Metalearners for estimating heterogeneous treatment effects using machine learning
There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of metaalgorithms that can take advantage of any supervised learning or regression method in machine learning and statistics to estimate the condition...
Saved in:
| Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 10; pp. 4156 - 4165 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
National Academy of Sciences
05.03.2019
|
| Series | PNAS Plus |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0027-8424 1091-6490 1091-6490 |
| DOI | 10.1073/pnas.1804597116 |
Cover
| Abstract | There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of metaalgorithms that can take advantage of any supervised learning or regression method in machine learning and statistics to estimate the conditional average treatment effect (CATE) function. Metaalgorithms build on base algorithms—such as random forests (RFs), Bayesian additive regression trees (BARTs), or neural networks—to estimate the CATE, a function that the base algorithms are not designed to estimate directly. We introduce a metaalgorithm, the X-learner, that is provably efficient when the number of units in one treatment group is much larger than in the other and can exploit structural properties of the CATE function. For example, if the CATE function is linear and the response functions in treatment and control are Lipschitz-continuous, the X-learner can still achieve the parametric rate under regularity conditions. We then introduce versions of the X-learner that use RF and BART as base learners. In extensive simulation studies, the X-learner performs favorably, although none of the metalearners is uniformly the best. In two persuasion field experiments from political science, we demonstrate how our X-learner can be used to target treatment regimes and to shed light on underlying mechanisms. A software package is provided that implements our methods. |
|---|---|
| AbstractList | There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of metaalgorithms that can take advantage of any supervised learning or regression method in machine learning and statistics to estimate the conditional average treatment effect (CATE) function. Metaalgorithms build on base algorithms—such as random forests (RFs), Bayesian additive regression trees (BARTs), or neural networks—to estimate the CATE, a function that the base algorithms are not designed to estimate directly. We introduce a metaalgorithm, the X-learner, that is provably efficient when the number of units in one treatment group is much larger than in the other and can exploit structural properties of the CATE function. For example, if the CATE function is linear and the response functions in treatment and control are Lipschitz-continuous, the X-learner can still achieve the parametric rate under regularity conditions. We then introduce versions of the X-learner that use RF and BART as base learners. In extensive simulation studies, the X-learner performs favorably, although none of the metalearners is uniformly the best. In two persuasion field experiments from political science, we demonstrate how our X-learner can be used to target treatment regimes and to shed light on underlying mechanisms. A software package is provided that implements our methods. There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of metaalgorithms that can take advantage of any supervised learning or regression method in machine learning and statistics to estimate the conditional average treatment effect (CATE) function. Metaalgorithms build on base algorithms-such as random forests (RFs), Bayesian additive regression trees (BARTs), or neural networks-to estimate the CATE, a function that the base algorithms are not designed to estimate directly. We introduce a metaalgorithm, the X-learner, that is provably efficient when the number of units in one treatment group is much larger than in the other and can exploit structural properties of the CATE function. For example, if the CATE function is linear and the response functions in treatment and control are Lipschitz-continuous, the X-learner can still achieve the parametric rate under regularity conditions. We then introduce versions of the X-learner that use RF and BART as base learners. In extensive simulation studies, the X-learner performs favorably, although none of the metalearners is uniformly the best. In two persuasion field experiments from political science, we demonstrate how our X-learner can be used to target treatment regimes and to shed light on underlying mechanisms. A software package is provided that implements our methods.There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of metaalgorithms that can take advantage of any supervised learning or regression method in machine learning and statistics to estimate the conditional average treatment effect (CATE) function. Metaalgorithms build on base algorithms-such as random forests (RFs), Bayesian additive regression trees (BARTs), or neural networks-to estimate the CATE, a function that the base algorithms are not designed to estimate directly. We introduce a metaalgorithm, the X-learner, that is provably efficient when the number of units in one treatment group is much larger than in the other and can exploit structural properties of the CATE function. For example, if the CATE function is linear and the response functions in treatment and control are Lipschitz-continuous, the X-learner can still achieve the parametric rate under regularity conditions. We then introduce versions of the X-learner that use RF and BART as base learners. In extensive simulation studies, the X-learner performs favorably, although none of the metalearners is uniformly the best. In two persuasion field experiments from political science, we demonstrate how our X-learner can be used to target treatment regimes and to shed light on underlying mechanisms. A software package is provided that implements our methods. Estimating and analyzing heterogeneous treatment effects is timely, yet challenging. We introduce a unifying framework for many conditional average treatment effect estimators, and we propose a metalearner, the X-learner, which can adapt to structural properties, such as the smoothness and sparsity of the underlying treatment effect. We present its favorable properties, using theory and simulations. We apply it, using random forests, to two field experiments in political science, where it is shown to be easy to use and to produce results that are interpretable. There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of metaalgorithms that can take advantage of any supervised learning or regression method in machine learning and statistics to estimate the conditional average treatment effect (CATE) function. Metaalgorithms build on base algorithms—such as random forests (RFs), Bayesian additive regression trees (BARTs), or neural networks—to estimate the CATE, a function that the base algorithms are not designed to estimate directly. We introduce a metaalgorithm, the X-learner, that is provably efficient when the number of units in one treatment group is much larger than in the other and can exploit structural properties of the CATE function. For example, if the CATE function is linear and the response functions in treatment and control are Lipschitz-continuous, the X-learner can still achieve the parametric rate under regularity conditions. We then introduce versions of the X-learner that use RF and BART as base learners. In extensive simulation studies, the X-learner performs favorably, although none of the metalearners is uniformly the best. In two persuasion field experiments from political science, we demonstrate how our X-learner can be used to target treatment regimes and to shed light on underlying mechanisms. A software package is provided that implements our methods. Estimating and analyzing heterogeneous treatment effects is timely, yet challenging. We introduce a unifying framework for many conditional average treatment effect estimators, and we propose a metalearner, the X-learner, which can adapt to structural properties, such as the smoothness and sparsity of the underlying treatment effect. We present its favorable properties, using theory and simulations. We apply it, using random forests, to two field experiments in political science, where it is shown to be easy to use and to produce results that are interpretable. There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of metaalgorithms that can take advantage of any supervised learning or regression method in machine learning and statistics to estimate the conditional average treatment effect (CATE) function. Metaalgorithms build on base algorithms—such as random forests (RFs), Bayesian additive regression trees (BARTs), or neural networks—to estimate the CATE, a function that the base algorithms are not designed to estimate directly. We introduce a metaalgorithm, the X-learner, that is provably efficient when the number of units in one treatment group is much larger than in the other and can exploit structural properties of the CATE function. For example, if the CATE function is linear and the response functions in treatment and control are Lipschitz-continuous, the X-learner can still achieve the parametric rate under regularity conditions. We then introduce versions of the X-learner that use RF and BART as base learners. In extensive simulation studies, the X-learner performs favorably, although none of the metalearners is uniformly the best. In two persuasion field experiments from political science, we demonstrate how our X-learner can be used to target treatment regimes and to shed light on underlying mechanisms. A software package is provided that implements our methods. SignificanceEstimating and analyzing heterogeneous treatment effects is timely, yet challenging. We introduce a unifying framework for many conditional average treatment effect estimators, and we propose a metalearner, the X-learner, which can adapt to structural properties, such as the smoothness and sparsity of the underlying treatment effect. We present its favorable properties, using theory and simulations. We apply it, using random forests, to two field experiments in political science, where it is shown to be easy to use and to produce results that are interpretable. There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of metaalgorithms that can take advantage of any supervised learning or regression method in machine learning and statistics to estimate the conditional average treatment effect (CATE) function. Metaalgorithms build on base algorithms—such as random forests (RFs), Bayesian additive regression trees (BARTs), or neural networks—to estimate the CATE, a function that the base algorithms are not designed to estimate directly. We introduce a metaalgorithm, the X-learner, that is provably efficient when the number of units in one treatment group is much larger than in the other and can exploit structural properties of the CATE function. For example, if the CATE function is linear and the response functions in treatment and control are Lipschitz-continuous, the X-learner can still achieve the parametric rate under regularity conditions. We then introduce versions of the X-learner that use RF and BART as base learners. In extensive simulation studies, the X-learner performs favorably, although none of the metalearners is uniformly the best. In two persuasion field experiments from political science, we demonstrate how our X-learner can be used to target treatment regimes and to shed light on underlying mechanisms. A software package is provided that implements our methods. |
| Author | Bickel, Peter J. Künzel, Sören R. Yu, Bin Sekhon, Jasjeet S. |
| Author_xml | – sequence: 1 givenname: Sören R. surname: Künzel fullname: Künzel, Sören R. – sequence: 2 givenname: Jasjeet S. surname: Sekhon fullname: Sekhon, Jasjeet S. – sequence: 3 givenname: Peter J. surname: Bickel fullname: Bickel, Peter J. – sequence: 4 givenname: Bin surname: Yu fullname: Yu, Bin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30770453$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1604674$$D View this record in Osti.gov |
| BookMark | eNqFkU1v1DAURS1URKeFNStQBBsklPY5sWN7g4QqPioVISFYWx7Py0xGiT3YTqv-e5xmaKGLdhXJPu_mvuMjcuC8Q0JeUjihIOrTnTPxhEpgXAlKmydkQUHRsmEKDsgCoBKlZBU7JEcxbgFAcQnPyGENQuSZekF-fMNkejTBYYhF60OBMXWDSZ1bFxtMGPwaHfoxFimgSQO6VGDbok2xGONEDcZuOofFTUo-eE6etqaP-GL_PSa_Pn_6efa1vPj-5fzs40VpuahSuVoq00rTWoFUUIZKUmmBGgAuOFtCk1eSfKXAGGWXggNH2lYcjFBUtLWpjwnMuaPbmesr0_d6F3L1cK0p6EmPnvToOz155MM8shuXA65sXiaYuzFvOv3_jes2eu0vdcMoyJrmgDdzgM-WdLRdQrux3rnsQ9MGWCNYht7t_xL87zH71EMXLfa9uRGpqwpAZBCmvLf30K0fg8vadEUVoxWoZqJe_1v7tu_fZ8wAnwEbfIwBW52b5Tf00xZd_4CP03tzjxt8v68yXTxOv5rpbUw-3OJV08jcXdZ_APAt2J0 |
| CitedBy_id | crossref_primary_10_3390_app10072216 crossref_primary_10_1002_sim_10333 crossref_primary_10_1515_jci_2024_0009 crossref_primary_10_1214_20_AOAS1322 crossref_primary_10_3389_fmed_2022_864882 crossref_primary_10_1007_s10109_023_00413_0 crossref_primary_10_1007_s10994_021_05969_w crossref_primary_10_1016_j_datak_2025_102416 crossref_primary_10_1016_j_softx_2022_101294 crossref_primary_10_1145_3629169 crossref_primary_10_1016_j_ejor_2022_01_046 crossref_primary_10_1109_ACCESS_2023_3260184 crossref_primary_10_1214_24_EJS2332 crossref_primary_10_1007_s11129_023_09278_5 crossref_primary_10_1214_23_EJS2157 crossref_primary_10_1007_s13218_024_00883_4 crossref_primary_10_1016_j_ssresearch_2022_102810 crossref_primary_10_2139_ssrn_3974859 crossref_primary_10_1093_biomet_asab042 crossref_primary_10_1093_biomtc_ujaf019 crossref_primary_10_1093_jrsssb_qkad075 crossref_primary_10_2139_ssrn_3676759 crossref_primary_10_2147_CLEP_S274466 crossref_primary_10_1016_j_jclinepi_2019_12_012 crossref_primary_10_1080_07350015_2020_1847122 crossref_primary_10_1287_isre_2022_1149 crossref_primary_10_1177_0272989X211064604 crossref_primary_10_1016_j_apenergy_2024_124550 crossref_primary_10_1097_EDE_0000000000001785 crossref_primary_10_1161_JAHA_124_034862 crossref_primary_10_1002_cai2_119 crossref_primary_10_1186_s12874_024_02202_9 crossref_primary_10_1002_sim_9955 crossref_primary_10_1109_TNNLS_2021_3133337 crossref_primary_10_1007_s10549_023_07237_y crossref_primary_10_1016_j_neucom_2024_127741 crossref_primary_10_1038_s41598_022_16260_w crossref_primary_10_1186_s12874_023_01889_6 crossref_primary_10_1016_j_jval_2022_07_011 crossref_primary_10_1371_journal_pone_0306711 crossref_primary_10_1016_j_jbi_2022_104256 crossref_primary_10_1080_19466315_2020_1819404 crossref_primary_10_1214_19_STS721 crossref_primary_10_1177_09622802231224628 crossref_primary_10_1016_j_jclinepi_2024_111538 crossref_primary_10_1146_annurev_publhealth_040119_094437 crossref_primary_10_21105_joss_05587 crossref_primary_10_1016_j_diabres_2022_110047 crossref_primary_10_1016_j_jlamp_2024_101000 crossref_primary_10_1513_AnnalsATS_202211_946OC crossref_primary_10_3390_math12203301 crossref_primary_10_1111_dom_15744 crossref_primary_10_1080_07350015_2025_2479646 crossref_primary_10_1016_S2213_2600_24_00405_3 crossref_primary_10_3390_app14219700 crossref_primary_10_1111_ajps_12723 crossref_primary_10_1145_3643139 crossref_primary_10_1038_s41598_023_33033_1 crossref_primary_10_1093_biomet_asaa076 crossref_primary_10_1016_j_worlddev_2022_105924 crossref_primary_10_3389_fbinf_2021_746712 crossref_primary_10_1093_ectj_utaa014 crossref_primary_10_4307_jsee_72_5_75 crossref_primary_10_1080_01621459_2021_1923511 crossref_primary_10_1016_j_jbi_2023_104420 crossref_primary_10_1016_j_jocs_2023_102054 crossref_primary_10_1007_s40593_020_00203_5 crossref_primary_10_1097_EDE_0000000000001684 crossref_primary_10_1177_2158244019851675 crossref_primary_10_1016_j_jbi_2022_104001 crossref_primary_10_1186_s12933_023_01985_3 crossref_primary_10_1007_s00181_024_02575_2 crossref_primary_10_1007_s42519_021_00213_z crossref_primary_10_1038_s41746_024_01189_3 crossref_primary_10_52396_JUSTC_2022_0054 crossref_primary_10_1007_s11222_024_10434_4 crossref_primary_10_1016_j_dss_2020_113320 crossref_primary_10_1287_isre_2021_0343 crossref_primary_10_1002_cpt_2471 crossref_primary_10_1257_mic_20180336 crossref_primary_10_3390_a16050226 crossref_primary_10_1007_s10489_024_06009_5 crossref_primary_10_3758_s13428_024_02371_x crossref_primary_10_1145_3722104 crossref_primary_10_1186_s13104_021_05862_8 crossref_primary_10_2139_ssrn_4452778 crossref_primary_10_1016_j_annepidem_2021_07_003 crossref_primary_10_1515_jci_2022_0036 crossref_primary_10_1080_10618600_2022_2026780 crossref_primary_10_1016_j_eswa_2025_126649 crossref_primary_10_1145_3578931 crossref_primary_10_1177_09622802241247728 crossref_primary_10_3389_fneur_2023_1096153 crossref_primary_10_1016_j_xcrm_2025_101947 crossref_primary_10_1109_TKDE_2021_3112591 crossref_primary_10_1086_727597 crossref_primary_10_1142_S0129065723500363 crossref_primary_10_1002_cam4_6666 crossref_primary_10_1080_10618600_2020_1831930 crossref_primary_10_3934_DSFE_2025002 crossref_primary_10_1177_09622802221144326 crossref_primary_10_1214_23_AOAS1799 crossref_primary_10_1080_01621459_2024_2393466 crossref_primary_10_1111_jpc_15975 crossref_primary_10_1007_s10489_022_03860_2 crossref_primary_10_1214_19_BA1195 crossref_primary_10_1161_STROKEAHA_123_044265 crossref_primary_10_3390_ai5040094 crossref_primary_10_1016_j_ins_2023_119578 crossref_primary_10_1097_MD_0000000000039659 crossref_primary_10_1080_01621459_2023_2240461 crossref_primary_10_1093_erae_jbae034 crossref_primary_10_1097_MLR_0000000000001922 crossref_primary_10_1177_09622802251316969 crossref_primary_10_1016_j_dss_2024_114348 crossref_primary_10_1016_j_jsat_2022_108847 crossref_primary_10_1016_j_ejor_2025_02_030 crossref_primary_10_1016_j_giq_2024_101976 crossref_primary_10_1093_cei_uxae104 crossref_primary_10_3389_fmed_2024_1330907 crossref_primary_10_1287_mksc_2022_0379 crossref_primary_10_1007_s11336_021_09805_x crossref_primary_10_1002_wics_1614 crossref_primary_10_1080_21620555_2021_1948828 crossref_primary_10_1515_jci_2022_0016 crossref_primary_10_1001_jama_2024_3376 crossref_primary_10_1007_s10618_022_00832_5 crossref_primary_10_1038_s41562_023_01555_3 crossref_primary_10_1093_jrsssb_qkaf005 crossref_primary_10_1098_rsos_220638 crossref_primary_10_1056_EVIDoa2300041 crossref_primary_10_3102_1076998620951983 crossref_primary_10_1007_s41060_021_00249_1 crossref_primary_10_2139_ssrn_4847870 crossref_primary_10_1016_j_health_2022_100028 crossref_primary_10_1016_j_is_2023_102198 crossref_primary_10_1038_s41467_022_33269_x crossref_primary_10_1177_0272989X241289336 crossref_primary_10_1016_j_epsr_2024_110981 crossref_primary_10_1080_10618600_2022_2067549 crossref_primary_10_1111_insr_12427 crossref_primary_10_1002_asmb_2898 crossref_primary_10_1097_MCC_0000000000001186 crossref_primary_10_1007_s13218_023_00803_y crossref_primary_10_1080_01621459_2020_1772080 crossref_primary_10_1146_annurev_polisci_053119_015921 crossref_primary_10_3389_frai_2022_1015604 crossref_primary_10_1016_j_ejor_2021_05_045 crossref_primary_10_1001_jama_2024_7741 crossref_primary_10_1098_rsta_2022_0153 crossref_primary_10_1109_ACCESS_2023_3333878 crossref_primary_10_1007_s11229_022_03933_2 crossref_primary_10_1287_trsc_2022_0195 crossref_primary_10_1016_j_aap_2022_106811 crossref_primary_10_1080_00273171_2021_1994364 crossref_primary_10_1016_j_jenvman_2025_124514 crossref_primary_10_15388_21_INFOR468 crossref_primary_10_1145_3379500 crossref_primary_10_1016_j_omega_2020_102380 crossref_primary_10_1214_22_EJS2025 crossref_primary_10_3389_fmed_2024_1478842 crossref_primary_10_1136_bmjopen_2021_059715 crossref_primary_10_1097_CCM_0000000000006371 crossref_primary_10_34020_2073_6495_2024_2_081_100 crossref_primary_10_6339_24_JDS1119 crossref_primary_10_2139_ssrn_4129461 crossref_primary_10_1007_s10994_023_06317_w crossref_primary_10_3390_mca28020032 crossref_primary_10_1007_s11023_024_09691_z crossref_primary_10_1002_sim_10059 crossref_primary_10_1057_s41599_024_03525_0 crossref_primary_10_1080_10485252_2024_2367674 crossref_primary_10_1093_jrsssa_qnad125 crossref_primary_10_1016_j_ejor_2019_11_030 crossref_primary_10_1109_TVCG_2023_3326587 crossref_primary_10_1007_s00521_023_08221_9 crossref_primary_10_1080_10618600_2024_2418820 crossref_primary_10_1109_TAI_2024_3374269 crossref_primary_10_1214_23_AOS2258 crossref_primary_10_20879_kjjcs_2021_65_6_001 crossref_primary_10_1002_sim_10180 crossref_primary_10_1136_bmj_2024_079377 crossref_primary_10_1515_jqas_2021_0060 crossref_primary_10_1111_rssb_12445 crossref_primary_10_1371_journal_pone_0314761 crossref_primary_10_1002_sim_10186 crossref_primary_10_3389_fmed_2024_1418800 crossref_primary_10_1214_23_STS890 crossref_primary_10_1186_s40854_024_00681_9 crossref_primary_10_1038_s41591_024_02902_1 crossref_primary_10_1016_j_jeconom_2024_105945 crossref_primary_10_1287_mnsc_2023_4819 crossref_primary_10_2139_ssrn_4049267 crossref_primary_10_1109_TIT_2021_3075142 crossref_primary_10_3389_frbhe_2024_1503793 crossref_primary_10_1016_j_cmpb_2024_108017 crossref_primary_10_1016_j_patter_2024_100973 crossref_primary_10_1016_j_ejor_2022_03_049 crossref_primary_10_1080_03610918_2021_1974883 crossref_primary_10_1007_s42521_021_00033_7 crossref_primary_10_1007_s10994_024_06525_y crossref_primary_10_1145_3444944 crossref_primary_10_1017_psrm_2024_8 crossref_primary_10_1016_j_resconrec_2024_107432 crossref_primary_10_1080_00401706_2022_2142670 crossref_primary_10_1109_ACCESS_2024_3395134 crossref_primary_10_2139_ssrn_3555463 crossref_primary_10_2139_ssrn_3964320 crossref_primary_10_1002_acp_4011 crossref_primary_10_1109_ACCESS_2024_3429359 crossref_primary_10_1136_bmjopen_2022_069298 crossref_primary_10_3390_math12192992 crossref_primary_10_1371_journal_pdig_0000493 crossref_primary_10_2139_ssrn_3875850 crossref_primary_10_1016_j_econlet_2024_111838 crossref_primary_10_1515_jci_2023_0024 crossref_primary_10_1186_s12874_025_02489_2 crossref_primary_10_1016_j_csda_2024_107970 crossref_primary_10_1016_j_dss_2023_114060 crossref_primary_10_1145_3494990 crossref_primary_10_1093_biomtc_ujad012 crossref_primary_10_62347_TRNO3190 crossref_primary_10_1002_cpt_3159 crossref_primary_10_1016_j_jclepro_2025_144913 crossref_primary_10_1002_sim_10167 crossref_primary_10_1016_j_jbi_2022_104086 crossref_primary_10_1146_annurev_soc_030420_015345 crossref_primary_10_1186_s13054_022_03936_y crossref_primary_10_1002_sim_8926 crossref_primary_10_1017_bpp_2023_35 crossref_primary_10_52396_JUSTC_2023_0033 crossref_primary_10_1055_s_0041_1728757 crossref_primary_10_1007_s10618_021_00797_x crossref_primary_10_2139_ssrn_3351091 crossref_primary_10_1109_TITS_2024_3421343 crossref_primary_10_1371_journal_pone_0258400 crossref_primary_10_3103_S0005105524700249 crossref_primary_10_1177_10949968221111083 crossref_primary_10_2196_50890 crossref_primary_10_1017_pan_2019_34 crossref_primary_10_1111_1475_6773_13586 crossref_primary_10_1007_s12094_024_03459_8 crossref_primary_10_1186_s12874_020_01145_1 crossref_primary_10_1016_j_tbs_2024_100852 crossref_primary_10_2139_ssrn_3666456 crossref_primary_10_3390_e24121782 crossref_primary_10_1007_s10994_024_06546_7 crossref_primary_10_1109_ACCESS_2024_3437665 crossref_primary_10_1080_15481603_2024_2321695 crossref_primary_10_1109_TLT_2023_3264772 crossref_primary_10_3102_10769986231155427 crossref_primary_10_1016_j_ins_2022_08_024 crossref_primary_10_1038_s41467_023_41011_4 crossref_primary_10_1177_00491241241234866 crossref_primary_10_1016_j_ssmph_2025_101764 crossref_primary_10_7326_M22_1510 crossref_primary_10_1111_biom_13837 crossref_primary_10_2139_ssrn_4514424 crossref_primary_10_1001_jamanetworkopen_2020_29050 crossref_primary_10_3390_s23042265 crossref_primary_10_1016_j_eneco_2024_107768 crossref_primary_10_1002_widm_1449 crossref_primary_10_1038_s41598_025_88433_2 crossref_primary_10_1007_s10994_023_06421_x crossref_primary_10_1145_3656639 crossref_primary_10_1007_s10994_024_06729_2 crossref_primary_10_1002_jae_3092 crossref_primary_10_1507_endocrj_EJ24_0193 crossref_primary_10_3390_a17070318 crossref_primary_10_1002_sim_9100 crossref_primary_10_1016_j_ssmph_2021_100836 crossref_primary_10_1177_25152459241236149 crossref_primary_10_1200_JCO_21_01957 crossref_primary_10_1016_j_infsof_2023_107198 crossref_primary_10_1161_HYPERTENSIONAHA_124_22095 crossref_primary_10_1007_s10654_022_00901_5 crossref_primary_10_1017_rsm_2025_5 crossref_primary_10_1155_2023_2081588 crossref_primary_10_1109_TBDATA_2023_3291547 crossref_primary_10_1016_j_chb_2023_108080 crossref_primary_10_1016_j_compbiomed_2024_108995 crossref_primary_10_1016_j_dss_2021_113648 crossref_primary_10_1093_aje_kwae003 crossref_primary_10_1093_ectj_utac015 crossref_primary_10_1016_j_cardfail_2025_01_027 crossref_primary_10_3389_fneur_2024_1326591 crossref_primary_10_1093_aje_kwae008 crossref_primary_10_1177_10659129231224084 crossref_primary_10_1080_01621459_2020_1844210 crossref_primary_10_1016_j_apenergy_2023_121783 crossref_primary_10_1016_j_spl_2023_109854 crossref_primary_10_2196_67210 crossref_primary_10_1016_j_joi_2022_101283 crossref_primary_10_1016_j_jeconom_2022_07_006 crossref_primary_10_1016_j_ajcnut_2023_05_006 crossref_primary_10_1007_s10618_019_00670_y crossref_primary_10_1007_s00432_023_05602_4 crossref_primary_10_1016_j_asoc_2021_107241 crossref_primary_10_1007_s10488_023_01303_9 crossref_primary_10_1111_rssa_12824 crossref_primary_10_1016_j_jbi_2023_104339 crossref_primary_10_1007_s10614_024_10722_1 crossref_primary_10_1080_01621459_2020_1811099 crossref_primary_10_1002_cpt_3627 crossref_primary_10_1186_s12879_021_06812_2 crossref_primary_10_2139_ssrn_3048177 crossref_primary_10_2139_ssrn_4254202 crossref_primary_10_1140_epjds_s13688_022_00361_7 crossref_primary_10_1177_0272989X221100717 crossref_primary_10_1214_23_AOAS1740 crossref_primary_10_3390_data10020018 crossref_primary_10_1002_joom_1240 crossref_primary_10_1287_mnsc_2020_3699 crossref_primary_10_1080_03155986_2024_2383095 crossref_primary_10_1080_23311916_2023_2300557 crossref_primary_10_1016_j_egyai_2025_100487 crossref_primary_10_1017_pan_2021_19 crossref_primary_10_1002_pds_5500 crossref_primary_10_1097_ADM_0000000000001313 crossref_primary_10_1007_s10618_024_01042_x crossref_primary_10_1177_17407745231174544 crossref_primary_10_3390_a17010040 crossref_primary_10_1002_hed_27938 crossref_primary_10_1093_jrsssb_qkac001 crossref_primary_10_1177_09622802211052831 crossref_primary_10_1360_SSM_2023_0246 crossref_primary_10_1109_ACCESS_2024_3376423 crossref_primary_10_1111_biom_13800 crossref_primary_10_1017_pan_2021_30 crossref_primary_10_3102_10769986231162096 crossref_primary_10_1016_j_compbiomed_2024_108779 crossref_primary_10_1145_3466818 crossref_primary_10_1002_sim_9812 crossref_primary_10_2139_ssrn_4212172 crossref_primary_10_1111_aas_14492 crossref_primary_10_1111_jels_12333 crossref_primary_10_1007_s10618_023_00917_9 crossref_primary_10_1007_s10742_021_00259_3 crossref_primary_10_1093_gigascience_giaf016 crossref_primary_10_1017_dap_2024_35 crossref_primary_10_1093_polsoc_puad030 crossref_primary_10_2139_ssrn_4590356 crossref_primary_10_1080_03155986_2024_2386494 crossref_primary_10_1002_sim_9010 crossref_primary_10_2139_ssrn_4746623 |
| Cites_doi | 10.1093/biomet/70.1.41 10.1017/S000305540808009X 10.1214/ss/1177012031 10.1037/h0037350 10.1017/S0003055417000363 10.1214/09-AOAS285 10.1007/s11109-010-9124-y 10.1080/01621459.2014.951443 10.1007/b13794 10.1214/aos/1176345969 10.1017/pan.2017.27 10.1080/01621459.2017.1319839 10.1017/S104909651600024X 10.1073/pnas.1510489113 10.1198/jcgs.2010.08162 10.1126/science.aad9713 10.1093/poq/nfs036 10.1198/jasa.2009.ap06589 10.1214/15-AOS1321 |
| ContentType | Journal Article |
| Copyright | Copyright © 2019 the Author(s). Published by PNAS. Copyright National Academy of Sciences Mar 5, 2019 Copyright © 2019 the Author(s). Published by PNAS. 2019 |
| Copyright_xml | – notice: Copyright © 2019 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Mar 5, 2019 – notice: Copyright © 2019 the Author(s). Published by PNAS. 2019 |
| CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| CorporateAuthor_xml | – sequence: 0 name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OIOZB OTOTI 5PM ADTOC UNPAY |
| DOI | 10.1073/pnas.1804597116 |
| DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Statistics Political Science Engineering |
| EISSN | 1091-6490 |
| EndPage | 4165 |
| ExternalDocumentID | 10.1073/pnas.1804597116 PMC6410831 1604674 30770453 10_1073_pnas_1804597116 26683078 |
| Genre | Research Article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: DMS 1713083 – fundername: DOD | United States Navy | Office of Naval Research (ONR) grantid: N00014-15-1-2367 – fundername: DOD | United States Army | RDECOM | Army Research Office (ARO) grantid: W911NF-17-10005 – fundername: DOD | United States Navy | Office of Naval Research (ONR) grantid: N00014-16-1-2664 – fundername: DOD | United States Navy | Office of Naval Research (ONR) grantid: N00014-17-1-2176 – fundername: Center of Science of Information | National Science Foundation grantid: CCF-0939370 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 ADACV DOOOF JSODD OIOZB OTOTI RHF VQA 5PM .GJ 3O- 692 6TJ 79B AAYJJ ACKIV ADTOC ADXHL AFHIN AFQQW AS~ HGD HQ3 HTVGU MVM NEJ NHB P-O UNPAY VOH WHG ZCG |
| ID | FETCH-LOGICAL-c572t-db9af8afc7e1714e9818c01a005754b0659785d90aa9cb7505e1f250a7917f3a3 |
| IEDL.DBID | UNPAY |
| ISSN | 0027-8424 1091-6490 |
| IngestDate | Wed Oct 29 12:04:15 EDT 2025 Tue Sep 30 16:58:59 EDT 2025 Thu Dec 05 06:23:55 EST 2024 Fri Sep 05 12:17:26 EDT 2025 Mon Jun 30 08:22:51 EDT 2025 Thu Apr 03 06:55:00 EDT 2025 Wed Oct 01 04:16:21 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 Thu Oct 09 22:07:39 EDT 2025 Thu May 29 13:25:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| IssueTitle | PNAS Plus |
| Keywords | conditional average treatment effect minimax optimality observational studies randomized controlled trials heterogeneous treatment effects |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 Copyright © 2019 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c572t-db9af8afc7e1714e9818c01a005754b0659785d90aa9cb7505e1f250a7917f3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-05CH11231; N00014-17-1-2176; N00014-15-2367; N00014-16-1-2664; DMS 1713083; W911NF-17-10005; CCF-0939370 USDOE Office of Science (SC) National Science Foundation (NSF) US Department of the Navy, Office of Naval Research (ONR) US Army Research Office (ARO) Contributed by Bin Yu, December 18, 2018 (sent for review March 16, 2018; reviewed by Jake Bowers and Dylan Small) Reviewers: J.B., University of Illinois at Urbana–Champaign; and D.S., Wharton School, University of Pennsylvania. Author contributions: S.R.K., J.S.S., P.J.B., and B.Y. designed research, performed research, analyzed data, and wrote the paper. |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.pnas.org/content/pnas/116/10/4156.full.pdf |
| PMID | 30770453 |
| PQID | 2194120961 |
| PQPubID | 42026 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1073_pnas_1804597116 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6410831 osti_scitechconnect_1604674 proquest_miscellaneous_2200767401 proquest_journals_2194120961 pubmed_primary_30770453 crossref_citationtrail_10_1073_pnas_1804597116 crossref_primary_10_1073_pnas_1804597116 pnas_primary_10_1073_pnas_1804597116 jstor_primary_26683078 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-05 |
| PublicationDateYYYYMMDD | 2019-03-05 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationSeriesTitle | PNAS Plus |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAbbrev | Proc Natl Acad Sci USA |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2019 |
| Publisher | National Academy of Sciences |
| Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Academy of Sciences |
| References | Powers 2017 Green, Kern 2012; 76 Künzel, Tang, Bickel, Yu, Sekhon 2017 Michelson 2016; 49 Athey, Imbens 2016; 113 Scornet, Biau, Vert 2015; 43 Wager, Athey 2017; 113 Broockman, Kalla, Sekhon 2017; 25 Hill 2011; 20 Kalla, Broockman 2018; 112 Splawa-Neyman, Dabrowska, Speed 1990; 5 Bickel, Doksum 2015; Vol 2 Chipman, George, McCulloch R 2010; 4 Hájek 1967; Vol 1 Le Cam 1956; Vol 1 Tsybakov 2009 Györfi, Kohler, Krzyzak, Walk 2006 Rosenbaum, Rubin 1983; 70 Rubin 1974; 66 Stone 1982; 10 Hansen, Bowers 2009; 104 Tian, Alizadeh, Gentles, Tibshirani 2014; 109 Broockman, Kalla, Aronow 2015 Mann 2010; 32 Gerber, Green, Larimer 2008; 102 Broockman, Kalla 2016; 352 Foster 2013 Sekhon, Shem-Tov 2017 Hájek J (e_1_3_3_22_2) 1967 Bickel PJ (e_1_3_3_21_2) 2015 Györfi L (e_1_3_3_19_2) 2006 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_10_2 Le Cam L (e_1_3_3_23_2) 1956 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_3_2 |
| References_xml | – volume: 5 start-page: 465 year: 1990 end-page: 472 article-title: On the application of probability theory to agricultural experiments publication-title: Stat Sci – volume: Vol 1 start-page: 129 year: 1956 end-page: 156 publication-title: On the asymptotic theory of estimation and testing hypotheses. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability – volume: 76 start-page: 491 year: 2012 end-page: 511 article-title: Modeling heterogeneous treatment effects in survey experiments with Bayesian additive regression trees publication-title: Public Opin Q – volume: Vol 1 start-page: 139 year: 1967 end-page: 162 publication-title: On basic concepts of statistics. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probabilities – volume: 112 start-page: 148 year: 2018 end-page: 166 article-title: The minimal persuasive effects of campaign contact in general elections: Evidence from 49 field experiments publication-title: Am Polit Sci Rev – year: 2017 – volume: 66 start-page: 688 year: 1974 end-page: 701 article-title: Estimating causal effects of treatments in randomized and nonrandomized studies publication-title: J Educ Psychol – volume: 25 start-page: 435 year: 2017 end-page: 464 article-title: The design of field experiments with survey outcomes: A framework for selecting more efficient, robust, and ethical designs publication-title: Polit Anal – volume: 113 start-page: 1228 year: 2017 end-page: 1242 article-title: Estimation and inference of heterogeneous treatment effects using random forests publication-title: J Am Stat Assoc – volume: 20 start-page: 217 year: 2011 end-page: 240 article-title: Bayesian nonparametric modeling for causal inference publication-title: J Comput Graphical Stat – volume: 10 start-page: 1040 year: 1982 end-page: 1053 article-title: Optimal global rates of convergence for nonparametric regression publication-title: Ann Stat – volume: 102 start-page: 33 year: 2008 end-page: 48 article-title: Social pressure and voter turnout: Evidence from a large-scale field experiment publication-title: Am Polit Sci Rev – year: 2017 – year: 2006 publication-title: A Distribution-Free Theory of Nonparametric Regression – volume: 352 start-page: 220 year: 2016 end-page: 224 article-title: Durably reducing transphobia: A field experiment on door-to-door canvassing publication-title: Science – year: 2017 – year: 2015 – volume: 104 start-page: 873 year: 2009 end-page: 885 article-title: Attributing effects to a cluster-randomized get-out-the-vote campaign publication-title: J Am Stat Assoc – volume: 113 start-page: 7353 year: 2016 end-page: 7360 article-title: Recursive partitioning for heterogeneous causal effects publication-title: Proc Natl Acad Sci USA – volume: 109 start-page: 1517 year: 2014 end-page: 1532 article-title: A simple method for estimating interactions between a treatment and a large number of covariates publication-title: J Am Stat Assoc – year: 2009 – volume: 49 start-page: 299 year: 2016 end-page: 303 article-title: The risk of over-reliance on the institutional review board: An approved project is not always an ethical project publication-title: PS Polit Sci Polit – volume: 43 start-page: 1716 year: 2015 end-page: 1741 article-title: Consistency of random forests publication-title: Ann Stat – volume: 4 start-page: 266 year: 2010 end-page: 298 article-title: BART: Bayesian additive regression trees publication-title: Ann Appl Stat – volume: Vol 2 year: 2015 publication-title: Mathematical Statistics: Basic Ideas and Selected Topics – volume: 32 start-page: 387 year: 2010 end-page: 407 article-title: Is there backlash to social pressure? A large-scale field experiment on voter mobilization publication-title: Polit Behav – year: 2013 – volume: 70 start-page: 41 year: 1983 end-page: 55 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika – ident: e_1_3_3_3_2 – ident: e_1_3_3_13_2 doi: 10.1093/biomet/70.1.41 – ident: e_1_3_3_1_2 doi: 10.1017/S000305540808009X – ident: e_1_3_3_15_2 – ident: e_1_3_3_12_2 doi: 10.1214/ss/1177012031 – start-page: 139 volume-title: On basic concepts of statistics. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probabilities year: 1967 ident: e_1_3_3_22_2 – ident: e_1_3_3_11_2 doi: 10.1037/h0037350 – ident: e_1_3_3_9_2 doi: 10.1017/S0003055417000363 – ident: e_1_3_3_18_2 doi: 10.1214/09-AOAS285 – volume-title: A Distribution-Free Theory of Nonparametric Regression year: 2006 ident: e_1_3_3_19_2 – ident: e_1_3_3_25_2 doi: 10.1007/s11109-010-9124-y – ident: e_1_3_3_14_2 doi: 10.1080/01621459.2014.951443 – ident: e_1_3_3_20_2 doi: 10.1007/b13794 – ident: e_1_3_3_24_2 doi: 10.1214/aos/1176345969 – ident: e_1_3_3_28_2 doi: 10.1017/pan.2017.27 – ident: e_1_3_3_10_2 – ident: e_1_3_3_8_2 doi: 10.1080/01621459.2017.1319839 – ident: e_1_3_3_26_2 doi: 10.1017/S104909651600024X – ident: e_1_3_3_4_2 doi: 10.1073/pnas.1510489113 – start-page: 129 volume-title: On the asymptotic theory of estimation and testing hypotheses. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability year: 1956 ident: e_1_3_3_23_2 – ident: e_1_3_3_5_2 doi: 10.1198/jcgs.2010.08162 – ident: e_1_3_3_2_2 doi: 10.1126/science.aad9713 – ident: e_1_3_3_16_2 – ident: e_1_3_3_6_2 doi: 10.1093/poq/nfs036 – ident: e_1_3_3_7_2 doi: 10.1198/jasa.2009.ap06589 – ident: e_1_3_3_17_2 doi: 10.1214/15-AOS1321 – ident: e_1_3_3_27_2 – volume-title: Mathematical Statistics: Basic Ideas and Selected Topics year: 2015 ident: e_1_3_3_21_2 |
| SSID | ssj0009580 |
| Score | 2.7215252 |
| Snippet | There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of... SignificanceEstimating and analyzing heterogeneous treatment effects is timely, yet challenging. We introduce a unifying framework for many conditional average... Estimating and analyzing heterogeneous treatment effects is timely, yet challenging. We introduce a unifying framework for many conditional average treatment... |
| SourceID | unpaywall pubmedcentral osti proquest pubmed crossref pnas jstor |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4156 |
| SubjectTerms | Algorithms Artificial intelligence Bayesian analysis Computer simulation conditional average treatment effect ENGINEERING Estimation Field tests heterogeneous treatment effects Learning algorithms Machine learning minimax optimality Neural networks Observational studies Physical Sciences PNAS Plus Political science Political Sciences randomized controlled trials Regression analysis Response functions Social Sciences Statistics |
| Title | Metalearners for estimating heterogeneous treatment effects using machine learning |
| URI | https://www.jstor.org/stable/26683078 https://www.pnas.org/doi/10.1073/pnas.1804597116 https://www.ncbi.nlm.nih.gov/pubmed/30770453 https://www.proquest.com/docview/2194120961 https://www.proquest.com/docview/2200767401 https://www.osti.gov/servlets/purl/1604674 https://pubmed.ncbi.nlm.nih.gov/PMC6410831 https://www.pnas.org/content/pnas/116/10/4156.full.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 116 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250503 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250503 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5t3QO8DAYMwsZkpD1sD0njJrHjxwkxJqRNCFFRniLHtbuJklZrKgR_PXfODzZ-aNprc3Xq-nz32f78HcDhKBGYdKUJnbY2TPmUhwqzZDiyLpFKmVx5-eLzC3E2Tt9PsskGiO4uDNEql5Ve-UN8Ymtj6B3SB0POBU7xIS04ItqajpZTtwlbIkMMPoCt8cWHky8NnwPDbtpUs8VkGIpUxZ2mj0x8WxHPEckoyanK-Y101DASMTgvcHqR2ina_gt5_k2gfLCulvrHdz2f38hOp4_gc9evhpTyNVrXZWR-_iH5eP-OP4btFrCyk8bDdmDDVk9gpw0JK3bU6lYfP4WP5xaRPG21IKRkCIYZKXgQIq5m7JJoNwv0VrtYr1hPb2ctn4QR_37Gvnlqp2VtLYvZMxifvv305ixsSzaEJpOjOpyWSrtcOyMtVVa3CvGAibmmO69ZWtIhrsyzqYq1VqZEtJJZ7hCFaYnLRpfoZBcG1aKyL4DFpc10aUrhcMWojVMJaaulbuol8LUNIOpGrjCtnjmV1ZgX_lxdJgX9e8XvoQ7gqP_CspHy-L_prneF3g5hTI7RMA9gj3yjQHhCGruGyEimLriIqWpLAIe-oTtb3-9cqmgjxqrAzJHSPWbBA3jdP8a5Tgc42g9OMaKNZUE1FAN43nhg_y78dRJfkAQgb_lmb0A64refVFeXXk9cpJzqzQVw3HvxXV14eQ_bPXiIKFN54l62D4P6em1fIZKrywPYfDfhB-3k_QX23US1 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6N7gFeGAMG2QYy0h62h6Rxk9jx4zQxTUibEKJiPEWOY3eIklY0FYK_fnfODzZ-aNprc3Xq-nz32f78HcDBJBGYdKUJnbY2THnFQ4VZMpxYl0ilTK68fPH5hTibpu8us8sNEP1dGKJVLmu98of4xNbG0DumD8acC5ziY1pwRLQ1HS0r9wA2RYYYfASb04v3x59bPgeG3bStZovJMBSpintNH5n4tiKeI5JRklOV8xvpqGUkYnBe4PQitVO0_Rfy_JtA-XBdL_XPH3o-v5GdTrfgU9-vlpTyNVo3ZWR-_SH5eP-OP4HHHWBlx62HbcOGrZ_CdhcSVuyw060-egYfzi0iedpqQUjJEAwzUvAgRFzP2BXRbhborXaxXrGB3s46Pgkj_v2MffPUTsu6Whaz5zA9ffvx5CzsSjaEJpOTJqxKpV2unZGWKqtbhXjAxFzTndcsLekQV-ZZpWKtlSkRrWSWO0RhWuKy0SU62YFRvajtS2BxaTNdmlI4XDFq41RC2mqpq7wEvrYBRP3IFabTM6eyGvPCn6vLpKB_r_g91AEcDl9YtlIe_zfd8a4w2CGMyTEa5gHskW8UCE9IY9cQGck0BRcxVW0J4MA3dGfr-71LFV3EWBWYOVK6xyx4AG-GxzjX6QBH-8EpJrSxLKiGYgAvWg8c3oW_TuILkgDkLd8cDEhH_PaT-suV1xMXKad6cwEcDV58Vxd272G7B48QZSpP3Mv2YdR8X9tXiOSa8nU3ba8BYFhDxA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metalearners+for+estimating+heterogeneous+treatment+effects+using+machine+learning&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=K%C3%BCnzel%2C+S%C3%B6ren+R&rft.au=Sekhon%2C+Jasjeet+S&rft.au=Bickel%2C+Peter+J&rft.au=Yu%2C+Bin&rft.date=2019-03-05&rft.eissn=1091-6490&rft.volume=116&rft.issue=10&rft.spage=4156&rft_id=info:doi/10.1073%2Fpnas.1804597116&rft_id=info%3Apmid%2F30770453&rft.externalDocID=30770453 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |