Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain

Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless,...

Full description

Saved in:
Bibliographic Details
Published inBrain research Vol. 1071; no. 1; pp. 10 - 23
Main Authors Gong, Jian-Ping, Onaivi, Emmanuel S., Ishiguro, Hiroki, Liu, Qing-Rong, Tagliaferro, Patricia A., Brusco, Alicia, Uhl, George R.
Format Journal Article
LanguageEnglish
Published London Elsevier B.V 03.02.2006
Amsterdam Elsevier
New York, NY
Subjects
Online AccessGet full text
ISSN0006-8993
1872-6240
DOI10.1016/j.brainres.2005.11.035

Cover

Abstract Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless, we now describe expression of CB2-receptor-like immunoreactivity in brain in neuronal patterns that support broader CNS roles for this receptor. Two anti-CB2 affinity purified polyclonal antibodies were raised in rabbits immunized with peptide conjugates that corresponded to amino acids 1–33 and 20–33. Western blot analyses revealed specific bands that were identified using these sera and were absent when the sera were preadsorbed with 8.3 μg/ml of the immunizing peptides. These studies, and initial RT-PCR analyses of brain CB1 and CB2 mRNAs, also support the expression of brain CB2 receptor transcripts at levels much lower than those of CB1 receptors. CB2 cannabinoid receptor mRNA was clearly expressed in the cerebellum of wild type but not in CB2 knockout mice. CB2 immunostaining was detected in the interpolar part of spinal 5th nucleus of wild type but not in CB2 knockout mice, using a mouse C-terminal CB2 receptor antibody. Immunohistochemical analyses revealed abundant immunostaining for CB2 receptors in apparent neuronal and glial processes in a number of rat brain areas. Cerebellar Purkinje cells and hippocampal pyramidal cells revealed substantial immunoreactivity that was absent when sections were stained with preadsorbed sera. CB2 immunoreactivity was also observed in olfactory tubercle, islands of Calleja, cerebral cortex, striatum, thalamic nuclei, hippocampus, amygdala, substantia nigra, periaqueductal gray, paratrochlear nucleus, paralemniscal nucleus, red nucleus, pontine nuclei, inferior colliculus and the parvocellular portion of the medial vestibular nucleus. In-vitro, CB2 immunoreactivity was also present in hippocampal cell cultures. The multifocal expression of CB2 immunoreactivity in glial and neuronal patterns in a number of brain regions suggests reevaluation of the possible roles that CB2 receptors may play in the brain.
AbstractList Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless, we now describe expression of CB2-receptor-like immunoreactivity in brain in neuronal patterns that support broader CNS roles for this receptor. Two anti-CB2 affinity purified polyclonal antibodies were raised in rabbits immunized with peptide conjugates that corresponded to amino acids 1-33 and 20-33. Western blot analyses revealed specific bands that were identified using these sera and were absent when the sera were preadsorbed with 8.3 mug/ml of the immunizing peptides. These studies, and initial RT-PCR analyses of brain CB1 and CB2 mRNAs, also support the expression of brain CB2 receptor transcripts at levels much lower than those of CB1 receptors. CB2 cannabinoid receptor mRNA was clearly expressed in the cerebellum of wild type but not in CB2 knockout mice. CB2 immunostaining was detected in the interpolar part of spinal 5th nucleus of wild type but not in CB2 knockout mice, using a mouse C-terminal CB2 receptor antibody. Immunohistochemical analyses revealed abundant immunostaining for CB2 receptors in apparent neuronal and glial processes in a number of rat brain areas. Cerebellar Purkinje cells and hippocampal pyramidal cells revealed substantial immunoreactivity that was absent when sections were stained with preadsorbed sera. CB2 immunoreactivity was also observed in olfactory tubercle, islands of Calleja, cerebral cortex, striatum, thalamic nuclei, hippocampus, amygdala, substantia nigra, periaqueductal gray, paratrochlear nucleus, paralemniscal nucleus, red nucleus, pontine nuclei, inferior colliculus and the parvocellular portion of the medial vestibular nucleus. In-vitro, CB2 immunoreactivity was also present in hippocampal cell cultures. The multifocal expression of CB2 immunoreactivity in glial and neuronal patterns in a number of brain regions suggests reevaluation of the possible roles that CB2 receptors may play in the brain.
Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless, we now describe expression of CB2-receptor-like immunoreactivity in brain in neuronal patterns that support broader CNS roles for this receptor. Two anti-CB2 affinity purified polyclonal antibodies were raised in rabbits immunized with peptide conjugates that corresponded to amino acids 1–33 and 20–33. Western blot analyses revealed specific bands that were identified using these sera and were absent when the sera were preadsorbed with 8.3 μg/ml of the immunizing peptides. These studies, and initial RT-PCR analyses of brain CB1 and CB2 mRNAs, also support the expression of brain CB2 receptor transcripts at levels much lower than those of CB1 receptors. CB2 cannabinoid receptor mRNA was clearly expressed in the cerebellum of wild type but not in CB2 knockout mice. CB2 immunostaining was detected in the interpolar part of spinal 5th nucleus of wild type but not in CB2 knockout mice, using a mouse C-terminal CB2 receptor antibody. Immunohistochemical analyses revealed abundant immunostaining for CB2 receptors in apparent neuronal and glial processes in a number of rat brain areas. Cerebellar Purkinje cells and hippocampal pyramidal cells revealed substantial immunoreactivity that was absent when sections were stained with preadsorbed sera. CB2 immunoreactivity was also observed in olfactory tubercle, islands of Calleja, cerebral cortex, striatum, thalamic nuclei, hippocampus, amygdala, substantia nigra, periaqueductal gray, paratrochlear nucleus, paralemniscal nucleus, red nucleus, pontine nuclei, inferior colliculus and the parvocellular portion of the medial vestibular nucleus. In-vitro, CB2 immunoreactivity was also present in hippocampal cell cultures. The multifocal expression of CB2 immunoreactivity in glial and neuronal patterns in a number of brain regions suggests reevaluation of the possible roles that CB2 receptors may play in the brain.
Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless, we now describe expression of CB2-receptor-like immunoreactivity in brain in neuronal patterns that support broader CNS roles for this receptor. Two anti-CB2 affinity purified polyclonal antibodies were raised in rabbits immunized with peptide conjugates that corresponded to amino acids 1-33 and 20-33. Western blot analyses revealed specific bands that were identified using these sera and were absent when the sera were preadsorbed with 8.3 mug/ml of the immunizing peptides. These studies, and initial RT-PCR analyses of brain CB1 and CB2 mRNAs, also support the expression of brain CB2 receptor transcripts at levels much lower than those of CB1 receptors. CB2 cannabinoid receptor mRNA was clearly expressed in the cerebellum of wild type but not in CB2 knockout mice. CB2 immunostaining was detected in the interpolar part of spinal 5th nucleus of wild type but not in CB2 knockout mice, using a mouse C-terminal CB2 receptor antibody. Immunohistochemical analyses revealed abundant immunostaining for CB2 receptors in apparent neuronal and glial processes in a number of rat brain areas. Cerebellar Purkinje cells and hippocampal pyramidal cells revealed substantial immunoreactivity that was absent when sections were stained with preadsorbed sera. CB2 immunoreactivity was also observed in olfactory tubercle, islands of Calleja, cerebral cortex, striatum, thalamic nuclei, hippocampus, amygdala, substantia nigra, periaqueductal gray, paratrochlear nucleus, paralemniscal nucleus, red nucleus, pontine nuclei, inferior colliculus and the parvocellular portion of the medial vestibular nucleus. In-vitro, CB2 immunoreactivity was also present in hippocampal cell cultures. The multifocal expression of CB2 immunoreactivity in glial and neuronal patterns in a number of brain regions suggests reevaluation of the possible roles that CB2 receptors may play in the brain.Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless, we now describe expression of CB2-receptor-like immunoreactivity in brain in neuronal patterns that support broader CNS roles for this receptor. Two anti-CB2 affinity purified polyclonal antibodies were raised in rabbits immunized with peptide conjugates that corresponded to amino acids 1-33 and 20-33. Western blot analyses revealed specific bands that were identified using these sera and were absent when the sera were preadsorbed with 8.3 mug/ml of the immunizing peptides. These studies, and initial RT-PCR analyses of brain CB1 and CB2 mRNAs, also support the expression of brain CB2 receptor transcripts at levels much lower than those of CB1 receptors. CB2 cannabinoid receptor mRNA was clearly expressed in the cerebellum of wild type but not in CB2 knockout mice. CB2 immunostaining was detected in the interpolar part of spinal 5th nucleus of wild type but not in CB2 knockout mice, using a mouse C-terminal CB2 receptor antibody. Immunohistochemical analyses revealed abundant immunostaining for CB2 receptors in apparent neuronal and glial processes in a number of rat brain areas. Cerebellar Purkinje cells and hippocampal pyramidal cells revealed substantial immunoreactivity that was absent when sections were stained with preadsorbed sera. CB2 immunoreactivity was also observed in olfactory tubercle, islands of Calleja, cerebral cortex, striatum, thalamic nuclei, hippocampus, amygdala, substantia nigra, periaqueductal gray, paratrochlear nucleus, paralemniscal nucleus, red nucleus, pontine nuclei, inferior colliculus and the parvocellular portion of the medial vestibular nucleus. In-vitro, CB2 immunoreactivity was also present in hippocampal cell cultures. The multifocal expression of CB2 immunoreactivity in glial and neuronal patterns in a number of brain regions suggests reevaluation of the possible roles that CB2 receptors may play in the brain.
Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors. Since CB2 receptors are intensely expressed in peripheral and immune tissues, expression in brain microglia has been anticipated. Nevertheless, we now describe expression of CB2-receptor-like immunoreactivity in brain in neuronal patterns that support broader CNS roles for this receptor. Two anti-CB2 affinity purified polyclonal antibodies were raised in rabbits immunized with peptide conjugates that corresponded to amino acids 1-33 and 20-33. Western blot analyses revealed specific bands that were identified using these sera and were absent when the sera were preadsorbed with 8.3 mu g/ml of the immunizing peptides. These studies, and initial RT-PCR analyses of brain CB1 and CB2 mRNAs, also support the expression of brain CB2 receptor transcripts at levels much lower than those of CB1 receptors. CB2 cannabinoid receptor mRNA was clearly expressed in the cerebellum of wild type but not in CB2 knockout mice. CB2 immunostaining was detected in the interpolar part of spinal 5th nucleus of wild type but not in CB2 knockout mice, using a mouse C-terminal CB2 receptor antibody. Immunohistochemical analyses revealed abundant immunostaining for CB2 receptors in apparent neuronal and glial processes in a number of rat brain areas. Cerebellar Purkinje cells and hippocampal pyramidal cells revealed substantial immunoreactivity that was absent when sections were stained with preadsorbed sera. CB2 immunoreactivity was also observed in olfactory tubercle, islands of Calleja, cerebral cortex, striatum, thalamic nuclei, hippocampus, amygdala, substantia nigra, periaqueductal gray, paratrochlear nucleus, paralemniscal nucleus, red nucleus, pontine nuclei, inferior colliculus and the parvocellular portion of the medial vestibular nucleus. In-vitro, CB2 immunoreactivity was also present in hippocampal cell cultures. The multifocal expression of CB2 immunoreactivity in glial and neuronal patterns in a number of brain regions suggests reevaluation of the possible roles that CB2 receptors may play in the brain.
Author Liu, Qing-Rong
Gong, Jian-Ping
Ishiguro, Hiroki
Brusco, Alicia
Uhl, George R.
Tagliaferro, Patricia A.
Onaivi, Emmanuel S.
Author_xml – sequence: 1
  givenname: Jian-Ping
  surname: Gong
  fullname: Gong, Jian-Ping
  organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 20892, USA
– sequence: 2
  givenname: Emmanuel S.
  surname: Onaivi
  fullname: Onaivi, Emmanuel S.
  organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 20892, USA
– sequence: 3
  givenname: Hiroki
  surname: Ishiguro
  fullname: Ishiguro, Hiroki
  organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 20892, USA
– sequence: 4
  givenname: Qing-Rong
  surname: Liu
  fullname: Liu, Qing-Rong
  organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 20892, USA
– sequence: 5
  givenname: Patricia A.
  surname: Tagliaferro
  fullname: Tagliaferro, Patricia A.
  organization: Instituto de Biologia Celular y Neurociencias Prof. “E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Argentina
– sequence: 6
  givenname: Alicia
  surname: Brusco
  fullname: Brusco, Alicia
  organization: Instituto de Biologia Celular y Neurociencias Prof. “E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Argentina
– sequence: 7
  givenname: George R.
  surname: Uhl
  fullname: Uhl, George R.
  email: GUhl@intra.nida.nih.gov
  organization: Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 20892, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17568027$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16472786$$D View this record in MEDLINE/PubMed
BookMark eNqNkVFvFCEUhYmpsdvqX2jmRd9mvDAD7BhjtBu1TZr4os-EgTsp6wyswJrUX1-2u9WkL-sLBPKdA_ecM3Lig0dCLig0FKh4u26GqJ2PmBoGwBtKG2j5M7KgS8lqwTo4IQsAEPWy79tTcpbSuhzbtocX5JSKTjK5FAtytdLe68H54Gy1umRVRIObHGJ6V13P89aHW5dyMLc4O6OnagpldX90dsFXzldR5-rhJy_J81FPCV8d9nPy48vn76ur-ubb1-vVp5vacNnmWkI7cis6g9IaFIxy0Vqw5aZDyiSlIwCzI-1BUDkOKAZuBt13wpQ5gPH2nLzZ-25i-LXFlNXsksFp0h7DNikhhZSC90dBKin0XOzAiwO4HWa0ahPdrOOdegypAK8PgE5l-jFqb1z6x0kulsBk4d7vORNDShFHZVx-SCqXhCZFQe26U2v12J3adacoVaW7IhdP5H9fOCb8uBdiyf23w6iScegNWlfazMoGd9ziwxMLMzm_a_wn3v2PwT213suh
CODEN BRREAP
CitedBy_id crossref_primary_10_1016_j_physbeh_2016_04_021
crossref_primary_10_1016_j_psyneuen_2009_04_007
crossref_primary_10_1007_s00125_007_0890_y
crossref_primary_10_1007_s00018_016_2300_4
crossref_primary_10_1016_j_regpep_2013_12_004
crossref_primary_10_1016_j_pnpbp_2019_109677
crossref_primary_10_3389_fphar_2022_956886
crossref_primary_10_1021_acschemneuro_3c00345
crossref_primary_10_1016_j_neulet_2021_135883
crossref_primary_10_1155_2011_529851
crossref_primary_10_1038_bjp_2008_175
crossref_primary_10_1016_j_nlm_2016_07_031
crossref_primary_10_1111_j_1476_5381_2009_00629_x
crossref_primary_10_1586_14737175_8_1_37
crossref_primary_10_1016_j_neuroscience_2012_09_080
crossref_primary_10_1111_acer_12845
crossref_primary_10_1016_j_brainres_2008_01_011
crossref_primary_10_1097_SHK_0000000000001763
crossref_primary_10_1016_j_pnpbp_2012_02_006
crossref_primary_10_1016_j_neuroscience_2016_08_047
crossref_primary_10_1371_journal_pone_0233020
crossref_primary_10_1016_j_phrs_2007_06_002
crossref_primary_10_1016_j_euroneuro_2009_02_001
crossref_primary_10_1111_j_1476_5381_2010_00729_x
crossref_primary_10_1016_j_neulet_2013_05_039
crossref_primary_10_1016_j_euroneuro_2013_11_002
crossref_primary_10_1016_j_biopha_2018_11_039
crossref_primary_10_1016_j_neuroscience_2015_06_048
crossref_primary_10_1080_00016480701796944
crossref_primary_10_3389_fnbeh_2020_595315
crossref_primary_10_1177_0269881112450786
crossref_primary_10_1007_s12035_007_8007_7
crossref_primary_10_3390_ijms25031893
crossref_primary_10_1016_j_bbr_2016_11_029
crossref_primary_10_1016_j_euroneuro_2010_06_017
crossref_primary_10_3390_jcm12237201
crossref_primary_10_1016_j_neuropharm_2015_07_010
crossref_primary_10_1517_14728222_2013_754426
crossref_primary_10_1016_j_neubiorev_2018_12_026
crossref_primary_10_1016_j_neuroscience_2017_03_061
crossref_primary_10_1016_j_taap_2007_11_007
crossref_primary_10_1007_s40429_017_0174_7
crossref_primary_10_3390_biom13010162
crossref_primary_10_1016_j_heares_2010_05_015
crossref_primary_10_1016_j_tips_2013_08_008
crossref_primary_10_3390_ijms26010152
crossref_primary_10_1016_j_biopsych_2009_09_024
crossref_primary_10_4103_jmau_jmau_97_20
crossref_primary_10_1016_j_imbio_2010_03_009
crossref_primary_10_1016_j_yfrne_2016_01_003
crossref_primary_10_2174_2589977515666230502104021
crossref_primary_10_1016_j_pbb_2008_03_004
crossref_primary_10_1016_j_ejmech_2008_03_040
crossref_primary_10_1111_bph_12607
crossref_primary_10_1177_0269881111400652
crossref_primary_10_1093_ijnp_pyw102
crossref_primary_10_1002_syn_22061
crossref_primary_10_1016_j_pain_2008_06_007
crossref_primary_10_1002_dta_302
crossref_primary_10_1002_jnr_24770
crossref_primary_10_1016_j_expneurol_2016_06_014
crossref_primary_10_1089_can_2022_0151
crossref_primary_10_1159_000330205
crossref_primary_10_1016_j_phrs_2012_11_002
crossref_primary_10_1016_j_brainresbull_2018_06_012
crossref_primary_10_3390_biom9080326
crossref_primary_10_1007_s00216_010_4171_0
crossref_primary_10_1152_physrev_00019_2008
crossref_primary_10_3390_molecules25030652
crossref_primary_10_1016_j_neubiorev_2022_104801
crossref_primary_10_1016_j_neurop_2022_07_003
crossref_primary_10_1111_j_1476_5381_2009_00310_x
crossref_primary_10_1124_jpet_111_188540
crossref_primary_10_1074_jbc_M111_335273
crossref_primary_10_1016_j_neuroscience_2011_06_062
crossref_primary_10_1002_jnr_23452
crossref_primary_10_1016_j_lfs_2007_04_024
crossref_primary_10_1111_j_1600_079X_2008_00597_x
crossref_primary_10_1007_s00213_017_4537_5
crossref_primary_10_3390_biomedicines10030593
crossref_primary_10_1097_j_pain_0000000000001027
crossref_primary_10_1007_s10571_017_0482_4
crossref_primary_10_1007_s12035_022_02884_6
crossref_primary_10_1016_j_ejphar_2006_04_034
crossref_primary_10_3390_ijms23115908
crossref_primary_10_1016_j_nbd_2008_09_015
crossref_primary_10_1016_j_nrleng_2018_12_024
crossref_primary_10_1007_s00259_016_3457_7
crossref_primary_10_1016_j_pain_2009_08_013
crossref_primary_10_1139_cjpp_2016_0346
crossref_primary_10_3390_ph7030339
crossref_primary_10_2174_1570159X20666220201091006
crossref_primary_10_3390_ijms242115777
crossref_primary_10_1124_pr_58_3_2
crossref_primary_10_3390_ijms19082164
crossref_primary_10_1007_s10695_013_9783_9
crossref_primary_10_1016_j_neuron_2016_03_034
crossref_primary_10_1016_j_physbeh_2010_02_025
crossref_primary_10_1111_j_1476_5381_2010_01166_x
crossref_primary_10_1124_pr_110_003004
crossref_primary_10_1074_jbc_M800524200
crossref_primary_10_1016_j_phrs_2021_105607
crossref_primary_10_1007_s00210_013_0930_8
crossref_primary_10_1016_j_phrs_2021_105729
crossref_primary_10_1016_j_pharmthera_2016_10_015
crossref_primary_10_1016_j_exger_2014_04_008
crossref_primary_10_3390_molecules29020473
crossref_primary_10_1016_j_neuint_2008_02_005
crossref_primary_10_3390_biomedicines11102642
crossref_primary_10_1097_FBP_0000000000000222
crossref_primary_10_1155_2009_625469
crossref_primary_10_1016_j_neuroscience_2006_11_016
crossref_primary_10_1002_jnr_24765
crossref_primary_10_1016_j_pbb_2011_04_003
crossref_primary_10_1007_s00216_006_0717_6
crossref_primary_10_1016_j_ejphar_2007_12_016
crossref_primary_10_1152_physrev_00002_2016
crossref_primary_10_3390_ph3103101
crossref_primary_10_1016_j_pnpbp_2023_110924
crossref_primary_10_1038_emm_2015_100
crossref_primary_10_1016_j_yhbeh_2009_10_005
crossref_primary_10_1038_npp_2014_297
crossref_primary_10_1002_hup_2779
crossref_primary_10_1016_j_neuropharm_2018_07_020
crossref_primary_10_3389_fncel_2022_832854
crossref_primary_10_1016_j_lfs_2012_10_006
crossref_primary_10_1016_j_bbr_2015_03_051
crossref_primary_10_3390_molecules24071350
crossref_primary_10_1016_j_pbb_2020_173059
crossref_primary_10_1080_10799893_2024_2431986
crossref_primary_10_1097_FBP_0000000000000073
crossref_primary_10_3389_fendo_2020_00114
crossref_primary_10_1016_j_nbd_2019_104526
crossref_primary_10_3389_fphar_2017_00200
crossref_primary_10_1016_j_pnpbp_2020_110031
crossref_primary_10_1016_j_drudis_2018_01_029
crossref_primary_10_1111_j_1471_4159_2010_06578_x
crossref_primary_10_1016_j_ntt_2016_08_003
crossref_primary_10_1074_jbc_M113_454843
crossref_primary_10_1002_cne_22382
crossref_primary_10_3390_ijms25105378
crossref_primary_10_1016_j_phrs_2022_106560
crossref_primary_10_1186_2191_2858_2_32
crossref_primary_10_3389_fphar_2015_00006
crossref_primary_10_1093_abbs_gmv049
crossref_primary_10_4103_0019_5545_158134
crossref_primary_10_1111_j_1476_5381_2011_01625_x
crossref_primary_10_1111_adb_12367
crossref_primary_10_1016_j_ejphar_2016_06_001
crossref_primary_10_1016_j_neuropharm_2025_110404
crossref_primary_10_1016_j_neuint_2008_08_005
crossref_primary_10_1016_j_neuint_2013_12_005
crossref_primary_10_3390_ijms23094764
crossref_primary_10_1016_j_neuroscience_2011_12_028
crossref_primary_10_1111_j_1460_9568_2009_07075_x
crossref_primary_10_1002_syn_21626
crossref_primary_10_1016_j_neubiorev_2008_03_004
crossref_primary_10_1016_j_nucmedbio_2011_09_005
crossref_primary_10_1016_j_ejphar_2018_07_039
crossref_primary_10_1016_j_pbb_2010_03_004
crossref_primary_10_1016_j_freeradbiomed_2017_03_033
crossref_primary_10_1111_cns_13977
crossref_primary_10_3389_fnins_2016_00406
crossref_primary_10_1016_j_pharep_2016_07_004
crossref_primary_10_1016_j_pneurobio_2019_02_001
crossref_primary_10_1016_j_bbr_2023_114439
crossref_primary_10_1007_s10753_015_0168_3
crossref_primary_10_1016_j_jbior_2020_100774
crossref_primary_10_1089_can_2021_0085
crossref_primary_10_1016_j_bmc_2007_05_060
crossref_primary_10_1016_j_jad_2019_07_083
crossref_primary_10_2174_1871527320666210202121103
crossref_primary_10_1007_s11690_011_0291_8
crossref_primary_10_1089_can_2020_0004
crossref_primary_10_1155_2019_2878352
crossref_primary_10_1016_j_neuropharm_2017_06_015
crossref_primary_10_1007_s00213_015_3939_5
crossref_primary_10_1038_sj_bjp_0707527
crossref_primary_10_1186_s12974_016_0783_4
crossref_primary_10_1523_JNEUROSCI_5483_10_2011
crossref_primary_10_1073_pnas_1413210111
crossref_primary_10_1161_STROKEAHA_116_014793
crossref_primary_10_1016_j_brainresbull_2021_06_022
crossref_primary_10_1016_j_neurobiolaging_2010_09_012
crossref_primary_10_1002_glia_21061
crossref_primary_10_2174_1570159X18666200217140255
crossref_primary_10_3389_fnagi_2022_1018610
crossref_primary_10_1134_S1990747807010035
crossref_primary_10_1007_s12035_017_0689_x
crossref_primary_10_1111_cbdd_13069
crossref_primary_10_3390_ijms19030833
crossref_primary_10_1016_j_pharma_2008_07_003
crossref_primary_10_1371_journal_pone_0070849
crossref_primary_10_1016_j_neubiorev_2020_10_018
crossref_primary_10_1016_j_prostaglandins_2008_12_002
crossref_primary_10_1007_s12640_015_9555_7
crossref_primary_10_1016_j_ejphar_2013_09_068
crossref_primary_10_1007_s12035_007_0005_2
crossref_primary_10_3834_uij_1944_5784_2013_10_06
crossref_primary_10_1371_journal_pone_0140592
crossref_primary_10_1517_14656566_2014_918102
crossref_primary_10_1016_j_ejphar_2008_02_099
crossref_primary_10_1515_revneuro_2021_0109
crossref_primary_10_2174_1570159X18666200429234430
crossref_primary_10_1007_s12031_020_01774_7
crossref_primary_10_1097_FBP_0000000000000277
crossref_primary_10_1038_sj_bjp_0707466
crossref_primary_10_3389_fpsyt_2022_866052
crossref_primary_10_3389_fpsyt_2021_803394
crossref_primary_10_1002_ardp_201300255
crossref_primary_10_1124_mol_107_042945
crossref_primary_10_1038_aps_2016_149
crossref_primary_10_1016_j_neubiorev_2014_02_006
crossref_primary_10_1016_j_imbio_2009_05_011
crossref_primary_10_1016_j_mehy_2017_10_025
crossref_primary_10_1042_BJ20100751
crossref_primary_10_1080_02713680600762747
crossref_primary_10_1016_j_ejphar_2013_01_077
crossref_primary_10_1016_j_neuroscience_2015_10_041
crossref_primary_10_1073_pnas_1118167109
crossref_primary_10_1007_s12035_009_8061_4
crossref_primary_10_1002_dmrr_764
crossref_primary_10_1016_j_baga_2016_06_001
crossref_primary_10_1038_bjp_2008_130
crossref_primary_10_1038_sj_bjp_0707456
crossref_primary_10_1016_j_ebiom_2019_03_040
crossref_primary_10_1038_s41598_018_22888_4
crossref_primary_10_1016_j_ejphar_2011_06_057
crossref_primary_10_3389_fimmu_2023_1285052
crossref_primary_10_1021_acs_jmedchem_4c00564
crossref_primary_10_1002_syn_20856
crossref_primary_10_1007_s12640_018_9910_6
crossref_primary_10_2174_1570159X20666220927115811
crossref_primary_10_1016_j_pain_2008_10_002
crossref_primary_10_1093_chemse_bjy068
crossref_primary_10_1016_j_biopha_2018_05_086
crossref_primary_10_3390_molecules28165980
crossref_primary_10_1210_en_2019_00024
crossref_primary_10_1038_sj_bjp_0707442
crossref_primary_10_1016_j_neuint_2007_07_014
crossref_primary_10_1111_jvim_16467
crossref_primary_10_1038_sj_bjp_0707440
crossref_primary_10_1155_2013_259676
crossref_primary_10_1007_s13311_018_0610_y
crossref_primary_10_1111_liv_12263
crossref_primary_10_1016_j_brainresbull_2021_11_009
crossref_primary_10_1016_j_eplepsyres_2018_05_008
crossref_primary_10_1007_s00702_007_0660_5
crossref_primary_10_1074_jbc_M109_006338
crossref_primary_10_3390_biom12111560
crossref_primary_10_1016_j_euroneuro_2012_06_012
crossref_primary_10_3390_biom11111556
crossref_primary_10_1038_sj_tpj_6500431
crossref_primary_10_1016_j_lfs_2010_02_014
crossref_primary_10_15406_mojap_2017_03_00088
crossref_primary_10_1016_j_npep_2021_102196
crossref_primary_10_1002_alz_12244
crossref_primary_10_1016_j_exer_2016_11_015
crossref_primary_10_1002_syn_20714
crossref_primary_10_1038_npp_2011_262
crossref_primary_10_3389_fpsyt_2020_00315
crossref_primary_10_3390_molecules24173164
crossref_primary_10_3389_fnbeh_2014_00132
crossref_primary_10_1096_fj_06_6164fje
crossref_primary_10_1113_jphysiol_2014_286633
crossref_primary_10_1016_j_neuropharm_2014_10_008
crossref_primary_10_1177_0269881110367732
crossref_primary_10_1038_npp_2017_126
crossref_primary_10_3389_fpsyt_2022_828895
crossref_primary_10_1038_s41398_020_0832_8
crossref_primary_10_1007_s11938_016_0111_1
crossref_primary_10_1016_j_psyneuen_2017_10_015
crossref_primary_10_1002_jat_2828
crossref_primary_10_37349_ent_2021_00006
crossref_primary_10_1016_j_bbr_2018_11_043
crossref_primary_10_1089_neu_2010_1652
crossref_primary_10_1002_jlcr_3579
crossref_primary_10_1016_j_bcp_2018_09_013
crossref_primary_10_3389_fphar_2022_1010296
crossref_primary_10_3389_fphar_2021_722476
crossref_primary_10_1016_j_molimm_2011_09_016
crossref_primary_10_1016_j_neulet_2006_11_057
crossref_primary_10_3109_15622975_2016_1151075
crossref_primary_10_1016_j_neulet_2010_12_031
crossref_primary_10_2174_1573407214666180703130525
crossref_primary_10_1017_S1462399409000957
crossref_primary_10_1080_10799890600942674
crossref_primary_10_3390_life10060086
crossref_primary_10_1016_j_pharmthera_2020_107495
crossref_primary_10_4199_C00151ED1V01Y201702ISP074
crossref_primary_10_1016_j_imbio_2009_12_005
crossref_primary_10_3389_fnins_2022_925792
crossref_primary_10_3390_ijms21041423
crossref_primary_10_1016_j_bbr_2019_112012
crossref_primary_10_1016_j_nrl_2018_12_004
crossref_primary_10_1371_journal_pone_0001640
crossref_primary_10_1159_000517425
crossref_primary_10_1111_j_1476_5381_2010_00721_x
crossref_primary_10_1371_journal_pone_0129618
crossref_primary_10_1016_j_eplepsyres_2014_10_001
crossref_primary_10_1111_bph_14473
crossref_primary_10_1189_jlb_0306224
crossref_primary_10_3390_ijms242316728
crossref_primary_10_1111_bph_15208
crossref_primary_10_1016_j_biochi_2017_02_009
crossref_primary_10_1002_med_20135
crossref_primary_10_1007_s11481_015_9611_3
crossref_primary_10_1007_s11481_010_9239_2
crossref_primary_10_1038_s41401_021_00712_6
crossref_primary_10_1016_j_neubiorev_2020_04_020
crossref_primary_10_1186_1744_8069_5_59
crossref_primary_10_3390_biomedicines12010235
crossref_primary_10_1111_j_1476_5381_2008_00048_x
crossref_primary_10_1111_j_1476_5381_2010_00710_x
crossref_primary_10_1038_sj_npp_1301376
crossref_primary_10_1016_j_neuroscience_2008_11_015
crossref_primary_10_1007_s11884_017_0414_7
crossref_primary_10_1016_j_ejphar_2015_03_051
crossref_primary_10_1038_s41401_018_0037_3
crossref_primary_10_3389_fphar_2021_805758
crossref_primary_10_1016_j_pnpbp_2015_03_006
crossref_primary_10_1016_j_phrs_2025_107657
crossref_primary_10_1016_j_neuint_2007_06_033
crossref_primary_10_1111_fcp_12008
crossref_primary_10_1080_23262133_2015_1118177
crossref_primary_10_1016_j_neuropharm_2013_07_028
crossref_primary_10_1016_j_bcp_2018_08_016
crossref_primary_10_1016_j_nurt_2009_08_002
crossref_primary_10_1016_S1734_1140_11_70578_3
crossref_primary_10_1111_ejn_14103
crossref_primary_10_1016_j_pnpbp_2010_11_021
crossref_primary_10_1134_S0006297917110141
crossref_primary_10_1515_jbcpp_2015_0055
crossref_primary_10_1002_syn_20569
crossref_primary_10_1016_j_lfs_2015_12_053
crossref_primary_10_1089_jcr_2013_0010
crossref_primary_10_1016_j_diabet_2007_02_002
crossref_primary_10_3390_molecules26051448
crossref_primary_10_3390_ph17060689
crossref_primary_10_1038_npp_2012_22
crossref_primary_10_1186_1742_2094_11_120
crossref_primary_10_1371_journal_pone_0138986
crossref_primary_10_3389_fphar_2018_01496
crossref_primary_10_3390_nu15071702
crossref_primary_10_1523_ENEURO_0344_16_2017
crossref_primary_10_1002_cmdc_202400672
crossref_primary_10_1177_0269881110379507
crossref_primary_10_3390_molecules26082126
crossref_primary_10_1016_j_neuroscience_2021_06_012
crossref_primary_10_2337_db10_0962
crossref_primary_10_1038_s41401_020_00530_2
crossref_primary_10_1002_syn_20578
crossref_primary_10_1523_JNEUROSCI_2916_06_2007
crossref_primary_10_1111_febs_12125
crossref_primary_10_1038_nm_2722
crossref_primary_10_1016_j_bbr_2019_112297
crossref_primary_10_1016_j_nlm_2012_12_001
crossref_primary_10_1007_s11062_007_0040_7
crossref_primary_10_3389_fnbeh_2018_00041
crossref_primary_10_1016_j_neurobiolaging_2007_04_028
crossref_primary_10_1007_s00192_015_2802_x
crossref_primary_10_1016_j_pnpbp_2018_11_007
crossref_primary_10_3390_biomedicines10123000
crossref_primary_10_1111_j_1476_5381_2010_00723_x
crossref_primary_10_1371_journal_pone_0062511
crossref_primary_10_2174_1871527320666210211115007
crossref_primary_10_1007_s00429_014_0823_8
crossref_primary_10_1016_j_brainres_2011_03_020
crossref_primary_10_1517_14728222_10_5_653
crossref_primary_10_1111_bph_13186
crossref_primary_10_1007_s12035_007_0015_0
crossref_primary_10_1016_j_biopha_2008_02_007
crossref_primary_10_1111_j_1476_5381_2010_00819_x
crossref_primary_10_1556_ABiol_58_2007_Suppl_9
crossref_primary_10_1002_cne_21774
crossref_primary_10_1111_adb_13249
crossref_primary_10_1007_s00213_008_1076_0
crossref_primary_10_1038_npp_2011_34
crossref_primary_10_1016_j_brainresbull_2017_01_018
crossref_primary_10_1002_dta_1440
crossref_primary_10_1016_j_bmcl_2012_08_004
crossref_primary_10_1016_j_plipres_2023_101239
crossref_primary_10_1021_acs_jmedchem_6b00397
crossref_primary_10_1089_neu_2010_1672
crossref_primary_10_1111_micc_12276
crossref_primary_10_1016_j_ejmech_2014_05_055
crossref_primary_10_1038_sj_bjp_0707399
crossref_primary_10_1111_j_1476_5381_2010_00735_x
crossref_primary_10_1021_jm500220s
crossref_primary_10_1021_jm800416m
crossref_primary_10_1089_can_2020_0179
crossref_primary_10_1016_j_brainres_2019_146467
crossref_primary_10_1016_j_exger_2014_10_011
crossref_primary_10_1016_j_bbrc_2015_01_073
crossref_primary_10_3390_ijms23020975
crossref_primary_10_1016_j_ejphar_2021_174398
crossref_primary_10_1111_j_1601_183X_2009_00498_x
crossref_primary_10_3389_fphar_2017_00516
crossref_primary_10_1089_can_2020_0059
crossref_primary_10_1111_j_1755_5949_2008_00065_x
crossref_primary_10_1016_j_bmcl_2009_12_032
crossref_primary_10_1080_15440478_2013_861782
crossref_primary_10_3389_fncel_2021_629052
crossref_primary_10_1016_j_bmc_2013_09_040
crossref_primary_10_1111_j_1460_9568_2008_06162_x
crossref_primary_10_1111_j_1476_5381_2011_01542_x
crossref_primary_10_3390_ijms25115749
crossref_primary_10_1021_acschemneuro_9b00696
crossref_primary_10_1016_j_neuron_2016_05_012
crossref_primary_10_1016_j_pnpbp_2021_110438
crossref_primary_10_1002_ptr_3375
crossref_primary_10_1007_s00213_013_3117_6
crossref_primary_10_1016_j_clim_2011_02_010
crossref_primary_10_1016_j_pharmthera_2012_12_002
crossref_primary_10_1016_j_neuropharm_2012_04_024
crossref_primary_10_1016_j_neulet_2016_09_020
crossref_primary_10_1016_j_nlm_2009_05_005
crossref_primary_10_1016_j_brainres_2006_12_060
crossref_primary_10_1016_j_neuropharm_2015_09_009
crossref_primary_10_1007_s11064_017_2202_3
crossref_primary_10_1007_s11481_013_9494_0
crossref_primary_10_1007_s40263_019_00627_1
crossref_primary_10_1016_j_neuropharm_2014_07_006
crossref_primary_10_1007_s00702_011_0698_2
crossref_primary_10_1097_FBP_0000000000000639
crossref_primary_10_1080_09540260902782760
crossref_primary_10_1007_s00213_016_4481_9
crossref_primary_10_1155_2014_412354
crossref_primary_10_3390_cells13070615
crossref_primary_10_1002_dneu_22516
crossref_primary_10_1002_ptr_7709
crossref_primary_10_3390_cells11162569
crossref_primary_10_1186_s12974_018_1174_9
crossref_primary_10_3390_cancers13030419
crossref_primary_10_1002_hipo_20537
crossref_primary_10_1016_j_ajpath_2012_11_024
crossref_primary_10_3389_fpsyt_2020_587154
crossref_primary_10_1016_j_neuroscience_2014_05_007
crossref_primary_10_1016_j_neuroscience_2011_01_024
crossref_primary_10_2174_1381612825666190826162735
crossref_primary_10_1002_jnr_23114
crossref_primary_10_1016_j_mce_2012_01_014
crossref_primary_10_1017_neu_2022_23
crossref_primary_10_1111_j_1471_4159_2006_04346_x
crossref_primary_10_3390_ph4081101
crossref_primary_10_1016_j_bmc_2016_08_055
crossref_primary_10_1002_syn_22139
crossref_primary_10_1111_j_1365_2826_2008_01785_x
crossref_primary_10_1016_j_euroneuro_2017_09_006
crossref_primary_10_1111_j_1460_9568_2008_06041_x
crossref_primary_10_1016_j_ddstr_2006_10_015
crossref_primary_10_1007_s00232_009_9174_4
crossref_primary_10_1111_bph_14625
crossref_primary_10_1111_j_1528_1167_2009_02173_x
crossref_primary_10_4236_jbbs_2012_22017
crossref_primary_10_1097_JCP_0000000000000581
crossref_primary_10_3390_molecules24244626
crossref_primary_10_3389_fnins_2014_00044
crossref_primary_10_1016_j_phrs_2016_07_024
crossref_primary_10_3390_ijms242417516
crossref_primary_10_1016_j_jneumeth_2013_03_021
crossref_primary_10_5115_acb_2011_44_2_135
crossref_primary_10_1016_j_bmcl_2009_08_092
crossref_primary_10_1369_0022155414530995
crossref_primary_10_1016_j_neuropharm_2008_07_018
crossref_primary_10_1016_j_bcp_2018_07_041
crossref_primary_10_1038_nn_2874
crossref_primary_10_1016_j_neulet_2014_12_003
crossref_primary_10_3389_fnmol_2018_00079
crossref_primary_10_1002_glia_20757
crossref_primary_10_1007_s00213_014_3481_x
crossref_primary_10_1007_s11481_013_9485_1
crossref_primary_10_1093_ijnp_pyv095
crossref_primary_10_14718_ACP_2014_17_2_7
crossref_primary_10_1016_j_neuroscience_2007_10_029
crossref_primary_10_1111_acer_12130
crossref_primary_10_3390_ph3103275
crossref_primary_10_1016_j_expneurol_2010_03_030
crossref_primary_10_1093_carcin_bgq151
crossref_primary_10_1111_j_1365_2826_2012_02325_x
crossref_primary_10_1007_s00213_012_2834_6
crossref_primary_10_1196_annals_1369_052
crossref_primary_10_1371_journal_pone_0132487
crossref_primary_10_3390_ph3082661
crossref_primary_10_1016_j_neubiorev_2021_09_002
crossref_primary_10_3390_pharmaceutics15041151
crossref_primary_10_1016_j_mcn_2020_103582
crossref_primary_10_1038_s41386_020_00919_x
crossref_primary_10_1196_annals_1432_036
crossref_primary_10_1111_cns_12277
crossref_primary_10_1016_j_pbb_2019_06_007
crossref_primary_10_1196_annals_1432_037
crossref_primary_10_1016_j_bmc_2010_05_058
crossref_primary_10_1016_j_bbr_2014_11_012
crossref_primary_10_1016_j_bbr_2021_113440
crossref_primary_10_1111_febs_15234
crossref_primary_10_3390_cancers2021013
crossref_primary_10_1016_j_neuropharm_2013_05_034
crossref_primary_10_1016_j_expneurol_2010_03_023
crossref_primary_10_1111_bph_14769
crossref_primary_10_3390_ijms21207693
crossref_primary_10_1097_WNR_0b013e3283318010
crossref_primary_10_1111_jnc_12354
crossref_primary_10_1080_15622975_2022_2039408
crossref_primary_10_1007_s00018_021_04002_6
crossref_primary_10_1007_s12264_011_1008_6
crossref_primary_10_1016_j_euroneuro_2014_11_002
crossref_primary_10_1111_j_1460_9568_2007_05782_x
crossref_primary_10_1016_j_gene_2006_09_016
crossref_primary_10_1017_S1461145713000163
crossref_primary_10_1002_glia_20983
crossref_primary_10_1016_j_brainres_2005_12_089
crossref_primary_10_3390_biom10060855
crossref_primary_10_1016_j_mcn_2008_05_001
crossref_primary_10_1016_j_pbb_2009_09_021
crossref_primary_10_3390_ph3082517
crossref_primary_10_1016_j_physbeh_2014_06_003
crossref_primary_10_1016_j_neulet_2016_01_018
crossref_primary_10_1016_j_nucmedbio_2008_07_004
crossref_primary_10_1016_j_neuropharm_2008_07_038
crossref_primary_10_1038_nrn2253
crossref_primary_10_1016_j_neuropharm_2008_07_037
crossref_primary_10_1177_0269881111405362
crossref_primary_10_3389_fphar_2020_596572
crossref_primary_10_3390_molecules27020533
crossref_primary_10_1021_acs_chemrev_5b00411
crossref_primary_10_1016_j_pharmthera_2025_108799
crossref_primary_10_1080_00207454_2016_1257992
crossref_primary_10_1097_FBP_0000000000000621
crossref_primary_10_3390_ijms232113223
crossref_primary_10_1016_j_neuropharm_2018_05_030
crossref_primary_10_3390_nu12113273
crossref_primary_10_3390_pharmaceutics16020241
crossref_primary_10_1196_annals_1432_056
crossref_primary_10_1016_j_phrs_2007_09_005
crossref_primary_10_1016_j_phrs_2007_09_008
crossref_primary_10_1515_revneuro_2017_0101
crossref_primary_10_1111_j_1369_1600_2008_00108_x
crossref_primary_10_1016_j_phrs_2007_09_003
crossref_primary_10_1016_j_neulet_2008_08_076
crossref_primary_10_1111_bph_12488
crossref_primary_10_1007_s00213_006_0500_6
crossref_primary_10_1007_s13167_020_00203_4
crossref_primary_10_4137_PMC_S32171
crossref_primary_10_1093_ijnp_pyu097
crossref_primary_10_1097_MNH_0b013e3282f29071
crossref_primary_10_3390_ph3092799
crossref_primary_10_1021_acsami_1c13718
Cites_doi 10.1046/j.1460-9568.2003.02704.x
10.1093/ajcp/75.5.734
10.1038/nature03389
10.1016/S0009-3084(00)00189-4
10.4049/jimmunol.170.10.4953
10.1016/0014-5793(95)00746-V
10.1038/346561a0
10.1038/35069076
10.1016/S0306-4522(97)00436-3
10.3109/10425179509020870
10.1002/glia.20108
10.1016/S0022-3565(24)35367-4
10.1126/science.1115740
10.1523/JNEUROSCI.3923-04.2005
10.1016/S0301-0082(02)00007-2
10.1006/taap.1996.8034
10.1016/S1567-5769(01)00147-3
10.1038/365061a0
10.1074/jbc.275.1.605
10.1016/j.molbrainres.2004.08.025
10.1017/S0952523800171093
10.1073/pnas.93.9.3984
10.1016/S0014-2999(00)00211-9
10.1523/JNEUROSCI.23-35-11136.2003
10.1111/j.1432-1033.1995.tb20780.x
10.1016/S0165-6147(03)00107-X
10.1016/j.lfs.2004.03.026
10.1124/jpet.301.3.1020
10.1016/S0014-2999(98)00392-6
10.1126/science.1470919
10.1016/S0014-2999(99)00402-1
10.1073/pnas.061029898
10.1006/bbrc.1995.2437
10.1016/S0009-3084(00)00195-X
10.1073/pnas.92.8.3376
10.1002/syn.20050
ContentType Journal Article
Copyright 2005 Elsevier B.V.
2006 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier B.V.
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1016/j.brainres.2005.11.035
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1872-6240
EndPage 23
ExternalDocumentID 16472786
17568027
10_1016_j_brainres_2005_11_035
S0006899305016239
Genre Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
41~
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYJJ
AAYWO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADIYS
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
VH1
WUQ
X7M
XPP
Z5R
ZGI
~G-
AACTN
AADPK
AAIAV
ABYKQ
AFCTW
AFKWA
AFMIJ
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
RIG
AAYXX
AGRNS
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
ACLOT
~HD
7X8
ID FETCH-LOGICAL-c573t-703f5d64ce7dce621563d0dd644e12711f002df190617fbe6b5cba946c8990253
IEDL.DBID .~1
ISSN 0006-8993
IngestDate Thu Sep 04 22:35:34 EDT 2025
Sat Sep 27 17:51:05 EDT 2025
Wed Feb 19 01:44:05 EST 2025
Mon Jul 21 09:14:45 EDT 2025
Tue Jul 01 00:50:20 EDT 2025
Thu Apr 24 23:03:56 EDT 2025
Fri Feb 23 02:36:06 EST 2024
Tue Aug 26 16:40:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Immunohistochemistry
eCBs
Brain
Cnr
CB2 cannabinoid receptor
Cnrs
CB2 blocking peptide
CB2
CB1
RT-PCR
CB2 polyclonal antibody
Hippocampal cultures
EPCS
In situ hybridization, mRNA
CB2 knockout mice
CB2 cannabinoid receptor Brain Immunohistochemistry CB2 polyclonal antibody CB2 blocking peptide Hippocampal cultures RT-PCR In situ hybridization
Molecular hybridization
Rat
Rodentia
Central nervous system
mRNA CB2 knockout mice
Encephalon
Polymerase chain reaction
Vertebrata
Mammalia
Mouse
Animal
Mutation
Localization
Hippocampus
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-703f5d64ce7dce621563d0dd644e12711f002df190617fbe6b5cba946c8990253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 16472786
PQID 17109569
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_67677659
proquest_miscellaneous_17109569
pubmed_primary_16472786
pascalfrancis_primary_17568027
crossref_citationtrail_10_1016_j_brainres_2005_11_035
crossref_primary_10_1016_j_brainres_2005_11_035
elsevier_sciencedirect_doi_10_1016_j_brainres_2005_11_035
elsevier_clinicalkey_doi_10_1016_j_brainres_2005_11_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-02-03
PublicationDateYYYYMMDD 2006-02-03
PublicationDate_xml – month: 02
  year: 2006
  text: 2006-02-03
  day: 03
PublicationDecade 2000
PublicationPlace London
Amsterdam
New York, NY
PublicationPlace_xml – name: Amsterdam
– name: London
– name: New York, NY
– name: Netherlands
PublicationTitle Brain research
PublicationTitleAlternate Brain Res
PublicationYear 2006
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Tsou, Brown, Sanudo-Pena, Mackie, Walker (bib36) 1998; 83
Steffens, Veillard, Arnaud, Pelli, Burger, Staub, Zimmer, Frossard, Mach (bib32) 2005; 434
Sugiura, Kondo, Kishimoto, Miyashita, Nakane, Kodata, Suhara, Waku (bib35) 2000; 275
Derocq, Segui, Marchand, Le Fur, Casellas (bib7) 1995; 369
Wilson, Nicoll (bib37) 2001; 410
Devane, Hanus, Breuer, Pertwee, Stevenson, Griffin, Gibson, Mandel-baum, Etinger, Mechoulam (bib8) 1992; 258
Sheng, Hu, Min, Cabral, Lokensgard, Peterson (bib30) 2005; 49
Kearn, Hilliard (bib17) 1997
Lu, Straiker, Lu, Maguire (bib18) 2000; 17
Skaper, Buriani, Dal Toso, Petrelli, Romanello, Facci, Leon (bib31) 1996; 93
Zhang, Hoffert, Vu, Groblewski, Ahmad, O'Donnell (bib39) 2003; 17
Golech, McCarron, Chen, Bembry, Lenz, Mechoulam, Shohami, Spatz (bib11) 2004; 132
Samson, Small-Howard, Shimoda, Koblan-Huberson, Stokes, Turner (bib28) 2003; 170
Benito, Nunez, Tolon, Carrier, Rabano, Hillard, Romero (bib1) 2003; 23
Buckley, McCoy, Mezey, Bonner, Zimmer, Felder, Glass, Zimmer (bib40) 2000 (May 19); 396
Griffin, Wray, Tao, McAllister, Rorrer, Aung, Martin, Abood (bib13) 1999; 377
Nunez, Benito, Pazos, Barbachano, Fajardo, Gonzalez, Tolon, Romero (bib22) 2004; 53
Facci, Dal Toso, Romanello, Buriani, Skaper, Leona (bib9) 1995; 92
Ben-Shabat, Fride, Sheskin, Tsippy, Rhee, Vogel, Bisogno, De Petrocellis, Di Marzo, Mechoulam (bib3) 1998; 353
Griffin, Tao, Abood (bib14) 2000; 292
Berdyshev (bib4) 2000; 108
Porter, Sauer, Knierman, Becker, Berna, Bao, Nomikos, Carter, Bymaster, Leese, Felder (bib27) 2002; 301
Hsu, Raine, Fanger (bib16) 1981; 75
Galiegue, Mary, Marchand, Dussossoy, Carriere, Carayon, Bouaboula, Shire, Le Fur, Casellas (bib10) 1995; 232
Mechoulam, Parker (bib20) 2003; 24
Paxinos, Watson (bib41) 1982
Carlisle, Marciano-Cabral, Staab, Ludwick, Cabral (bib5) 2002; 2
Gong, Onaivi, Uhl (bib12) 2005
Onaivi, E.S., Ishiguro, H., Sejal, P., Meozzi, P.A., Myers, L., Tagliaferro, P., Hope, B., Leonard, C.M., Uhl, G.R., Brusco, A., Gardner, E., in press. Methods to study the behavioral effects and expression of CB2 cannabinoid receptors and its gene transcripts in chronic mild stress model of depression. In: E.S. Onaivi (Ed.), Marijuana and Cannabinoid Research: Methods and Protocols. The Humana press Inc.
Pettit, Harrison, Olson, Spencer, Cabral (bib26) 1998; 51
Suigiura, Waku (bib33) 2000; 108
Shatz, Lee, Condie, Pulaski, Kaminski (bib29) 1997; 142
Chakrabarti, Onaivi, Chaudhuri (bib6) 1995; 5
Van Sickle, Duncan, Kingsley, Mouihate, Urbani, Mackie, Stella, Makriyannis, Piomelli, Davison, Marnet, Di Marzo, Pittman, Patel, Sharkey (bib38) 2005; 310
Hanus, Abu-Lafi, Fride, Breuer, Vogel, Shalev, Kustanovich, Mechoulam (bib15) 2001; 98
Pazos, Nunez, Benito, Tolon, Romero (bib25) 2004; 75
Benito, Kim, Chavarria, Hillard, Mackie, Tolon, Williams, Romero (bib2) 2005; 25
Sugiura, Kondo, Sukagawa, Nakane, Shinoda, Itoh, Yamashita, Waku (bib34) 1995; 215
Matsuda, Lolait, Brownstein, Young, Bonner (bib19) 1990; 346
Munro, Thomas, Abu-Shaar (bib21) 1993; 365
Onaivi, Leonard, Ishiguro, Zhang, Lin, Akinshola, Uhl (bib23) 2002; 66
Mechoulam (10.1016/j.brainres.2005.11.035_bib20) 2003; 24
Steffens (10.1016/j.brainres.2005.11.035_bib32) 2005; 434
Hanus (10.1016/j.brainres.2005.11.035_bib15) 2001; 98
Gong (10.1016/j.brainres.2005.11.035_bib12) 2005
Nunez (10.1016/j.brainres.2005.11.035_bib22) 2004; 53
Van Sickle (10.1016/j.brainres.2005.11.035_bib38) 2005; 310
Griffin (10.1016/j.brainres.2005.11.035_bib13) 1999; 377
Pazos (10.1016/j.brainres.2005.11.035_bib25) 2004; 75
Sheng (10.1016/j.brainres.2005.11.035_bib30) 2005; 49
Galiegue (10.1016/j.brainres.2005.11.035_bib10) 1995; 232
Derocq (10.1016/j.brainres.2005.11.035_bib7) 1995; 369
Griffin (10.1016/j.brainres.2005.11.035_bib14) 2000; 292
Sugiura (10.1016/j.brainres.2005.11.035_bib35) 2000; 275
Benito (10.1016/j.brainres.2005.11.035_bib2) 2005; 25
Golech (10.1016/j.brainres.2005.11.035_bib11) 2004; 132
Kearn (10.1016/j.brainres.2005.11.035_bib17) 1997
Tsou (10.1016/j.brainres.2005.11.035_bib36) 1998; 83
Porter (10.1016/j.brainres.2005.11.035_bib27) 2002; 301
Benito (10.1016/j.brainres.2005.11.035_bib1) 2003; 23
Carlisle (10.1016/j.brainres.2005.11.035_bib5) 2002; 2
Samson (10.1016/j.brainres.2005.11.035_bib28) 2003; 170
Buckley (10.1016/j.brainres.2005.11.035_bib40) 2000; 396
Wilson (10.1016/j.brainres.2005.11.035_bib37) 2001; 410
Chakrabarti (10.1016/j.brainres.2005.11.035_bib6) 1995; 5
Pettit (10.1016/j.brainres.2005.11.035_bib26) 1998; 51
Munro (10.1016/j.brainres.2005.11.035_bib21) 1993; 365
Shatz (10.1016/j.brainres.2005.11.035_bib29) 1997; 142
10.1016/j.brainres.2005.11.035_bib24
Paxinos (10.1016/j.brainres.2005.11.035_bib41) 1982
Devane (10.1016/j.brainres.2005.11.035_bib8) 1992; 258
Hsu (10.1016/j.brainres.2005.11.035_bib16) 1981; 75
Skaper (10.1016/j.brainres.2005.11.035_bib31) 1996; 93
Lu (10.1016/j.brainres.2005.11.035_bib18) 2000; 17
Suigiura (10.1016/j.brainres.2005.11.035_bib33) 2000; 108
Facci (10.1016/j.brainres.2005.11.035_bib9) 1995; 92
Ben-Shabat (10.1016/j.brainres.2005.11.035_bib3) 1998; 353
Berdyshev (10.1016/j.brainres.2005.11.035_bib4) 2000; 108
Onaivi (10.1016/j.brainres.2005.11.035_bib23) 2002; 66
Matsuda (10.1016/j.brainres.2005.11.035_bib19) 1990; 346
Sugiura (10.1016/j.brainres.2005.11.035_bib34) 1995; 215
Zhang (10.1016/j.brainres.2005.11.035_bib39) 2003; 17
References_xml – volume: 75
  start-page: 734
  year: 1981
  end-page: 738
  ident: bib16
  article-title: A comparative study of the peroxidase–antiperoxidase method and an avidin–biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies
  publication-title: Am. J. Clin. Pathol.
– volume: 434
  start-page: 782
  year: 2005
  end-page: 786
  ident: bib32
  article-title: Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice
  publication-title: Nature
– volume: 83
  start-page: 393
  year: 1998
  end-page: 411
  ident: bib36
  article-title: Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system
  publication-title: Neuroscience
– volume: 132
  start-page: 87
  year: 2004
  end-page: 92
  ident: bib11
  article-title: Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors
  publication-title: Mol. Brain Res.
– year: 2005
  ident: bib12
  article-title: Cannabinoid CB2 receptors: immunohistochemical localization in rat brain
– volume: 353
  start-page: 23
  year: 1998
  end-page: 31
  ident: bib3
  article-title: An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonyl-glycerol cannabinoid activity
  publication-title: Eur. J. Pharmacol.
– volume: 292
  start-page: 886
  year: 2000
  end-page: 894
  ident: bib14
  article-title: Cloning and pharmacological characterization of the rat CB2 cannabinoid receptor
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 215
  start-page: 89
  year: 1995
  end-page: 97
  ident: bib34
  article-title: 2-Arachidonoylglycerol: a possible endogenous cannabinoid ligand in brain
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 17
  start-page: 2750
  year: 2003
  end-page: 2754
  ident: bib39
  article-title: Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models
  publication-title: Eur. J. Neurosci.
– volume: 170
  start-page: 4953
  year: 2003
  end-page: 4962
  ident: bib28
  article-title: Differential roles of CB1 and CB2 cannabinoid receptors in mast cells
  publication-title: J. Immunol.
– volume: 310
  start-page: 329
  year: 2005
  end-page: 332
  ident: bib38
  article-title: Identification and functional characterization of brainstem cannabinoid CB2 receptors
  publication-title: Science
– volume: 66
  start-page: 307
  year: 2002
  end-page: 344
  ident: bib23
  article-title: Endocannabinoids and cannabinoid receptor genetics
  publication-title: Prog. Neurobiol.
– start-page: 61
  year: 1997
  ident: bib17
  article-title: Rat microglial cell express the peripheral-type cannabinoid receptor (CB2), which is negatively coupled to adenyly cyclase
  publication-title: ICRS 1997 Symposium on Cannabinoids
– volume: 396
  start-page: 141
  year: 2000 (May 19)
  end-page: 149
  ident: bib40
  article-title: Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor
  publication-title: Eur. J. Pharmacol.
– volume: 17
  start-page: 91
  year: 2000
  end-page: 95
  ident: bib18
  article-title: Expression of CB2 cannabinoid receptor mRNA in adult rat retina
  publication-title: Vis. Neurosci.
– volume: 365
  start-page: 61
  year: 1993
  end-page: 65
  ident: bib21
  article-title: Molecular characterization of a peripheral cannabinoid receptor
  publication-title: Nature
– volume: 49
  start-page: 211
  year: 2005
  end-page: 219
  ident: bib30
  article-title: Synthetic cannabinoid WIN55212-2 inhibits generation of inflammatory mediators by IL-IB-stimulated human astrocytes
  publication-title: Glia
– volume: 346
  start-page: 561
  year: 1990
  end-page: 564
  ident: bib19
  article-title: Structure of a cannabinoid receptor and functional expression of the cloned cDNA
  publication-title: Nature
– year: 1982
  ident: bib41
  article-title: The Rat Brain in Stereotaxic Coordinates
– volume: 92
  start-page: 3376
  year: 1995
  end-page: 3380
  ident: bib9
  article-title: Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide
  publication-title: Proc. Natl. Acad. Sci.
– volume: 377
  start-page: 117
  year: 1999
  end-page: 125
  ident: bib13
  article-title: Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528, further evidence for CB2 receptor absence in the rat central nervous system
  publication-title: Eur. J. Pharmacol.
– volume: 108
  start-page: 89
  year: 2000
  end-page: 106
  ident: bib33
  article-title: 2-Arachidonoylglycerol and cannabinoid receptors
  publication-title: Chem. Phys. Lipids
– volume: 108
  start-page: 169
  year: 2000
  end-page: 190
  ident: bib4
  article-title: Cannabinoid receptors and the regulation of immune response
  publication-title: Chem. Phys. Lipids
– volume: 75
  start-page: 1907
  year: 2004
  end-page: 1915
  ident: bib25
  article-title: Role of the endocannabinoid system in Alzheimer's disease: new perspectives
  publication-title: Life Sci.
– volume: 51
  start-page: 342
  year: 1998
  end-page: 391
  ident: bib26
  article-title: Immunohistochemical localization of the neural cannabinoid receptor in rat brain
  publication-title: Neurosci Res.
– volume: 93
  start-page: 3984
  year: 1996
  end-page: 3989
  ident: bib31
  article-title: The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebral granule neurons
  publication-title: Proc. Natl. Acad. Sci.
– volume: 5
  start-page: 385
  year: 1995
  end-page: 388
  ident: bib6
  article-title: Cloning and sequencing of a cDNA encoding the mouse brain-type cannabinoid receptor protein
  publication-title: DNA Sequence
– volume: 53
  start-page: 208
  year: 2004
  end-page: 213
  ident: bib22
  article-title: Cannabinoid CB2 receptors are expressed by perivascular microglia cells in the human brain: an immunohistochemical study
  publication-title: Synapse
– reference: Onaivi, E.S., Ishiguro, H., Sejal, P., Meozzi, P.A., Myers, L., Tagliaferro, P., Hope, B., Leonard, C.M., Uhl, G.R., Brusco, A., Gardner, E., in press. Methods to study the behavioral effects and expression of CB2 cannabinoid receptors and its gene transcripts in chronic mild stress model of depression. In: E.S. Onaivi (Ed.), Marijuana and Cannabinoid Research: Methods and Protocols. The Humana press Inc.
– volume: 24
  start-page: 266
  year: 2003
  end-page: 268
  ident: bib20
  article-title: Cannabis and alcohol—A close friendship
  publication-title: Trends Pharmacol. Sci.
– volume: 410
  start-page: 588
  year: 2001
  end-page: 592
  ident: bib37
  article-title: Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses
  publication-title: Nature
– volume: 275
  start-page: 605
  year: 2000
  end-page: 612
  ident: bib35
  article-title: Evidence that 2-arachidonylglycerol but not
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 11136
  year: 2003
  end-page: 11141
  ident: bib1
  article-title: Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains
  publication-title: J. Neurosci.
– volume: 369
  start-page: 177
  year: 1995
  end-page: 182
  ident: bib7
  article-title: Cannabinoids enhance human B-cell growth at low nanomolar concentrations
  publication-title: FEBS Lett.
– volume: 2
  start-page: 69
  year: 2002
  end-page: 82
  ident: bib5
  article-title: Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation
  publication-title: Int. J. Immunopharmacol.
– volume: 232
  start-page: 54
  year: 1995
  end-page: 61
  ident: bib10
  article-title: Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations
  publication-title: Eur. J. Biochem
– volume: 301
  start-page: 1020
  year: 2002
  end-page: 1024
  ident: bib27
  article-title: Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 25
  start-page: 2530
  year: 2005
  end-page: 2536
  ident: bib2
  article-title: A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis
  publication-title: J. Neurosci.
– volume: 258
  start-page: 1946
  year: 1992
  end-page: 1949
  ident: bib8
  article-title: Isolation and structure of a brain constituent that binds to the cannabinoid receptor
  publication-title: Science
– volume: 142
  start-page: 278
  year: 1997
  end-page: 287
  ident: bib29
  article-title: Cannabinoid receptors CB1 and CB2, a characterization of expression and adenylate cyclase modulation within the immune system
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 98
  start-page: 3662
  year: 2001
  end-page: 3665
  ident: bib15
  article-title: 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 17
  start-page: 2750
  year: 2003
  ident: 10.1016/j.brainres.2005.11.035_bib39
  article-title: Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.2003.02704.x
– volume: 51
  start-page: 342
  year: 1998
  ident: 10.1016/j.brainres.2005.11.035_bib26
  article-title: Immunohistochemical localization of the neural cannabinoid receptor in rat brain
  publication-title: Neurosci Res.
– start-page: 61
  year: 1997
  ident: 10.1016/j.brainres.2005.11.035_bib17
  article-title: Rat microglial cell express the peripheral-type cannabinoid receptor (CB2), which is negatively coupled to adenyly cyclase
– ident: 10.1016/j.brainres.2005.11.035_bib24
– volume: 75
  start-page: 734
  year: 1981
  ident: 10.1016/j.brainres.2005.11.035_bib16
  article-title: A comparative study of the peroxidase–antiperoxidase method and an avidin–biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1093/ajcp/75.5.734
– volume: 434
  start-page: 782
  year: 2005
  ident: 10.1016/j.brainres.2005.11.035_bib32
  article-title: Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice
  publication-title: Nature
  doi: 10.1038/nature03389
– volume: 108
  start-page: 89
  year: 2000
  ident: 10.1016/j.brainres.2005.11.035_bib33
  article-title: 2-Arachidonoylglycerol and cannabinoid receptors
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/S0009-3084(00)00189-4
– volume: 170
  start-page: 4953
  year: 2003
  ident: 10.1016/j.brainres.2005.11.035_bib28
  article-title: Differential roles of CB1 and CB2 cannabinoid receptors in mast cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.170.10.4953
– volume: 369
  start-page: 177
  year: 1995
  ident: 10.1016/j.brainres.2005.11.035_bib7
  article-title: Cannabinoids enhance human B-cell growth at low nanomolar concentrations
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(95)00746-V
– year: 2005
  ident: 10.1016/j.brainres.2005.11.035_bib12
  article-title: Cannabinoid CB2 receptors: immunohistochemical localization in rat brain
– volume: 346
  start-page: 561
  year: 1990
  ident: 10.1016/j.brainres.2005.11.035_bib19
  article-title: Structure of a cannabinoid receptor and functional expression of the cloned cDNA
  publication-title: Nature
  doi: 10.1038/346561a0
– volume: 410
  start-page: 588
  year: 2001
  ident: 10.1016/j.brainres.2005.11.035_bib37
  article-title: Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses
  publication-title: Nature
  doi: 10.1038/35069076
– volume: 83
  start-page: 393
  year: 1998
  ident: 10.1016/j.brainres.2005.11.035_bib36
  article-title: Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(97)00436-3
– volume: 5
  start-page: 385
  year: 1995
  ident: 10.1016/j.brainres.2005.11.035_bib6
  article-title: Cloning and sequencing of a cDNA encoding the mouse brain-type cannabinoid receptor protein
  publication-title: DNA Sequence
  doi: 10.3109/10425179509020870
– year: 1982
  ident: 10.1016/j.brainres.2005.11.035_bib41
– volume: 49
  start-page: 211
  year: 2005
  ident: 10.1016/j.brainres.2005.11.035_bib30
  article-title: Synthetic cannabinoid WIN55212-2 inhibits generation of inflammatory mediators by IL-IB-stimulated human astrocytes
  publication-title: Glia
  doi: 10.1002/glia.20108
– volume: 292
  start-page: 886
  year: 2000
  ident: 10.1016/j.brainres.2005.11.035_bib14
  article-title: Cloning and pharmacological characterization of the rat CB2 cannabinoid receptor
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1016/S0022-3565(24)35367-4
– volume: 310
  start-page: 329
  year: 2005
  ident: 10.1016/j.brainres.2005.11.035_bib38
  article-title: Identification and functional characterization of brainstem cannabinoid CB2 receptors
  publication-title: Science
  doi: 10.1126/science.1115740
– volume: 25
  start-page: 2530
  year: 2005
  ident: 10.1016/j.brainres.2005.11.035_bib2
  article-title: A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3923-04.2005
– volume: 66
  start-page: 307
  year: 2002
  ident: 10.1016/j.brainres.2005.11.035_bib23
  article-title: Endocannabinoids and cannabinoid receptor genetics
  publication-title: Prog. Neurobiol.
  doi: 10.1016/S0301-0082(02)00007-2
– volume: 142
  start-page: 278
  year: 1997
  ident: 10.1016/j.brainres.2005.11.035_bib29
  article-title: Cannabinoid receptors CB1 and CB2, a characterization of expression and adenylate cyclase modulation within the immune system
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1006/taap.1996.8034
– volume: 2
  start-page: 69
  year: 2002
  ident: 10.1016/j.brainres.2005.11.035_bib5
  article-title: Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation
  publication-title: Int. J. Immunopharmacol.
  doi: 10.1016/S1567-5769(01)00147-3
– volume: 365
  start-page: 61
  year: 1993
  ident: 10.1016/j.brainres.2005.11.035_bib21
  article-title: Molecular characterization of a peripheral cannabinoid receptor
  publication-title: Nature
  doi: 10.1038/365061a0
– volume: 275
  start-page: 605
  year: 2000
  ident: 10.1016/j.brainres.2005.11.035_bib35
  article-title: Evidence that 2-arachidonylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.1.605
– volume: 132
  start-page: 87
  year: 2004
  ident: 10.1016/j.brainres.2005.11.035_bib11
  article-title: Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors
  publication-title: Mol. Brain Res.
  doi: 10.1016/j.molbrainres.2004.08.025
– volume: 17
  start-page: 91
  year: 2000
  ident: 10.1016/j.brainres.2005.11.035_bib18
  article-title: Expression of CB2 cannabinoid receptor mRNA in adult rat retina
  publication-title: Vis. Neurosci.
  doi: 10.1017/S0952523800171093
– volume: 93
  start-page: 3984
  year: 1996
  ident: 10.1016/j.brainres.2005.11.035_bib31
  article-title: The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebral granule neurons
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.93.9.3984
– volume: 396
  start-page: 141
  issue: 2–3
  year: 2000
  ident: 10.1016/j.brainres.2005.11.035_bib40
  article-title: Immunomodulation by cannabinoids is absent in mice deficient for the cannabinoid CB(2) receptor
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/S0014-2999(00)00211-9
– volume: 23
  start-page: 11136
  year: 2003
  ident: 10.1016/j.brainres.2005.11.035_bib1
  article-title: Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-35-11136.2003
– volume: 232
  start-page: 54
  year: 1995
  ident: 10.1016/j.brainres.2005.11.035_bib10
  article-title: Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations
  publication-title: Eur. J. Biochem
  doi: 10.1111/j.1432-1033.1995.tb20780.x
– volume: 24
  start-page: 266
  year: 2003
  ident: 10.1016/j.brainres.2005.11.035_bib20
  article-title: Cannabis and alcohol—A close friendship
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/S0165-6147(03)00107-X
– volume: 75
  start-page: 1907
  year: 2004
  ident: 10.1016/j.brainres.2005.11.035_bib25
  article-title: Role of the endocannabinoid system in Alzheimer's disease: new perspectives
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2004.03.026
– volume: 301
  start-page: 1020
  year: 2002
  ident: 10.1016/j.brainres.2005.11.035_bib27
  article-title: Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.301.3.1020
– volume: 353
  start-page: 23
  year: 1998
  ident: 10.1016/j.brainres.2005.11.035_bib3
  article-title: An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonyl-glycerol cannabinoid activity
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/S0014-2999(98)00392-6
– volume: 258
  start-page: 1946
  year: 1992
  ident: 10.1016/j.brainres.2005.11.035_bib8
  article-title: Isolation and structure of a brain constituent that binds to the cannabinoid receptor
  publication-title: Science
  doi: 10.1126/science.1470919
– volume: 377
  start-page: 117
  year: 1999
  ident: 10.1016/j.brainres.2005.11.035_bib13
  article-title: Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528, further evidence for CB2 receptor absence in the rat central nervous system
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/S0014-2999(99)00402-1
– volume: 98
  start-page: 3662
  year: 2001
  ident: 10.1016/j.brainres.2005.11.035_bib15
  article-title: 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.061029898
– volume: 215
  start-page: 89
  year: 1995
  ident: 10.1016/j.brainres.2005.11.035_bib34
  article-title: 2-Arachidonoylglycerol: a possible endogenous cannabinoid ligand in brain
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1995.2437
– volume: 108
  start-page: 169
  year: 2000
  ident: 10.1016/j.brainres.2005.11.035_bib4
  article-title: Cannabinoid receptors and the regulation of immune response
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/S0009-3084(00)00195-X
– volume: 92
  start-page: 3376
  year: 1995
  ident: 10.1016/j.brainres.2005.11.035_bib9
  article-title: Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.92.8.3376
– volume: 53
  start-page: 208
  year: 2004
  ident: 10.1016/j.brainres.2005.11.035_bib22
  article-title: Cannabinoid CB2 receptors are expressed by perivascular microglia cells in the human brain: an immunohistochemical study
  publication-title: Synapse
  doi: 10.1002/syn.20050
SSID ssj0003390
Score 2.4303803
Snippet Brain expression of CB2 cannabinoid receptors has been much less well established and characterized in comparison to the expression of brain CB1 receptors....
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10
SubjectTerms Anatomy
Animals
Biological and medical sciences
Blotting, Northern - methods
Blotting, Western - methods
Brain
Brain - anatomy & histology
Brain - metabolism
Brain Mapping
CB2 blocking peptide
CB2 cannabinoid receptor
CB2 knockout mice
CB2 polyclonal antibody
Cell Line
Central nervous system
Embryo, Mammalian
Fundamental and applied biological sciences. Psychology
Gene Expression - physiology
Hippocampal cultures
Humans
Immunohistochemistry
In Situ Hybridization - methods
In situ hybridization, mRNA
In Vitro Techniques
Mice
Mice, Knockout
Rats
Rats, Sprague-Dawley
Receptor, Cannabinoid, CB2 - chemistry
Receptor, Cannabinoid, CB2 - deficiency
Receptor, Cannabinoid, CB2 - genetics
Receptor, Cannabinoid, CB2 - metabolism
Reverse Transcriptase Polymerase Chain Reaction - methods
RNA, Messenger - metabolism
RT-PCR
Transfection - methods
Vertebrates: nervous system and sense organs
Title Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0006899305016239
https://dx.doi.org/10.1016/j.brainres.2005.11.035
https://www.ncbi.nlm.nih.gov/pubmed/16472786
https://www.proquest.com/docview/17109569
https://www.proquest.com/docview/67677659
Volume 1071
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvQgian3UR92DeItNuslu4q0GpfWFiIK3kH0EWjQtth68-Nud2STWgkXBUyDZCbuT2ZlvNvMg5Mh4GF2smKOkdh1f8ciRHamdCJwJl0ulXRtNeHPLe4_-5VPwVCNxlQuDYZWl7i90utXW5Z12yc32eDDAHF-Xg7cAAguwpcMwic_3Bcr6yccszIOx4pwFPWcc_S1LeHgisQ0DuLXF2QpW87Rt3340UCvjdAJsy4p-F4sBqTVMF2tktUSUtFtMep3UTL5BGt0cvOmXd3pMbYynPTxvkF6c5nkKzvBooGl81qGwdjPGhjuntI-ZIiNbf1iVVQSotXRlpiYd5BTEhdrVbJLHi_OHuOeUvRQcFQg2dWBjZ4HmvjJCK8PB0HOmXQ13fPhcwvMyUI06A3gAkCaThstAyTTyuQKmAS5iW6Sej3KzQyhghtDjka-YgecAzkOjpKcE8zJAi1o2SVAxMFFloXHsd_GcVBFlw6RiPHbBDMALSYDxTdL-ohsXpTZ-pRDV90mqRFJQfQlYg18poy_KOXH7E21rThRmkxUBD8HNb5LDSjYS2Kz4BybNzehtAiM8LPwYLR6B9fMED2DEdiFUs7djoX8R8t1_TH2PLBdHSB3HZfukPn19MwcAqqayZXdNiyx14_vrO7z2r3q3n-ieIrM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHEBCiDfjmQPiVtYubdpyGxNTx2MnkLhVzaNSJ-gmGAf-PU6abkwCDYlrGlep49ifUz8AzpWno4sFdQSXruMLFju8zaUTozPhMi6ka6IJHwYsefJvn4PnJejWuTA6rNLq_kqnG21tR1qWm61xUegcX5eht4ACi7ClTeNlWPF1U-sGrHT6d8lgqpApra5atPOsCb4lCg8vue7EgJ5tdb2iC3qazm8_2qj1cfaOnMurlhe_Y1Jjm3qbsGFBJelU696CJVVuw06nRIf69ZNcEBPmae7PdyDpZmWZoT88KiTpXrcJfr4a6547V6Svk0VGpgSxsIUEiDF2NlmTFCVBiSHma3bhqXfz2E0c207BEUFIJw6e7TyQzBcqlEIxtPWMSlfiiI87FnpejtpR5ogQENXkXDEeCJ7FPhPINIRGdA8a5ahUB0AQNkQei31BFT5HfB4pwT0RUi9HwCh5E4KagamwtcZ1y4uXtA4qG6Y143UjzAAdkRQZ34TWlG5cVdtYSBHW-5PWuaSo_VI0CAsp4ynlnMT9ifZ0ThRmiw0DFqGn34SzWjZSPK_6J0xWqtHHO87wdO3H-PcZuoReyAKcsV8J1eztutZ_GLHDfyz9DFaTx4f79L4_uDuCtepGqe249Bgak7cPdYIYa8JP7Rn6AqBXI8s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cannabinoid+CB2+receptors%3A+Immunohistochemical+localization+in+rat+brain&rft.jtitle=Brain+research&rft.au=Gong%2C+J+P&rft.au=Onaivi%2C+E+S&rft.au=Ishiguro%2C+H&rft.au=Liu%2C+Q+R&rft.date=2006-02-03&rft.issn=0006-8993&rft.volume=1071&rft.issue=1&rft.spage=10&rft.epage=23&rft_id=info:doi/10.1016%2Fj.brainres.2005.11.035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8993&client=summon