Artificial Intelligence for Detecting and Quantifying Fatty Liver in Ultrasound Images: A Systematic Review
Background: Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Arti...
Saved in:
| Published in | Bioengineering (Basel) Vol. 9; no. 12; p. 748 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
01.12.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2306-5354 2306-5354 |
| DOI | 10.3390/bioengineering9120748 |
Cover
| Abstract | Background: Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Artificial Intelligence (AI) is now combined with traditional diagnostic processes to improve the performance of non-invasive approaches. Objective: This study explores how well various AI methods function and perform on ultrasound (US) images to diagnose and quantify non-alcoholic fatty liver disease. Methodology: A systematic review was conducted to achieve this objective. Five science bibliographic databases were searched, including PubMed, Association for Computing Machinery ACM Digital Library, Institute of Electrical and Electronics Engineers IEEE Xplore, Scopus, and Google Scholar. Only peer-reviewed English articles, conferences, theses, and book chapters were included. Data from studies were synthesized using narrative methodologies per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Results: Forty-nine studies were included in the systematic review. According to the qualitative analysis, AI significantly enhanced the diagnosis of NAFLD, Non-Alcoholic Steatohepatitis (NASH), and liver fibrosis. In addition, modalities, image acquisition, feature extraction and selection, data management, and classifiers were assessed and compared in terms of performance measures (i.e., accuracy, sensitivity, and specificity). Conclusion: AI-supported systems show potential performance increases in detecting and quantifying steatosis, NASH, and liver fibrosis in NAFLD patients. Before real-world implementation, prospective studies with direct comparisons of AI-assisted modalities and conventional techniques are necessary. |
|---|---|
| AbstractList | Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Artificial Intelligence (AI) is now combined with traditional diagnostic processes to improve the performance of non-invasive approaches.BACKGROUNDNon-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Artificial Intelligence (AI) is now combined with traditional diagnostic processes to improve the performance of non-invasive approaches.This study explores how well various AI methods function and perform on ultrasound (US) images to diagnose and quantify non-alcoholic fatty liver disease.OBJECTIVEThis study explores how well various AI methods function and perform on ultrasound (US) images to diagnose and quantify non-alcoholic fatty liver disease.A systematic review was conducted to achieve this objective. Five science bibliographic databases were searched, including PubMed, Association for Computing Machinery ACM Digital Library, Institute of Electrical and Electronics Engineers IEEE Xplore, Scopus, and Google Scholar. Only peer-reviewed English articles, conferences, theses, and book chapters were included. Data from studies were synthesized using narrative methodologies per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria.METHODOLOGYA systematic review was conducted to achieve this objective. Five science bibliographic databases were searched, including PubMed, Association for Computing Machinery ACM Digital Library, Institute of Electrical and Electronics Engineers IEEE Xplore, Scopus, and Google Scholar. Only peer-reviewed English articles, conferences, theses, and book chapters were included. Data from studies were synthesized using narrative methodologies per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria.Forty-nine studies were included in the systematic review. According to the qualitative analysis, AI significantly enhanced the diagnosis of NAFLD, Non-Alcoholic Steatohepatitis (NASH), and liver fibrosis. In addition, modalities, image acquisition, feature extraction and selection, data management, and classifiers were assessed and compared in terms of performance measures (i.e., accuracy, sensitivity, and specificity).RESULTSForty-nine studies were included in the systematic review. According to the qualitative analysis, AI significantly enhanced the diagnosis of NAFLD, Non-Alcoholic Steatohepatitis (NASH), and liver fibrosis. In addition, modalities, image acquisition, feature extraction and selection, data management, and classifiers were assessed and compared in terms of performance measures (i.e., accuracy, sensitivity, and specificity).AI-supported systems show potential performance increases in detecting and quantifying steatosis, NASH, and liver fibrosis in NAFLD patients. Before real-world implementation, prospective studies with direct comparisons of AI-assisted modalities and conventional techniques are necessary.CONCLUSIONAI-supported systems show potential performance increases in detecting and quantifying steatosis, NASH, and liver fibrosis in NAFLD patients. Before real-world implementation, prospective studies with direct comparisons of AI-assisted modalities and conventional techniques are necessary. Background: Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Artificial Intelligence (AI) is now combined with traditional diagnostic processes to improve the performance of non-invasive approaches. Objective: This study explores how well various AI methods function and perform on ultrasound (US) images to diagnose and quantify non-alcoholic fatty liver disease. Methodology: A systematic review was conducted to achieve this objective. Five science bibliographic databases were searched, including PubMed, Association for Computing Machinery ACM Digital Library, Institute of Electrical and Electronics Engineers IEEE Xplore, Scopus, and Google Scholar. Only peer-reviewed English articles, conferences, theses, and book chapters were included. Data from studies were synthesized using narrative methodologies per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Results: Forty-nine studies were included in the systematic review. According to the qualitative analysis, AI significantly enhanced the diagnosis of NAFLD, Non-Alcoholic Steatohepatitis (NASH), and liver fibrosis. In addition, modalities, image acquisition, feature extraction and selection, data management, and classifiers were assessed and compared in terms of performance measures (i.e., accuracy, sensitivity, and specificity). Conclusion: AI-supported systems show potential performance increases in detecting and quantifying steatosis, NASH, and liver fibrosis in NAFLD patients. Before real-world implementation, prospective studies with direct comparisons of AI-assisted modalities and conventional techniques are necessary. Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Artificial Intelligence (AI) is now combined with traditional diagnostic processes to improve the performance of non-invasive approaches. This study explores how well various AI methods function and perform on ultrasound (US) images to diagnose and quantify non-alcoholic fatty liver disease. A systematic review was conducted to achieve this objective. Five science bibliographic databases were searched, including PubMed, Association for Computing Machinery ACM Digital Library, Institute of Electrical and Electronics Engineers IEEE Xplore, Scopus, and Google Scholar. Only peer-reviewed English articles, conferences, theses, and book chapters were included. Data from studies were synthesized using narrative methodologies per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Forty-nine studies were included in the systematic review. According to the qualitative analysis, AI significantly enhanced the diagnosis of NAFLD, Non-Alcoholic Steatohepatitis (NASH), and liver fibrosis. In addition, modalities, image acquisition, feature extraction and selection, data management, and classifiers were assessed and compared in terms of performance measures (i.e., accuracy, sensitivity, and specificity). AI-supported systems show potential performance increases in detecting and quantifying steatosis, NASH, and liver fibrosis in NAFLD patients. Before real-world implementation, prospective studies with direct comparisons of AI-assisted modalities and conventional techniques are necessary. |
| Audience | Academic |
| Author | Alshagathrh, Fahad Muflih Househ, Mowafa Said |
| AuthorAffiliation | Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar |
| AuthorAffiliation_xml | – name: Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar |
| Author_xml | – sequence: 1 givenname: Fahad Muflih orcidid: 0000-0001-7797-0417 surname: Alshagathrh fullname: Alshagathrh, Fahad Muflih – sequence: 2 givenname: Mowafa Said surname: Househ fullname: Househ, Mowafa Said |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36550954$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1rFDEUhgep2Fr7E5QBb7zZmkwmk0RBWKrVhQXxo9chH2fGrDNJzWS27L83666lWwpKLvL1nid5zzlPiyMfPBTFc4zOCRHotXYBfOc8QHS-E7hCrOaPipOKoGZGCa2P7qyPi7NxXCGEMKlo1dRPimPSUIoErU-Kn_OYXOuMU3258An63nXgDZRtiOV7SGBSfqFU3pZfJuWzdrPdX6qUNuXSrSGWzpdXfYpqDFNWLQbVwfimnJffNmOCQSVnyq-wdnDzrHjcqn6Es_18Wlxdfvh-8Wm2_PxxcTFfzgxlVZpZ3iJmDEBbNdByRjBwrIwSTHMKuLZQadOAELzWnBvDdQ2YU0VbZK0SmJwWix3XBrWS19ENKm5kUE7-OQixkyq7Nj1I3RCNqbDK6gzWRjNCKqwV5bbC1qjManasyV-rzY3q-1sgRnJbDPlgMXLgu13g9aQHsAZ8TlF_8JvDG-9-yC6spWCsxhxlwKs9IIZfE4xJDm40uUDKQ5hGWTHKkRCYbQ2_vCddhSn6nOOtqmkavAPuVZ3Kzp1vQ37XbKFyzuq6YrVoSFadP6DKw8LgTG7D1uXzg4AXd43eOvzbY1nwdicwMYxjhFYal3JbhK1v1_8zj_Re9P_l_zel3wGJ |
| CitedBy_id | crossref_primary_10_1016_j_wfumbo_2024_100045 crossref_primary_10_5812_hepatmon_136213 crossref_primary_10_3390_diagnostics14222585 crossref_primary_10_1016_j_dib_2024_111266 crossref_primary_10_3390_bioengineering10050613 crossref_primary_10_3390_diagnostics13203225 crossref_primary_10_1016_j_eclinm_2023_102149 crossref_primary_10_1016_j_iliver_2023_10_002 crossref_primary_10_1038_s41598_024_57386_3 crossref_primary_10_1148_radiol_223146 crossref_primary_10_3390_diagnostics14232646 crossref_primary_10_4103_jmu_jmu_88_23 crossref_primary_10_1089_big_2024_0071 crossref_primary_10_3390_app13085080 crossref_primary_10_3390_diagnostics14050497 crossref_primary_10_1148_radiol_232442 crossref_primary_10_3390_bioengineering11080790 |
| Cites_doi | 10.1016/j.inffus.2013.05.007 10.1016/j.humpath.2013.11.011 10.1007/s11042-018-6675-0 10.1016/j.compbiomed.2016.10.022 10.35712/aig.v1.i1.5 10.1002/hep.31103 10.1016/j.inffus.2015.12.007 10.1053/j.gastro.2014.01.018 10.3390/vaccines9111243 10.1016/j.metabol.2020.154170 10.1016/j.inffus.2015.09.006 10.1016/S1386-5056(99)00010-6 10.31661/jbpe.v0i0.2009-1180 10.1109/IUS52206.2021.9593687 10.3390/s21165304 10.4103/sjg.SJG_122_18 10.1177/0954411919871123 10.1109/SIITME53254.2021.9663701 10.3109/03091902.2014.990160 10.7763/IJCEE.2012.V4.567 10.3390/ai3020028 10.1002/jum.15070 10.1002/hep.29596 10.1038/nature14539 10.3748/wjg.v25.i6.672 10.4103/2228-7477.150387 10.1109/HealthCom.2018.8531118 10.1016/S0168-8278(86)80075-7 10.1016/j.cmpb.2017.12.016 10.1109/CCDC.2019.8833364 10.1016/j.ipm.2009.03.002 10.3390/cancers13040790 10.1097/JCMA.0000000000000585 10.1007/s00330-017-5270-5 10.11152/mu.2013.2066.153.dmm1vg2 10.1118/1.4725759 10.1109/STSIVA.2015.7330417 10.1016/j.compbiomed.2022.106083 10.1111/jgh.15385 10.1097/MD.0000000000006585 10.1016/j.compeleceng.2022.108259 10.1016/j.clinimag.2021.02.038 10.1111/jgh.13857 10.1109/ADCOM.2007.16 10.3390/diagnostics11061078 10.1007/s11548-018-1843-2 10.4135/9781526416070 10.1186/s13643-016-0384-4 10.1155/2014/708279 10.1016/j.cmpb.2016.03.016 10.1016/j.bbe.2016.07.003 10.1007/978-3-319-04960-1_23 10.1109/42.511750 10.3390/e22091006 10.1109/IUS46767.2020.9251329 10.1007/s00330-018-5680-z 10.1007/s10916-011-9803-1 10.1109/CISP.2010.5647275 10.1002/hep.30251 10.31887/DCNS.2010.12.4/rcolom 10.1016/j.jhep.2017.05.016 10.37015/AUDT.2020.200008 10.1111/jgh.15409 10.1053/j.gastro.2019.08.058 10.1186/s12876-020-01585-5 10.3748/wjg.v28.i22.2494 10.1097/01.meg.0000243885.55562.7e 10.3389/fonc.2020.00680 10.1016/j.cmpbup.2021.100025 10.1007/s10916-017-0797-1 10.1016/j.protcy.2012.09.084 10.1016/S2468-1253(19)30039-1 10.1186/s12938-019-0742-2 10.1109/IUS52206.2021.9593420 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/bioengineering9120748 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Biological Science Collection Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals - DOAJ (NTUSG) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2306-5354 |
| ExternalDocumentID | oai_doaj_org_article_b63b159dadb14dbcb73321ba58d21dca 10.3390/bioengineering9120748 PMC9774180 A744274963 36550954 10_3390_bioengineering9120748 |
| Genre | Journal Article Review |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RPM NPM ABUWG AZQEC COVID DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO 5PM ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c572t-d8f07cceef26ef8731e81aca97b85e14de2bc6e9984b88cc8b4e185a5f0dda913 |
| IEDL.DBID | UNPAY |
| ISSN | 2306-5354 |
| IngestDate | Fri Oct 03 12:52:52 EDT 2025 Sun Oct 26 04:14:15 EDT 2025 Tue Sep 30 17:17:28 EDT 2025 Fri Sep 05 06:45:03 EDT 2025 Fri Jul 25 11:42:39 EDT 2025 Mon Oct 20 22:19:57 EDT 2025 Mon Oct 20 16:46:38 EDT 2025 Thu Jan 02 22:54:45 EST 2025 Thu Oct 16 04:41:58 EDT 2025 Thu Apr 24 23:00:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | deep learning NAFLD fatty liver machine learning artificial intelligence ultrasound |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c572t-d8f07cceef26ef8731e81aca97b85e14de2bc6e9984b88cc8b4e185a5f0dda913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-7797-0417 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2306-5354/9/12/748/pdf?version=1670813188 |
| PMID | 36550954 |
| PQID | 2756661180 |
| PQPubID | 2055440 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b63b159dadb14dbcb73321ba58d21dca unpaywall_primary_10_3390_bioengineering9120748 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9774180 proquest_miscellaneous_2758099171 proquest_journals_2756661180 gale_infotracmisc_A744274963 gale_infotracacademiconefile_A744274963 pubmed_primary_36550954 crossref_citationtrail_10_3390_bioengineering9120748 crossref_primary_10_3390_bioengineering9120748 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Bioengineering (Basel) |
| PublicationTitleAlternate | Bioengineering (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Acharya (ref_41) 2012; 39 Middleton (ref_10) 2018; 67 Vanderbeck (ref_25) 2013; 45 Owjimehr (ref_55) 2015; 5 Cao (ref_72) 2019; 39 Phisalprapa (ref_8) 2017; 96 Alzubaidi (ref_19) 2021; 1 Ouzzani (ref_34) 2016; 5 ref_13 Zamanian (ref_60) 2021; 11 Trenell (ref_5) 2017; 67 ref_53 Masuzaki (ref_14) 2020; 1 Constantinescu (ref_84) 2020; 23 ref_51 Lee (ref_27) 2021; 36 Alswat (ref_4) 2018; 24 Sokolova (ref_86) 2009; 45 ref_16 Jamshidi (ref_18) 2022; 1 Andrade (ref_58) 2012; 5 Sandborn (ref_28) 2020; 158 ref_61 Kadah (ref_73) 1996; 15 Altamirano (ref_6) 2014; 146 ref_69 Pal (ref_22) 2022; 150 ref_20 Pavlopoulos (ref_47) 2000; 19 ref_64 ref_63 ref_62 Kalyan (ref_80) 2014; 2014 Neogi (ref_54) 2018; 78 Acharya (ref_36) 2016; 31 Wong (ref_30) 2021; 36 Wong (ref_7) 2018; 33 Gummadi (ref_44) 2020; 4 ref_71 Li (ref_67) 2018; 29 Piscaglia (ref_23) 2006; 18 Singh (ref_65) 2012; 4 Saba (ref_40) 2016; 130 ref_35 Byra (ref_59) 2018; 13 ref_79 ref_78 ref_33 Acharya (ref_37) 2016; 79 Shi (ref_43) 2019; 18 ref_77 Mantovani (ref_3) 2020; 111 ref_32 ref_76 Naganawa (ref_26) 2018; 28 Spann (ref_29) 2020; 71 ref_31 Kuppili (ref_38) 2017; 41 Subramanya (ref_52) 2014; 39 Chen (ref_68) 2019; 233 Zhen (ref_24) 2020; 10 LeCun (ref_15) 2015; 521 Das (ref_70) 2021; 77 Badawi (ref_74) 1999; 55 Alivar (ref_57) 2016; 36 Zhou (ref_11) 2019; 25 Chou (ref_81) 2021; 84 ref_83 ref_82 Acharya (ref_39) 2016; 29 Srivastava (ref_21) 2022; 102 ref_46 Mihailescu (ref_75) 2013; 15 Younossi (ref_1) 2019; 69 Li (ref_2) 2019; 4 Piccinino (ref_9) 1986; 2 Colom (ref_12) 2010; 12 Minhas (ref_56) 2011; 36 ref_85 ref_49 ref_48 Singh (ref_66) 2014; 19 Jamshidi (ref_17) 2022; 3 Biswas (ref_42) 2018; 155 Li (ref_45) 2022; 28 |
| References_xml | – volume: 19 start-page: 91 year: 2014 ident: ref_66 article-title: An information fusion based method for liver classification using texture analysis of ultrasound images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2013.05.007 – volume: 45 start-page: 785 year: 2013 ident: ref_25 article-title: Automatic classification of white regions in liver biopsies by supervised machine learning publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2013.11.011 – volume: 78 start-page: 11105 year: 2018 ident: ref_54 article-title: Use of a novel set of features based on texture anisotropy for identification of liver steatosis from ultrasound images: A simple method publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-018-6675-0 – volume: 79 start-page: 250 year: 2016 ident: ref_37 article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.10.022 – ident: ref_49 – volume: 1 start-page: 5 year: 2020 ident: ref_14 article-title: Application of artificial intelligence in hepatology: Minireview publication-title: Artif. Intell. Gastroenterol. doi: 10.35712/aig.v1.i1.5 – volume: 71 start-page: 1093 year: 2020 ident: ref_29 article-title: Applying machine learning in liver disease and transplantation: A comprehensive review publication-title: Hepatology doi: 10.1002/hep.31103 – volume: 31 start-page: 43 year: 2016 ident: ref_36 article-title: An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2015.12.007 – volume: 146 start-page: 1231 year: 2014 ident: ref_6 article-title: A Histologic Scoring System for Prognosis of Patients with Alcoholic Hepatitis publication-title: Gastroenterology doi: 10.1053/j.gastro.2014.01.018 – ident: ref_20 doi: 10.3390/vaccines9111243 – volume: 111 start-page: 154170 year: 2020 ident: ref_3 article-title: Complications, morbidity and mortality of nonalcoholic fatty liver disease publication-title: Metabolism doi: 10.1016/j.metabol.2020.154170 – ident: ref_16 – volume: 29 start-page: 32 year: 2016 ident: ref_39 article-title: Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2015.09.006 – volume: 55 start-page: 135 year: 1999 ident: ref_74 article-title: Fuzzy logic algorithm for quantitative tissue characterization of diffuse liver diseases from ultrasound images publication-title: Int. J. Med. Inform. doi: 10.1016/S1386-5056(99)00010-6 – volume: 11 start-page: 73 year: 2021 ident: ref_60 article-title: Implementation of Combinational Deep Learning Algorithm for Non-alcoholic Fatty Liver Classification in Ultrasound Images publication-title: J. Biomed. Phys. Eng. doi: 10.31661/jbpe.v0i0.2009-1180 – ident: ref_64 doi: 10.1109/IUS52206.2021.9593687 – ident: ref_51 doi: 10.3390/s21165304 – volume: 24 start-page: 211 year: 2018 ident: ref_4 article-title: Nonalcoholic fatty liver disease burden–Saudi Arabia and United Arab Emirates, 2017–2030 publication-title: Saudi J. Gastroenterol. Off. J. Saudi Gastroenterol. Assoc. doi: 10.4103/sjg.SJG_122_18 – volume: 233 start-page: 1100 year: 2019 ident: ref_68 article-title: Classification for liver ultrasound tomography by posterior attenuation correction with a phantom study publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med. doi: 10.1177/0954411919871123 – ident: ref_61 doi: 10.1109/SIITME53254.2021.9663701 – volume: 39 start-page: 123 year: 2014 ident: ref_52 article-title: A CAD system for B-mode fatty liver ultrasound images using texture features publication-title: J. Med. Eng. Technol. doi: 10.3109/03091902.2014.990160 – volume: 4 start-page: 605 year: 2012 ident: ref_65 article-title: A New Quantitative Metric for Liver Classification from Ultrasound Images publication-title: Int. J. Comput. Electr. Eng. doi: 10.7763/IJCEE.2012.V4.567 – ident: ref_77 – volume: 3 start-page: 493 year: 2022 ident: ref_17 article-title: A Review of the Potential of Artificial Intelligence Approaches to Forecasting COVID-19 Spreading publication-title: AI doi: 10.3390/ai3020028 – volume: 39 start-page: 51 year: 2019 ident: ref_72 article-title: Application of Deep Learning in Quantitative Analysis of 2-Dimensional Ultrasound Imaging of Nonalcoholic Fatty Liver Disease publication-title: J. Ultrasound Med. doi: 10.1002/jum.15070 – volume: 67 start-page: 858 year: 2018 ident: ref_10 article-title: Diagnostic accuracy of magnetic resonance imaging hepatic proton density fat fraction in pediatric nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.29596 – volume: 521 start-page: 436 year: 2015 ident: ref_15 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 25 start-page: 672 year: 2019 ident: ref_11 article-title: Artificial intelligence in medical imaging of the liver publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v25.i6.672 – volume: 5 start-page: 21 year: 2015 ident: ref_55 article-title: An improved method for liver diseases detection by ultrasound image analysis publication-title: J. Med. Signals Sens. doi: 10.4103/2228-7477.150387 – volume: 1 start-page: 4 year: 2022 ident: ref_18 article-title: A comprehensive review of radiology smartphone applications publication-title: Artificial Intelligence Strategies for Analyzing COVID-19 Pneumonia Lung Imaging – ident: ref_50 doi: 10.1109/HealthCom.2018.8531118 – ident: ref_48 – volume: 2 start-page: 165 year: 1986 ident: ref_9 article-title: Complications following percutaneous liver biopsy: A multicentre retrospective study on 68 276 biopsies publication-title: J. Hepatol. doi: 10.1016/S0168-8278(86)80075-7 – volume: 155 start-page: 165 year: 2018 ident: ref_42 article-title: Symtosis: A liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.12.016 – ident: ref_83 doi: 10.1109/CCDC.2019.8833364 – volume: 45 start-page: 427 year: 2009 ident: ref_86 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2009.03.002 – ident: ref_31 doi: 10.3390/cancers13040790 – ident: ref_13 – ident: ref_62 – volume: 84 start-page: 842 year: 2021 ident: ref_81 article-title: Deep learning for abdominal ultrasound: A computer-aided diagnostic system for the severity of fatty liver publication-title: J. Chin. Med. Assoc. doi: 10.1097/JCMA.0000000000000585 – volume: 28 start-page: 3050 year: 2018 ident: ref_26 article-title: Imaging prediction of nonalcoholic steatohepatitis using computed tomography texture analysis publication-title: Eur. Radiol. doi: 10.1007/s00330-017-5270-5 – volume: 15 start-page: 184 year: 2013 ident: ref_75 article-title: Computer aided diagnosis method for steatosis rating in ultrasound images using random forests publication-title: Med. Ultrason. doi: 10.11152/mu.2013.2066.153.dmm1vg2 – volume: 39 start-page: 4255 year: 2012 ident: ref_41 article-title: Data mining framework for fatty liver disease classification in ultrasound: A hybrid feature extraction paradigm publication-title: Med. Phys. doi: 10.1118/1.4725759 – ident: ref_71 doi: 10.1109/STSIVA.2015.7330417 – volume: 150 start-page: 106083 year: 2022 ident: ref_22 article-title: Attention UW-Net: A fully connected model for automatic segmentation and annotation of chest X-ray publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106083 – volume: 36 start-page: 543 year: 2021 ident: ref_30 article-title: Artificial intelligence in prediction of non-alcoholic fatty liver disease and fibrosis publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/jgh.15385 – volume: 96 start-page: e6585 year: 2017 ident: ref_8 article-title: Cost-effectiveness analysis of ultrasonography screening for nonalcoholic fatty liver disease in metabolic syndrome patients publication-title: Medicine doi: 10.1097/MD.0000000000006585 – volume: 102 start-page: 108259 year: 2022 ident: ref_21 article-title: A median based quadrilateral local quantized ternary pattern technique for the classification of dermatoscopic images of skin cancer publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.108259 – volume: 77 start-page: 62 year: 2021 ident: ref_70 article-title: Digital image analysis of ultrasound images using machine learning to diagnose pediatric nonalcoholic fatty liver disease publication-title: Clin. Imaging doi: 10.1016/j.clinimag.2021.02.038 – volume: 33 start-page: 70 year: 2018 ident: ref_7 article-title: Asia–Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017—Part 1: Definition, risk factors and assessment publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/jgh.13857 – ident: ref_53 doi: 10.1109/ADCOM.2007.16 – ident: ref_82 – ident: ref_32 doi: 10.3390/diagnostics11061078 – volume: 13 start-page: 1895 year: 2018 ident: ref_59 article-title: Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-018-1843-2 – ident: ref_35 doi: 10.4135/9781526416070 – volume: 5 start-page: 210 year: 2016 ident: ref_34 article-title: Rayyan—A web and mobile app for systematic reviews publication-title: Syst. Rev. doi: 10.1186/s13643-016-0384-4 – volume: 2014 start-page: 708279 year: 2014 ident: ref_80 article-title: Artificial Neural Network Application in the Diagnosis of Disease Conditions with Liver Ultrasound Images publication-title: Adv. Bioinform. doi: 10.1155/2014/708279 – volume: 130 start-page: 118 year: 2016 ident: ref_40 article-title: Automated stratification of liver disease in ultrasound: An online accurate feature classification paradigm publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.03.016 – volume: 36 start-page: 697 year: 2016 ident: ref_57 article-title: Hierarchical classification of normal, fatty and heterogeneous liver diseases from ultrasound images using serial and parallel feature fusion publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2016.07.003 – ident: ref_78 doi: 10.1007/978-3-319-04960-1_23 – volume: 15 start-page: 466 year: 1996 ident: ref_73 article-title: Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.511750 – ident: ref_69 doi: 10.3390/e22091006 – ident: ref_46 doi: 10.1109/IUS46767.2020.9251329 – volume: 29 start-page: 1496 year: 2018 ident: ref_67 article-title: Multiparametric ultrasomics of significant liver fibrosis: A machine learning-based analysis publication-title: Eur. Radiol. doi: 10.1007/s00330-018-5680-z – ident: ref_79 – volume: 36 start-page: 3163 year: 2011 ident: ref_56 article-title: Automated Classification of Liver Disorders using Ultrasound Images publication-title: J. Med. Syst. doi: 10.1007/s10916-011-9803-1 – ident: ref_76 doi: 10.1109/CISP.2010.5647275 – volume: 69 start-page: 2672 year: 2019 ident: ref_1 article-title: Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis publication-title: Hepatology doi: 10.1002/hep.30251 – volume: 12 start-page: 489 year: 2010 ident: ref_12 article-title: Human intelligence and brain networks publication-title: Dialog. Clin. Neurosci. doi: 10.31887/DCNS.2010.12.4/rcolom – volume: 67 start-page: 829 year: 2017 ident: ref_5 article-title: Treatment of NAFLD with diet, physical activity and exercise publication-title: J. Hepatol. doi: 10.1016/j.jhep.2017.05.016 – volume: 4 start-page: 176 year: 2020 ident: ref_44 article-title: Automated Machine Learning in the Sonographic Diagnosis of Non-alcoholic Fatty Liver Disease publication-title: Adv. Ultrasound Diagn. Ther. doi: 10.37015/AUDT.2020.200008 – volume: 36 start-page: 539 year: 2021 ident: ref_27 article-title: Artificial intelligence in liver disease publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/jgh.15409 – volume: 158 start-page: 76 year: 2020 ident: ref_28 article-title: Application of artificial intelligence to gastroenterology and hepatology publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.08.058 – ident: ref_85 – ident: ref_33 doi: 10.1186/s12876-020-01585-5 – volume: 28 start-page: 2494 year: 2022 ident: ref_45 article-title: Accurate and generalizable quantitative scoring of liver steatosis from ultrasound images via scalable deep learning publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v28.i22.2494 – volume: 18 start-page: 1255 year: 2006 ident: ref_23 article-title: Prediction of significant fibrosis in hepatitis C virus infected liver transplant recipients by artificial neural network analysis of clinical factors publication-title: Eur. J. Gastroenterol. Hepatol. doi: 10.1097/01.meg.0000243885.55562.7e – volume: 10 start-page: 680 year: 2020 ident: ref_24 article-title: Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data publication-title: Front. Oncol. doi: 10.3389/fonc.2020.00680 – volume: 1 start-page: 100025 year: 2021 ident: ref_19 article-title: Role of deep learning in early detection of COVID-19: Scoping review publication-title: Comput. Methods Programs Biomed. Updat. doi: 10.1016/j.cmpbup.2021.100025 – volume: 23 start-page: 135 year: 2020 ident: ref_84 article-title: Transfer learning with pre-trained deep convolutional neural networks for the automatic assessment of liver steatosis in ultrasound images publication-title: Med. Ultrason. – volume: 41 start-page: 152 year: 2017 ident: ref_38 article-title: Extreme Learning Machine Framework for Risk Stratification of Fatty Liver Disease Using Ultrasound Tissue Characterization publication-title: J. Med. Syst. doi: 10.1007/s10916-017-0797-1 – volume: 19 start-page: 39 year: 2000 ident: ref_47 article-title: Fuzzy neural network-based texture analysis of ultrasonic images publication-title: IEEE Comput. Graph. Appl. – volume: 5 start-page: 763 year: 2012 ident: ref_58 article-title: Classifier Approaches for Liver Steatosis using Ultrasound Images publication-title: Procedia Technol. doi: 10.1016/j.protcy.2012.09.084 – volume: 4 start-page: 389 year: 2019 ident: ref_2 article-title: Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: A systematic review and meta-analysis publication-title: Lancet Gastroenterol. Hepatol. doi: 10.1016/S2468-1253(19)30039-1 – volume: 18 start-page: 121 year: 2019 ident: ref_43 article-title: Ultrasonic liver steatosis quantification by a learning-based acoustic model from a novel shear wave sequence publication-title: BioMed. Eng. OnLine doi: 10.1186/s12938-019-0742-2 – ident: ref_63 doi: 10.1109/IUS52206.2021.9593420 |
| SSID | ssj0001325264 |
| Score | 2.3242934 |
| SecondaryResourceType | review_article |
| Snippet | Background: Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional... Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 748 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Bioengineering Biopsy Brain Coronaviruses COVID-19 Data management deep learning Diagnostic systems Digital systems Fatty liver Feature extraction Fibrosis Image acquisition Inflammation Literature reviews Liver Liver diseases Machine learning Magnetic resonance imaging Medical imaging Medical research Methods NAFLD Neural networks Performance enhancement Qualitative analysis Steatosis Support vector machines Systematic Review Ultrasonic imaging Ultrasound Ultrasound imaging |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - DOAJ (NTUSG) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yF_UgfltdJYLgqc6kSZvU2_gx7IoKogN7C_lkB8fO4nSQ_e99L-3WVoX14LVJaPPyPpv3fo-QZ8xHxaRnucN0NcGNyI1VJq-4rz1ezJmIhcIfPlZHK_HupDwZtfrCnLAOHrgj3MxW3ILJ9cZbJrx1VnJeMGtK5QvmXXKN5qoeBVPp7wovSjD1XckOh7h-Ztfb8Avhr2YF2E41MUYJs_9PzTwyTb-nTV7dN2fm_IfZbEY2aXmT3OidSbroNnGLXAnNbXJ9BDF4h3zFwQ4lgh6P4DcpOKv0TcArBJhHTePpp73BzCGse6JL07bn9D0mbdB1Q1cb-JQddmCix99AA-1e0gX9PIBA0-6G4S5ZLd9-eX2U9w0WclfKos29inPpwEzGogpRSc6CYsaZWlpVBiB3KKyrAkRkwirlnLIigH03ZZx7b2rG75GDZtuEB4Sqog6lDz5UwYoorRUGZNsqGX0ApRozIi4orV2PPo5NMDYaohA8IP3XA8rIi2HZWQe_cdmCV3iMw2REz04PgKd0z1P6Mp7KyHNkAo0yDh_pTF-qAFtFtCy9kEJANA-6KyOHk5kgm246fMFGutcNO42A--AVMTXPyNNhGFdivlsTtvs0R4HvziTLyP2O64Yt8QqiyroUGZETfpzseTrSrE8Tcjg6--m9s4Fz_42sD_8HWR-RawUWj6RkoENy0H7fh8fg0rX2SZLen_BFUcY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4t3QNwQDyXwIKMhMQptE6c2EFCqAtb7SKoeFXaW-RXoKKkZdsK7b9nJknTBhBwjW0lE8_TnvkG4DF3heLS8dBSupqItQi1UTpMY5c5upjTBRUKvx2nJxPx-iw524PxphaG0io3OrFS1G5u6Yy8TzDlaEu4GrxYfA-paxTdrm5aaOimtYJ7XkGMXYL9iJCxerB_dDx-92F76hJHCboAdSlPjPF-30znfov8l_EIbarqGKkKy_93jb1jsn5Np7y8Lhf64oeezXZs1eg6XGucTDasueIG7PnyJlzdgR68BV9psEaPYKc7sJwMnVj2ytPVAs5junTs_VpTRhHVQ7GRXq0u2BtK5mDTkk1m-ClL6szETr-hZlo-Y0P2sQWHZvXNw22YjI4_vTwJm8YLoU1ktAqdKgbSovksotQXSsbcK66tzqRRiefC-cjY1GOkJoxS1iojPNp9nRQD53TG4zvQK-elvwtMRZlPnHc-9UYU0hihUeaNkoXzqGyLAMTmT-e2QSWn5hizHKMT2qD8jxsUwNN22aKG5fjXgiPaxnYyoWpXD-bnn_NGSHOTxgbdO6edQSKNNTKOI250olzEndUBPCEmyEn28SOtbkoYkFRC0cqHUgiM8lGnBXDYmYkya7vDGzbKG52xzLccHsCjdphWUh5c6efrao5Cn55LHsBBzXUtSXGK0WaWiABkhx87NHdHyumXClGcgoDqvf2Wc__vt977OyH34UpE5SJV-s8h9Fbna_8AnbiVedhI5k9Z4k5n priority: 102 providerName: ProQuest |
| Title | Artificial Intelligence for Detecting and Quantifying Fatty Liver in Ultrasound Images: A Systematic Review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36550954 https://www.proquest.com/docview/2756661180 https://www.proquest.com/docview/2758099171 https://pubmed.ncbi.nlm.nih.gov/PMC9774180 https://www.mdpi.com/2306-5354/9/12/748/pdf?version=1670813188 https://doaj.org/article/b63b159dadb14dbcb73321ba58d21dca |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: ABDBF dateStart: 20180301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: BENPR dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: 8FG dateStart: 20140301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7R5AAceD8MJVokJE5Osvbau-aCEtrQIojKI1I5WfsyRA1O1Dig8uuZtV0TFyQeJ0veHdmTjL-Z2Z35FuAJNZmg3FBfu3I1FkrmSyWkH4cmMW5jTmauUfjNND6YsVfH0XG94LauyyoxFZ-XIO3CYz8KIzZIBjQYcCYGK5M9_1qvJNGYo0NDoxQ70I0jjMU70J1Nj0YfyxPlatmqbSfE3H6g5kv7k-UvoQH6T9FySCVv_6_ovOWeLpZOXt7kK3n2TS4WW35pch3Sc42qcpST_qZQff39Atnj_6t8A67VISsZVTZ2Ey7Z_BZc3SIyvA0nbrDioiCHWySfBENismfdRgXOIzI35O1Guvok111FJrIozshrVxpC5jmZLVDZtTvniRx-QZxbPyMj8r6hmibVPsYdmE32P7w48OtjHHwd8aDwjciGXKMzzoLYZoKH1AoqtUy4EpGlzNhA6dhi3seUEFoLxSxGETLKhsbIhIZ3oZMvc3sfiAgSGxlrbGwVy7hSTCKCKMEzYxG6Mw_Y-X-Z6prj3B21sUgx13EmkP7WBDzoN2KriuTjTwJjZyjNZMfRXd5Ynn5K608-VXGoMFg00ihUUmnFwzCgSkbCBNRo6cFTZ2apQxJ8SS3rhghU1XFypSPOWMAZIqQHu62ZiAC6PXxuqGmNQOvU0fpj7EXF0IPHzbCTdFV1uV1uyjkCMwTKqQf3KrtuVApjzF2TiHnAWxbf0rk9ks8_l_zkLqUonztovo2_-1kf_LPEQ7gSuH6Usr5oFzrF6cY-wiixUD3YEZOXPeiOxnvjCV7H-9Ojd71yzaVXw8QPyXRuzw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lA4IN4YCiwSiJNJ1ru210gVSmmjhKYRj0bqzezLEBGc0CSq8uf4bczYjpMAAi69Zncdj2f8zY535htCnjGbSRZb5htMVxNcCV9pqfyI28TiwZzKsFD4pB91BuLtWXi2RX4sa2EwrXKJiQVQ27HBb-QNpCkHX8Jk8_Xku49do_B0ddlCQ1WtFex-QTFWFXYcu8UFhHDT_e4h6Pt5ELSPTt90_KrLgG_COJj5VmbN2ICvyILIZTLmzEmmjEpiLUPHhHWBNpGDsERoKY2RWjhwcirMmtaqhHG47hWyI7hIIPjbOTjqv_uw-srDgxC2HGXpEOdJs6GHY7diGkxYAD5cbjjFonfA7x5izUX-mr65O88nanGhRqM139i-Qa5Xm1raKq3wJtly-S1ybY3q8Db5ioMlWwXtrtGAUtg000OHRxkwj6rc0vdzhRlMWH9F22o2W9AeJo_QYU4HI7iVKXaCot1vgITTV7RFP9Zk1LQ86bhDBpeigrtkOx_n7j6hMkhcaJ11kdMii7UWCjBGyzizDsA984hYPunUVCzo2IxjlEI0hApK_6ggj7ysl01KGpB_LThANdaTkcW7-GF8_jmtQCHVEdewnbTKahBSGx1zHjCtQmkDZo3yyAs0ghSxBm7SqKpkAkRF1q60FQsRxAIw1CN7GzMBI8zm8NKM0gqjpunqjfLI03oYV2LeXe7G82KOhBiCxcwj90qrq0XiEUS3SSg8Em_Y44bMmyP58EvBYI5BR_G_jdpy_--xPvi7IE_Ibuf0pJf2uv3jh-RqgKUqRerRHtmenc_dI9hAzvTj6i2l5NNlA8NPjumNow |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWReJxQLwJLGAkEKfQ2nFiBwmhQilbdlmBoNLegl-BipKWbatV_xq_jpkkzTaAgMteazvNZCbfeOKZbwh5yFyumHQstJiuJiItQm2UDpPIpQ4P5nSOhcJvD5LdkXhzGB9ukR_rWhhMq1xjYgnUbmrxG3kHacrBl2Blcl6nRbzrD57PvofYQQpPWtftNCoT2fOrYwjf5s-GfdD1I84Hrz6-3A3rDgOhjSVfhE7lXWnBT-Q88bmSEfOKaatTaVTsmXCeG5t4CEmEUcpaZYQHB6fjvOucTlkE1z1Dzkpkcccq9cHrk-87EY9hs1EVDUVR2u2Y8dSfcAymjIP3Vi13WHYN-N03bDjHXxM3zy-LmV4d68lkwysOLpNL9XaW9ir7u0K2fHGVXNwgObxGvuJgxVNBhxsEoBS2y7Tv8RAD5lFdOPp-qTF3CSuv6EAvFiu6j2kjdFzQ0QRuZY49oOjwG2Dg_Cnt0Q8NDTWtzjiuk9GpKOAG2S6mhb9FqOKpj513PvFG5NIYoQFdjJK58wDreUDE-klntuY_xzYckwziIFRQ9kcFBeRJs2xWEYD8a8ELVGMzGfm7yx-mR5-zGg4yk0QGNpJOOwNCGmtkFHFmdKwcZ87qgDxGI8gQZeAmra6LJUBU5OvKelIILgWgZ0B2WjMBHWx7eG1GWY1O8-zkXQrIg2YYV2LGXeGny3KOguiBSRaQm5XVNSJFCcS1aSwCIlv22JK5PVKMv5Tc5RhulP_baSz3_x7r7b8Lcp-cAzjI9ocHe3fIBY41KmXO0Q7ZXhwt_V3YOS7MvfIVpeTTaWPCT9naiz0 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4A98H4EFmQkJE5p6sSJHS6oPKpdBCsQVFpOkV-BartptU1By69nJnFDsyDxuMYeJZNMvpmxZz4T8pjZUjJhWWiwXI0niodKSxVmic0tbsypEhuF3x5m-1P--ig98gtuK19WCan4rAFpDI_DNEl5lEcsjgSX0dKWz776lSSWCXBoYJTyItnJUojFB2Rnevhu_Kk5Uc7Ltm07CeT2kZ4t3E-Wv5zF4D9lzyE1vP2_ovOWezpfOnlpXS3V2Tc1n2_5pclVUmw0astRjofrWg_N93Nkj_-v8jVyxYesdNza2HVywVU3yO4WkeFNcoyDLRcFPdgi-aQQEtOXDjcqYB5VlaXv1wrrk7C7ik5UXZ_RN1gaQmcVnc5B2RWe80QPTgDnVk_pmH7oqKZpu49xi0wnrz6-2A_9MQ6hSUVch1aWI2HAGZdx5kopEuYkU0blQsvUMW5drE3mIO_jWkpjpOYOogiVliNrVc6S22RQLSp3l1AZ5y61zrrMaV4KrbkCBNFSlNYBdJcB4ZtvWRjPcY5HbcwLyHXQBIrfmkBAhp3YsiX5-JPAczSUbjJydDcXFqefC__LFzpLNASLVlkNSmqjRZLETKtU2phZowLyBM2sQCSBhzTKN0SAqsjJVYwF57HggJAB2evNBAQw_eGNoRYegVYF0vpD7MXkKCCPumGUxKq6yi3WzRwJGQITLCB3WrvuVEoyyF3zlAdE9Cy-p3N_pJp9afjJMaVo7ht1_8bfvdZ7_yxxn1yOsR-lqS_aI4P6dO0eQJRY64ceCn4A-u1p6A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+for+Detecting+and+Quantifying+Fatty+Liver+in+Ultrasound+Images%3A+A+Systematic+Review&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Alshagathrh%2C+Fahad+Muflih&rft.au=Househ%2C+Mowafa+Said&rft.date=2022-12-01&rft.pub=MDPI&rft.eissn=2306-5354&rft.volume=9&rft.issue=12&rft_id=info:doi/10.3390%2Fbioengineering9120748&rft.externalDocID=PMC9774180 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |