Artificial Intelligence for Detecting and Quantifying Fatty Liver in Ultrasound Images: A Systematic Review

Background: Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Arti...

Full description

Saved in:
Bibliographic Details
Published inBioengineering (Basel) Vol. 9; no. 12; p. 748
Main Authors Alshagathrh, Fahad Muflih, Househ, Mowafa Said
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2022
MDPI
Subjects
Online AccessGet full text
ISSN2306-5354
2306-5354
DOI10.3390/bioengineering9120748

Cover

Abstract Background: Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Artificial Intelligence (AI) is now combined with traditional diagnostic processes to improve the performance of non-invasive approaches. Objective: This study explores how well various AI methods function and perform on ultrasound (US) images to diagnose and quantify non-alcoholic fatty liver disease. Methodology: A systematic review was conducted to achieve this objective. Five science bibliographic databases were searched, including PubMed, Association for Computing Machinery ACM Digital Library, Institute of Electrical and Electronics Engineers IEEE Xplore, Scopus, and Google Scholar. Only peer-reviewed English articles, conferences, theses, and book chapters were included. Data from studies were synthesized using narrative methodologies per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Results: Forty-nine studies were included in the systematic review. According to the qualitative analysis, AI significantly enhanced the diagnosis of NAFLD, Non-Alcoholic Steatohepatitis (NASH), and liver fibrosis. In addition, modalities, image acquisition, feature extraction and selection, data management, and classifiers were assessed and compared in terms of performance measures (i.e., accuracy, sensitivity, and specificity). Conclusion: AI-supported systems show potential performance increases in detecting and quantifying steatosis, NASH, and liver fibrosis in NAFLD patients. Before real-world implementation, prospective studies with direct comparisons of AI-assisted modalities and conventional techniques are necessary.
AbstractList Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Artificial Intelligence (AI) is now combined with traditional diagnostic processes to improve the performance of non-invasive approaches.BACKGROUNDNon-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Artificial Intelligence (AI) is now combined with traditional diagnostic processes to improve the performance of non-invasive approaches.This study explores how well various AI methods function and perform on ultrasound (US) images to diagnose and quantify non-alcoholic fatty liver disease.OBJECTIVEThis study explores how well various AI methods function and perform on ultrasound (US) images to diagnose and quantify non-alcoholic fatty liver disease.A systematic review was conducted to achieve this objective. Five science bibliographic databases were searched, including PubMed, Association for Computing Machinery ACM Digital Library, Institute of Electrical and Electronics Engineers IEEE Xplore, Scopus, and Google Scholar. Only peer-reviewed English articles, conferences, theses, and book chapters were included. Data from studies were synthesized using narrative methodologies per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria.METHODOLOGYA systematic review was conducted to achieve this objective. Five science bibliographic databases were searched, including PubMed, Association for Computing Machinery ACM Digital Library, Institute of Electrical and Electronics Engineers IEEE Xplore, Scopus, and Google Scholar. Only peer-reviewed English articles, conferences, theses, and book chapters were included. Data from studies were synthesized using narrative methodologies per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria.Forty-nine studies were included in the systematic review. According to the qualitative analysis, AI significantly enhanced the diagnosis of NAFLD, Non-Alcoholic Steatohepatitis (NASH), and liver fibrosis. In addition, modalities, image acquisition, feature extraction and selection, data management, and classifiers were assessed and compared in terms of performance measures (i.e., accuracy, sensitivity, and specificity).RESULTSForty-nine studies were included in the systematic review. According to the qualitative analysis, AI significantly enhanced the diagnosis of NAFLD, Non-Alcoholic Steatohepatitis (NASH), and liver fibrosis. In addition, modalities, image acquisition, feature extraction and selection, data management, and classifiers were assessed and compared in terms of performance measures (i.e., accuracy, sensitivity, and specificity).AI-supported systems show potential performance increases in detecting and quantifying steatosis, NASH, and liver fibrosis in NAFLD patients. Before real-world implementation, prospective studies with direct comparisons of AI-assisted modalities and conventional techniques are necessary.CONCLUSIONAI-supported systems show potential performance increases in detecting and quantifying steatosis, NASH, and liver fibrosis in NAFLD patients. Before real-world implementation, prospective studies with direct comparisons of AI-assisted modalities and conventional techniques are necessary.
Background: Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Artificial Intelligence (AI) is now combined with traditional diagnostic processes to improve the performance of non-invasive approaches. Objective: This study explores how well various AI methods function and perform on ultrasound (US) images to diagnose and quantify non-alcoholic fatty liver disease. Methodology: A systematic review was conducted to achieve this objective. Five science bibliographic databases were searched, including PubMed, Association for Computing Machinery ACM Digital Library, Institute of Electrical and Electronics Engineers IEEE Xplore, Scopus, and Google Scholar. Only peer-reviewed English articles, conferences, theses, and book chapters were included. Data from studies were synthesized using narrative methodologies per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Results: Forty-nine studies were included in the systematic review. According to the qualitative analysis, AI significantly enhanced the diagnosis of NAFLD, Non-Alcoholic Steatohepatitis (NASH), and liver fibrosis. In addition, modalities, image acquisition, feature extraction and selection, data management, and classifiers were assessed and compared in terms of performance measures (i.e., accuracy, sensitivity, and specificity). Conclusion: AI-supported systems show potential performance increases in detecting and quantifying steatosis, NASH, and liver fibrosis in NAFLD patients. Before real-world implementation, prospective studies with direct comparisons of AI-assisted modalities and conventional techniques are necessary.
Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography and clinical scoring systems have been proposed as alternatives to liver biopsy, their efficacy has been called into doubt. Artificial Intelligence (AI) is now combined with traditional diagnostic processes to improve the performance of non-invasive approaches. This study explores how well various AI methods function and perform on ultrasound (US) images to diagnose and quantify non-alcoholic fatty liver disease. A systematic review was conducted to achieve this objective. Five science bibliographic databases were searched, including PubMed, Association for Computing Machinery ACM Digital Library, Institute of Electrical and Electronics Engineers IEEE Xplore, Scopus, and Google Scholar. Only peer-reviewed English articles, conferences, theses, and book chapters were included. Data from studies were synthesized using narrative methodologies per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Forty-nine studies were included in the systematic review. According to the qualitative analysis, AI significantly enhanced the diagnosis of NAFLD, Non-Alcoholic Steatohepatitis (NASH), and liver fibrosis. In addition, modalities, image acquisition, feature extraction and selection, data management, and classifiers were assessed and compared in terms of performance measures (i.e., accuracy, sensitivity, and specificity). AI-supported systems show potential performance increases in detecting and quantifying steatosis, NASH, and liver fibrosis in NAFLD patients. Before real-world implementation, prospective studies with direct comparisons of AI-assisted modalities and conventional techniques are necessary.
Audience Academic
Author Alshagathrh, Fahad Muflih
Househ, Mowafa Said
AuthorAffiliation Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar
AuthorAffiliation_xml – name: Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha P.O. Box 34110, Qatar
Author_xml – sequence: 1
  givenname: Fahad Muflih
  orcidid: 0000-0001-7797-0417
  surname: Alshagathrh
  fullname: Alshagathrh, Fahad Muflih
– sequence: 2
  givenname: Mowafa Said
  surname: Househ
  fullname: Househ, Mowafa Said
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36550954$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhgep2Fr7E5QBb7zZmkwmk0RBWKrVhQXxo9chH2fGrDNJzWS27L83666lWwpKLvL1nid5zzlPiyMfPBTFc4zOCRHotXYBfOc8QHS-E7hCrOaPipOKoGZGCa2P7qyPi7NxXCGEMKlo1dRPimPSUIoErU-Kn_OYXOuMU3258An63nXgDZRtiOV7SGBSfqFU3pZfJuWzdrPdX6qUNuXSrSGWzpdXfYpqDFNWLQbVwfimnJffNmOCQSVnyq-wdnDzrHjcqn6Es_18Wlxdfvh-8Wm2_PxxcTFfzgxlVZpZ3iJmDEBbNdByRjBwrIwSTHMKuLZQadOAELzWnBvDdQ2YU0VbZK0SmJwWix3XBrWS19ENKm5kUE7-OQixkyq7Nj1I3RCNqbDK6gzWRjNCKqwV5bbC1qjManasyV-rzY3q-1sgRnJbDPlgMXLgu13g9aQHsAZ8TlF_8JvDG-9-yC6spWCsxhxlwKs9IIZfE4xJDm40uUDKQ5hGWTHKkRCYbQ2_vCddhSn6nOOtqmkavAPuVZ3Kzp1vQ37XbKFyzuq6YrVoSFadP6DKw8LgTG7D1uXzg4AXd43eOvzbY1nwdicwMYxjhFYal3JbhK1v1_8zj_Re9P_l_zel3wGJ
CitedBy_id crossref_primary_10_1016_j_wfumbo_2024_100045
crossref_primary_10_5812_hepatmon_136213
crossref_primary_10_3390_diagnostics14222585
crossref_primary_10_1016_j_dib_2024_111266
crossref_primary_10_3390_bioengineering10050613
crossref_primary_10_3390_diagnostics13203225
crossref_primary_10_1016_j_eclinm_2023_102149
crossref_primary_10_1016_j_iliver_2023_10_002
crossref_primary_10_1038_s41598_024_57386_3
crossref_primary_10_1148_radiol_223146
crossref_primary_10_3390_diagnostics14232646
crossref_primary_10_4103_jmu_jmu_88_23
crossref_primary_10_1089_big_2024_0071
crossref_primary_10_3390_app13085080
crossref_primary_10_3390_diagnostics14050497
crossref_primary_10_1148_radiol_232442
crossref_primary_10_3390_bioengineering11080790
Cites_doi 10.1016/j.inffus.2013.05.007
10.1016/j.humpath.2013.11.011
10.1007/s11042-018-6675-0
10.1016/j.compbiomed.2016.10.022
10.35712/aig.v1.i1.5
10.1002/hep.31103
10.1016/j.inffus.2015.12.007
10.1053/j.gastro.2014.01.018
10.3390/vaccines9111243
10.1016/j.metabol.2020.154170
10.1016/j.inffus.2015.09.006
10.1016/S1386-5056(99)00010-6
10.31661/jbpe.v0i0.2009-1180
10.1109/IUS52206.2021.9593687
10.3390/s21165304
10.4103/sjg.SJG_122_18
10.1177/0954411919871123
10.1109/SIITME53254.2021.9663701
10.3109/03091902.2014.990160
10.7763/IJCEE.2012.V4.567
10.3390/ai3020028
10.1002/jum.15070
10.1002/hep.29596
10.1038/nature14539
10.3748/wjg.v25.i6.672
10.4103/2228-7477.150387
10.1109/HealthCom.2018.8531118
10.1016/S0168-8278(86)80075-7
10.1016/j.cmpb.2017.12.016
10.1109/CCDC.2019.8833364
10.1016/j.ipm.2009.03.002
10.3390/cancers13040790
10.1097/JCMA.0000000000000585
10.1007/s00330-017-5270-5
10.11152/mu.2013.2066.153.dmm1vg2
10.1118/1.4725759
10.1109/STSIVA.2015.7330417
10.1016/j.compbiomed.2022.106083
10.1111/jgh.15385
10.1097/MD.0000000000006585
10.1016/j.compeleceng.2022.108259
10.1016/j.clinimag.2021.02.038
10.1111/jgh.13857
10.1109/ADCOM.2007.16
10.3390/diagnostics11061078
10.1007/s11548-018-1843-2
10.4135/9781526416070
10.1186/s13643-016-0384-4
10.1155/2014/708279
10.1016/j.cmpb.2016.03.016
10.1016/j.bbe.2016.07.003
10.1007/978-3-319-04960-1_23
10.1109/42.511750
10.3390/e22091006
10.1109/IUS46767.2020.9251329
10.1007/s00330-018-5680-z
10.1007/s10916-011-9803-1
10.1109/CISP.2010.5647275
10.1002/hep.30251
10.31887/DCNS.2010.12.4/rcolom
10.1016/j.jhep.2017.05.016
10.37015/AUDT.2020.200008
10.1111/jgh.15409
10.1053/j.gastro.2019.08.058
10.1186/s12876-020-01585-5
10.3748/wjg.v28.i22.2494
10.1097/01.meg.0000243885.55562.7e
10.3389/fonc.2020.00680
10.1016/j.cmpbup.2021.100025
10.1007/s10916-017-0797-1
10.1016/j.protcy.2012.09.084
10.1016/S2468-1253(19)30039-1
10.1186/s12938-019-0742-2
10.1109/IUS52206.2021.9593420
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/bioengineering9120748
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals - DOAJ (NTUSG)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
PubMed


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_b63b159dadb14dbcb73321ba58d21dca
10.3390/bioengineering9120748
PMC9774180
A744274963
36550954
10_3390_bioengineering9120748
Genre Journal Article
Review
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c572t-d8f07cceef26ef8731e81aca97b85e14de2bc6e9984b88cc8b4e185a5f0dda913
IEDL.DBID UNPAY
ISSN 2306-5354
IngestDate Fri Oct 03 12:52:52 EDT 2025
Sun Oct 26 04:14:15 EDT 2025
Tue Sep 30 17:17:28 EDT 2025
Fri Sep 05 06:45:03 EDT 2025
Fri Jul 25 11:42:39 EDT 2025
Mon Oct 20 22:19:57 EDT 2025
Mon Oct 20 16:46:38 EDT 2025
Thu Jan 02 22:54:45 EST 2025
Thu Oct 16 04:41:58 EDT 2025
Thu Apr 24 23:00:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords deep learning
NAFLD
fatty liver
machine learning
artificial intelligence
ultrasound
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-d8f07cceef26ef8731e81aca97b85e14de2bc6e9984b88cc8b4e185a5f0dda913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7797-0417
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2306-5354/9/12/748/pdf?version=1670813188
PMID 36550954
PQID 2756661180
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_b63b159dadb14dbcb73321ba58d21dca
unpaywall_primary_10_3390_bioengineering9120748
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9774180
proquest_miscellaneous_2758099171
proquest_journals_2756661180
gale_infotracmisc_A744274963
gale_infotracacademiconefile_A744274963
pubmed_primary_36550954
crossref_citationtrail_10_3390_bioengineering9120748
crossref_primary_10_3390_bioengineering9120748
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Acharya (ref_41) 2012; 39
Middleton (ref_10) 2018; 67
Vanderbeck (ref_25) 2013; 45
Owjimehr (ref_55) 2015; 5
Cao (ref_72) 2019; 39
Phisalprapa (ref_8) 2017; 96
Alzubaidi (ref_19) 2021; 1
Ouzzani (ref_34) 2016; 5
ref_13
Zamanian (ref_60) 2021; 11
Trenell (ref_5) 2017; 67
ref_53
Masuzaki (ref_14) 2020; 1
Constantinescu (ref_84) 2020; 23
ref_51
Lee (ref_27) 2021; 36
Alswat (ref_4) 2018; 24
Sokolova (ref_86) 2009; 45
ref_16
Jamshidi (ref_18) 2022; 1
Andrade (ref_58) 2012; 5
Sandborn (ref_28) 2020; 158
ref_61
Kadah (ref_73) 1996; 15
Altamirano (ref_6) 2014; 146
ref_69
Pal (ref_22) 2022; 150
ref_20
Pavlopoulos (ref_47) 2000; 19
ref_64
ref_63
ref_62
Kalyan (ref_80) 2014; 2014
Neogi (ref_54) 2018; 78
Acharya (ref_36) 2016; 31
Wong (ref_30) 2021; 36
Wong (ref_7) 2018; 33
Gummadi (ref_44) 2020; 4
ref_71
Li (ref_67) 2018; 29
Piscaglia (ref_23) 2006; 18
Singh (ref_65) 2012; 4
Saba (ref_40) 2016; 130
ref_35
Byra (ref_59) 2018; 13
ref_79
ref_78
ref_33
Acharya (ref_37) 2016; 79
Shi (ref_43) 2019; 18
ref_77
Mantovani (ref_3) 2020; 111
ref_32
ref_76
Naganawa (ref_26) 2018; 28
Spann (ref_29) 2020; 71
ref_31
Kuppili (ref_38) 2017; 41
Subramanya (ref_52) 2014; 39
Chen (ref_68) 2019; 233
Zhen (ref_24) 2020; 10
LeCun (ref_15) 2015; 521
Das (ref_70) 2021; 77
Badawi (ref_74) 1999; 55
Alivar (ref_57) 2016; 36
Zhou (ref_11) 2019; 25
Chou (ref_81) 2021; 84
ref_83
ref_82
Acharya (ref_39) 2016; 29
Srivastava (ref_21) 2022; 102
ref_46
Mihailescu (ref_75) 2013; 15
Younossi (ref_1) 2019; 69
Li (ref_2) 2019; 4
Piccinino (ref_9) 1986; 2
Colom (ref_12) 2010; 12
Minhas (ref_56) 2011; 36
ref_85
ref_49
ref_48
Singh (ref_66) 2014; 19
Jamshidi (ref_17) 2022; 3
Biswas (ref_42) 2018; 155
Li (ref_45) 2022; 28
References_xml – volume: 19
  start-page: 91
  year: 2014
  ident: ref_66
  article-title: An information fusion based method for liver classification using texture analysis of ultrasound images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2013.05.007
– volume: 45
  start-page: 785
  year: 2013
  ident: ref_25
  article-title: Automatic classification of white regions in liver biopsies by supervised machine learning
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2013.11.011
– volume: 78
  start-page: 11105
  year: 2018
  ident: ref_54
  article-title: Use of a novel set of features based on texture anisotropy for identification of liver steatosis from ultrasound images: A simple method
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-6675-0
– volume: 79
  start-page: 250
  year: 2016
  ident: ref_37
  article-title: Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.10.022
– ident: ref_49
– volume: 1
  start-page: 5
  year: 2020
  ident: ref_14
  article-title: Application of artificial intelligence in hepatology: Minireview
  publication-title: Artif. Intell. Gastroenterol.
  doi: 10.35712/aig.v1.i1.5
– volume: 71
  start-page: 1093
  year: 2020
  ident: ref_29
  article-title: Applying machine learning in liver disease and transplantation: A comprehensive review
  publication-title: Hepatology
  doi: 10.1002/hep.31103
– volume: 31
  start-page: 43
  year: 2016
  ident: ref_36
  article-title: An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2015.12.007
– volume: 146
  start-page: 1231
  year: 2014
  ident: ref_6
  article-title: A Histologic Scoring System for Prognosis of Patients with Alcoholic Hepatitis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2014.01.018
– ident: ref_20
  doi: 10.3390/vaccines9111243
– volume: 111
  start-page: 154170
  year: 2020
  ident: ref_3
  article-title: Complications, morbidity and mortality of nonalcoholic fatty liver disease
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2020.154170
– ident: ref_16
– volume: 29
  start-page: 32
  year: 2016
  ident: ref_39
  article-title: Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2015.09.006
– volume: 55
  start-page: 135
  year: 1999
  ident: ref_74
  article-title: Fuzzy logic algorithm for quantitative tissue characterization of diffuse liver diseases from ultrasound images
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/S1386-5056(99)00010-6
– volume: 11
  start-page: 73
  year: 2021
  ident: ref_60
  article-title: Implementation of Combinational Deep Learning Algorithm for Non-alcoholic Fatty Liver Classification in Ultrasound Images
  publication-title: J. Biomed. Phys. Eng.
  doi: 10.31661/jbpe.v0i0.2009-1180
– ident: ref_64
  doi: 10.1109/IUS52206.2021.9593687
– ident: ref_51
  doi: 10.3390/s21165304
– volume: 24
  start-page: 211
  year: 2018
  ident: ref_4
  article-title: Nonalcoholic fatty liver disease burden–Saudi Arabia and United Arab Emirates, 2017–2030
  publication-title: Saudi J. Gastroenterol. Off. J. Saudi Gastroenterol. Assoc.
  doi: 10.4103/sjg.SJG_122_18
– volume: 233
  start-page: 1100
  year: 2019
  ident: ref_68
  article-title: Classification for liver ultrasound tomography by posterior attenuation correction with a phantom study
  publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med.
  doi: 10.1177/0954411919871123
– ident: ref_61
  doi: 10.1109/SIITME53254.2021.9663701
– volume: 39
  start-page: 123
  year: 2014
  ident: ref_52
  article-title: A CAD system for B-mode fatty liver ultrasound images using texture features
  publication-title: J. Med. Eng. Technol.
  doi: 10.3109/03091902.2014.990160
– volume: 4
  start-page: 605
  year: 2012
  ident: ref_65
  article-title: A New Quantitative Metric for Liver Classification from Ultrasound Images
  publication-title: Int. J. Comput. Electr. Eng.
  doi: 10.7763/IJCEE.2012.V4.567
– ident: ref_77
– volume: 3
  start-page: 493
  year: 2022
  ident: ref_17
  article-title: A Review of the Potential of Artificial Intelligence Approaches to Forecasting COVID-19 Spreading
  publication-title: AI
  doi: 10.3390/ai3020028
– volume: 39
  start-page: 51
  year: 2019
  ident: ref_72
  article-title: Application of Deep Learning in Quantitative Analysis of 2-Dimensional Ultrasound Imaging of Nonalcoholic Fatty Liver Disease
  publication-title: J. Ultrasound Med.
  doi: 10.1002/jum.15070
– volume: 67
  start-page: 858
  year: 2018
  ident: ref_10
  article-title: Diagnostic accuracy of magnetic resonance imaging hepatic proton density fat fraction in pediatric nonalcoholic fatty liver disease
  publication-title: Hepatology
  doi: 10.1002/hep.29596
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_15
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 25
  start-page: 672
  year: 2019
  ident: ref_11
  article-title: Artificial intelligence in medical imaging of the liver
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v25.i6.672
– volume: 5
  start-page: 21
  year: 2015
  ident: ref_55
  article-title: An improved method for liver diseases detection by ultrasound image analysis
  publication-title: J. Med. Signals Sens.
  doi: 10.4103/2228-7477.150387
– volume: 1
  start-page: 4
  year: 2022
  ident: ref_18
  article-title: A comprehensive review of radiology smartphone applications
  publication-title: Artificial Intelligence Strategies for Analyzing COVID-19 Pneumonia Lung Imaging
– ident: ref_50
  doi: 10.1109/HealthCom.2018.8531118
– ident: ref_48
– volume: 2
  start-page: 165
  year: 1986
  ident: ref_9
  article-title: Complications following percutaneous liver biopsy: A multicentre retrospective study on 68 276 biopsies
  publication-title: J. Hepatol.
  doi: 10.1016/S0168-8278(86)80075-7
– volume: 155
  start-page: 165
  year: 2018
  ident: ref_42
  article-title: Symtosis: A liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.12.016
– ident: ref_83
  doi: 10.1109/CCDC.2019.8833364
– volume: 45
  start-page: 427
  year: 2009
  ident: ref_86
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2009.03.002
– ident: ref_31
  doi: 10.3390/cancers13040790
– ident: ref_13
– ident: ref_62
– volume: 84
  start-page: 842
  year: 2021
  ident: ref_81
  article-title: Deep learning for abdominal ultrasound: A computer-aided diagnostic system for the severity of fatty liver
  publication-title: J. Chin. Med. Assoc.
  doi: 10.1097/JCMA.0000000000000585
– volume: 28
  start-page: 3050
  year: 2018
  ident: ref_26
  article-title: Imaging prediction of nonalcoholic steatohepatitis using computed tomography texture analysis
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-017-5270-5
– volume: 15
  start-page: 184
  year: 2013
  ident: ref_75
  article-title: Computer aided diagnosis method for steatosis rating in ultrasound images using random forests
  publication-title: Med. Ultrason.
  doi: 10.11152/mu.2013.2066.153.dmm1vg2
– volume: 39
  start-page: 4255
  year: 2012
  ident: ref_41
  article-title: Data mining framework for fatty liver disease classification in ultrasound: A hybrid feature extraction paradigm
  publication-title: Med. Phys.
  doi: 10.1118/1.4725759
– ident: ref_71
  doi: 10.1109/STSIVA.2015.7330417
– volume: 150
  start-page: 106083
  year: 2022
  ident: ref_22
  article-title: Attention UW-Net: A fully connected model for automatic segmentation and annotation of chest X-ray
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106083
– volume: 36
  start-page: 543
  year: 2021
  ident: ref_30
  article-title: Artificial intelligence in prediction of non-alcoholic fatty liver disease and fibrosis
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.15385
– volume: 96
  start-page: e6585
  year: 2017
  ident: ref_8
  article-title: Cost-effectiveness analysis of ultrasonography screening for nonalcoholic fatty liver disease in metabolic syndrome patients
  publication-title: Medicine
  doi: 10.1097/MD.0000000000006585
– volume: 102
  start-page: 108259
  year: 2022
  ident: ref_21
  article-title: A median based quadrilateral local quantized ternary pattern technique for the classification of dermatoscopic images of skin cancer
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.108259
– volume: 77
  start-page: 62
  year: 2021
  ident: ref_70
  article-title: Digital image analysis of ultrasound images using machine learning to diagnose pediatric nonalcoholic fatty liver disease
  publication-title: Clin. Imaging
  doi: 10.1016/j.clinimag.2021.02.038
– volume: 33
  start-page: 70
  year: 2018
  ident: ref_7
  article-title: Asia–Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017—Part 1: Definition, risk factors and assessment
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.13857
– ident: ref_53
  doi: 10.1109/ADCOM.2007.16
– ident: ref_82
– ident: ref_32
  doi: 10.3390/diagnostics11061078
– volume: 13
  start-page: 1895
  year: 2018
  ident: ref_59
  article-title: Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-018-1843-2
– ident: ref_35
  doi: 10.4135/9781526416070
– volume: 5
  start-page: 210
  year: 2016
  ident: ref_34
  article-title: Rayyan—A web and mobile app for systematic reviews
  publication-title: Syst. Rev.
  doi: 10.1186/s13643-016-0384-4
– volume: 2014
  start-page: 708279
  year: 2014
  ident: ref_80
  article-title: Artificial Neural Network Application in the Diagnosis of Disease Conditions with Liver Ultrasound Images
  publication-title: Adv. Bioinform.
  doi: 10.1155/2014/708279
– volume: 130
  start-page: 118
  year: 2016
  ident: ref_40
  article-title: Automated stratification of liver disease in ultrasound: An online accurate feature classification paradigm
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.03.016
– volume: 36
  start-page: 697
  year: 2016
  ident: ref_57
  article-title: Hierarchical classification of normal, fatty and heterogeneous liver diseases from ultrasound images using serial and parallel feature fusion
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2016.07.003
– ident: ref_78
  doi: 10.1007/978-3-319-04960-1_23
– volume: 15
  start-page: 466
  year: 1996
  ident: ref_73
  article-title: Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.511750
– ident: ref_69
  doi: 10.3390/e22091006
– ident: ref_46
  doi: 10.1109/IUS46767.2020.9251329
– volume: 29
  start-page: 1496
  year: 2018
  ident: ref_67
  article-title: Multiparametric ultrasomics of significant liver fibrosis: A machine learning-based analysis
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5680-z
– ident: ref_79
– volume: 36
  start-page: 3163
  year: 2011
  ident: ref_56
  article-title: Automated Classification of Liver Disorders using Ultrasound Images
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-011-9803-1
– ident: ref_76
  doi: 10.1109/CISP.2010.5647275
– volume: 69
  start-page: 2672
  year: 2019
  ident: ref_1
  article-title: Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis
  publication-title: Hepatology
  doi: 10.1002/hep.30251
– volume: 12
  start-page: 489
  year: 2010
  ident: ref_12
  article-title: Human intelligence and brain networks
  publication-title: Dialog. Clin. Neurosci.
  doi: 10.31887/DCNS.2010.12.4/rcolom
– volume: 67
  start-page: 829
  year: 2017
  ident: ref_5
  article-title: Treatment of NAFLD with diet, physical activity and exercise
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2017.05.016
– volume: 4
  start-page: 176
  year: 2020
  ident: ref_44
  article-title: Automated Machine Learning in the Sonographic Diagnosis of Non-alcoholic Fatty Liver Disease
  publication-title: Adv. Ultrasound Diagn. Ther.
  doi: 10.37015/AUDT.2020.200008
– volume: 36
  start-page: 539
  year: 2021
  ident: ref_27
  article-title: Artificial intelligence in liver disease
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.15409
– volume: 158
  start-page: 76
  year: 2020
  ident: ref_28
  article-title: Application of artificial intelligence to gastroenterology and hepatology
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.08.058
– ident: ref_85
– ident: ref_33
  doi: 10.1186/s12876-020-01585-5
– volume: 28
  start-page: 2494
  year: 2022
  ident: ref_45
  article-title: Accurate and generalizable quantitative scoring of liver steatosis from ultrasound images via scalable deep learning
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v28.i22.2494
– volume: 18
  start-page: 1255
  year: 2006
  ident: ref_23
  article-title: Prediction of significant fibrosis in hepatitis C virus infected liver transplant recipients by artificial neural network analysis of clinical factors
  publication-title: Eur. J. Gastroenterol. Hepatol.
  doi: 10.1097/01.meg.0000243885.55562.7e
– volume: 10
  start-page: 680
  year: 2020
  ident: ref_24
  article-title: Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.00680
– volume: 1
  start-page: 100025
  year: 2021
  ident: ref_19
  article-title: Role of deep learning in early detection of COVID-19: Scoping review
  publication-title: Comput. Methods Programs Biomed. Updat.
  doi: 10.1016/j.cmpbup.2021.100025
– volume: 23
  start-page: 135
  year: 2020
  ident: ref_84
  article-title: Transfer learning with pre-trained deep convolutional neural networks for the automatic assessment of liver steatosis in ultrasound images
  publication-title: Med. Ultrason.
– volume: 41
  start-page: 152
  year: 2017
  ident: ref_38
  article-title: Extreme Learning Machine Framework for Risk Stratification of Fatty Liver Disease Using Ultrasound Tissue Characterization
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-017-0797-1
– volume: 19
  start-page: 39
  year: 2000
  ident: ref_47
  article-title: Fuzzy neural network-based texture analysis of ultrasonic images
  publication-title: IEEE Comput. Graph. Appl.
– volume: 5
  start-page: 763
  year: 2012
  ident: ref_58
  article-title: Classifier Approaches for Liver Steatosis using Ultrasound Images
  publication-title: Procedia Technol.
  doi: 10.1016/j.protcy.2012.09.084
– volume: 4
  start-page: 389
  year: 2019
  ident: ref_2
  article-title: Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: A systematic review and meta-analysis
  publication-title: Lancet Gastroenterol. Hepatol.
  doi: 10.1016/S2468-1253(19)30039-1
– volume: 18
  start-page: 121
  year: 2019
  ident: ref_43
  article-title: Ultrasonic liver steatosis quantification by a learning-based acoustic model from a novel shear wave sequence
  publication-title: BioMed. Eng. OnLine
  doi: 10.1186/s12938-019-0742-2
– ident: ref_63
  doi: 10.1109/IUS52206.2021.9593420
SSID ssj0001325264
Score 2.3242934
SecondaryResourceType review_article
Snippet Background: Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional...
Non-alcoholic Fatty Liver Disease (NAFLD) is growing more prevalent worldwide. Although non-invasive diagnostic approaches such as conventional ultrasonography...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 748
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Bioengineering
Biopsy
Brain
Coronaviruses
COVID-19
Data management
deep learning
Diagnostic systems
Digital systems
Fatty liver
Feature extraction
Fibrosis
Image acquisition
Inflammation
Literature reviews
Liver
Liver diseases
Machine learning
Magnetic resonance imaging
Medical imaging
Medical research
Methods
NAFLD
Neural networks
Performance enhancement
Qualitative analysis
Steatosis
Support vector machines
Systematic Review
Ultrasonic imaging
Ultrasound
Ultrasound imaging
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - DOAJ (NTUSG)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yF_UgfltdJYLgqc6kSZvU2_gx7IoKogN7C_lkB8fO4nSQ_e99L-3WVoX14LVJaPPyPpv3fo-QZ8xHxaRnucN0NcGNyI1VJq-4rz1ezJmIhcIfPlZHK_HupDwZtfrCnLAOHrgj3MxW3ILJ9cZbJrx1VnJeMGtK5QvmXXKN5qoeBVPp7wovSjD1XckOh7h-Ztfb8Avhr2YF2E41MUYJs_9PzTwyTb-nTV7dN2fm_IfZbEY2aXmT3OidSbroNnGLXAnNbXJ9BDF4h3zFwQ4lgh6P4DcpOKv0TcArBJhHTePpp73BzCGse6JL07bn9D0mbdB1Q1cb-JQddmCix99AA-1e0gX9PIBA0-6G4S5ZLd9-eX2U9w0WclfKos29inPpwEzGogpRSc6CYsaZWlpVBiB3KKyrAkRkwirlnLIigH03ZZx7b2rG75GDZtuEB4Sqog6lDz5UwYoorRUGZNsqGX0ApRozIi4orV2PPo5NMDYaohA8IP3XA8rIi2HZWQe_cdmCV3iMw2REz04PgKd0z1P6Mp7KyHNkAo0yDh_pTF-qAFtFtCy9kEJANA-6KyOHk5kgm246fMFGutcNO42A--AVMTXPyNNhGFdivlsTtvs0R4HvziTLyP2O64Yt8QqiyroUGZETfpzseTrSrE8Tcjg6--m9s4Fz_42sD_8HWR-RawUWj6RkoENy0H7fh8fg0rX2SZLen_BFUcY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4t3QNwQDyXwIKMhMQptE6c2EFCqAtb7SKoeFXaW-RXoKKkZdsK7b9nJknTBhBwjW0lE8_TnvkG4DF3heLS8dBSupqItQi1UTpMY5c5upjTBRUKvx2nJxPx-iw524PxphaG0io3OrFS1G5u6Yy8TzDlaEu4GrxYfA-paxTdrm5aaOimtYJ7XkGMXYL9iJCxerB_dDx-92F76hJHCboAdSlPjPF-30znfov8l_EIbarqGKkKy_93jb1jsn5Np7y8Lhf64oeezXZs1eg6XGucTDasueIG7PnyJlzdgR68BV9psEaPYKc7sJwMnVj2ytPVAs5junTs_VpTRhHVQ7GRXq0u2BtK5mDTkk1m-ClL6szETr-hZlo-Y0P2sQWHZvXNw22YjI4_vTwJm8YLoU1ktAqdKgbSovksotQXSsbcK66tzqRRiefC-cjY1GOkJoxS1iojPNp9nRQD53TG4zvQK-elvwtMRZlPnHc-9UYU0hihUeaNkoXzqGyLAMTmT-e2QSWn5hizHKMT2qD8jxsUwNN22aKG5fjXgiPaxnYyoWpXD-bnn_NGSHOTxgbdO6edQSKNNTKOI250olzEndUBPCEmyEn28SOtbkoYkFRC0cqHUgiM8lGnBXDYmYkya7vDGzbKG52xzLccHsCjdphWUh5c6efrao5Cn55LHsBBzXUtSXGK0WaWiABkhx87NHdHyumXClGcgoDqvf2Wc__vt977OyH34UpE5SJV-s8h9Fbna_8AnbiVedhI5k9Z4k5n
  priority: 102
  providerName: ProQuest
Title Artificial Intelligence for Detecting and Quantifying Fatty Liver in Ultrasound Images: A Systematic Review
URI https://www.ncbi.nlm.nih.gov/pubmed/36550954
https://www.proquest.com/docview/2756661180
https://www.proquest.com/docview/2758099171
https://pubmed.ncbi.nlm.nih.gov/PMC9774180
https://www.mdpi.com/2306-5354/9/12/748/pdf?version=1670813188
https://doaj.org/article/b63b159dadb14dbcb73321ba58d21dca
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: ABDBF
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: 8FG
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7R5AAceD8MJVokJE5Osvbau-aCEtrQIojKI1I5WfsyRA1O1Dig8uuZtV0TFyQeJ0veHdmTjL-Z2Z35FuAJNZmg3FBfu3I1FkrmSyWkH4cmMW5jTmauUfjNND6YsVfH0XG94LauyyoxFZ-XIO3CYz8KIzZIBjQYcCYGK5M9_1qvJNGYo0NDoxQ70I0jjMU70J1Nj0YfyxPlatmqbSfE3H6g5kv7k-UvoQH6T9FySCVv_6_ovOWeLpZOXt7kK3n2TS4WW35pch3Sc42qcpST_qZQff39Atnj_6t8A67VISsZVTZ2Ey7Z_BZc3SIyvA0nbrDioiCHWySfBENismfdRgXOIzI35O1Guvok111FJrIozshrVxpC5jmZLVDZtTvniRx-QZxbPyMj8r6hmibVPsYdmE32P7w48OtjHHwd8aDwjciGXKMzzoLYZoKH1AoqtUy4EpGlzNhA6dhi3seUEFoLxSxGETLKhsbIhIZ3oZMvc3sfiAgSGxlrbGwVy7hSTCKCKMEzYxG6Mw_Y-X-Z6prj3B21sUgx13EmkP7WBDzoN2KriuTjTwJjZyjNZMfRXd5Ynn5K608-VXGoMFg00ihUUmnFwzCgSkbCBNRo6cFTZ2apQxJ8SS3rhghU1XFypSPOWMAZIqQHu62ZiAC6PXxuqGmNQOvU0fpj7EXF0IPHzbCTdFV1uV1uyjkCMwTKqQf3KrtuVApjzF2TiHnAWxbf0rk9ks8_l_zkLqUonztovo2_-1kf_LPEQ7gSuH6Usr5oFzrF6cY-wiixUD3YEZOXPeiOxnvjCV7H-9Ojd71yzaVXw8QPyXRuzw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lA4IN4YCiwSiJNJ1ru210gVSmmjhKYRj0bqzezLEBGc0CSq8uf4bczYjpMAAi69Zncdj2f8zY535htCnjGbSRZb5htMVxNcCV9pqfyI28TiwZzKsFD4pB91BuLtWXi2RX4sa2EwrXKJiQVQ27HBb-QNpCkHX8Jk8_Xku49do_B0ddlCQ1WtFex-QTFWFXYcu8UFhHDT_e4h6Pt5ELSPTt90_KrLgG_COJj5VmbN2ICvyILIZTLmzEmmjEpiLUPHhHWBNpGDsERoKY2RWjhwcirMmtaqhHG47hWyI7hIIPjbOTjqv_uw-srDgxC2HGXpEOdJs6GHY7diGkxYAD5cbjjFonfA7x5izUX-mr65O88nanGhRqM139i-Qa5Xm1raKq3wJtly-S1ybY3q8Db5ioMlWwXtrtGAUtg000OHRxkwj6rc0vdzhRlMWH9F22o2W9AeJo_QYU4HI7iVKXaCot1vgITTV7RFP9Zk1LQ86bhDBpeigrtkOx_n7j6hMkhcaJ11kdMii7UWCjBGyzizDsA984hYPunUVCzo2IxjlEI0hApK_6ggj7ysl01KGpB_LThANdaTkcW7-GF8_jmtQCHVEdewnbTKahBSGx1zHjCtQmkDZo3yyAs0ghSxBm7SqKpkAkRF1q60FQsRxAIw1CN7GzMBI8zm8NKM0gqjpunqjfLI03oYV2LeXe7G82KOhBiCxcwj90qrq0XiEUS3SSg8Em_Y44bMmyP58EvBYI5BR_G_jdpy_--xPvi7IE_Ibuf0pJf2uv3jh-RqgKUqRerRHtmenc_dI9hAzvTj6i2l5NNlA8NPjumNow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWReJxQLwJLGAkEKfQ2nFiBwmhQilbdlmBoNLegl-BipKWbatV_xq_jpkkzTaAgMteazvNZCbfeOKZbwh5yFyumHQstJiuJiItQm2UDpPIpQ4P5nSOhcJvD5LdkXhzGB9ukR_rWhhMq1xjYgnUbmrxG3kHacrBl2Blcl6nRbzrD57PvofYQQpPWtftNCoT2fOrYwjf5s-GfdD1I84Hrz6-3A3rDgOhjSVfhE7lXWnBT-Q88bmSEfOKaatTaVTsmXCeG5t4CEmEUcpaZYQHB6fjvOucTlkE1z1Dzkpkcccq9cHrk-87EY9hs1EVDUVR2u2Y8dSfcAymjIP3Vi13WHYN-N03bDjHXxM3zy-LmV4d68lkwysOLpNL9XaW9ir7u0K2fHGVXNwgObxGvuJgxVNBhxsEoBS2y7Tv8RAD5lFdOPp-qTF3CSuv6EAvFiu6j2kjdFzQ0QRuZY49oOjwG2Dg_Cnt0Q8NDTWtzjiuk9GpKOAG2S6mhb9FqOKpj513PvFG5NIYoQFdjJK58wDreUDE-klntuY_xzYckwziIFRQ9kcFBeRJs2xWEYD8a8ELVGMzGfm7yx-mR5-zGg4yk0QGNpJOOwNCGmtkFHFmdKwcZ87qgDxGI8gQZeAmra6LJUBU5OvKelIILgWgZ0B2WjMBHWx7eG1GWY1O8-zkXQrIg2YYV2LGXeGny3KOguiBSRaQm5XVNSJFCcS1aSwCIlv22JK5PVKMv5Tc5RhulP_baSz3_x7r7b8Lcp-cAzjI9ocHe3fIBY41KmXO0Q7ZXhwt_V3YOS7MvfIVpeTTaWPCT9naiz0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4A98H4EFmQkJE5p6sSJHS6oPKpdBCsQVFpOkV-BartptU1By69nJnFDsyDxuMYeJZNMvpmxZz4T8pjZUjJhWWiwXI0niodKSxVmic0tbsypEhuF3x5m-1P--ig98gtuK19WCan4rAFpDI_DNEl5lEcsjgSX0dKWz776lSSWCXBoYJTyItnJUojFB2Rnevhu_Kk5Uc7Ltm07CeT2kZ4t3E-Wv5zF4D9lzyE1vP2_ovOWezpfOnlpXS3V2Tc1n2_5pclVUmw0astRjofrWg_N93Nkj_-v8jVyxYesdNza2HVywVU3yO4WkeFNcoyDLRcFPdgi-aQQEtOXDjcqYB5VlaXv1wrrk7C7ik5UXZ_RN1gaQmcVnc5B2RWe80QPTgDnVk_pmH7oqKZpu49xi0wnrz6-2A_9MQ6hSUVch1aWI2HAGZdx5kopEuYkU0blQsvUMW5drE3mIO_jWkpjpOYOogiVliNrVc6S22RQLSp3l1AZ5y61zrrMaV4KrbkCBNFSlNYBdJcB4ZtvWRjPcY5HbcwLyHXQBIrfmkBAhp3YsiX5-JPAczSUbjJydDcXFqefC__LFzpLNASLVlkNSmqjRZLETKtU2phZowLyBM2sQCSBhzTKN0SAqsjJVYwF57HggJAB2evNBAQw_eGNoRYegVYF0vpD7MXkKCCPumGUxKq6yi3WzRwJGQITLCB3WrvuVEoyyF3zlAdE9Cy-p3N_pJp9afjJMaVo7ht1_8bfvdZ7_yxxn1yOsR-lqS_aI4P6dO0eQJRY64ceCn4A-u1p6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+for+Detecting+and+Quantifying+Fatty+Liver+in+Ultrasound+Images%3A+A+Systematic+Review&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Alshagathrh%2C+Fahad+Muflih&rft.au=Househ%2C+Mowafa+Said&rft.date=2022-12-01&rft.pub=MDPI&rft.eissn=2306-5354&rft.volume=9&rft.issue=12&rft_id=info:doi/10.3390%2Fbioengineering9120748&rft.externalDocID=PMC9774180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon