Variational Bayesian mixed-effects inference for classification studies
Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain–computer interfaces, or clinical diagnostics necessitates inferen...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 76; pp. 345 - 361 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier Inc
01.08.2013
Elsevier Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2013.03.008 |
Cover
| Abstract | Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain–computer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventional t-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses.
[Display omitted]
•Random-/mixed-effects inference is standard in univariate neuroimaging analyses.•But it has not yet received much attention in multivariate classification studies.•We propose a novel, statistically powerful, and efficient variational Bayes method.•Our approach replaces previous, computationally expensive MCMC algorithms.•We provide MATLAB and R implementations for use in future classification studies. |
|---|---|
| AbstractList | Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain-computer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventional t-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses. Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain–computer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventional t-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses. [Display omitted] •Random-/mixed-effects inference is standard in univariate neuroimaging analyses.•But it has not yet received much attention in multivariate classification studies.•We propose a novel, statistically powerful, and efficient variational Bayes method.•Our approach replaces previous, computationally expensive MCMC algorithms.•We provide MATLAB and R implementations for use in future classification studies. Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain-computer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventionalt-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses. Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brainacomputer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventional t-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses. Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain-computer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventional t-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses.Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain-computer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventional t-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses. |
| Author | Mathys, Christoph Daunizeau, Jean Brodersen, Kay H. Chumbley, Justin R. Buhmann, Joachim M. Stephan, Klaas E. |
| Author_xml | – sequence: 1 givenname: Kay H. surname: Brodersen fullname: Brodersen, Kay H. email: brodersen@biomed.ee.ethz.ch organization: Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Switzerland – sequence: 2 givenname: Jean surname: Daunizeau fullname: Daunizeau, Jean organization: Laboratory for Social and Neural Systems Research (SNS), Department of Economics, University of Zurich, Switzerland – sequence: 3 givenname: Christoph surname: Mathys fullname: Mathys, Christoph organization: Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Switzerland – sequence: 4 givenname: Justin R. surname: Chumbley fullname: Chumbley, Justin R. organization: Laboratory for Social and Neural Systems Research (SNS), Department of Economics, University of Zurich, Switzerland – sequence: 5 givenname: Joachim M. surname: Buhmann fullname: Buhmann, Joachim M. organization: Machine Learning Laboratory, Department of Computer Science, ETH Zurich, Switzerland – sequence: 6 givenname: Klaas E. surname: Stephan fullname: Stephan, Klaas E. organization: Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Switzerland |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27395684$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23507390$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkk-LFDEQxYOsuH_0K0iDCF56TNJJOrmIu8u6Cgte1GtIpyuSMZOMSbc6334zO6MLcxqhIDn83qPqVZ2jk5giINQQvCCYiLfLRYQ5J78y32FBMekWuBaWT9AZwYq3ivf0ZPvnXSsJUafovJQlxlgRJp-hU9px3HcKn6HbbyZ7M_kUTWiuzAaKN7FZ-T8wtuAc2Kk0PjrIEC00LuXGBlOKd94-qJoyzaOH8hw9dSYUeLF_L9DXDzdfrj-2d59vP11f3rW2tjS10o1MCEL7TnAqBjJKzgZmFRsxZ4oOnDjJCR84UKEwWCDcMaJ6ZngHjPLuAqmd7xzXZvPbhKDXueaQN5pgvQ1HL_VjOHobjsa1sKzaNzvtOqefM5RJr3yxEIKJkOaiCce4F5Qcg3ZM1aClUhV9dYAu05xrnJUSoqZPGesr9XJPzcMKxn9N_91EBV7vAVOsCS6baH155CrEhWSVkzvO5lRKBvc_8787kFo_PWxxysaHYwyudgZQN_zLQ9bF-u1hjD7XS9Fj8seYvD8wscHHek7hB2yOs7gH89_vDw |
| CitedBy_id | crossref_primary_10_3390_electronics8020121 crossref_primary_10_3390_s18093012 crossref_primary_10_1016_j_proeng_2017_09_509 crossref_primary_10_1016_j_ress_2020_106876 crossref_primary_10_1002_sim_6999 crossref_primary_10_1016_j_neuroimage_2016_07_040 crossref_primary_10_1523_ENEURO_0177_18_2018 crossref_primary_10_1093_cercor_bhv208 crossref_primary_10_7554_eLife_41861 crossref_primary_10_1049_iet_rsn_2016_0273 crossref_primary_10_1111_asj_12514 crossref_primary_10_1007_s00034_018_1008_0 crossref_primary_10_1016_j_cognition_2015_09_004 crossref_primary_10_1214_14_AOAS788 crossref_primary_10_3389_fnins_2017_00543 crossref_primary_10_1016_j_neuroimage_2017_04_061 crossref_primary_10_1016_j_nicl_2013_11_002 crossref_primary_10_1126_sciadv_adn2776 crossref_primary_10_1371_journal_pone_0178140 crossref_primary_10_1016_j_jneumeth_2016_06_008 crossref_primary_10_1016_j_neuroimage_2019_116205 crossref_primary_10_1016_j_aeue_2018_06_012 crossref_primary_10_3389_fnins_2014_00191 crossref_primary_10_3389_fnins_2020_616906 crossref_primary_10_3389_fnins_2024_1373633 crossref_primary_10_1162_imag_a_00354 crossref_primary_10_3390_s19020232 |
| Cites_doi | 10.1016/j.neuroimage.2009.10.072 10.1186/1471-2105-7-127 10.1126/science.1177302 10.1016/S1053-8119(03)00144-7 10.1109/ICDIM.2008.4746761 10.1016/j.cub.2009.02.033 10.2307/2841583 10.1007/s10462-011-9236-8 10.1016/j.patcog.2011.04.025 10.1016/j.neuroimage.2012.09.063 10.1016/j.neuroimage.2003.12.023 10.1016/j.jml.2007.11.004 10.1073/pnas.0600244103 10.1145/1961189.1961199 10.1016/j.neuroimage.2010.04.036 10.1371/journal.pcbi.1002079 10.1371/journal.pone.0008622 10.3233/IDA-2002-6504 10.1016/j.artmed.2010.02.004 10.1002/mrm.10537 10.1093/biomet/59.3.581 10.1016/S1053-8119(03)00202-7 10.1016/j.neuroimage.2008.03.050 10.1016/j.neuroimage.2010.03.057 10.1016/j.neuroimage.2011.11.002 10.1038/nrn1931 10.1038/nn1954 10.1016/j.neuroimage.2012.08.035 10.1126/science.1180029 10.1016/S1053-8119(03)00049-1 10.1109/MSP.2008.4408446 10.1006/nimg.2002.1090 10.1146/annurev-psych-120710-100412 10.1016/j.tics.2006.07.005 10.1016/j.neuroimage.2009.03.025 10.1016/j.neuroimage.2009.05.034 10.1613/jair.953 10.1002/hbm.460020402 10.1126/science.1171599 10.1093/brain/awm319 10.1038/nature07832 10.1016/j.neuron.2009.08.011 10.1016/j.neuroimage.2004.03.026 10.1016/j.neuroimage.2008.11.007 10.1016/j.neuroimage.2007.07.040 10.1016/j.neuroimage.2010.05.026 10.1006/nimg.1999.0439 10.1016/j.cub.2010.01.053 10.1016/j.neuroimage.2010.11.004 10.1016/S1053-8119(03)00435-X 10.1016/j.neuroimage.2010.06.048 10.1016/S1053-8119(18)31587-8 10.1016/j.neuroimage.2004.08.055 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Inc. 2014 INIST-CNRS Copyright © 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Aug 1, 2013 |
| Copyright_xml | – notice: 2013 Elsevier Inc. – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Aug 1, 2013 |
| DBID | 6I. AAFTH AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO ADTOC UNPAY |
| DOI | 10.1016/j.neuroimage.2013.03.008 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest - Psychology Database ProQuest Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | MEDLINE ProQuest One Psychology Engineering Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 361 |
| ExternalDocumentID | 10.1016/j.neuroimage.2013.03.008 3642141971 23507390 27395684 10_1016_j_neuroimage_2013_03_008 S1053811913002371 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Wellcome Trust grantid: 091593 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AIGII AKRLJ APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 PUEGO R2- SEW WUQ XPP ZMT AGCQF AGRNS ALIPV IQODW CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c572t-8fd46612736526b1d854b4c94d05492b51f8515b5e2690ece15f41974a53e4253 |
| IEDL.DBID | BENPR |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Wed Aug 20 00:07:08 EDT 2025 Tue Oct 07 09:23:30 EDT 2025 Sat Sep 27 18:05:20 EDT 2025 Tue Oct 07 07:01:06 EDT 2025 Mon Jul 21 06:00:52 EDT 2025 Mon Jul 21 09:12:08 EDT 2025 Wed Oct 01 02:58:13 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Fri Feb 23 02:36:06 EST 2024 Tue Oct 14 19:34:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Balanced accuracy Variational Bayes Normal-binomial Group studies Fixed effects Random effects Bayesian inference |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/3.0 https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2013 Elsevier Inc. All rights reserved. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c572t-8fd46612736526b1d854b4c94d05492b51f8515b5e2690ece15f41974a53e4253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.neuroimage.2013.03.008 |
| PMID | 23507390 |
| PQID | 1668112447 |
| PQPubID | 2031077 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_1016_j_neuroimage_2013_03_008 proquest_miscellaneous_1500762108 proquest_miscellaneous_1349095899 proquest_journals_1668112447 pubmed_primary_23507390 pascalfrancis_primary_27395684 crossref_primary_10_1016_j_neuroimage_2013_03_008 crossref_citationtrail_10_1016_j_neuroimage_2013_03_008 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_03_008 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_03_008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-08-01 |
| PublicationDateYYYYMMDD | 2013-08-01 |
| PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam – name: United States |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2013 |
| Publisher | Elsevier Inc Elsevier Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier Limited |
| References | Brodersen, Haiss, Ong, Jung, Tittgemeyer, Buhmann, Weber, Stephan (bb0040) 2011; 56 Friston, Stephan, Lund, Morcom, Kiebel (bb0140) 2005; 24 Woolrich, Behrens, Beckmann, Jenkinson, Smith (bb0335) 2004; 21 Attias (bb0010) 2000; 12 Pereira, Mitchell, Botvinick (bb0295) 2009; 45 Haynes, Rees (bb0185) 2006; 7 Lemm, Blankertz, Dickhaus, Müller (bb0245) 2011; 56 Brodersen, Schofield, Leff, Ong, Lomakina, Buhmann, Stephan (bb0060) 2011; 7 Brodersen, Ong, Stephan, Buhmann (bb0055) 2010 Beckmann, Jenkinson, Smith (bb0015) 2003; 20 Gustafsson, Wallman, Wickenberg Bolin, Göransson, Fryknäs, Andersson, Isaksson (bb0170) 2010; 49 Leonard (bb0250) 1972; 59 Tong, Pratte (bb0325) 2012; 63 Akbani, Kwek, Japkowicz (bb0005) 2004 Krajbich, Camerer, Ledyard, Rangel (bb0230) 2009; 326 MacKay (bb0255) 1995 Stelzer, Chen, Turner (bb0310) 2013; 65 Klöppel, Abdulkadir, Jack, Koutsouleris, Mourão-Miranda, Vemuri (bb0210) 2012; 61 Japkowicz, Stephen (bb0195) 2002; 6 Gopal, Yang, Bai, Niculescu-Mizil (bb0165) 2012; 25 Bishop, Spiegelhalter, Winn (bb0030) 2002; 15 Schurger, Pereira, Treisman, Cohen (bb0300) 2010; 327 Chang, Lin (bb0075) 2011; 2 Galton (bb0145) 1886; 15 Clithero, Smith, Carter, Huettel (bb0085) 2011; 56 Friston, Penny, Phillips, Kiebel, Hinton, Ashburner (bb0135) 2002; 16 Penny, Stephan, Mechelli, Friston (bb0285) 2004; 22 Friston, Penny (bb0130) 2003; 19 Chadwick, Hassabis, Weiskopf, Maguire (bb0070) 2010; 20 Hassabis, Chu, Rees, Weiskopf, Molyneux, Maguire (bb0180) 2009; 19 Behrens, Woolrich, Walton, Rushworth (bb0020) 2007; 10 Just, Cherkassky, Aryal, Mitchell (bb0205) 2010; 5 Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bb0125) 1995; 2 Olivetti, Veeramachaneni, Nowakowska (bb0280) 2012; 45 Fox, Roberts (bb0110) 2012; 38 Brodersen, Wiech, Lomakina, Lin, Buhmann, Bingel, Ploner, Stephan, Tracey (bb0065) 2012; 63 Chawla, Bowyer, Hall, Kegelmeyer (bb0080) 2002; 16 Knops, Thirion, Hubbard, Michel, Dehaene (bb0220) 2009; 324 Stephan, Weiskopf, Drysdale, Robinson, Friston (bb0320) 2007; 38 Davatzikos, Resnick, Wu, Parmpi, Clark (bb0095) 2008; 41 Dixon (bb0100) 2008; 59 Pereira, Botvinick (bb0290) 2011; 56 Harrison, Tong (bb0175) 2009; 458 Nandy, Cordes (bb0270) 2003; 50 Brodersen, Ong, Stephan, Buhmann (bb0050) 2010 Sitaram, Weiskopf, Caria, Veit, Erb, Birbaumer (bb0305) 2008; 25 Mumford, Nichols (bb0265) 2009; 47 Marquand, Howard, Brammer, Chu, Coen, Mourão-Miranda (bb0260) 2010; 49 Norman, Polyn, Detre, Haxby (bb0275) 2006; 10 Goldstein (bb0160) 2010 Cox, Savoy (bb0090) 2003; 19 Efron, Morris (bb0105) 1971 Kriegeskorte, Goebel, Bandettini (bb0235) 2006; 103 Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bb0215) 2008; 131 Ghahramani, Beal (bb0155) 2001 Kohavi (bb0225) 1995 Stephan, Penny, Daunizeau, Moran, Friston (bb0315) 2009; 46 Friston, Holmes, Worsley (bb0120) 1999; 10 Langford (bb0240) 2005; 6 Wickenberg-Bolin, Goransson, Fryknas, Gustafsson, Isaksson (bb0330) 2006; 7 Brodersen, Mathys, Chumbley, Daunizeau, Ong, Buhmann, Stephan (bb0045) 2012; 13 Friston, Harrison, Penny (bb0115) 2003; 19 Zhang, Lee (bb0340) 2008 Bishop (bb0025) 2007 Gelman, Carlin, Stern, Rubin (bb0150) 2003 Holmes, Friston (bb0190) 1998; 7 Johnson, McDuff, Rugg, Norman (bb0200) 2009; 63 Blankertz, Lemm, Treder, Haufe, Müller (bb0035) 2011; 15 Davatzikos (10.1016/j.neuroimage.2013.03.008_bb0095) 2008; 41 Kriegeskorte (10.1016/j.neuroimage.2013.03.008_bb0235) 2006; 103 Leonard (10.1016/j.neuroimage.2013.03.008_bb0250) 1972; 59 Lemm (10.1016/j.neuroimage.2013.03.008_bb0245) 2011; 56 Zhang (10.1016/j.neuroimage.2013.03.008_bb0340) 2008 Pereira (10.1016/j.neuroimage.2013.03.008_bb0290) 2011; 56 Fox (10.1016/j.neuroimage.2013.03.008_bb0110) 2012; 38 Woolrich (10.1016/j.neuroimage.2013.03.008_bb0335) 2004; 21 Brodersen (10.1016/j.neuroimage.2013.03.008_bb0055) 2010 MacKay (10.1016/j.neuroimage.2013.03.008_bb0255) 1995 Krajbich (10.1016/j.neuroimage.2013.03.008_bb0230) 2009; 326 Schurger (10.1016/j.neuroimage.2013.03.008_bb0300) 2010; 327 Kohavi (10.1016/j.neuroimage.2013.03.008_bb0225) 1995 Nandy (10.1016/j.neuroimage.2013.03.008_bb0270) 2003; 50 Holmes (10.1016/j.neuroimage.2013.03.008_bb0190) 1998; 7 Galton (10.1016/j.neuroimage.2013.03.008_bb0145) 1886; 15 Gustafsson (10.1016/j.neuroimage.2013.03.008_bb0170) 2010; 49 Brodersen (10.1016/j.neuroimage.2013.03.008_bb0040) 2011; 56 Mumford (10.1016/j.neuroimage.2013.03.008_bb0265) 2009; 47 Blankertz (10.1016/j.neuroimage.2013.03.008_bb0035) 2011; 15 Friston (10.1016/j.neuroimage.2013.03.008_bb0120) 1999; 10 Chang (10.1016/j.neuroimage.2013.03.008_bb0075) 2011; 2 Klöppel (10.1016/j.neuroimage.2013.03.008_bb0215) 2008; 131 Marquand (10.1016/j.neuroimage.2013.03.008_bb0260) 2010; 49 Friston (10.1016/j.neuroimage.2013.03.008_bb0140) 2005; 24 Wickenberg-Bolin (10.1016/j.neuroimage.2013.03.008_bb0330) 2006; 7 Langford (10.1016/j.neuroimage.2013.03.008_bb0240) 2005; 6 Klöppel (10.1016/j.neuroimage.2013.03.008_bb0210) 2012; 61 Dixon (10.1016/j.neuroimage.2013.03.008_bb0100) 2008; 59 Clithero (10.1016/j.neuroimage.2013.03.008_bb0085) 2011; 56 Cox (10.1016/j.neuroimage.2013.03.008_bb0090) 2003; 19 Gopal (10.1016/j.neuroimage.2013.03.008_bb0165) 2012; 25 Haynes (10.1016/j.neuroimage.2013.03.008_bb0185) 2006; 7 Bishop (10.1016/j.neuroimage.2013.03.008_bb0030) 2002; 15 Hassabis (10.1016/j.neuroimage.2013.03.008_bb0180) 2009; 19 Akbani (10.1016/j.neuroimage.2013.03.008_bb0005) 2004 Harrison (10.1016/j.neuroimage.2013.03.008_bb0175) 2009; 458 Friston (10.1016/j.neuroimage.2013.03.008_bb0130) 2003; 19 Sitaram (10.1016/j.neuroimage.2013.03.008_bb0305) 2008; 25 Ghahramani (10.1016/j.neuroimage.2013.03.008_bb0155) 2001 Bishop (10.1016/j.neuroimage.2013.03.008_bb0025) 2007 Chadwick (10.1016/j.neuroimage.2013.03.008_bb0070) 2010; 20 Japkowicz (10.1016/j.neuroimage.2013.03.008_bb0195) 2002; 6 Johnson (10.1016/j.neuroimage.2013.03.008_bb0200) 2009; 63 Just (10.1016/j.neuroimage.2013.03.008_bb0205) 2010; 5 Stephan (10.1016/j.neuroimage.2013.03.008_bb0315) 2009; 46 Norman (10.1016/j.neuroimage.2013.03.008_bb0275) 2006; 10 Brodersen (10.1016/j.neuroimage.2013.03.008_bb0050) 2010 Brodersen (10.1016/j.neuroimage.2013.03.008_bb0065) 2012; 63 Knops (10.1016/j.neuroimage.2013.03.008_bb0220) 2009; 324 Brodersen (10.1016/j.neuroimage.2013.03.008_bb0045) 2012; 13 Tong (10.1016/j.neuroimage.2013.03.008_bb0325) 2012; 63 Chawla (10.1016/j.neuroimage.2013.03.008_bb0080) 2002; 16 Pereira (10.1016/j.neuroimage.2013.03.008_bb0295) 2009; 45 Gelman (10.1016/j.neuroimage.2013.03.008_bb0150) 2003 Friston (10.1016/j.neuroimage.2013.03.008_bb0135) 2002; 16 Friston (10.1016/j.neuroimage.2013.03.008_bb0125) 1995; 2 Brodersen (10.1016/j.neuroimage.2013.03.008_bb0060) 2011; 7 Olivetti (10.1016/j.neuroimage.2013.03.008_bb0280) 2012; 45 Attias (10.1016/j.neuroimage.2013.03.008_bb0010) 2000; 12 Beckmann (10.1016/j.neuroimage.2013.03.008_bb0015) 2003; 20 Behrens (10.1016/j.neuroimage.2013.03.008_bb0020) 2007; 10 Efron (10.1016/j.neuroimage.2013.03.008_bb0105) 1971 Stephan (10.1016/j.neuroimage.2013.03.008_bb0320) 2007; 38 Stelzer (10.1016/j.neuroimage.2013.03.008_bb0310) 2013; 65 Penny (10.1016/j.neuroimage.2013.03.008_bb0285) 2004; 22 Goldstein (10.1016/j.neuroimage.2013.03.008_bb0160) 2010 Friston (10.1016/j.neuroimage.2013.03.008_bb0115) 2003; 19 |
| References_xml | – volume: 16 start-page: 465 year: 2002 end-page: 483 ident: bb0135 article-title: Classical and Bayesian inference in neuroimaging: theory publication-title: Neuroimage – volume: 45 start-page: S199 year: 2009 end-page: S209 ident: bb0295 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: Neuroimage – volume: 12 start-page: 209 year: 2000 end-page: 215 ident: bb0010 article-title: A variational Bayesian framework for graphical models publication-title: Adv. Neural Inf. Process. Syst. – volume: 13 start-page: 3133 year: 2012 end-page: 3176 ident: bb0045 article-title: Bayesian mixed-effects inference on classification performance in hierarchical data sets publication-title: J. Mach. Learn. Res. – volume: 24 start-page: 244 year: 2005 end-page: 252 ident: bb0140 article-title: Mixed-effects and fMRI studies publication-title: Neuroimage – start-page: 507 year: 2001 end-page: 513 ident: bb0155 article-title: Propagation algorithms for variational Bayesian learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 49 start-page: 2178 year: 2010 end-page: 2189 ident: bb0260 article-title: Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes publication-title: Neuroimage – volume: 38 start-page: 85 year: 2012 end-page: 95 ident: bb0110 article-title: A tutorial on variational Bayesian inference publication-title: Artif. Intell. Rev. – volume: 19 start-page: 1273 year: 2003 end-page: 1302 ident: bb0115 article-title: Dynamic causal modelling publication-title: Neuroimage – volume: 65 start-page: 69 year: 2013 end-page: 82 ident: bb0310 article-title: Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control publication-title: Neuroimage – volume: 19 start-page: 1240 year: 2003 end-page: 1249 ident: bb0130 article-title: Posterior probability maps and {SPMs} publication-title: Neuroimage – volume: 25 start-page: 95 year: 2008 end-page: 106 ident: bb0305 article-title: fMRI brain–computer interfaces: a tutorial on methods and applications publication-title: IEEE Signal Process. Mag. – volume: 458 start-page: 632 year: 2009 end-page: 635 ident: bb0175 article-title: Decoding reveals the contents of visual working memory in early visual areas publication-title: Nature – volume: 63 start-page: 697 year: 2009 end-page: 708 ident: bb0200 article-title: Recollection, familiarity, and cortical reinstatement: a multivoxel pattern analysis publication-title: Neuron – volume: 327 start-page: 97 year: 2010 end-page: 99 ident: bb0300 article-title: Reproducibility distinguishes conscious from nonconscious neural representations publication-title: Science – start-page: 3121 year: 2010 end-page: 3124 ident: bb0050 article-title: The balanced accuracy and its posterior distribution publication-title: Proceedings of the 20th International Conference on Pattern Recognition – volume: 10 start-page: 1 year: 1999 end-page: 5 ident: bb0120 article-title: How many subjects constitute a study? publication-title: Neuroimage – volume: 21 start-page: 1732 year: 2004 end-page: 1747 ident: bb0335 article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference publication-title: Neuroimage – volume: 2 start-page: 189 year: 1995 end-page: 210 ident: bb0125 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. – volume: 5 start-page: e8622 year: 2010 ident: bb0205 article-title: A neurosemantic theory of concrete noun representation based on the underlying brain codes publication-title: PLoS One – volume: 47 start-page: 1469 year: 2009 end-page: 1475 ident: bb0265 article-title: Simple group fMRI modeling and inference publication-title: Neuroimage – volume: 63 start-page: 1162 year: 2012 end-page: 1170 ident: bb0065 article-title: Decoding the perception of pain from fMRI using multivariate pattern analysis publication-title: Neuroimage – volume: 38 start-page: 387 year: 2007 end-page: 401 ident: bb0320 article-title: Comparing hemodynamic models with DCM publication-title: Neuroimage – volume: 56 start-page: 699 year: 2011 end-page: 708 ident: bb0085 article-title: Within- and cross-participant classifiers reveal different neural coding of information publication-title: Neuroimage – start-page: 1137 year: 1995 end-page: 1145 ident: bb0225 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: International Joint Conference on Artificial Intelligence – volume: 15 start-page: 814 year: 2011 end-page: 825 ident: bb0035 article-title: Single-trial analysis and classification of ERP components—a tutorial publication-title: Neuroimage – volume: 2 start-page: 27:1 year: 2011 end-page: 27:27 ident: bb0075 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – volume: 10 start-page: 424 year: 2006 end-page: 430 ident: bb0275 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cogn. Sci. – volume: 19 start-page: 261 year: 2003 end-page: 270 ident: bb0090 article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: Neuroimage – volume: 41 start-page: 1220 year: 2008 end-page: 1227 ident: bb0095 article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI publication-title: Neuroimage – volume: 324 start-page: 1583 year: 2009 end-page: 1585 ident: bb0220 article-title: Recruitment of an area involved in eye movements during mental arithmetic publication-title: Science – volume: 46 start-page: 1004 year: 2009 end-page: 1017 ident: bb0315 article-title: Bayesian model selection for group studies publication-title: Neuroimage – volume: 7 start-page: S754 year: 1998 ident: bb0190 article-title: Generalisability, random effects and population inference. Fourth Int Conf on Functional Mapping of the Human Brain publication-title: Neuroimage – volume: 7 start-page: e1002079 year: 2011 ident: bb0060 article-title: Generative embedding for model-based classification of fMRI data publication-title: PLoS Comput. Biol. – volume: 25 start-page: 2420 year: 2012 end-page: 2428 ident: bb0165 article-title: Bayesian models for Large-scale Hierarchical Classification publication-title: Adv. Neural Inf. Process. Syst. – year: 1995 ident: bb0255 article-title: Ensemble learning and evidence maximization publication-title: Proc. NIPS – volume: 59 start-page: 447 year: 2008 end-page: 456 ident: bb0100 article-title: Models of accuracy in repeated-measures designs publication-title: J. Mem. Lang. – volume: 59 start-page: 581 year: 1972 end-page: 589 ident: bb0250 article-title: Bayesian methods for binomial data publication-title: Biometrika – year: 2003 ident: bb0150 article-title: Bayesian Data Analysis – volume: 56 start-page: 476 year: 2011 end-page: 496 ident: bb0290 article-title: Information mapping with pattern classifiers: a comparative study publication-title: Neuroimage – start-page: 4263 year: 2010 end-page: 4266 ident: bb0055 article-title: The binormal assumption on precision-recall curves publication-title: Proceedings of the 20th International Conference on Pattern Recognition – volume: 103 start-page: 3863 year: 2006 end-page: 3868 ident: bb0235 article-title: Information-based functional brain mapping publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 15 start-page: 246 year: 1886 end-page: 263 ident: bb0145 article-title: Regression towards mediocrity in hereditary stature publication-title: J. Anthropol. Inst. Great Brit. Ireland – volume: 56 start-page: 387 year: 2011 end-page: 399 ident: bb0245 article-title: Introduction to machine learning for brain imaging publication-title: Neuroimage – year: 2007 ident: bb0025 article-title: Pattern Recognition and Machine Learning – volume: 61 start-page: 457 year: 2012 end-page: 463 ident: bb0210 article-title: Diagnostic neuroimaging across diseases publication-title: Neuroimage – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bb0080 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. – volume: 22 start-page: 1157 year: 2004 end-page: 1172 ident: bb0285 article-title: Comparing dynamic causal models publication-title: Neuroimage – volume: 56 start-page: 601 year: 2011 end-page: 615 ident: bb0040 article-title: Model-based feature construction for multivariate decoding publication-title: Neuroimage – volume: 20 start-page: 544 year: 2010 end-page: 547 ident: bb0070 article-title: Decoding individual episodic memory traces in the human hippocampus publication-title: Curr. Biol. – volume: 6 start-page: 429 year: 2002 end-page: 449 ident: bb0195 article-title: The class imbalance problem: a systematic study publication-title: Intell. Data Anal. – volume: 326 start-page: 596 year: 2009 end-page: 599 ident: bb0230 article-title: Using neural measures of economic value to solve the public goods free-rider problem publication-title: Science – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: bb0215 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain – volume: 63 start-page: 483 year: 2012 end-page: 509 ident: bb0325 article-title: Decoding patterns of human brain activity publication-title: Annu. Rev. Psychol. – start-page: 39 year: 2004 end-page: 50 ident: bb0005 article-title: Applying support vector machines to imbalanced datasets publication-title: Machine Learning: ECML 2004 – year: 2010 ident: bb0160 article-title: Multilevel Statistical Models – volume: 7 start-page: 523 year: 2006 end-page: 534 ident: bb0185 article-title: Decoding mental states from brain activity in humans publication-title: Nat. Rev. Neurosci. – volume: 6 start-page: 273 year: 2005 end-page: 306 ident: bb0240 article-title: Tutorial on practical prediction theory for classification publication-title: J. Mach. Learn. Res. – volume: 20 start-page: 1052 year: 2003 end-page: 1063 ident: bb0015 article-title: General multilevel linear modeling for group analysis in fMRI publication-title: Neuroimage – volume: 45 start-page: 2075 year: 2012 end-page: 2084 ident: bb0280 article-title: Bayesian hypothesis testing for pattern discrimination in brain decoding publication-title: Pattern Recognit. – year: 2008 ident: bb0340 article-title: Learning classifiers without negative examples: A reduction approach publication-title: International Conference on Digital, Information Management (ICDIM) – volume: 19 start-page: 546 year: 2009 end-page: 554 ident: bb0180 article-title: Decoding neuronal ensembles in the human hippocampus publication-title: Curr. Biol. – volume: 15 start-page: 777 year: 2002 end-page: 784 ident: bb0030 article-title: VIBES: a variational inference engine for Bayesian networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 807 year: 1971 end-page: 815 ident: bb0105 article-title: Limiting the risk of Bayes and empirical Bayes estimators—part I: the Bayes case publication-title: J. Am. Stat. Assoc. – volume: 10 start-page: 1214 year: 2007 end-page: 1221 ident: bb0020 article-title: Learning the value of information in an uncertain world publication-title: Nat. Neurosci. – volume: 50 start-page: 354 year: 2003 end-page: 365 ident: bb0270 article-title: Novel nonparametric approach to canonical correlation analysis with applications to low CNR functional MRI data publication-title: Magn. Reson. Med. – volume: 49 start-page: 93 year: 2010 end-page: 104 ident: bb0170 article-title: Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors publication-title: Artif. Intell. Med. – volume: 7 start-page: 127 year: 2006 ident: bb0330 article-title: Improved variance estimation of classification performance via reduction of bias caused by small sample size publication-title: BMC Bioinformatics – start-page: 807 year: 1971 ident: 10.1016/j.neuroimage.2013.03.008_bb0105 article-title: Limiting the risk of Bayes and empirical Bayes estimators—part I: the Bayes case publication-title: J. Am. Stat. Assoc. – volume: 49 start-page: 2178 year: 2010 ident: 10.1016/j.neuroimage.2013.03.008_bb0260 article-title: Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.072 – volume: 7 start-page: 127 year: 2006 ident: 10.1016/j.neuroimage.2013.03.008_bb0330 article-title: Improved variance estimation of classification performance via reduction of bias caused by small sample size publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-127 – volume: 326 start-page: 596 year: 2009 ident: 10.1016/j.neuroimage.2013.03.008_bb0230 article-title: Using neural measures of economic value to solve the public goods free-rider problem publication-title: Science doi: 10.1126/science.1177302 – volume: 19 start-page: 1240 year: 2003 ident: 10.1016/j.neuroimage.2013.03.008_bb0130 article-title: Posterior probability maps and {SPMs} publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00144-7 – year: 2008 ident: 10.1016/j.neuroimage.2013.03.008_bb0340 article-title: Learning classifiers without negative examples: A reduction approach doi: 10.1109/ICDIM.2008.4746761 – volume: 19 start-page: 546 year: 2009 ident: 10.1016/j.neuroimage.2013.03.008_bb0180 article-title: Decoding neuronal ensembles in the human hippocampus publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.02.033 – volume: 25 start-page: 2420 year: 2012 ident: 10.1016/j.neuroimage.2013.03.008_bb0165 article-title: Bayesian models for Large-scale Hierarchical Classification publication-title: Adv. Neural Inf. Process. Syst. – volume: 15 start-page: 246 year: 1886 ident: 10.1016/j.neuroimage.2013.03.008_bb0145 article-title: Regression towards mediocrity in hereditary stature publication-title: J. Anthropol. Inst. Great Brit. Ireland doi: 10.2307/2841583 – year: 2010 ident: 10.1016/j.neuroimage.2013.03.008_bb0160 – year: 2003 ident: 10.1016/j.neuroimage.2013.03.008_bb0150 – volume: 38 start-page: 85 year: 2012 ident: 10.1016/j.neuroimage.2013.03.008_bb0110 article-title: A tutorial on variational Bayesian inference publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9236-8 – volume: 45 start-page: 2075 year: 2012 ident: 10.1016/j.neuroimage.2013.03.008_bb0280 article-title: Bayesian hypothesis testing for pattern discrimination in brain decoding publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.04.025 – volume: 65 start-page: 69 year: 2013 ident: 10.1016/j.neuroimage.2013.03.008_bb0310 article-title: Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.09.063 – volume: 21 start-page: 1732 year: 2004 ident: 10.1016/j.neuroimage.2013.03.008_bb0335 article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.12.023 – year: 2007 ident: 10.1016/j.neuroimage.2013.03.008_bb0025 – volume: 59 start-page: 447 year: 2008 ident: 10.1016/j.neuroimage.2013.03.008_bb0100 article-title: Models of accuracy in repeated-measures designs publication-title: J. Mem. Lang. doi: 10.1016/j.jml.2007.11.004 – volume: 103 start-page: 3863 year: 2006 ident: 10.1016/j.neuroimage.2013.03.008_bb0235 article-title: Information-based functional brain mapping publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0600244103 – volume: 2 start-page: 27:1 year: 2011 ident: 10.1016/j.neuroimage.2013.03.008_bb0075 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 56 start-page: 601 year: 2011 ident: 10.1016/j.neuroimage.2013.03.008_bb0040 article-title: Model-based feature construction for multivariate decoding publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.036 – volume: 7 start-page: e1002079 year: 2011 ident: 10.1016/j.neuroimage.2013.03.008_bb0060 article-title: Generative embedding for model-based classification of fMRI data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002079 – start-page: 39 year: 2004 ident: 10.1016/j.neuroimage.2013.03.008_bb0005 article-title: Applying support vector machines to imbalanced datasets – volume: 5 start-page: e8622 year: 2010 ident: 10.1016/j.neuroimage.2013.03.008_bb0205 article-title: A neurosemantic theory of concrete noun representation based on the underlying brain codes publication-title: PLoS One doi: 10.1371/journal.pone.0008622 – volume: 6 start-page: 429 year: 2002 ident: 10.1016/j.neuroimage.2013.03.008_bb0195 article-title: The class imbalance problem: a systematic study publication-title: Intell. Data Anal. doi: 10.3233/IDA-2002-6504 – start-page: 507 year: 2001 ident: 10.1016/j.neuroimage.2013.03.008_bb0155 article-title: Propagation algorithms for variational Bayesian learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 49 start-page: 93 year: 2010 ident: 10.1016/j.neuroimage.2013.03.008_bb0170 article-title: Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2010.02.004 – volume: 50 start-page: 354 year: 2003 ident: 10.1016/j.neuroimage.2013.03.008_bb0270 article-title: Novel nonparametric approach to canonical correlation analysis with applications to low CNR functional MRI data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10537 – volume: 59 start-page: 581 year: 1972 ident: 10.1016/j.neuroimage.2013.03.008_bb0250 article-title: Bayesian methods for binomial data publication-title: Biometrika doi: 10.1093/biomet/59.3.581 – volume: 19 start-page: 1273 year: 2003 ident: 10.1016/j.neuroimage.2013.03.008_bb0115 article-title: Dynamic causal modelling publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00202-7 – volume: 41 start-page: 1220 year: 2008 ident: 10.1016/j.neuroimage.2013.03.008_bb0095 article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.050 – volume: 56 start-page: 699 year: 2011 ident: 10.1016/j.neuroimage.2013.03.008_bb0085 article-title: Within- and cross-participant classifiers reveal different neural coding of information publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.057 – volume: 61 start-page: 457 year: 2012 ident: 10.1016/j.neuroimage.2013.03.008_bb0210 article-title: Diagnostic neuroimaging across diseases publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.002 – volume: 12 start-page: 209 year: 2000 ident: 10.1016/j.neuroimage.2013.03.008_bb0010 article-title: A variational Bayesian framework for graphical models publication-title: Adv. Neural Inf. Process. Syst. – volume: 7 start-page: 523 year: 2006 ident: 10.1016/j.neuroimage.2013.03.008_bb0185 article-title: Decoding mental states from brain activity in humans publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1931 – volume: 10 start-page: 1214 year: 2007 ident: 10.1016/j.neuroimage.2013.03.008_bb0020 article-title: Learning the value of information in an uncertain world publication-title: Nat. Neurosci. doi: 10.1038/nn1954 – volume: 63 start-page: 1162 year: 2012 ident: 10.1016/j.neuroimage.2013.03.008_bb0065 article-title: Decoding the perception of pain from fMRI using multivariate pattern analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.08.035 – volume: 327 start-page: 97 year: 2010 ident: 10.1016/j.neuroimage.2013.03.008_bb0300 article-title: Reproducibility distinguishes conscious from nonconscious neural representations publication-title: Science doi: 10.1126/science.1180029 – volume: 19 start-page: 261 year: 2003 ident: 10.1016/j.neuroimage.2013.03.008_bb0090 article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00049-1 – volume: 25 start-page: 95 year: 2008 ident: 10.1016/j.neuroimage.2013.03.008_bb0305 article-title: fMRI brain–computer interfaces: a tutorial on methods and applications publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.4408446 – volume: 16 start-page: 465 year: 2002 ident: 10.1016/j.neuroimage.2013.03.008_bb0135 article-title: Classical and Bayesian inference in neuroimaging: theory publication-title: Neuroimage doi: 10.1006/nimg.2002.1090 – volume: 63 start-page: 483 year: 2012 ident: 10.1016/j.neuroimage.2013.03.008_bb0325 article-title: Decoding patterns of human brain activity publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev-psych-120710-100412 – volume: 10 start-page: 424 year: 2006 ident: 10.1016/j.neuroimage.2013.03.008_bb0275 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.07.005 – volume: 46 start-page: 1004 year: 2009 ident: 10.1016/j.neuroimage.2013.03.008_bb0315 article-title: Bayesian model selection for group studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.03.025 – volume: 6 start-page: 273 year: 2005 ident: 10.1016/j.neuroimage.2013.03.008_bb0240 article-title: Tutorial on practical prediction theory for classification publication-title: J. Mach. Learn. Res. – volume: 47 start-page: 1469 year: 2009 ident: 10.1016/j.neuroimage.2013.03.008_bb0265 article-title: Simple group fMRI modeling and inference publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.034 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.neuroimage.2013.03.008_bb0080 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 2 start-page: 189 year: 1995 ident: 10.1016/j.neuroimage.2013.03.008_bb0125 article-title: Statistical parametric maps in functional imaging: a general linear approach publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020402 – volume: 324 start-page: 1583 year: 2009 ident: 10.1016/j.neuroimage.2013.03.008_bb0220 article-title: Recruitment of an area involved in eye movements during mental arithmetic publication-title: Science doi: 10.1126/science.1171599 – volume: 15 start-page: 777 year: 2002 ident: 10.1016/j.neuroimage.2013.03.008_bb0030 article-title: VIBES: a variational inference engine for Bayesian networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 131 start-page: 681 year: 2008 ident: 10.1016/j.neuroimage.2013.03.008_bb0215 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 13 start-page: 3133 year: 2012 ident: 10.1016/j.neuroimage.2013.03.008_bb0045 article-title: Bayesian mixed-effects inference on classification performance in hierarchical data sets publication-title: J. Mach. Learn. Res. – volume: 458 start-page: 632 year: 2009 ident: 10.1016/j.neuroimage.2013.03.008_bb0175 article-title: Decoding reveals the contents of visual working memory in early visual areas publication-title: Nature doi: 10.1038/nature07832 – start-page: 1137 year: 1995 ident: 10.1016/j.neuroimage.2013.03.008_bb0225 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection – start-page: 3121 year: 2010 ident: 10.1016/j.neuroimage.2013.03.008_bb0050 article-title: The balanced accuracy and its posterior distribution – volume: 63 start-page: 697 year: 2009 ident: 10.1016/j.neuroimage.2013.03.008_bb0200 article-title: Recollection, familiarity, and cortical reinstatement: a multivoxel pattern analysis publication-title: Neuron doi: 10.1016/j.neuron.2009.08.011 – volume: 22 start-page: 1157 year: 2004 ident: 10.1016/j.neuroimage.2013.03.008_bb0285 article-title: Comparing dynamic causal models publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.026 – volume: 45 start-page: S199 year: 2009 ident: 10.1016/j.neuroimage.2013.03.008_bb0295 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.11.007 – volume: 38 start-page: 387 year: 2007 ident: 10.1016/j.neuroimage.2013.03.008_bb0320 article-title: Comparing hemodynamic models with DCM publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.040 – volume: 56 start-page: 476 year: 2011 ident: 10.1016/j.neuroimage.2013.03.008_bb0290 article-title: Information mapping with pattern classifiers: a comparative study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.026 – volume: 10 start-page: 1 year: 1999 ident: 10.1016/j.neuroimage.2013.03.008_bb0120 article-title: How many subjects constitute a study? publication-title: Neuroimage doi: 10.1006/nimg.1999.0439 – year: 1995 ident: 10.1016/j.neuroimage.2013.03.008_bb0255 article-title: Ensemble learning and evidence maximization – volume: 20 start-page: 544 year: 2010 ident: 10.1016/j.neuroimage.2013.03.008_bb0070 article-title: Decoding individual episodic memory traces in the human hippocampus publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.01.053 – volume: 56 start-page: 387 year: 2011 ident: 10.1016/j.neuroimage.2013.03.008_bb0245 article-title: Introduction to machine learning for brain imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.004 – volume: 20 start-page: 1052 year: 2003 ident: 10.1016/j.neuroimage.2013.03.008_bb0015 article-title: General multilevel linear modeling for group analysis in fMRI publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00435-X – start-page: 4263 year: 2010 ident: 10.1016/j.neuroimage.2013.03.008_bb0055 article-title: The binormal assumption on precision-recall curves – volume: 15 start-page: 814 year: 2011 ident: 10.1016/j.neuroimage.2013.03.008_bb0035 article-title: Single-trial analysis and classification of ERP components—a tutorial publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.048 – volume: 7 start-page: S754 year: 1998 ident: 10.1016/j.neuroimage.2013.03.008_bb0190 article-title: Generalisability, random effects and population inference. Fourth Int Conf on Functional Mapping of the Human Brain publication-title: Neuroimage doi: 10.1016/S1053-8119(18)31587-8 – volume: 24 start-page: 244 year: 2005 ident: 10.1016/j.neuroimage.2013.03.008_bb0140 article-title: Mixed-effects and fMRI studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.08.055 |
| SSID | ssj0009148 |
| Score | 2.2535627 |
| Snippet | Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility... |
| SourceID | unpaywall proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 345 |
| SubjectTerms | Accuracy Algorithms Balanced accuracy Bayes Theorem Bayesian inference Behavior Biological and medical sciences Brain - physiology Brain Mapping - methods Brain research Classification Estimates Fixed effects Fundamental and applied biological sciences. Psychology Group studies Humans Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging Medical imaging Models, Neurological Normal-binomial Performance evaluation Population Random effects Software Studies Variational Bayes Vertebrates: nervous system and sense organs |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Egw9EfBtfRPAam01288CTig8EvfjA27JJNhBpY7Et6sXf7kyySRVUCkJP7Q5sJzM732S-mQU4oIEmPIzRv1UeOtz3MifRcegkKqXwnVGzJ7EtboLLe371KB6n4LTphSFapTn76zO9Oq3NNx2jzU6_KDq3iAww3GC-4VPgqfrIOQ_pFoPDjzHNI2a8bocTvkOrDZun5nhVMyOLHnoukbx8M-70txC10FcDVFxe33jxEySdh9lR2Vfvr6rb_RKmzpdg0eBL-7j-C8swpcsVmLk2FfRVuHjA5Ni8ALRP1LumJkq7V7zpzDHcDrtomgBtRLR2SviaCEWVlD2oiYdrcH9-dnd66ZjLFJxUhN7QifKMYyxGtBIIL0hYFgme8DTmmUtD2hLBcgRfIhHaw4RZp5qJnDPMNpTwNTq2vw7T5XOpN8Hmgoq1iG10hs8yUrGOM46OLJh2hauYBWGjP5maSeN04UVXNpSyJznWvCTNSxc_bmQBayX79bSNCWTi5hHJppsUzz-JIWEC2aNW9pvVTSi9980i2i17VP0MIm7BTmMi0hwNA8mCAO0QUVVowX77Mzo1VWpUqZ9HuMbnMWJfzIX_WCOoiooZO-5joza_8QZ8QRVY1wKvtceJFbr1L6Vsw5xX3RhCHMkdmB6-jPQu4rZhslc55ic4fj8p priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS9xAEB_0BB8U67tRKxH8Gskmu3nQT7ZoRVBa6Il-WjbJBk7PeHh3-PjrO5PsxlqqXIX7dpljMzs7-5ub38wA7FFDEx6neL5VGXs8DAov02nsZSqn67ugYk9iW5xFx11-ciEupsC3tTAv8vc1D6vu69i7wdNFRKzQtCSdhplIIPruwEz37MfBZZ3UFKGXsHqWB_NpBKGILXnnrZ967Ub6MFBD1FPZDLj4FwJdgLlxNVCP96rf_-NWOvoIP-37NGSU6_3xKNvPn_5q9fg_L7wEiwaiugeNTS3DlK5WYPbUJOFX4fs5xtfmP0T3q3rUVIfp3vQedOEZeojbs3WELoJiNyeITpykWsodNtzFNegeHf76duyZeQxejpoceUlZcLzOEfBEIogyViSCZzxPeeFTn7dMsBLxm8iEDjDm1rlmouQMAxYlQo2-IVyHTnVb6U_gckH5XoRHukBzSFSq04KjLxBM-8JXzIHY7onMTbNympnRl5aVdiWf9SRJT9LHj584wFrJQdOwYwKZ1G67tAWp6EIl7s0Esl9aWQNaGjAyofTOCytrlxxQAjVKuAPb1uyk8S5DyaII7RyBWezAbvs1-gVK9qhK347xmZCneAgwnH7jGUGJWAz6cR0bjUk_LyAUlMT1HQhaG59YoZvvEdqC-aCeNULsym3ojO7G-jMivlG2Yw75b1EOTyI priority: 102 providerName: Unpaywall |
| Title | Variational Bayesian mixed-effects inference for classification studies |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913002371 https://dx.doi.org/10.1016/j.neuroimage.2013.03.008 https://www.ncbi.nlm.nih.gov/pubmed/23507390 https://www.proquest.com/docview/1668112447 https://www.proquest.com/docview/1349095899 https://www.proquest.com/docview/1500762108 https://doi.org/10.1016/j.neuroimage.2013.03.008 |
| UnpaywallVersion | publishedVersion |
| Volume | 76 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEB_uWvCBiM8zepYIfl3NJrt5ICK94876CuWwUj-FTXYDPXpptS16X_zbnUk2qYIehdJ8aKYsk5md32Z-MwPwnBqaiChB_1ZlxETga5abJGK5Kih8ayr2JLZFGo4m4v1UTvcgbWthiFbZ7on1Rq0XBb0jf8nDMOYUjKI3y2-MpkZRdrUdoaHsaAX9um4xtg99nzpj9aB_dJKOz7ZteLloiuNkwPDvEsvtaRhfdQfJ2QX6MVG-Atv89H8B69ZSrVCNZTP_4l8A9SZc31RLdflDzed_BK3TO3Dbok132JjHXdgz1T249snm0-_D2y94VLavA90jdWmopNK9mP00mlmmhztrSwJdxLduQWib6EW1lLtqaIgPYHJ68vl4xOxoBVbIyF-zuNQCIzNil1D6Yc51LEUuikRoj1q25ZKXCMVkLo2Px2dTGC5LwfHsoWRg0M2Dh9CrFpV5BK6QlLpFpGM0PtlYJSbRAt1acuNJT3EHolZ_WWH7jtP4i3nWEszOs63mM9J85uHHix3gneSy6b2xg0zSPqKsrS3F3TDDALGD7KtO1uKPBlfsKD34yyK6JfuUCw1j4cBhayKZ3ShW2dasHXjW_YwuTnkbVZnFBu8JRIJIGE_GV9wjKaeKJo_rOGjMb7uAQFI-1nPA7-xxZ4U-vnrVT-CGXw8IIUrkIfTW3zfmKcK0dT6A_Re_OH5H02gA_eHx2ccxXd99GKUD65d4naTj4dff6_hBFA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qC7Yi4rfRWiPoYzC72c0HUsRq69W2h0hb-rZushu4cs2d3h31_jn_NmeSTU5By70U7u0yYZidnflN5gvgFQ00EUmG91uXSSAiboLcZkmQ64Lct6FmT6q26Me9E_H5TJ6twK-2F4bKKlubWBtqMyroG_kbFscpI2eUvBt_D2hrFGVX2xUa2q1WMNv1iDHX2HFg55cYwk229z_ieb_mfG_3-EMvcFsGgkImfBqkpRHopNCNx5LHOTOpFLkoMmFCml6WS1YiKpG5tBwjSVtYJkvBEIZrGVnU-AjfewPWRCQyDP7Wdnb7X74uxv4y0TTjyShA9jNXS9RUmNUTKwcXaDeoxCxyw1b_5yBvj_UEj61s9m38CxDfgvVZNdbzSz0c_uEk9-7CHYdu_feNOt6DFVvdh5tHLn__AD6dYmjuPj_6O3puqYXTvxj8tCZwlSX-oG1B9BFP-wWheypnqqn8SVP2-BBOrkXIj2C1GlX2CfhCUqoYkZU1qEmpzmxmBJoRyWwoQ808SFr5qcLNOad1G0PVFrSdq4XkFUlehfgLUw9YRzluZn0sQZO1R6TaXla0vgod0hK0bztah3caHLMk9dZfGtGxzCn3GqfCg81WRZQzTBO1uEYevOz-RpNCeSJd2dEMn0FVRuSNkfgVz0jK4XJGfDxu1G_BQCQp_xt6wDt9XFqgT6_m-gWs946PDtXhfv_gGWzwejkJlWNuwur0x8w-R4g4zbfcPfTh23Vf_d_Y9XSW |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQ0QQnwTGCNI8Ggtdux8CCEEjLIxmHhgqG-ekzhSUZcW2mr0X-Ov4y6xU5Bg6sukvjUXWfZ9_Jz73R3AM2poItMc7dvUKZOxqFhh85QVpqTwXVGxJ7EtjpL9Y_lhqIYb8MvXwhCt0vvE1lFXk5K-ke_yJMk4BaN0t3a0iM97g1fT74wmSFGm1Y_T6FTk0C7P8Po2e3mwh2f9XIjBuy9v95mbMMBKlYo5y-pKYoDCEJ4okRS8ypQsZJnLKqLOZYXiNSISVSgr8BZpS8tVLTlCcKNii9oe43svweU0jnOiE6bDdNXwl8uuDE_FDBeeOxZRxy1re1WOTtFjELksdm1W_xcar0_NDA-s7iZt_AsKX4Mri2ZqlmdmPP4jPA5uwg2Ha8PXnSLegg3b3IatTy5zfwfef8VLufvwGL4xS0vFm-Hp6KetmOOUhCNffBgikg5LwvVEZGqlwllHeLwLxxeyxfdgs5k09gGEUlGSGDGVrVCHMpPbvJLoQBS3kYoMDyD1-6dL1-GcBm2MtaeyfdOrnde08zrCX5QFwHvJadflYw2Z3B-R9lWs6Hc1hqI1ZF_0sg7pdAhmTemdvzSiX7KgrGuSyQC2vYpo55JmemVAATzt_0ZnQhki09jJAp-JZY6YG-_g5zyjKHsrOK3jfqd-qwXEijK_UQCi18e1N_Th-at-Alto8PrjwdHhI7gq2qkkxMPchs35j4V9jNhwXuy0RhjCyUVb_W-VTHIw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS9xAEB_0BB8U67tRKxH8Gskmu3nQT7ZoRVBa6Il-WjbJBk7PeHh3-PjrO5PsxlqqXIX7dpljMzs7-5ub38wA7FFDEx6neL5VGXs8DAov02nsZSqn67ugYk9iW5xFx11-ciEupsC3tTAv8vc1D6vu69i7wdNFRKzQtCSdhplIIPruwEz37MfBZZ3UFKGXsHqWB_NpBKGILXnnrZ967Ub6MFBD1FPZDLj4FwJdgLlxNVCP96rf_-NWOvoIP-37NGSU6_3xKNvPn_5q9fg_L7wEiwaiugeNTS3DlK5WYPbUJOFX4fs5xtfmP0T3q3rUVIfp3vQedOEZeojbs3WELoJiNyeITpykWsodNtzFNegeHf76duyZeQxejpoceUlZcLzOEfBEIogyViSCZzxPeeFTn7dMsBLxm8iEDjDm1rlmouQMAxYlQo2-IVyHTnVb6U_gckH5XoRHukBzSFSq04KjLxBM-8JXzIHY7onMTbNympnRl5aVdiWf9SRJT9LHj584wFrJQdOwYwKZ1G67tAWp6EIl7s0Esl9aWQNaGjAyofTOCytrlxxQAjVKuAPb1uyk8S5DyaII7RyBWezAbvs1-gVK9qhK347xmZCneAgwnH7jGUGJWAz6cR0bjUk_LyAUlMT1HQhaG59YoZvvEdqC-aCeNULsym3ojO7G-jMivlG2Yw75b1EOTyI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Bayesian+mixed-effects+inference+for+classification+studies&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Brodersen%2C+Kay+H&rft.au=Daunizeau%2C+Jean&rft.au=Mathys%2C+Christoph&rft.au=Chumbley%2C+Justin+R&rft.date=2013-08-01&rft.eissn=1095-9572&rft.volume=76&rft.spage=345&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.03.008&rft_id=info%3Apmid%2F23507390&rft.externalDocID=23507390 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |