Atorvastatin accelerates clearance of lipoprotein remnants generated by activated brown fat to further reduce hypercholesterolemia and atherosclerosis
Activation of brown adipose tissue (BAT) reduces both hyperlipidemia and atherosclerosis by increasing the uptake of triglyceride-derived fatty acids by BAT, accompanied by formation and clearance of lipoprotein remnants. We tested the hypothesis that the hepatic uptake of lipoprotein remnants gener...
Saved in:
Published in | Atherosclerosis Vol. 267; pp. 116 - 126 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.12.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9150 1879-1484 1879-1484 |
DOI | 10.1016/j.atherosclerosis.2017.10.030 |
Cover
Abstract | Activation of brown adipose tissue (BAT) reduces both hyperlipidemia and atherosclerosis by increasing the uptake of triglyceride-derived fatty acids by BAT, accompanied by formation and clearance of lipoprotein remnants. We tested the hypothesis that the hepatic uptake of lipoprotein remnants generated by BAT activation would be accelerated by concomitant statin treatment, thereby further reducing hypercholesterolemia and atherosclerosis.
APOE*3-Leiden.CETP mice were fed a Western-type diet and treated without or with the selective β3-adrenergic receptor (AR) agonist CL316,243 that activates BAT, atorvastatin (statin) or both.
β3-AR agonism increased energy expenditure as a result of an increased fat oxidation by activated BAT, which was not further enhanced by statin addition. Accordingly, statin treatment neither influenced the increased uptake of triglyceride-derived fatty acids from triglyceride-rich lipoprotein-like particles by BAT nor further lowered plasma triglyceride levels induced by β3-AR agonism. Statin treatment increased the hepatic uptake of the formed cholesterol-enriched remnants generated by β3-AR agonism. Consequently, statin treatment further lowered plasma cholesterol levels. Importantly, statin, in addition to β3-AR agonism, also further reduced the atherosclerotic lesion size as compared to β3-AR agonism alone, without altering lesion severity and composition.
Statin treatment accelerates the hepatic uptake of remnants generated by BAT activation, thereby increasing the lipid-lowering and anti-atherogenic effects of BAT activation in an additive fashion. We postulate that, in clinical practice, combining statin treatment with BAT activation is a promising new avenue to combat hyperlipidemia and cardiovascular disease.
•Statin treatment accelerates the hepatic clearance of lipoprotein remnants generated by brown adipose tissue activation.•Statin treatment in addition to brown adipose tissue activation further protects from atherosclerosis development.•Brown adipose tissue activation combined with statin therapy is a promising strategy to alleviate cardiovascular diseases. |
---|---|
AbstractList | Activation of brown adipose tissue (BAT) reduces both hyperlipidemia and atherosclerosis by increasing the uptake of triglyceride-derived fatty acids by BAT, accompanied by formation and clearance of lipoprotein remnants. We tested the hypothesis that the hepatic uptake of lipoprotein remnants generated by BAT activation would be accelerated by concomitant statin treatment, thereby further reducing hypercholesterolemia and atherosclerosis.
APOE*3-Leiden.CETP mice were fed a Western-type diet and treated without or with the selective β3-adrenergic receptor (AR) agonist CL316,243 that activates BAT, atorvastatin (statin) or both.
β3-AR agonism increased energy expenditure as a result of an increased fat oxidation by activated BAT, which was not further enhanced by statin addition. Accordingly, statin treatment neither influenced the increased uptake of triglyceride-derived fatty acids from triglyceride-rich lipoprotein-like particles by BAT nor further lowered plasma triglyceride levels induced by β3-AR agonism. Statin treatment increased the hepatic uptake of the formed cholesterol-enriched remnants generated by β3-AR agonism. Consequently, statin treatment further lowered plasma cholesterol levels. Importantly, statin, in addition to β3-AR agonism, also further reduced the atherosclerotic lesion size as compared to β3-AR agonism alone, without altering lesion severity and composition.
Statin treatment accelerates the hepatic uptake of remnants generated by BAT activation, thereby increasing the lipid-lowering and anti-atherogenic effects of BAT activation in an additive fashion. We postulate that, in clinical practice, combining statin treatment with BAT activation is a promising new avenue to combat hyperlipidemia and cardiovascular disease.
•Statin treatment accelerates the hepatic clearance of lipoprotein remnants generated by brown adipose tissue activation.•Statin treatment in addition to brown adipose tissue activation further protects from atherosclerosis development.•Brown adipose tissue activation combined with statin therapy is a promising strategy to alleviate cardiovascular diseases. Activation of brown adipose tissue (BAT) reduces both hyperlipidemia and atherosclerosis by increasing the uptake of triglyceride-derived fatty acids by BAT, accompanied by formation and clearance of lipoprotein remnants. We tested the hypothesis that the hepatic uptake of lipoprotein remnants generated by BAT activation would be accelerated by concomitant statin treatment, thereby further reducing hypercholesterolemia and atherosclerosis. APOE*3-Leiden.CETP mice were fed a Western-type diet and treated without or with the selective β3-adrenergic receptor (AR) agonist CL316,243 that activates BAT, atorvastatin (statin) or both. β3-AR agonism increased energy expenditure as a result of an increased fat oxidation by activated BAT, which was not further enhanced by statin addition. Accordingly, statin treatment neither influenced the increased uptake of triglyceride-derived fatty acids from triglyceride-rich lipoprotein-like particles by BAT nor further lowered plasma triglyceride levels induced by β3-AR agonism. Statin treatment increased the hepatic uptake of the formed cholesterol-enriched remnants generated by β3-AR agonism. Consequently, statin treatment further lowered plasma cholesterol levels. Importantly, statin, in addition to β3-AR agonism, also further reduced the atherosclerotic lesion size as compared to β3-AR agonism alone, without altering lesion severity and composition. Statin treatment accelerates the hepatic uptake of remnants generated by BAT activation, thereby increasing the lipid-lowering and anti-atherogenic effects of BAT activation in an additive fashion. We postulate that, in clinical practice, combining statin treatment with BAT activation is a promising new avenue to combat hyperlipidemia and cardiovascular disease. Activation of brown adipose tissue (BAT) reduces both hyperlipidemia and atherosclerosis by increasing the uptake of triglyceride-derived fatty acids by BAT, accompanied by formation and clearance of lipoprotein remnants. We tested the hypothesis that the hepatic uptake of lipoprotein remnants generated by BAT activation would be accelerated by concomitant statin treatment, thereby further reducing hypercholesterolemia and atherosclerosis.BACKGROUND AND AIMSActivation of brown adipose tissue (BAT) reduces both hyperlipidemia and atherosclerosis by increasing the uptake of triglyceride-derived fatty acids by BAT, accompanied by formation and clearance of lipoprotein remnants. We tested the hypothesis that the hepatic uptake of lipoprotein remnants generated by BAT activation would be accelerated by concomitant statin treatment, thereby further reducing hypercholesterolemia and atherosclerosis.APOE*3-Leiden.CETP mice were fed a Western-type diet and treated without or with the selective β3-adrenergic receptor (AR) agonist CL316,243 that activates BAT, atorvastatin (statin) or both.METHODSAPOE*3-Leiden.CETP mice were fed a Western-type diet and treated without or with the selective β3-adrenergic receptor (AR) agonist CL316,243 that activates BAT, atorvastatin (statin) or both.β3-AR agonism increased energy expenditure as a result of an increased fat oxidation by activated BAT, which was not further enhanced by statin addition. Accordingly, statin treatment neither influenced the increased uptake of triglyceride-derived fatty acids from triglyceride-rich lipoprotein-like particles by BAT nor further lowered plasma triglyceride levels induced by β3-AR agonism. Statin treatment increased the hepatic uptake of the formed cholesterol-enriched remnants generated by β3-AR agonism. Consequently, statin treatment further lowered plasma cholesterol levels. Importantly, statin, in addition to β3-AR agonism, also further reduced the atherosclerotic lesion size as compared to β3-AR agonism alone, without altering lesion severity and composition.RESULTSβ3-AR agonism increased energy expenditure as a result of an increased fat oxidation by activated BAT, which was not further enhanced by statin addition. Accordingly, statin treatment neither influenced the increased uptake of triglyceride-derived fatty acids from triglyceride-rich lipoprotein-like particles by BAT nor further lowered plasma triglyceride levels induced by β3-AR agonism. Statin treatment increased the hepatic uptake of the formed cholesterol-enriched remnants generated by β3-AR agonism. Consequently, statin treatment further lowered plasma cholesterol levels. Importantly, statin, in addition to β3-AR agonism, also further reduced the atherosclerotic lesion size as compared to β3-AR agonism alone, without altering lesion severity and composition.Statin treatment accelerates the hepatic uptake of remnants generated by BAT activation, thereby increasing the lipid-lowering and anti-atherogenic effects of BAT activation in an additive fashion. We postulate that, in clinical practice, combining statin treatment with BAT activation is a promising new avenue to combat hyperlipidemia and cardiovascular disease.CONCLUSIONSStatin treatment accelerates the hepatic uptake of remnants generated by BAT activation, thereby increasing the lipid-lowering and anti-atherogenic effects of BAT activation in an additive fashion. We postulate that, in clinical practice, combining statin treatment with BAT activation is a promising new avenue to combat hyperlipidemia and cardiovascular disease. |
Author | Gart, Eveline Mol, Isabel M. Hoeke, Geerte van den Berg, Susan M. Pieterman, Elsbet H. Wang, Yanan Princen, Hans M.G. Boon, Mariëtte R. van Dam, Andrea D. Klop, Henk G. Rensen, Patrick C.N. Groen, Albert K. Berbée, Jimmy F.P. |
Author_xml | – sequence: 1 givenname: Geerte surname: Hoeke fullname: Hoeke, Geerte email: g.hoeke@lumc.nl organization: Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 2 givenname: Yanan surname: Wang fullname: Wang, Yanan organization: Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 3 givenname: Andrea D. surname: van Dam fullname: van Dam, Andrea D. organization: Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 4 givenname: Isabel M. surname: Mol fullname: Mol, Isabel M. organization: Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 5 givenname: Eveline surname: Gart fullname: Gart, Eveline organization: The Netherlands Organization of Applied Scientific Research (TNO) - Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands – sequence: 6 givenname: Henk G. surname: Klop fullname: Klop, Henk G. organization: Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 7 givenname: Susan M. surname: van den Berg fullname: van den Berg, Susan M. organization: Dept. of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, Amsterdam, The Netherlands – sequence: 8 givenname: Elsbet H. surname: Pieterman fullname: Pieterman, Elsbet H. organization: The Netherlands Organization of Applied Scientific Research (TNO) - Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands – sequence: 9 givenname: Hans M.G. orcidid: 0000-0002-7206-1596 surname: Princen fullname: Princen, Hans M.G. organization: The Netherlands Organization of Applied Scientific Research (TNO) - Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands – sequence: 10 givenname: Albert K. surname: Groen fullname: Groen, Albert K. organization: Dept. of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands – sequence: 11 givenname: Patrick C.N. surname: Rensen fullname: Rensen, Patrick C.N. organization: Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 12 givenname: Jimmy F.P. surname: Berbée fullname: Berbée, Jimmy F.P. organization: Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 13 givenname: Mariëtte R. surname: Boon fullname: Boon, Mariëtte R. organization: Dept. of Medicine, Div. of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29121499$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkc1uEzEUhS1URNPCKyBvkNhMsOfPMwsWVVRapEpsYG3d2HeIw8QOticoL8LzcqcpLLIqG1uWz_l0zz1X7MIHj4y9k2IphWw_bJeQNxhDMuN8urQshVT0txSVeMEWslN9IeuuvmALIUpZ9LIRl-wqpa0Qolaye8Uuy16Wsu77Bft9k0M8QMqQnedgDBIWMiZOfIjgDfIw8NHtwz6GjCSKuPPgc-Lf0T9qLV8fyZrd4fSI4ZfnA2SeAx-mOI9LJjsRanPcYzSbMGLKNP6IOwccvOVnoV6zlwOMCd883dfs26fbr6v74uHL3efVzUNhGlXmYqgUWFutlTCdasRgS2FNW62B8pcSobS2bo21fdPYXinTycrWtm3qbuhbadvqmr0_cSncz4mG0juXaAcjeAxT0rJvq1I1qlIkffskndY7tHof3Q7iUf_dJQk-ngSGIqSIwz-JFHruTm_1WUw9dzd_U3fkX535jZtrCT5HcOOzKXcnCtLaDg6jTsYh1WhdRJO1De7ZpNszkhmddwbGH3j8D84fTiLg-g |
CitedBy_id | crossref_primary_10_1021_acsami_3c04525 crossref_primary_10_1016_j_joim_2021_02_002 crossref_primary_10_1186_s40360_020_00427_0 crossref_primary_10_1093_cvr_cvz253 crossref_primary_10_3892_etm_2020_8438 crossref_primary_10_1177_0300060519826820 crossref_primary_10_1016_j_biopha_2020_110426 crossref_primary_10_3389_fendo_2018_00447 crossref_primary_10_1155_2021_2739092 crossref_primary_10_1097_MOL_0000000000000504 crossref_primary_10_1093_cvr_cvac131 crossref_primary_10_1038_s41569_018_0097_6 crossref_primary_10_1016_j_atherosclerosis_2019_02_028 crossref_primary_10_1186_s12872_021_01998_4 crossref_primary_10_14814_phy2_14820 crossref_primary_10_1016_j_phrs_2021_105524 crossref_primary_10_3389_fendo_2022_1080383 crossref_primary_10_3390_ijms241713132 |
Cites_doi | 10.1074/jbc.M110.123992 10.1016/S0022-2275(20)31998-2 10.2337/db14-1651 10.1038/ncomms15010 10.1016/j.cmet.2014.12.009 10.1006/abbi.1996.0030 10.1194/jlr.M052746 10.1016/j.beem.2013.10.001 10.1096/fj.13-247643 10.1016/j.atherosclerosis.2011.06.055 10.1097/MOL.0000000000000296 10.1194/jlr.M008144 10.1186/s12872-016-0241-3 10.1016/S0022-2275(20)34205-X 10.1161/CIRCRESAHA.115.306647 10.1042/cs0950213 10.1038/nm0395-221 10.1016/S0022-2275(20)33334-4 10.1016/S0022-2275(20)34314-5 10.1021/bi0019287 10.1038/nm.2297 10.1073/pnas.91.10.4431 10.1371/journal.pone.0036162 10.1161/01.ATV.0000243925.65265.3c 10.1016/j.jacl.2017.04.117 10.2967/jnumed.115.166025 10.1161/CIRCRESAHA.116.305485 10.1172/JCI60433 10.1016/j.jnutbio.2012.11.009 10.1016/j.cell.2012.09.010 10.1016/S0022-2275(20)32211-2 10.1016/j.jacc.2012.07.007 10.1038/ncomms7356 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.atherosclerosis.2017.10.030 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-1484 |
EndPage | 126 |
ExternalDocumentID | 29121499 10_1016_j_atherosclerosis_2017_10_030 S0021915017313618 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABOCM ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AEXQZ AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B M27 M41 MO0 N9A O-L O9- OAUVE OA~ OK1 OL0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K WUQ X7M Z5R ZGI ZXP ~G- ~KM 0SF AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 ACLOT ~HD |
ID | FETCH-LOGICAL-c572t-f37add3b70c8750fd20dc63ba48421ea2dd46cdd955d977c813d4d6548f961d63 |
IEDL.DBID | AIKHN |
ISSN | 0021-9150 1879-1484 |
IngestDate | Sat Sep 27 23:16:03 EDT 2025 Mon Jul 21 06:05:34 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Tue Jul 01 04:08:42 EDT 2025 Fri Feb 23 02:28:34 EST 2024 Tue Aug 26 16:36:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CETP (g, s)WAT SQRT (V)LDL UCP1 Brown adipose tissue LPL PCSK9 TRL (i)BAT [3H]TO (F)FA Hypercholesterolemia (T)C [14C]CO Atherosclerosis β3-AR Lipid and lipoprotein metabolism ApoE Cholesterol metabolism LDLR |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c572t-f37add3b70c8750fd20dc63ba48421ea2dd46cdd955d977c813d4d6548f961d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7206-1596 |
OpenAccessLink | https://research.rug.nl/en/publications/50da3546-b188-4372-9ad5-d00644de2928 |
PMID | 29121499 |
PQID | 1963275737 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1963275737 pubmed_primary_29121499 crossref_primary_10_1016_j_atherosclerosis_2017_10_030 crossref_citationtrail_10_1016_j_atherosclerosis_2017_10_030 elsevier_sciencedirect_doi_10_1016_j_atherosclerosis_2017_10_030 elsevier_clinicalkey_doi_10_1016_j_atherosclerosis_2017_10_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2017 2017-12-00 2017-Dec 20171201 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Atherosclerosis |
PublicationTitleAlternate | Atherosclerosis |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Peronnet, Massicotte (bib12) 1991; 16 Takx, Ishai, Truong, MacNabb, Scherrer-Crosbie, Tawakol (bib34) 2016; 57 Jong, Rensen, Dahlmans, van der Boom, van Berkel, Havekes (bib15) 2001; 42 Ishibashi, Herz, Maeda, Goldstein, Brown (bib20) 1994; 91 Chan, Barrett, Watts (bib3) 2014; 28 Welder, Zineh, Pacanowski, Troutt, Cao, Konrad (bib21) 2010; 51 Ouellet, Labbe, Blondin, Phoenix, Guerin, Haman, Turcotte, Richard, Carpentier (bib5) 2012; 122 Huuskonen, Olkkonen, Ehnholm, Metso, Julkunen, Jauhiainen (bib27) 2000; 39 Fedorenko, Lishko, Kirichok (bib7) 2012; 151 De Lorenzo, Mukherjee, Kadziola, Sherwood, Kakkar (bib33) 1998; 95 Mitchell, Roso, Samuel, Pladevall-Vila (bib2) 2016; 16 Blondin, Labbe, Noll, Kunach, Phoenix, Guerin, Turcotte, Haman, Richard, Carpentier (bib32) 2015; 64 Du, Kim, Hou, Le, Chapman, Van, Curtiss, Burnett, Cartland, Quinn, Kockx, Kontush, Rye, Kritharides, Jessup (bib28) 2015; 116 Ness, Zhao, Lopez (bib30) 1996; 325 van Klinken, van den Berg, Havekes, Willems van (bib13) 2012; 7 Bijland, Pieterman, Maas, van der Hoorn, van Erk, van Klinken, Havekes, Van Dijk, Princen, Rensen (bib16) 2010; 285 Ness, Chambers, Lopez (bib31) 1998; 39 Schilperoort, Hoeke, Kooijman, Rensen (bib19) 2016; 27 Mahley, Ji (bib22) 1999; 40 Boon, Kooijman, van Dam, Pelgrom, Berbee, Visseren, van Aggele, van den Hoek, Sips, Lombes, Havekes, Tamsma, Guigas, Meijer, Jukema, Rensen (bib17) 2014; 28 Berbee, Boon, Khedoe, Bartelt, Schlein, Worthmann, Kooijman, Hoeke, Mol, John, Jung, Vazirpanah, Brouwers, Gordts, Esko, Hiemstra, Havekes, Scheja, Heeren, Rensen (bib9) 2015; 6 Feingold, Grunfeld (bib10) 2000 Bartelt, John, Schaltenberg, Berbee, Worthmann, Cherradi, Schlein, Piepenburg, Boon, Rinninger, Heine, Toedter, Niemeier, Nilsson, Fischer, Wijers, van Marken, Scheja, Rensen, Heeren (bib24) 2017; 8 Cypess, Weiner, Roberts-Toler, Elia, Kessler, Kahn, English, Chatman, Trauger, Doria, Kolodny (bib35) 2015; 21 Westerterp, van der Hoogt, de Haan, Offerman, Dallinga-Thie, Jukema, Havekes, Rensen (bib11) 2006; 26 Jukema, Cannon, de Craen, Westendorp, Trompet (bib1) 2012; 60 Tall, Krumholz, Olivecrona, Deckelbaum (bib25) 1985; 26 Khedoe, Hoeke, Kooijman, Dijk, Buijs, Kersten, Havekes, Hiemstra, Berbee, Boon, Rensen (bib8) 2015; 56 Hoeke, Nahon, Bakker, Norkauer, Dinnes, Kockx, Lichtenstein, Drettwan, Reifel-Miller, Coskun, Pagel, Romijn, Cobbaert, Jazet, Martinez, Kritharides, Berbee, Boon, Rensen (bib23) 2017; 11 Hoeke, Kooijman, Boon, Rensen, Berbee (bib6) 2016; 118 Wong, van Diepen, Hu, Guigas, de Boer, van Puijvelde, Kuiper, van Zonneveld, Shoelson, Voshol, Romijn, Havekes, Tamsma, Rensen, Hiemstra, Berbee (bib18) 2012; 220 Berbee, Wong, Wang, van der Hoorn, Khedoe, van Klinken, Mol, Hiemstra, Tsikas, Romijn, Havekes, Princen, Rensen (bib29) 2013; 24 Oka, Kujiraoka, Ito, Egashira, Takahashi, Nanjee, Miller, Metso, Olkkonen, Ehnholm, Jauhiainen, Hattori (bib26) 2000; 41 Rensen, van Dijk, Havenaar, Bijsterbosch, Kruijt, van Berkel (bib14) 1995; 1 Bartelt, Bruns, Reimer, Hohenberg, Ittrich, Peldschus, Kaul, Tromsdorf, Weller, Waurisch, Eychmuller, Gordts, Rinninger, Bruegelmann, Freund, Nielsen, Merkel, Heeren (bib4) 2011; 17 Jukema (10.1016/j.atherosclerosis.2017.10.030_bib1) 2012; 60 Huuskonen (10.1016/j.atherosclerosis.2017.10.030_bib27) 2000; 39 Khedoe (10.1016/j.atherosclerosis.2017.10.030_bib8) 2015; 56 De Lorenzo (10.1016/j.atherosclerosis.2017.10.030_bib33) 1998; 95 Wong (10.1016/j.atherosclerosis.2017.10.030_bib18) 2012; 220 Takx (10.1016/j.atherosclerosis.2017.10.030_bib34) 2016; 57 Hoeke (10.1016/j.atherosclerosis.2017.10.030_bib23) 2017; 11 Du (10.1016/j.atherosclerosis.2017.10.030_bib28) 2015; 116 Boon (10.1016/j.atherosclerosis.2017.10.030_bib17) 2014; 28 Peronnet (10.1016/j.atherosclerosis.2017.10.030_bib12) 1991; 16 Ness (10.1016/j.atherosclerosis.2017.10.030_bib31) 1998; 39 Berbee (10.1016/j.atherosclerosis.2017.10.030_bib9) 2015; 6 Feingold (10.1016/j.atherosclerosis.2017.10.030_bib10) 2000 Bijland (10.1016/j.atherosclerosis.2017.10.030_bib16) 2010; 285 Cypess (10.1016/j.atherosclerosis.2017.10.030_bib35) 2015; 21 Jong (10.1016/j.atherosclerosis.2017.10.030_bib15) 2001; 42 Chan (10.1016/j.atherosclerosis.2017.10.030_bib3) 2014; 28 Bartelt (10.1016/j.atherosclerosis.2017.10.030_bib4) 2011; 17 Hoeke (10.1016/j.atherosclerosis.2017.10.030_bib6) 2016; 118 Berbee (10.1016/j.atherosclerosis.2017.10.030_bib29) 2013; 24 Mahley (10.1016/j.atherosclerosis.2017.10.030_bib22) 1999; 40 Mitchell (10.1016/j.atherosclerosis.2017.10.030_bib2) 2016; 16 Fedorenko (10.1016/j.atherosclerosis.2017.10.030_bib7) 2012; 151 Oka (10.1016/j.atherosclerosis.2017.10.030_bib26) 2000; 41 Westerterp (10.1016/j.atherosclerosis.2017.10.030_bib11) 2006; 26 Bartelt (10.1016/j.atherosclerosis.2017.10.030_bib24) 2017; 8 Rensen (10.1016/j.atherosclerosis.2017.10.030_bib14) 1995; 1 Ouellet (10.1016/j.atherosclerosis.2017.10.030_bib5) 2012; 122 van Klinken (10.1016/j.atherosclerosis.2017.10.030_bib13) 2012; 7 Tall (10.1016/j.atherosclerosis.2017.10.030_bib25) 1985; 26 Ishibashi (10.1016/j.atherosclerosis.2017.10.030_bib20) 1994; 91 Blondin (10.1016/j.atherosclerosis.2017.10.030_bib32) 2015; 64 Schilperoort (10.1016/j.atherosclerosis.2017.10.030_bib19) 2016; 27 Welder (10.1016/j.atherosclerosis.2017.10.030_bib21) 2010; 51 Ness (10.1016/j.atherosclerosis.2017.10.030_bib30) 1996; 325 |
References_xml | – volume: 220 start-page: 362 year: 2012 end-page: 368 ident: bib18 article-title: Hepatocyte-specific IKKbeta expression aggravates atherosclerosis development in APOE*3-Leiden mice publication-title: Atherosclerosis – volume: 91 start-page: 4431 year: 1994 end-page: 4435 ident: bib20 article-title: The two-receptor model of lipoprotein clearance: tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1 start-page: 221 year: 1995 end-page: 225 ident: bib14 article-title: Selective liver targeting of antivirals by recombinant chylomicrons–a new therapeutic approach to hepatitis B publication-title: Nat. Med. – volume: 116 start-page: 1133 year: 2015 end-page: 1142 ident: bib28 article-title: HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export publication-title: Circ. Res. – volume: 325 start-page: 242 year: 1996 end-page: 248 ident: bib30 article-title: Inhibitors of cholesterol biosynthesis increase hepatic low-density lipoprotein receptor protein degradation publication-title: Arch. Biochem. Biophys. – volume: 26 start-page: 2552 year: 2006 end-page: 2559 ident: bib11 article-title: Cholesteryl ester transfer protein decreases high-density lipoprotein and severely aggravates atherosclerosis in APOE*3-Leiden mice publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 17 start-page: 200 year: 2011 end-page: 205 ident: bib4 article-title: Brown adipose tissue activity controls triglyceride clearance publication-title: Nat. Med. – volume: 285 start-page: 25168 year: 2010 end-page: 25175 ident: bib16 article-title: Fenofibrate increases very low density lipoprotein triglyceride production despite reducing plasma triglyceride levels in APOE*3-Leiden.CETP mice publication-title: J. Biol. Chem. – volume: 8 start-page: 15010 year: 2017 ident: bib24 article-title: Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport publication-title: Nat. Commun. – volume: 16 start-page: 23 year: 1991 end-page: 29 ident: bib12 article-title: Table of nonprotein respiratory quotient: an update publication-title: Can. J. Sport Sci. – volume: 11 start-page: 920 year: 2017 end-page: 928 ident: bib23 article-title: Short-term cooling increases serum triglycerides and small high-density lipoprotein levels in humans publication-title: J. Clin. Lipidol. – volume: 118 start-page: 173 year: 2016 end-page: 182 ident: bib6 article-title: Role of brown fat in lipoprotein metabolism and atherosclerosis publication-title: Circ. Res. – volume: 24 start-page: 1423 year: 2013 end-page: 1430 ident: bib29 article-title: Resveratrol protects against atherosclerosis, but does not add to the antiatherogenic effect of atorvastatin, in APOE*3-Leiden.CETP mice publication-title: J. Nutr. Biochem. – volume: 95 start-page: 213 year: 1998 end-page: 217 ident: bib33 article-title: Central cooling effects in patients with hypercholesterolaemia publication-title: Clin. Sci. (Lond) – volume: 16 start-page: 74 year: 2016 ident: bib2 article-title: Unmet need in the hyperlipidaemia population with high risk of cardiovascular disease: a targeted literature review of observational studies publication-title: BMC. Cardiovasc. Disord. – volume: 28 start-page: 369 year: 2014 end-page: 385 ident: bib3 article-title: The metabolic and pharmacologic bases for treating atherogenic dyslipidaemia publication-title: Best. Pract. Res. Clin. Endocrinol. Metab. – volume: 26 start-page: 842 year: 1985 end-page: 851 ident: bib25 article-title: Plasma phospholipid transfer protein enhances transfer and exchange of phospholipids between very low density lipoproteins and high density lipoproteins during lipolysis publication-title: J. Lipid Res. – volume: 27 start-page: 242 year: 2016 end-page: 248 ident: bib19 article-title: Relevance of lipid metabolism for brown fat visualization and quantification publication-title: Curr. Opin. Lipidol. – volume: 39 start-page: 16092 year: 2000 end-page: 16098 ident: bib27 article-title: Phospholipid transfer is a prerequisite for PLTP-mediated HDL conversion publication-title: Biochemistry – volume: 21 start-page: 33 year: 2015 end-page: 38 ident: bib35 article-title: Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist publication-title: Cell Metab. – volume: 151 start-page: 400 year: 2012 end-page: 413 ident: bib7 article-title: Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria publication-title: Cell – volume: 39 start-page: 75 year: 1998 end-page: 84 ident: bib31 article-title: Atorvastatin action involves diminished recovery of hepatic HMG-CoA reductase activity publication-title: J. Lipid Res. – volume: 56 start-page: 51 year: 2015 end-page: 59 ident: bib8 article-title: Brown adipose tissue takes up plasma triglycerides mostly after lipolysis publication-title: J. Lipid Res. – volume: 51 start-page: 2714 year: 2010 end-page: 2721 ident: bib21 article-title: High-dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol publication-title: J. Lipid Res. – volume: 6 start-page: 6356 year: 2015 ident: bib9 article-title: Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development publication-title: Nat. Commun. – volume: 42 start-page: 1578 year: 2001 end-page: 1585 ident: bib15 article-title: Apolipoprotein C-III deficiency accelerates triglyceride hydrolysis by lipoprotein lipase in wild-type and apoE knockout mice publication-title: J. Lipid Res. – volume: 40 start-page: 1 year: 1999 end-page: 16 ident: bib22 article-title: Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E publication-title: J. Lipid Res. – volume: 7 start-page: e36162 year: 2012 ident: bib13 article-title: Estimation of activity related energy expenditure and resting metabolic rate in freely moving mice from indirect calorimetry data publication-title: PLoS One – volume: 41 start-page: 1651 year: 2000 end-page: 1657 ident: bib26 article-title: Distribution of phospholipid transfer protein in human plasma: presence of two forms of phospholipid transfer protein, one catalytically active and the other inactive publication-title: J. Lipid Res. – volume: 60 start-page: 875 year: 2012 end-page: 881 ident: bib1 article-title: The controversies of statin therapy: weighing the evidence publication-title: J. Am. Coll. Cardiol. – year: 2000 ident: bib10 article-title: Cholesterol Lowering Drugs – volume: 28 start-page: 5361 year: 2014 end-page: 5375 ident: bib17 article-title: Peripheral cannabinoid 1 receptor blockade activates brown adipose tissue and diminishes dyslipidemia and obesity publication-title: FASEB J. – volume: 57 start-page: 1221 year: 2016 end-page: 1225 ident: bib34 article-title: Supraclavicular Brown adipose tissue FDG uptake and cardiovascular disease publication-title: J. Nucl. Med. – volume: 122 start-page: 545 year: 2012 end-page: 552 ident: bib5 article-title: Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans publication-title: J. Clin. Invest – volume: 64 start-page: 2388 year: 2015 end-page: 2397 ident: bib32 article-title: Selective impairment of glucose, but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes publication-title: Diabetes – volume: 285 start-page: 25168 year: 2010 ident: 10.1016/j.atherosclerosis.2017.10.030_bib16 article-title: Fenofibrate increases very low density lipoprotein triglyceride production despite reducing plasma triglyceride levels in APOE*3-Leiden.CETP mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.123992 – volume: 41 start-page: 1651 year: 2000 ident: 10.1016/j.atherosclerosis.2017.10.030_bib26 article-title: Distribution of phospholipid transfer protein in human plasma: presence of two forms of phospholipid transfer protein, one catalytically active and the other inactive publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)31998-2 – volume: 64 start-page: 2388 issue: 7 year: 2015 ident: 10.1016/j.atherosclerosis.2017.10.030_bib32 article-title: Selective impairment of glucose, but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes publication-title: Diabetes doi: 10.2337/db14-1651 – volume: 8 start-page: 15010 year: 2017 ident: 10.1016/j.atherosclerosis.2017.10.030_bib24 article-title: Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport publication-title: Nat. Commun. doi: 10.1038/ncomms15010 – volume: 21 start-page: 33 year: 2015 ident: 10.1016/j.atherosclerosis.2017.10.030_bib35 article-title: Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.12.009 – volume: 325 start-page: 242 year: 1996 ident: 10.1016/j.atherosclerosis.2017.10.030_bib30 article-title: Inhibitors of cholesterol biosynthesis increase hepatic low-density lipoprotein receptor protein degradation publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1996.0030 – volume: 56 start-page: 51 year: 2015 ident: 10.1016/j.atherosclerosis.2017.10.030_bib8 article-title: Brown adipose tissue takes up plasma triglycerides mostly after lipolysis publication-title: J. Lipid Res. doi: 10.1194/jlr.M052746 – volume: 28 start-page: 369 year: 2014 ident: 10.1016/j.atherosclerosis.2017.10.030_bib3 article-title: The metabolic and pharmacologic bases for treating atherogenic dyslipidaemia publication-title: Best. Pract. Res. Clin. Endocrinol. Metab. doi: 10.1016/j.beem.2013.10.001 – volume: 28 start-page: 5361 year: 2014 ident: 10.1016/j.atherosclerosis.2017.10.030_bib17 article-title: Peripheral cannabinoid 1 receptor blockade activates brown adipose tissue and diminishes dyslipidemia and obesity publication-title: FASEB J. doi: 10.1096/fj.13-247643 – volume: 220 start-page: 362 year: 2012 ident: 10.1016/j.atherosclerosis.2017.10.030_bib18 article-title: Hepatocyte-specific IKKbeta expression aggravates atherosclerosis development in APOE*3-Leiden mice publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2011.06.055 – volume: 27 start-page: 242 year: 2016 ident: 10.1016/j.atherosclerosis.2017.10.030_bib19 article-title: Relevance of lipid metabolism for brown fat visualization and quantification publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000296 – volume: 51 start-page: 2714 year: 2010 ident: 10.1016/j.atherosclerosis.2017.10.030_bib21 article-title: High-dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol publication-title: J. Lipid Res. doi: 10.1194/jlr.M008144 – volume: 16 start-page: 74 year: 2016 ident: 10.1016/j.atherosclerosis.2017.10.030_bib2 article-title: Unmet need in the hyperlipidaemia population with high risk of cardiovascular disease: a targeted literature review of observational studies publication-title: BMC. Cardiovasc. Disord. doi: 10.1186/s12872-016-0241-3 – volume: 39 start-page: 75 year: 1998 ident: 10.1016/j.atherosclerosis.2017.10.030_bib31 article-title: Atorvastatin action involves diminished recovery of hepatic HMG-CoA reductase activity publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)34205-X – volume: 118 start-page: 173 year: 2016 ident: 10.1016/j.atherosclerosis.2017.10.030_bib6 article-title: Role of brown fat in lipoprotein metabolism and atherosclerosis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.306647 – volume: 95 start-page: 213 year: 1998 ident: 10.1016/j.atherosclerosis.2017.10.030_bib33 article-title: Central cooling effects in patients with hypercholesterolaemia publication-title: Clin. Sci. (Lond) doi: 10.1042/cs0950213 – volume: 1 start-page: 221 year: 1995 ident: 10.1016/j.atherosclerosis.2017.10.030_bib14 article-title: Selective liver targeting of antivirals by recombinant chylomicrons–a new therapeutic approach to hepatitis B publication-title: Nat. Med. doi: 10.1038/nm0395-221 – volume: 40 start-page: 1 year: 1999 ident: 10.1016/j.atherosclerosis.2017.10.030_bib22 article-title: Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)33334-4 – volume: 26 start-page: 842 year: 1985 ident: 10.1016/j.atherosclerosis.2017.10.030_bib25 article-title: Plasma phospholipid transfer protein enhances transfer and exchange of phospholipids between very low density lipoproteins and high density lipoproteins during lipolysis publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)34314-5 – volume: 16 start-page: 23 year: 1991 ident: 10.1016/j.atherosclerosis.2017.10.030_bib12 article-title: Table of nonprotein respiratory quotient: an update publication-title: Can. J. Sport Sci. – volume: 39 start-page: 16092 year: 2000 ident: 10.1016/j.atherosclerosis.2017.10.030_bib27 article-title: Phospholipid transfer is a prerequisite for PLTP-mediated HDL conversion publication-title: Biochemistry doi: 10.1021/bi0019287 – volume: 17 start-page: 200 year: 2011 ident: 10.1016/j.atherosclerosis.2017.10.030_bib4 article-title: Brown adipose tissue activity controls triglyceride clearance publication-title: Nat. Med. doi: 10.1038/nm.2297 – volume: 91 start-page: 4431 year: 1994 ident: 10.1016/j.atherosclerosis.2017.10.030_bib20 article-title: The two-receptor model of lipoprotein clearance: tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.91.10.4431 – volume: 7 start-page: e36162 year: 2012 ident: 10.1016/j.atherosclerosis.2017.10.030_bib13 article-title: Estimation of activity related energy expenditure and resting metabolic rate in freely moving mice from indirect calorimetry data publication-title: PLoS One doi: 10.1371/journal.pone.0036162 – volume: 26 start-page: 2552 year: 2006 ident: 10.1016/j.atherosclerosis.2017.10.030_bib11 article-title: Cholesteryl ester transfer protein decreases high-density lipoprotein and severely aggravates atherosclerosis in APOE*3-Leiden mice publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000243925.65265.3c – volume: 11 start-page: 920 issue: 4 year: 2017 ident: 10.1016/j.atherosclerosis.2017.10.030_bib23 article-title: Short-term cooling increases serum triglycerides and small high-density lipoprotein levels in humans publication-title: J. Clin. Lipidol. doi: 10.1016/j.jacl.2017.04.117 – volume: 57 start-page: 1221 issue: 8 year: 2016 ident: 10.1016/j.atherosclerosis.2017.10.030_bib34 article-title: Supraclavicular Brown adipose tissue FDG uptake and cardiovascular disease publication-title: J. Nucl. Med. doi: 10.2967/jnumed.115.166025 – volume: 116 start-page: 1133 year: 2015 ident: 10.1016/j.atherosclerosis.2017.10.030_bib28 article-title: HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.305485 – year: 2000 ident: 10.1016/j.atherosclerosis.2017.10.030_bib10 – volume: 122 start-page: 545 year: 2012 ident: 10.1016/j.atherosclerosis.2017.10.030_bib5 article-title: Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans publication-title: J. Clin. Invest doi: 10.1172/JCI60433 – volume: 24 start-page: 1423 year: 2013 ident: 10.1016/j.atherosclerosis.2017.10.030_bib29 article-title: Resveratrol protects against atherosclerosis, but does not add to the antiatherogenic effect of atorvastatin, in APOE*3-Leiden.CETP mice publication-title: J. Nutr. Biochem. doi: 10.1016/j.jnutbio.2012.11.009 – volume: 151 start-page: 400 year: 2012 ident: 10.1016/j.atherosclerosis.2017.10.030_bib7 article-title: Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria publication-title: Cell doi: 10.1016/j.cell.2012.09.010 – volume: 42 start-page: 1578 year: 2001 ident: 10.1016/j.atherosclerosis.2017.10.030_bib15 article-title: Apolipoprotein C-III deficiency accelerates triglyceride hydrolysis by lipoprotein lipase in wild-type and apoE knockout mice publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)32211-2 – volume: 60 start-page: 875 year: 2012 ident: 10.1016/j.atherosclerosis.2017.10.030_bib1 article-title: The controversies of statin therapy: weighing the evidence publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2012.07.007 – volume: 6 start-page: 6356 year: 2015 ident: 10.1016/j.atherosclerosis.2017.10.030_bib9 article-title: Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development publication-title: Nat. Commun. doi: 10.1038/ncomms7356 |
SSID | ssj0004718 |
Score | 2.3451233 |
Snippet | Activation of brown adipose tissue (BAT) reduces both hyperlipidemia and atherosclerosis by increasing the uptake of triglyceride-derived fatty acids by BAT,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116 |
SubjectTerms | Adipose Tissue - metabolism Adipose Tissue, Brown - metabolism Animals Atherosclerosis Atherosclerosis - drug therapy Atherosclerosis - metabolism Atorvastatin Calcium - pharmacology Brown adipose tissue Calorimetry, Indirect Cholesterol Ester Transfer Proteins - blood Cholesterol Ester Transfer Proteins - genetics Cholesterol metabolism Female Gene Expression Profiling Humans Hydroxymethylglutaryl-CoA Reductase Inhibitors - pharmacology Hypercholesterolemia Hypercholesterolemia - drug therapy Hypercholesterolemia - metabolism Hyperlipidemias - metabolism Lipid and lipoprotein metabolism Lipids - blood Lipoproteins - metabolism Liver - metabolism Mice Mice, Knockout, ApoE Proprotein Convertase 9 - blood Proprotein Convertase 9 - genetics Receptors, Adrenergic, beta-3 - metabolism Triglycerides - metabolism |
Title | Atorvastatin accelerates clearance of lipoprotein remnants generated by activated brown fat to further reduce hypercholesterolemia and atherosclerosis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021915017313618 https://dx.doi.org/10.1016/j.atherosclerosis.2017.10.030 https://www.ncbi.nlm.nih.gov/pubmed/29121499 https://www.proquest.com/docview/1963275737 |
Volume | 267 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD60Wyi-iHfXSxlBH9NmZpJMAiIuxbIq9slC38JcNdImy2624Et_Rn-v5-SyxaJQ8SUhlznM9TvnMN85A_A6kyI2WsWRDcpEifcmMsEnkbB5EL5QgZuOIHuczU-ST6fp6RYcjrEwRKscsL_H9A6thzcHQ28eLKqKYnxxtaE9w5XkMuP5NuwI1Pb5BHZmHz_Pj6_DIxXvAZnYCFhgF95c07w6O6tZoVS8VpTAm6t94nsRL_rPqupvpminko7uwd3BlmSzvrr3YcvXD2D3y7Bb_hCuZuhQX2iKGapqpq1FFUOZIVbM0mERNN6sCeysWjRdugb8aenPO2YM-9alo0ZzlJmfjIIfLvoH8tpZ0C1rGxbWS2oWFnI4Qdh3dGmXhKZd8gW8nVea6dqxG41_BCdHH74ezqPhHIbIpkq0UZAKUVAaFVv0buLgROxsJo1O8kRwr4VzSWadK9LUoTlpcy5d4uhA-lBk3GXyMUzqpvZPgRmRa6WNtCn3CB3cWGuDUWg1OhPyLJ_C27HLSzskKaezMs7KkY32o7xR6ZJGjD7jiE0h2xRf9Nk6blvw3Ti-5RiSiiBaol65rYD3GwG_zd9_EfFqnFglrnHauNG1b9arklBSqFRJNYUn_YzbNE8UXKCXWzz7_wo8hzv01JN1XsCkXa79SzS5WrMH2_uXfG9YWL8AHUg1zA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZaxRBEC7iBqIv4u16tqCPY6a7Z6ZnQMQlGDYm2acE8jb0qSPJzLJHwD_i77Vqjg0GhYgvM8zRTZ9fVdFfVQG8zaSIjVZxZIMyUeK9iUzwSSRsHoQvVOCmJcjOsulp8uUsPduCvcEXhmiVPfZ3mN6idf9mtx_N3XlVkY8v7jbUZ7iSXGY8vwXbCSW1HsH25OBwOrtyj1S8A2RiI2CBHXh3RfNq9axmibXitaIA3ly9J74X8aL_LKr-poq2Imn_HtztdUk26Zp7H7Z8_QB2jvvT8ofwc4IG9aUmn6GqZtpaFDEUGWLJLCWLoPlmTWDn1bxpwzXgTwt_0TJj2Nc2HDWqo8z8YOT8cNk9kNXOgl6xVcPCekHdwkIOFwj7hibtgtC0Db6At4tKM107dq3zj-B0__PJ3jTq8zBENlViFQWpEAWlUbFF6yYOTsTOZtLoJE8E91o4l2TWuSJNHaqTNufSJY4S0oci4y6Tj2FUN7V_CsyIXCttpE25R-jgxlobjEKt0ZmQZ_kYPgxDXto-SDnlyjgvBzba9_Jao0uaMfqMMzaGbFN83kXruGnBj8P8loNLKoJoiXLlphV82lTw2_r9lyreDAurxD1OBze69s16WRJKCpUqqcbwpFtxm-6Jggu0cotn_9-A13B7enJ8VB4dzA6fwx360hF3XsBotVj7l6h-rcyrfnv9AmSdN7I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atorvastatin+accelerates+clearance+of+lipoprotein+remnants+generated+by+activated+brown+fat+to+further+reduce+hypercholesterolemia+and+atherosclerosis&rft.jtitle=Atherosclerosis&rft.au=Hoeke%2C+Geerte&rft.au=Wang%2C+Yanan&rft.au=van+Dam%2C+Andrea+D.&rft.au=Mol%2C+Isabel+M.&rft.date=2017-12-01&rft.issn=0021-9150&rft.volume=267&rft.spage=116&rft.epage=126&rft_id=info:doi/10.1016%2Fj.atherosclerosis.2017.10.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_atherosclerosis_2017_10_030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9150&client=summon |