2005.11.035_bib33 article-title: 2-Arachidonoylglycerol and cannabinoid receptors publication-title: Chem. Phys. Lipids doi: 10.1016/S0009-3084(00)00189-4 – volume: 170 start-page: 4953 year: 2003 ident: 10.1016/j.brainres.2005.11.035_bib28 article-title: Differential roles of CB1 and CB2 cannabinoid receptors in mast cells publication-title: J. Immunol. doi: 10.4049/jimmunol.170.10.4953 – volume: 369 start-page: 177 year: 1995 ident: 10.1016/j.brainres.2005.11.035_bib7 article-title: Cannabinoids enhance human B-cell growth at low nanomolar concentrations publication-title: FEBS Lett. doi: 10.1016/0014-5793(95)00746-V – year: 2005 ident: 10.1016/j.brainres.2005.11.035_bib12 article-title: Cannabinoid CB2 receptors: immunohistochemical localization in rat brain – volume: 346 start-page: 561 year: 1990 ident: 10.1016/j.brainres.2005.11.035_bib19 article-title: Structure of a cannabinoid receptor and functional expression of the cloned cDNA publication-title: Nature doi: 10.1038/346561a0 – volume: 410 start-page: 588 year: 2001 ident: 10.1016/j.brainres.2005.11.035_bib37 article-title: Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses publication-title: Nature doi: 10.1038/35069076 – volume: 83 start-page: 393 year: 1998 ident: 10.1016/j.brainres.2005.11.035_bib36 article-title: Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system publication-title: Neuroscience doi: 10.1016/S0306-4522(97)00436-3 – volume: 5 start-page: 385 year: 1995 ident: 10.1016/j.brainres.2005.11.035_bib6 article-title: Cloning and sequencing of a cDNA encoding the mouse brain-type cannabinoid receptor protein publication-title: DNA Sequence doi: 10.3109/10425179509020870 – year: 1982 ident: 10.1016/j.brainres.2005.11.035_bib41 – volume: 49 start-page: 211 year: 2005 ident: 10.1016/j.brainres.2005.11.035_bib30 article-title: Synthetic cannabinoid WIN55212-2 inhibits generation of inflammatory mediators by IL-IB-stimulated human astrocytes publication-title: Glia doi: 10.1002/glia.20108 – volume: 292 start-page: 886 year: 2000 ident: 10.1016/j.brainres.2005.11.035_bib14 article-title: Cloning and pharmacological characterization of the rat CB2 cannabinoid receptor publication-title: J. Pharmacol. Exp. Ther. doi: 10.1016/S0022-3565(24)35367-4 – volume: 310 start-page: 329 year: 2005 ident: 10.1016/j.brainres.2005.11.035_bib38 article-title: Identification and functional characterization of brainstem cannabinoid CB2 receptors publication-title: Science doi: 10.1126/science.1115740 – volume: 25 start-page: 2530 year: 2005 ident: 10.1016/j.brainres.2005.11.035_bib2 article-title: A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3923-04.2005 – volume: 66 start-page: 307 year: 2002 ident: 10.1016/j.brainres.2005.11.035_bib23 article-title: Endocannabinoids and cannabinoid receptor genetics publication-title: Prog. Neurobiol. doi: 10.1016/S0301-0082(02)00007-2 – volume: 142 start-page: 278 year: 1997 ident: 10.1016/j.brainres.2005.11.035_bib29 article-title: Cannabinoid receptors CB1 and CB2, a characterization of expression and adenylate cyclase modulation within the immune system publication-title: Toxicol. Appl. Pharmacol. doi: 10.1006/taap.1996.8034 – volume: 2 start-page: 69 year: 2002 ident: 10.1016/j.brainres.2005.11.035_bib5 article-title: Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation publication-title: Int. J. Immunopharmacol. doi: 10.1016/S1567-5769(01)00147-3 – volume: 365 start-page: 61 year: 1993 ident: 10.1016/j.brainres.2005.11.035_bib21 article-title: Molecular characterization of a peripheral cannabinoid receptor publication-title: Nature doi: 10.1038/365061a0 – volume: 275 start-page: 605 year: 2000 ident: 10.1016/j.brainres.2005.11.035_bib35 article-title: Evidence that 2-arachidonylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.1.605 – volume: 132 start-page: 87 year: 2004 ident: 10.1016/j.brainres.2005.11.035_bib11 article-title: Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors publication-title: Mol. Brain Res. doi: 10.1016/j.molbrainres.2004.08.025 – volume: 17 start-page: 91 year: 2000 ident: 10.1016/j.brainres.2005.11.035_bib18 article-title: Expression of CB2 cannabinoid receptor mRNA in adult rat retina publication-title: Vis. Neurosci. doi: 10.1017/S0952523800171093 – volume: 93 start-page: 3984 year: 1996 ident: 10.1016/j.brainres.2005.11.035_bib31 article-title: The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebral granule neurons publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.93.9.3984 – volume: 396 start-page: 141 issue: 2–3 year: 2000 ident: 10.1016/j.brainres.2005.11.035_bib40 article-title: Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor publication-title: Eur. J. Pharmacol. doi: 10.1016/S0014-2999(00)00211-9 – volume: 23 start-page: 11136 year: 2003 ident: 10.1016/j.brainres.2005.11.035_bib1 article-title: Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-35-11136.2003 – volume: 232 start-page: 54 year: 1995 ident: 10.1016/j.brainres.2005.11.035_bib10 article-title: Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations publication-title: Eur. J. Biochem doi: 10.1111/j.1432-1033.1995.tb20780.x – volume: 24 start-page: 266 year: 2003 ident: 10.1016/j.brainres.2005.11.035_bib20 article-title: Cannabis and alcohol—A close friendship publication-title: Trends Pharmacol. Sci. doi: 10.1016/S0165-6147(03)00107-X – volume: 75 start-page: 1907 year: 2004 ident: 10.1016/j.brainres.2005.11.035_bib25 article-title: Role of the endocannabinoid system in Alzheimer's disease: new perspectives publication-title: Life Sci. doi: 10.1016/j.lfs.2004.03.026 – volume: 301 start-page: 1020 year: 2002 ident: 10.1016/j.brainres.2005.11.035_bib27 article-title: Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.301.3.1020 – volume: 353 start-page: 23 year: 1998 ident: 10.1016/j.brainres.2005.11.035_bib3 article-title: An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonyl-glycerol cannabinoid activity publication-title: Eur. J. Pharmacol. doi: 10.1016/S0014-2999(98)00392-6 – volume: 258 start-page: 1946 year: 1992 ident: 10.1016/j.brainres.2005.11.035_bib8 article-title: Isolation and structure of a brain constituent that binds to the cannabinoid receptor publication-title: Science doi: 10.1126/science.1470919 – volume: 377 start-page: 117 year: 1999 ident: 10.1016/j.brainres.2005.11.035_bib13 article-title: Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528, further evidence for CB2 receptor absence in the rat central nervous system publication-title: Eur. J. Pharmacol. doi: 10.1016/S0014-2999(99)00402-1 – volume: 98 start-page: 3662 year: 2001 ident: 10.1016/j.brainres.2005.11.035_bib15 article-title: 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.061029898 – volume: 215 start-page: 89 year: 1995 ident: 10.1016/j.brainres.2005.11.035_bib34 article-title: 2-Arachidonoylglycerol: a possible endogenous cannabinoid ligand in brain publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1995.2437 – volume: 108 start-page: 169 year: 2000 ident: 10.1016/j.brainres.2005.11.035_bib4 article-title: Cannabinoid receptors and the regulation of immune response publication-title: Chem. Phys. Lipids doi: 10.1016/S0009-3084(00)00195-X – volume: 92 start-page: 3376 year: 1995 ident: 10.1016/j.brainres.2005.11.035_bib9 article-title: Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.92.8.3376 – volume: 53 start-page: 208 year: 2004 ident: 10.1016/j.brainres.2005.11.035_bib22 article-title: Cannabinoid CB2 receptors are expressed by perivascular microglia cells in the human brain: an immunohistochemical study publication-title: Synapse doi: 10.1002/syn.20050 |
SSID | ssj0003390 |
Score | 2.4303803 |
Snippet | Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors.... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10 |
SubjectTerms | Anatomy Animals Biological and medical sciences Blotting, Northern - methods Blotting, Western - methods Brain Brain - anatomy & histology Brain - metabolism Brain Mapping CB2 blocking peptide CB2 cannabinoid receptor CB2 knockout mice CB2 polyclonal antibody Cell Line Central nervous system Embryo, Mammalian Fundamental and applied biological sciences. Psychology Gene Expression - physiology Hippocampal cultures Humans Immunohistochemistry In Situ Hybridization - methods In situ hybridization, mRNA In Vitro Techniques Mice Mice, Knockout Rats Rats, Sprague-Dawley Receptor, Cannabinoid, CB2 - chemistry Receptor, Cannabinoid, CB2 - deficiency Receptor, Cannabinoid, CB2 - genetics Receptor, Cannabinoid, CB2 - metabolism Reverse Transcriptase Polymerase Chain Reaction - methods RNA, Messenger - metabolism RT-PCR Transfection - methods Vertebrates: nervous system and sense organs |
Title | Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006899305016239 https://dx.doi.org/10.1016/j.brainres.2005.11.035 https://www.ncbi.nlm.nih.gov/pubmed/16472786 https://www.proquest.com/docview/17109569 https://www.proquest.com/docview/67677659 |
Volume | 1071 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvQgian3UR92DeItNuslu4q0GpfWFiIK3kH0EWjQtth68-Nud2STWgkXBUyDZCbuT2ZlvNvMg5Mh4GF2smKOkdh1f8ciRHamdCJwJl0ulXRtNeHPLe4_-5VPwVCNxlQuDYZWl7i90utXW5Z12yc32eDDAHF-Xg7cAAguwpcMwic_3Bcr6yccszIOx4pwFPWcc_S1LeHgisQ0DuLXF2QpW87Rt3340UCvjdAJsy4p-F4sBqTVMF2tktUSUtFtMep3UTL5BGt0cvOmXd3pMbYynPTxvkF6c5nkKzvBooGl81qGwdjPGhjuntI-ZIiNbf1iVVQSotXRlpiYd5BTEhdrVbJLHi_OHuOeUvRQcFQg2dWBjZ4HmvjJCK8PB0HOmXQ13fPhcwvMyUI06A3gAkCaThstAyTTyuQKmAS5iW6Sej3KzQyhghtDjka-YgecAzkOjpKcE8zJAi1o2SVAxMFFloXHsd_GcVBFlw6RiPHbBDMALSYDxTdL-ohsXpTZ-pRDV90mqRFJQfQlYg18poy_KOXH7E21rThRmkxUBD8HNb5LDSjYS2Kz4BybNzehtAiM8LPwYLR6B9fMED2DEdiFUs7djoX8R8t1_TH2PLBdHSB3HZfukPn19MwcAqqayZXdNiyx14_vrO7z2r3q3n-ieIrM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHEBCiDfjmQPiVtYubdpyGxNTx2MnkLhVzaNSJ-gmGAf-PU6abkwCDYlrGlep49ifUz8AzpWno4sFdQSXruMLFju8zaUTozPhMi6ka6IJHwYsefJvn4PnJejWuTA6rNLq_kqnG21tR1qWm61xUegcX5eht4ACi7ClTeNlWPF1U-sGrHT6d8lgqpApra5atPOsCb4lCg8vue7EgJ5tdb2iC3qazm8_2qj1cfaOnMurlhe_Y1Jjm3qbsGFBJelU696CJVVuw06nRIf69ZNcEBPmae7PdyDpZmWZoT88KiTpXrcJfr4a6547V6Svk0VGpgSxsIUEiDF2NlmTFCVBiSHma3bhqXfz2E0c207BEUFIJw6e7TyQzBcqlEIxtPWMSlfiiI87FnpejtpR5ogQENXkXDEeCJ7FPhPINIRGdA8a5ahUB0AQNkQei31BFT5HfB4pwT0RUi9HwCh5E4KagamwtcZ1y4uXtA4qG6Y143UjzAAdkRQZ34TWlG5cVdtYSBHW-5PWuaSo_VI0CAsp4ynlnMT9ifZ0ThRmiw0DFqGn34SzWjZSPK_6J0xWqtHHO87wdO3H-PcZuoReyAKcsV8J1eztutZ_GLHDfyz9DFaTx4f79L4_uDuCtepGqe249Bgak7cPdYIYa8JP7Rn6AqBXI8s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cannabinoid+CB2+receptors%3A+Immunohistochemical+localization+in+rat+brain&rft.jtitle=Brain+research&rft.au=Gong%2C+J+P&rft.au=Onaivi%2C+E+S&rft.au=Ishiguro%2C+H&rft.au=Liu%2C+Q+R&rft.date=2006-02-03&rft.issn=0006-8993&rft.volume=1071&rft.issue=1&rft.spage=10&rft.epage=23&rft_id=info:doi/10.1016%2Fj.brainres.2005.11.035&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8993&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8993&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8993&client=summon |