Variational Bayesian mixed-effects inference for classification studies

Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain–computer interfaces, or clinical diagnostics necessitates inferen...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 76; pp. 345 - 361
Main Authors Brodersen, Kay H., Daunizeau, Jean, Mathys, Christoph, Chumbley, Justin R., Buhmann, Joachim M., Stephan, Klaas E.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.08.2013
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2013.03.008

Cover

Abstract Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain–computer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventional t-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses. [Display omitted] •Random-/mixed-effects inference is standard in univariate neuroimaging analyses.•But it has not yet received much attention in multivariate classification studies.•We propose a novel, statistically powerful, and efficient variational Bayes method.•Our approach replaces previous, computationally expensive MCMC algorithms.•We provide MATLAB and R implementations for use in future classification studies.
AbstractList Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain-computer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventional t-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses.
Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain–computer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventional t-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses. [Display omitted] •Random-/mixed-effects inference is standard in univariate neuroimaging analyses.•But it has not yet received much attention in multivariate classification studies.•We propose a novel, statistically powerful, and efficient variational Bayes method.•Our approach replaces previous, computationally expensive MCMC algorithms.•We provide MATLAB and R implementations for use in future classification studies.
Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain-computer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventionalt-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses.
Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brainacomputer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventional t-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses.
Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain-computer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventional t-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses.Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility of a classifier in application domains such as cognitive neuroscience, brain-computer interfaces, or clinical diagnostics necessitates inference on classification performance at more than one level, i.e., both in individual subjects and in the population from which these subjects were sampled. Such inference requires models that explicitly account for both fixed-effects (within-subjects) and random-effects (between-subjects) variance components. While models of this sort are standard in mass-univariate analyses of fMRI data, they have not yet received much attention in multivariate classification studies of neuroimaging data, presumably because of the high computational costs they entail. This paper extends a recently developed hierarchical model for mixed-effects inference in multivariate classification studies and introduces an efficient variational Bayes approach to inference. Using both synthetic and empirical fMRI data, we show that this approach is equally simple to use as, yet more powerful than, a conventional t-test on subject-specific sample accuracies, and computationally much more efficient than previous sampling algorithms and permutation tests. Our approach is independent of the type of underlying classifier and thus widely applicable. The present framework may help establish mixed-effects inference as a future standard for classification group analyses.
Author Mathys, Christoph
Daunizeau, Jean
Brodersen, Kay H.
Chumbley, Justin R.
Buhmann, Joachim M.
Stephan, Klaas E.
Author_xml – sequence: 1
  givenname: Kay H.
  surname: Brodersen
  fullname: Brodersen, Kay H.
  email: brodersen@biomed.ee.ethz.ch
  organization: Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Switzerland
– sequence: 2
  givenname: Jean
  surname: Daunizeau
  fullname: Daunizeau, Jean
  organization: Laboratory for Social and Neural Systems Research (SNS), Department of Economics, University of Zurich, Switzerland
– sequence: 3
  givenname: Christoph
  surname: Mathys
  fullname: Mathys, Christoph
  organization: Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Switzerland
– sequence: 4
  givenname: Justin R.
  surname: Chumbley
  fullname: Chumbley, Justin R.
  organization: Laboratory for Social and Neural Systems Research (SNS), Department of Economics, University of Zurich, Switzerland
– sequence: 5
  givenname: Joachim M.
  surname: Buhmann
  fullname: Buhmann, Joachim M.
  organization: Machine Learning Laboratory, Department of Computer Science, ETH Zurich, Switzerland
– sequence: 6
  givenname: Klaas E.
  surname: Stephan
  fullname: Stephan, Klaas E.
  organization: Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27395684$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23507390$$D View this record in MEDLINE/PubMed
BookMark eNqVkk-LFDEQxYOsuH_0K0iDCF56TNJJOrmIu8u6Cgte1GtIpyuSMZOMSbc6334zO6MLcxqhIDn83qPqVZ2jk5giINQQvCCYiLfLRYQ5J78y32FBMekWuBaWT9AZwYq3ivf0ZPvnXSsJUafovJQlxlgRJp-hU9px3HcKn6HbbyZ7M_kUTWiuzAaKN7FZ-T8wtuAc2Kk0PjrIEC00LuXGBlOKd94-qJoyzaOH8hw9dSYUeLF_L9DXDzdfrj-2d59vP11f3rW2tjS10o1MCEL7TnAqBjJKzgZmFRsxZ4oOnDjJCR84UKEwWCDcMaJ6ZngHjPLuAqmd7xzXZvPbhKDXueaQN5pgvQ1HL_VjOHobjsa1sKzaNzvtOqefM5RJr3yxEIKJkOaiCce4F5Qcg3ZM1aClUhV9dYAu05xrnJUSoqZPGesr9XJPzcMKxn9N_91EBV7vAVOsCS6baH155CrEhWSVkzvO5lRKBvc_8787kFo_PWxxysaHYwyudgZQN_zLQ9bF-u1hjD7XS9Fj8seYvD8wscHHek7hB2yOs7gH89_vDw
CitedBy_id crossref_primary_10_3390_electronics8020121
crossref_primary_10_3390_s18093012
crossref_primary_10_1016_j_proeng_2017_09_509
crossref_primary_10_1016_j_ress_2020_106876
crossref_primary_10_1002_sim_6999
crossref_primary_10_1016_j_neuroimage_2016_07_040
crossref_primary_10_1523_ENEURO_0177_18_2018
crossref_primary_10_1093_cercor_bhv208
crossref_primary_10_7554_eLife_41861
crossref_primary_10_1049_iet_rsn_2016_0273
crossref_primary_10_1111_asj_12514
crossref_primary_10_1007_s00034_018_1008_0
crossref_primary_10_1016_j_cognition_2015_09_004
crossref_primary_10_1214_14_AOAS788
crossref_primary_10_3389_fnins_2017_00543
crossref_primary_10_1016_j_neuroimage_2017_04_061
crossref_primary_10_1016_j_nicl_2013_11_002
crossref_primary_10_1126_sciadv_adn2776
crossref_primary_10_1371_journal_pone_0178140
crossref_primary_10_1016_j_jneumeth_2016_06_008
crossref_primary_10_1016_j_neuroimage_2019_116205
crossref_primary_10_1016_j_aeue_2018_06_012
crossref_primary_10_3389_fnins_2014_00191
crossref_primary_10_3389_fnins_2020_616906
crossref_primary_10_3389_fnins_2024_1373633
crossref_primary_10_1162_imag_a_00354
crossref_primary_10_3390_s19020232
Cites_doi 10.1016/j.neuroimage.2009.10.072
10.1186/1471-2105-7-127
10.1126/science.1177302
10.1016/S1053-8119(03)00144-7
10.1109/ICDIM.2008.4746761
10.1016/j.cub.2009.02.033
10.2307/2841583
10.1007/s10462-011-9236-8
10.1016/j.patcog.2011.04.025
10.1016/j.neuroimage.2012.09.063
10.1016/j.neuroimage.2003.12.023
10.1016/j.jml.2007.11.004
10.1073/pnas.0600244103
10.1145/1961189.1961199
10.1016/j.neuroimage.2010.04.036
10.1371/journal.pcbi.1002079
10.1371/journal.pone.0008622
10.3233/IDA-2002-6504
10.1016/j.artmed.2010.02.004
10.1002/mrm.10537
10.1093/biomet/59.3.581
10.1016/S1053-8119(03)00202-7
10.1016/j.neuroimage.2008.03.050
10.1016/j.neuroimage.2010.03.057
10.1016/j.neuroimage.2011.11.002
10.1038/nrn1931
10.1038/nn1954
10.1016/j.neuroimage.2012.08.035
10.1126/science.1180029
10.1016/S1053-8119(03)00049-1
10.1109/MSP.2008.4408446
10.1006/nimg.2002.1090
10.1146/annurev-psych-120710-100412
10.1016/j.tics.2006.07.005
10.1016/j.neuroimage.2009.03.025
10.1016/j.neuroimage.2009.05.034
10.1613/jair.953
10.1002/hbm.460020402
10.1126/science.1171599
10.1093/brain/awm319
10.1038/nature07832
10.1016/j.neuron.2009.08.011
10.1016/j.neuroimage.2004.03.026
10.1016/j.neuroimage.2008.11.007
10.1016/j.neuroimage.2007.07.040
10.1016/j.neuroimage.2010.05.026
10.1006/nimg.1999.0439
10.1016/j.cub.2010.01.053
10.1016/j.neuroimage.2010.11.004
10.1016/S1053-8119(03)00435-X
10.1016/j.neuroimage.2010.06.048
10.1016/S1053-8119(18)31587-8
10.1016/j.neuroimage.2004.08.055
ContentType Journal Article
Copyright 2013 Elsevier Inc.
2014 INIST-CNRS
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Aug 1, 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Aug 1, 2013
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
ADTOC
UNPAY
DOI 10.1016/j.neuroimage.2013.03.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest - Psychology Database
ProQuest Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE

ProQuest One Psychology
Engineering Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 361
ExternalDocumentID 10.1016/j.neuroimage.2013.03.008
3642141971
23507390
27395684
10_1016_j_neuroimage_2013_03_008
S1053811913002371
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 091593
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
PUEGO
R2-
SEW
WUQ
XPP
ZMT
AGCQF
AGRNS
ALIPV
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ADTOC
UNPAY
ID FETCH-LOGICAL-c572t-8fd46612736526b1d854b4c94d05492b51f8515b5e2690ece15f41974a53e4253
IEDL.DBID BENPR
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 20 00:07:08 EDT 2025
Tue Oct 07 09:23:30 EDT 2025
Sat Sep 27 18:05:20 EDT 2025
Tue Oct 07 07:01:06 EDT 2025
Mon Jul 21 06:00:52 EDT 2025
Mon Jul 21 09:12:08 EDT 2025
Wed Oct 01 02:58:13 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Fri Feb 23 02:36:06 EST 2024
Tue Oct 14 19:34:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Balanced accuracy
Variational Bayes
Normal-binomial
Group studies
Fixed effects
Random effects
Bayesian inference
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2013 Elsevier Inc. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-8fd46612736526b1d854b4c94d05492b51f8515b5e2690ece15f41974a53e4253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.neuroimage.2013.03.008
PMID 23507390
PQID 1668112447
PQPubID 2031077
PageCount 17
ParticipantIDs unpaywall_primary_10_1016_j_neuroimage_2013_03_008
proquest_miscellaneous_1500762108
proquest_miscellaneous_1349095899
proquest_journals_1668112447
pubmed_primary_23507390
pascalfrancis_primary_27395684
crossref_primary_10_1016_j_neuroimage_2013_03_008
crossref_citationtrail_10_1016_j_neuroimage_2013_03_008
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_03_008
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_03_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier Limited
References Brodersen, Haiss, Ong, Jung, Tittgemeyer, Buhmann, Weber, Stephan (bb0040) 2011; 56
Friston, Stephan, Lund, Morcom, Kiebel (bb0140) 2005; 24
Woolrich, Behrens, Beckmann, Jenkinson, Smith (bb0335) 2004; 21
Attias (bb0010) 2000; 12
Pereira, Mitchell, Botvinick (bb0295) 2009; 45
Haynes, Rees (bb0185) 2006; 7
Lemm, Blankertz, Dickhaus, Müller (bb0245) 2011; 56
Brodersen, Schofield, Leff, Ong, Lomakina, Buhmann, Stephan (bb0060) 2011; 7
Brodersen, Ong, Stephan, Buhmann (bb0055) 2010
Beckmann, Jenkinson, Smith (bb0015) 2003; 20
Gustafsson, Wallman, Wickenberg Bolin, Göransson, Fryknäs, Andersson, Isaksson (bb0170) 2010; 49
Leonard (bb0250) 1972; 59
Tong, Pratte (bb0325) 2012; 63
Akbani, Kwek, Japkowicz (bb0005) 2004
Krajbich, Camerer, Ledyard, Rangel (bb0230) 2009; 326
MacKay (bb0255) 1995
Stelzer, Chen, Turner (bb0310) 2013; 65
Klöppel, Abdulkadir, Jack, Koutsouleris, Mourão-Miranda, Vemuri (bb0210) 2012; 61
Japkowicz, Stephen (bb0195) 2002; 6
Gopal, Yang, Bai, Niculescu-Mizil (bb0165) 2012; 25
Bishop, Spiegelhalter, Winn (bb0030) 2002; 15
Schurger, Pereira, Treisman, Cohen (bb0300) 2010; 327
Chang, Lin (bb0075) 2011; 2
Galton (bb0145) 1886; 15
Clithero, Smith, Carter, Huettel (bb0085) 2011; 56
Friston, Penny, Phillips, Kiebel, Hinton, Ashburner (bb0135) 2002; 16
Penny, Stephan, Mechelli, Friston (bb0285) 2004; 22
Friston, Penny (bb0130) 2003; 19
Chadwick, Hassabis, Weiskopf, Maguire (bb0070) 2010; 20
Hassabis, Chu, Rees, Weiskopf, Molyneux, Maguire (bb0180) 2009; 19
Behrens, Woolrich, Walton, Rushworth (bb0020) 2007; 10
Just, Cherkassky, Aryal, Mitchell (bb0205) 2010; 5
Friston, Holmes, Worsley, Poline, Frith, Frackowiak (bb0125) 1995; 2
Olivetti, Veeramachaneni, Nowakowska (bb0280) 2012; 45
Fox, Roberts (bb0110) 2012; 38
Brodersen, Wiech, Lomakina, Lin, Buhmann, Bingel, Ploner, Stephan, Tracey (bb0065) 2012; 63
Chawla, Bowyer, Hall, Kegelmeyer (bb0080) 2002; 16
Knops, Thirion, Hubbard, Michel, Dehaene (bb0220) 2009; 324
Stephan, Weiskopf, Drysdale, Robinson, Friston (bb0320) 2007; 38
Davatzikos, Resnick, Wu, Parmpi, Clark (bb0095) 2008; 41
Dixon (bb0100) 2008; 59
Pereira, Botvinick (bb0290) 2011; 56
Harrison, Tong (bb0175) 2009; 458
Nandy, Cordes (bb0270) 2003; 50
Brodersen, Ong, Stephan, Buhmann (bb0050) 2010
Sitaram, Weiskopf, Caria, Veit, Erb, Birbaumer (bb0305) 2008; 25
Mumford, Nichols (bb0265) 2009; 47
Marquand, Howard, Brammer, Chu, Coen, Mourão-Miranda (bb0260) 2010; 49
Norman, Polyn, Detre, Haxby (bb0275) 2006; 10
Goldstein (bb0160) 2010
Cox, Savoy (bb0090) 2003; 19
Efron, Morris (bb0105) 1971
Kriegeskorte, Goebel, Bandettini (bb0235) 2006; 103
Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bb0215) 2008; 131
Ghahramani, Beal (bb0155) 2001
Kohavi (bb0225) 1995
Stephan, Penny, Daunizeau, Moran, Friston (bb0315) 2009; 46
Friston, Holmes, Worsley (bb0120) 1999; 10
Langford (bb0240) 2005; 6
Wickenberg-Bolin, Goransson, Fryknas, Gustafsson, Isaksson (bb0330) 2006; 7
Brodersen, Mathys, Chumbley, Daunizeau, Ong, Buhmann, Stephan (bb0045) 2012; 13
Friston, Harrison, Penny (bb0115) 2003; 19
Zhang, Lee (bb0340) 2008
Bishop (bb0025) 2007
Gelman, Carlin, Stern, Rubin (bb0150) 2003
Holmes, Friston (bb0190) 1998; 7
Johnson, McDuff, Rugg, Norman (bb0200) 2009; 63
Blankertz, Lemm, Treder, Haufe, Müller (bb0035) 2011; 15
Davatzikos (10.1016/j.neuroimage.2013.03.008_bb0095) 2008; 41
Kriegeskorte (10.1016/j.neuroimage.2013.03.008_bb0235) 2006; 103
Leonard (10.1016/j.neuroimage.2013.03.008_bb0250) 1972; 59
Lemm (10.1016/j.neuroimage.2013.03.008_bb0245) 2011; 56
Zhang (10.1016/j.neuroimage.2013.03.008_bb0340) 2008
Pereira (10.1016/j.neuroimage.2013.03.008_bb0290) 2011; 56
Fox (10.1016/j.neuroimage.2013.03.008_bb0110) 2012; 38
Woolrich (10.1016/j.neuroimage.2013.03.008_bb0335) 2004; 21
Brodersen (10.1016/j.neuroimage.2013.03.008_bb0055) 2010
MacKay (10.1016/j.neuroimage.2013.03.008_bb0255) 1995
Krajbich (10.1016/j.neuroimage.2013.03.008_bb0230) 2009; 326
Schurger (10.1016/j.neuroimage.2013.03.008_bb0300) 2010; 327
Kohavi (10.1016/j.neuroimage.2013.03.008_bb0225) 1995
Nandy (10.1016/j.neuroimage.2013.03.008_bb0270) 2003; 50
Holmes (10.1016/j.neuroimage.2013.03.008_bb0190) 1998; 7
Galton (10.1016/j.neuroimage.2013.03.008_bb0145) 1886; 15
Gustafsson (10.1016/j.neuroimage.2013.03.008_bb0170) 2010; 49
Brodersen (10.1016/j.neuroimage.2013.03.008_bb0040) 2011; 56
Mumford (10.1016/j.neuroimage.2013.03.008_bb0265) 2009; 47
Blankertz (10.1016/j.neuroimage.2013.03.008_bb0035) 2011; 15
Friston (10.1016/j.neuroimage.2013.03.008_bb0120) 1999; 10
Chang (10.1016/j.neuroimage.2013.03.008_bb0075) 2011; 2
Klöppel (10.1016/j.neuroimage.2013.03.008_bb0215) 2008; 131
Marquand (10.1016/j.neuroimage.2013.03.008_bb0260) 2010; 49
Friston (10.1016/j.neuroimage.2013.03.008_bb0140) 2005; 24
Wickenberg-Bolin (10.1016/j.neuroimage.2013.03.008_bb0330) 2006; 7
Langford (10.1016/j.neuroimage.2013.03.008_bb0240) 2005; 6
Klöppel (10.1016/j.neuroimage.2013.03.008_bb0210) 2012; 61
Dixon (10.1016/j.neuroimage.2013.03.008_bb0100) 2008; 59
Clithero (10.1016/j.neuroimage.2013.03.008_bb0085) 2011; 56
Cox (10.1016/j.neuroimage.2013.03.008_bb0090) 2003; 19
Gopal (10.1016/j.neuroimage.2013.03.008_bb0165) 2012; 25
Haynes (10.1016/j.neuroimage.2013.03.008_bb0185) 2006; 7
Bishop (10.1016/j.neuroimage.2013.03.008_bb0030) 2002; 15
Hassabis (10.1016/j.neuroimage.2013.03.008_bb0180) 2009; 19
Akbani (10.1016/j.neuroimage.2013.03.008_bb0005) 2004
Harrison (10.1016/j.neuroimage.2013.03.008_bb0175) 2009; 458
Friston (10.1016/j.neuroimage.2013.03.008_bb0130) 2003; 19
Sitaram (10.1016/j.neuroimage.2013.03.008_bb0305) 2008; 25
Ghahramani (10.1016/j.neuroimage.2013.03.008_bb0155) 2001
Bishop (10.1016/j.neuroimage.2013.03.008_bb0025) 2007
Chadwick (10.1016/j.neuroimage.2013.03.008_bb0070) 2010; 20
Japkowicz (10.1016/j.neuroimage.2013.03.008_bb0195) 2002; 6
Johnson (10.1016/j.neuroimage.2013.03.008_bb0200) 2009; 63
Just (10.1016/j.neuroimage.2013.03.008_bb0205) 2010; 5
Stephan (10.1016/j.neuroimage.2013.03.008_bb0315) 2009; 46
Norman (10.1016/j.neuroimage.2013.03.008_bb0275) 2006; 10
Brodersen (10.1016/j.neuroimage.2013.03.008_bb0050) 2010
Brodersen (10.1016/j.neuroimage.2013.03.008_bb0065) 2012; 63
Knops (10.1016/j.neuroimage.2013.03.008_bb0220) 2009; 324
Brodersen (10.1016/j.neuroimage.2013.03.008_bb0045) 2012; 13
Tong (10.1016/j.neuroimage.2013.03.008_bb0325) 2012; 63
Chawla (10.1016/j.neuroimage.2013.03.008_bb0080) 2002; 16
Pereira (10.1016/j.neuroimage.2013.03.008_bb0295) 2009; 45
Gelman (10.1016/j.neuroimage.2013.03.008_bb0150) 2003
Friston (10.1016/j.neuroimage.2013.03.008_bb0135) 2002; 16
Friston (10.1016/j.neuroimage.2013.03.008_bb0125) 1995; 2
Brodersen (10.1016/j.neuroimage.2013.03.008_bb0060) 2011; 7
Olivetti (10.1016/j.neuroimage.2013.03.008_bb0280) 2012; 45
Attias (10.1016/j.neuroimage.2013.03.008_bb0010) 2000; 12
Beckmann (10.1016/j.neuroimage.2013.03.008_bb0015) 2003; 20
Behrens (10.1016/j.neuroimage.2013.03.008_bb0020) 2007; 10
Efron (10.1016/j.neuroimage.2013.03.008_bb0105) 1971
Stephan (10.1016/j.neuroimage.2013.03.008_bb0320) 2007; 38
Stelzer (10.1016/j.neuroimage.2013.03.008_bb0310) 2013; 65
Penny (10.1016/j.neuroimage.2013.03.008_bb0285) 2004; 22
Goldstein (10.1016/j.neuroimage.2013.03.008_bb0160) 2010
Friston (10.1016/j.neuroimage.2013.03.008_bb0115) 2003; 19
References_xml – volume: 16
  start-page: 465
  year: 2002
  end-page: 483
  ident: bb0135
  article-title: Classical and Bayesian inference in neuroimaging: theory
  publication-title: Neuroimage
– volume: 45
  start-page: S199
  year: 2009
  end-page: S209
  ident: bb0295
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: Neuroimage
– volume: 12
  start-page: 209
  year: 2000
  end-page: 215
  ident: bb0010
  article-title: A variational Bayesian framework for graphical models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 13
  start-page: 3133
  year: 2012
  end-page: 3176
  ident: bb0045
  article-title: Bayesian mixed-effects inference on classification performance in hierarchical data sets
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 244
  year: 2005
  end-page: 252
  ident: bb0140
  article-title: Mixed-effects and fMRI studies
  publication-title: Neuroimage
– start-page: 507
  year: 2001
  end-page: 513
  ident: bb0155
  article-title: Propagation algorithms for variational Bayesian learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 49
  start-page: 2178
  year: 2010
  end-page: 2189
  ident: bb0260
  article-title: Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes
  publication-title: Neuroimage
– volume: 38
  start-page: 85
  year: 2012
  end-page: 95
  ident: bb0110
  article-title: A tutorial on variational Bayesian inference
  publication-title: Artif. Intell. Rev.
– volume: 19
  start-page: 1273
  year: 2003
  end-page: 1302
  ident: bb0115
  article-title: Dynamic causal modelling
  publication-title: Neuroimage
– volume: 65
  start-page: 69
  year: 2013
  end-page: 82
  ident: bb0310
  article-title: Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control
  publication-title: Neuroimage
– volume: 19
  start-page: 1240
  year: 2003
  end-page: 1249
  ident: bb0130
  article-title: Posterior probability maps and {SPMs}
  publication-title: Neuroimage
– volume: 25
  start-page: 95
  year: 2008
  end-page: 106
  ident: bb0305
  article-title: fMRI brain–computer interfaces: a tutorial on methods and applications
  publication-title: IEEE Signal Process. Mag.
– volume: 458
  start-page: 632
  year: 2009
  end-page: 635
  ident: bb0175
  article-title: Decoding reveals the contents of visual working memory in early visual areas
  publication-title: Nature
– volume: 63
  start-page: 697
  year: 2009
  end-page: 708
  ident: bb0200
  article-title: Recollection, familiarity, and cortical reinstatement: a multivoxel pattern analysis
  publication-title: Neuron
– volume: 327
  start-page: 97
  year: 2010
  end-page: 99
  ident: bb0300
  article-title: Reproducibility distinguishes conscious from nonconscious neural representations
  publication-title: Science
– start-page: 3121
  year: 2010
  end-page: 3124
  ident: bb0050
  article-title: The balanced accuracy and its posterior distribution
  publication-title: Proceedings of the 20th International Conference on Pattern Recognition
– volume: 10
  start-page: 1
  year: 1999
  end-page: 5
  ident: bb0120
  article-title: How many subjects constitute a study?
  publication-title: Neuroimage
– volume: 21
  start-page: 1732
  year: 2004
  end-page: 1747
  ident: bb0335
  article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference
  publication-title: Neuroimage
– volume: 2
  start-page: 189
  year: 1995
  end-page: 210
  ident: bb0125
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
– volume: 5
  start-page: e8622
  year: 2010
  ident: bb0205
  article-title: A neurosemantic theory of concrete noun representation based on the underlying brain codes
  publication-title: PLoS One
– volume: 47
  start-page: 1469
  year: 2009
  end-page: 1475
  ident: bb0265
  article-title: Simple group fMRI modeling and inference
  publication-title: Neuroimage
– volume: 63
  start-page: 1162
  year: 2012
  end-page: 1170
  ident: bb0065
  article-title: Decoding the perception of pain from fMRI using multivariate pattern analysis
  publication-title: Neuroimage
– volume: 38
  start-page: 387
  year: 2007
  end-page: 401
  ident: bb0320
  article-title: Comparing hemodynamic models with DCM
  publication-title: Neuroimage
– volume: 56
  start-page: 699
  year: 2011
  end-page: 708
  ident: bb0085
  article-title: Within- and cross-participant classifiers reveal different neural coding of information
  publication-title: Neuroimage
– start-page: 1137
  year: 1995
  end-page: 1145
  ident: bb0225
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: International Joint Conference on Artificial Intelligence
– volume: 15
  start-page: 814
  year: 2011
  end-page: 825
  ident: bb0035
  article-title: Single-trial analysis and classification of ERP components—a tutorial
  publication-title: Neuroimage
– volume: 2
  start-page: 27:1
  year: 2011
  end-page: 27:27
  ident: bb0075
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 10
  start-page: 424
  year: 2006
  end-page: 430
  ident: bb0275
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends Cogn. Sci.
– volume: 19
  start-page: 261
  year: 2003
  end-page: 270
  ident: bb0090
  article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: Neuroimage
– volume: 41
  start-page: 1220
  year: 2008
  end-page: 1227
  ident: bb0095
  article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
  publication-title: Neuroimage
– volume: 324
  start-page: 1583
  year: 2009
  end-page: 1585
  ident: bb0220
  article-title: Recruitment of an area involved in eye movements during mental arithmetic
  publication-title: Science
– volume: 46
  start-page: 1004
  year: 2009
  end-page: 1017
  ident: bb0315
  article-title: Bayesian model selection for group studies
  publication-title: Neuroimage
– volume: 7
  start-page: S754
  year: 1998
  ident: bb0190
  article-title: Generalisability, random effects and population inference. Fourth Int Conf on Functional Mapping of the Human Brain
  publication-title: Neuroimage
– volume: 7
  start-page: e1002079
  year: 2011
  ident: bb0060
  article-title: Generative embedding for model-based classification of fMRI data
  publication-title: PLoS Comput. Biol.
– volume: 25
  start-page: 2420
  year: 2012
  end-page: 2428
  ident: bb0165
  article-title: Bayesian models for Large-scale Hierarchical Classification
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 1995
  ident: bb0255
  article-title: Ensemble learning and evidence maximization
  publication-title: Proc. NIPS
– volume: 59
  start-page: 447
  year: 2008
  end-page: 456
  ident: bb0100
  article-title: Models of accuracy in repeated-measures designs
  publication-title: J. Mem. Lang.
– volume: 59
  start-page: 581
  year: 1972
  end-page: 589
  ident: bb0250
  article-title: Bayesian methods for binomial data
  publication-title: Biometrika
– year: 2003
  ident: bb0150
  article-title: Bayesian Data Analysis
– volume: 56
  start-page: 476
  year: 2011
  end-page: 496
  ident: bb0290
  article-title: Information mapping with pattern classifiers: a comparative study
  publication-title: Neuroimage
– start-page: 4263
  year: 2010
  end-page: 4266
  ident: bb0055
  article-title: The binormal assumption on precision-recall curves
  publication-title: Proceedings of the 20th International Conference on Pattern Recognition
– volume: 103
  start-page: 3863
  year: 2006
  end-page: 3868
  ident: bb0235
  article-title: Information-based functional brain mapping
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 15
  start-page: 246
  year: 1886
  end-page: 263
  ident: bb0145
  article-title: Regression towards mediocrity in hereditary stature
  publication-title: J. Anthropol. Inst. Great Brit. Ireland
– volume: 56
  start-page: 387
  year: 2011
  end-page: 399
  ident: bb0245
  article-title: Introduction to machine learning for brain imaging
  publication-title: Neuroimage
– year: 2007
  ident: bb0025
  article-title: Pattern Recognition and Machine Learning
– volume: 61
  start-page: 457
  year: 2012
  end-page: 463
  ident: bb0210
  article-title: Diagnostic neuroimaging across diseases
  publication-title: Neuroimage
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bb0080
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 22
  start-page: 1157
  year: 2004
  end-page: 1172
  ident: bb0285
  article-title: Comparing dynamic causal models
  publication-title: Neuroimage
– volume: 56
  start-page: 601
  year: 2011
  end-page: 615
  ident: bb0040
  article-title: Model-based feature construction for multivariate decoding
  publication-title: Neuroimage
– volume: 20
  start-page: 544
  year: 2010
  end-page: 547
  ident: bb0070
  article-title: Decoding individual episodic memory traces in the human hippocampus
  publication-title: Curr. Biol.
– volume: 6
  start-page: 429
  year: 2002
  end-page: 449
  ident: bb0195
  article-title: The class imbalance problem: a systematic study
  publication-title: Intell. Data Anal.
– volume: 326
  start-page: 596
  year: 2009
  end-page: 599
  ident: bb0230
  article-title: Using neural measures of economic value to solve the public goods free-rider problem
  publication-title: Science
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: bb0215
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
– volume: 63
  start-page: 483
  year: 2012
  end-page: 509
  ident: bb0325
  article-title: Decoding patterns of human brain activity
  publication-title: Annu. Rev. Psychol.
– start-page: 39
  year: 2004
  end-page: 50
  ident: bb0005
  article-title: Applying support vector machines to imbalanced datasets
  publication-title: Machine Learning: ECML 2004
– year: 2010
  ident: bb0160
  article-title: Multilevel Statistical Models
– volume: 7
  start-page: 523
  year: 2006
  end-page: 534
  ident: bb0185
  article-title: Decoding mental states from brain activity in humans
  publication-title: Nat. Rev. Neurosci.
– volume: 6
  start-page: 273
  year: 2005
  end-page: 306
  ident: bb0240
  article-title: Tutorial on practical prediction theory for classification
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 1052
  year: 2003
  end-page: 1063
  ident: bb0015
  article-title: General multilevel linear modeling for group analysis in fMRI
  publication-title: Neuroimage
– volume: 45
  start-page: 2075
  year: 2012
  end-page: 2084
  ident: bb0280
  article-title: Bayesian hypothesis testing for pattern discrimination in brain decoding
  publication-title: Pattern Recognit.
– year: 2008
  ident: bb0340
  article-title: Learning classifiers without negative examples: A reduction approach
  publication-title: International Conference on Digital, Information Management (ICDIM)
– volume: 19
  start-page: 546
  year: 2009
  end-page: 554
  ident: bb0180
  article-title: Decoding neuronal ensembles in the human hippocampus
  publication-title: Curr. Biol.
– volume: 15
  start-page: 777
  year: 2002
  end-page: 784
  ident: bb0030
  article-title: VIBES: a variational inference engine for Bayesian networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 807
  year: 1971
  end-page: 815
  ident: bb0105
  article-title: Limiting the risk of Bayes and empirical Bayes estimators—part I: the Bayes case
  publication-title: J. Am. Stat. Assoc.
– volume: 10
  start-page: 1214
  year: 2007
  end-page: 1221
  ident: bb0020
  article-title: Learning the value of information in an uncertain world
  publication-title: Nat. Neurosci.
– volume: 50
  start-page: 354
  year: 2003
  end-page: 365
  ident: bb0270
  article-title: Novel nonparametric approach to canonical correlation analysis with applications to low CNR functional MRI data
  publication-title: Magn. Reson. Med.
– volume: 49
  start-page: 93
  year: 2010
  end-page: 104
  ident: bb0170
  article-title: Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors
  publication-title: Artif. Intell. Med.
– volume: 7
  start-page: 127
  year: 2006
  ident: bb0330
  article-title: Improved variance estimation of classification performance via reduction of bias caused by small sample size
  publication-title: BMC Bioinformatics
– start-page: 807
  year: 1971
  ident: 10.1016/j.neuroimage.2013.03.008_bb0105
  article-title: Limiting the risk of Bayes and empirical Bayes estimators—part I: the Bayes case
  publication-title: J. Am. Stat. Assoc.
– volume: 49
  start-page: 2178
  year: 2010
  ident: 10.1016/j.neuroimage.2013.03.008_bb0260
  article-title: Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.072
– volume: 7
  start-page: 127
  year: 2006
  ident: 10.1016/j.neuroimage.2013.03.008_bb0330
  article-title: Improved variance estimation of classification performance via reduction of bias caused by small sample size
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-127
– volume: 326
  start-page: 596
  year: 2009
  ident: 10.1016/j.neuroimage.2013.03.008_bb0230
  article-title: Using neural measures of economic value to solve the public goods free-rider problem
  publication-title: Science
  doi: 10.1126/science.1177302
– volume: 19
  start-page: 1240
  year: 2003
  ident: 10.1016/j.neuroimage.2013.03.008_bb0130
  article-title: Posterior probability maps and {SPMs}
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00144-7
– year: 2008
  ident: 10.1016/j.neuroimage.2013.03.008_bb0340
  article-title: Learning classifiers without negative examples: A reduction approach
  doi: 10.1109/ICDIM.2008.4746761
– volume: 19
  start-page: 546
  year: 2009
  ident: 10.1016/j.neuroimage.2013.03.008_bb0180
  article-title: Decoding neuronal ensembles in the human hippocampus
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2009.02.033
– volume: 25
  start-page: 2420
  year: 2012
  ident: 10.1016/j.neuroimage.2013.03.008_bb0165
  article-title: Bayesian models for Large-scale Hierarchical Classification
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 15
  start-page: 246
  year: 1886
  ident: 10.1016/j.neuroimage.2013.03.008_bb0145
  article-title: Regression towards mediocrity in hereditary stature
  publication-title: J. Anthropol. Inst. Great Brit. Ireland
  doi: 10.2307/2841583
– year: 2010
  ident: 10.1016/j.neuroimage.2013.03.008_bb0160
– year: 2003
  ident: 10.1016/j.neuroimage.2013.03.008_bb0150
– volume: 38
  start-page: 85
  year: 2012
  ident: 10.1016/j.neuroimage.2013.03.008_bb0110
  article-title: A tutorial on variational Bayesian inference
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9236-8
– volume: 45
  start-page: 2075
  year: 2012
  ident: 10.1016/j.neuroimage.2013.03.008_bb0280
  article-title: Bayesian hypothesis testing for pattern discrimination in brain decoding
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.04.025
– volume: 65
  start-page: 69
  year: 2013
  ident: 10.1016/j.neuroimage.2013.03.008_bb0310
  article-title: Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.09.063
– volume: 21
  start-page: 1732
  year: 2004
  ident: 10.1016/j.neuroimage.2013.03.008_bb0335
  article-title: Multilevel linear modelling for FMRI group analysis using Bayesian inference
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.12.023
– year: 2007
  ident: 10.1016/j.neuroimage.2013.03.008_bb0025
– volume: 59
  start-page: 447
  year: 2008
  ident: 10.1016/j.neuroimage.2013.03.008_bb0100
  article-title: Models of accuracy in repeated-measures designs
  publication-title: J. Mem. Lang.
  doi: 10.1016/j.jml.2007.11.004
– volume: 103
  start-page: 3863
  year: 2006
  ident: 10.1016/j.neuroimage.2013.03.008_bb0235
  article-title: Information-based functional brain mapping
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0600244103
– volume: 2
  start-page: 27:1
  year: 2011
  ident: 10.1016/j.neuroimage.2013.03.008_bb0075
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 56
  start-page: 601
  year: 2011
  ident: 10.1016/j.neuroimage.2013.03.008_bb0040
  article-title: Model-based feature construction for multivariate decoding
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.036
– volume: 7
  start-page: e1002079
  year: 2011
  ident: 10.1016/j.neuroimage.2013.03.008_bb0060
  article-title: Generative embedding for model-based classification of fMRI data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002079
– start-page: 39
  year: 2004
  ident: 10.1016/j.neuroimage.2013.03.008_bb0005
  article-title: Applying support vector machines to imbalanced datasets
– volume: 5
  start-page: e8622
  year: 2010
  ident: 10.1016/j.neuroimage.2013.03.008_bb0205
  article-title: A neurosemantic theory of concrete noun representation based on the underlying brain codes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008622
– volume: 6
  start-page: 429
  year: 2002
  ident: 10.1016/j.neuroimage.2013.03.008_bb0195
  article-title: The class imbalance problem: a systematic study
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2002-6504
– start-page: 507
  year: 2001
  ident: 10.1016/j.neuroimage.2013.03.008_bb0155
  article-title: Propagation algorithms for variational Bayesian learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 49
  start-page: 93
  year: 2010
  ident: 10.1016/j.neuroimage.2013.03.008_bb0170
  article-title: Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2010.02.004
– volume: 50
  start-page: 354
  year: 2003
  ident: 10.1016/j.neuroimage.2013.03.008_bb0270
  article-title: Novel nonparametric approach to canonical correlation analysis with applications to low CNR functional MRI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10537
– volume: 59
  start-page: 581
  year: 1972
  ident: 10.1016/j.neuroimage.2013.03.008_bb0250
  article-title: Bayesian methods for binomial data
  publication-title: Biometrika
  doi: 10.1093/biomet/59.3.581
– volume: 19
  start-page: 1273
  year: 2003
  ident: 10.1016/j.neuroimage.2013.03.008_bb0115
  article-title: Dynamic causal modelling
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00202-7
– volume: 41
  start-page: 1220
  year: 2008
  ident: 10.1016/j.neuroimage.2013.03.008_bb0095
  article-title: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.050
– volume: 56
  start-page: 699
  year: 2011
  ident: 10.1016/j.neuroimage.2013.03.008_bb0085
  article-title: Within- and cross-participant classifiers reveal different neural coding of information
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.057
– volume: 61
  start-page: 457
  year: 2012
  ident: 10.1016/j.neuroimage.2013.03.008_bb0210
  article-title: Diagnostic neuroimaging across diseases
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.002
– volume: 12
  start-page: 209
  year: 2000
  ident: 10.1016/j.neuroimage.2013.03.008_bb0010
  article-title: A variational Bayesian framework for graphical models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  start-page: 523
  year: 2006
  ident: 10.1016/j.neuroimage.2013.03.008_bb0185
  article-title: Decoding mental states from brain activity in humans
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1931
– volume: 10
  start-page: 1214
  year: 2007
  ident: 10.1016/j.neuroimage.2013.03.008_bb0020
  article-title: Learning the value of information in an uncertain world
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1954
– volume: 63
  start-page: 1162
  year: 2012
  ident: 10.1016/j.neuroimage.2013.03.008_bb0065
  article-title: Decoding the perception of pain from fMRI using multivariate pattern analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.08.035
– volume: 327
  start-page: 97
  year: 2010
  ident: 10.1016/j.neuroimage.2013.03.008_bb0300
  article-title: Reproducibility distinguishes conscious from nonconscious neural representations
  publication-title: Science
  doi: 10.1126/science.1180029
– volume: 19
  start-page: 261
  year: 2003
  ident: 10.1016/j.neuroimage.2013.03.008_bb0090
  article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00049-1
– volume: 25
  start-page: 95
  year: 2008
  ident: 10.1016/j.neuroimage.2013.03.008_bb0305
  article-title: fMRI brain–computer interfaces: a tutorial on methods and applications
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.4408446
– volume: 16
  start-page: 465
  year: 2002
  ident: 10.1016/j.neuroimage.2013.03.008_bb0135
  article-title: Classical and Bayesian inference in neuroimaging: theory
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1090
– volume: 63
  start-page: 483
  year: 2012
  ident: 10.1016/j.neuroimage.2013.03.008_bb0325
  article-title: Decoding patterns of human brain activity
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev-psych-120710-100412
– volume: 10
  start-page: 424
  year: 2006
  ident: 10.1016/j.neuroimage.2013.03.008_bb0275
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2006.07.005
– volume: 46
  start-page: 1004
  year: 2009
  ident: 10.1016/j.neuroimage.2013.03.008_bb0315
  article-title: Bayesian model selection for group studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.03.025
– volume: 6
  start-page: 273
  year: 2005
  ident: 10.1016/j.neuroimage.2013.03.008_bb0240
  article-title: Tutorial on practical prediction theory for classification
  publication-title: J. Mach. Learn. Res.
– volume: 47
  start-page: 1469
  year: 2009
  ident: 10.1016/j.neuroimage.2013.03.008_bb0265
  article-title: Simple group fMRI modeling and inference
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.034
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.neuroimage.2013.03.008_bb0080
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 2
  start-page: 189
  year: 1995
  ident: 10.1016/j.neuroimage.2013.03.008_bb0125
  article-title: Statistical parametric maps in functional imaging: a general linear approach
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020402
– volume: 324
  start-page: 1583
  year: 2009
  ident: 10.1016/j.neuroimage.2013.03.008_bb0220
  article-title: Recruitment of an area involved in eye movements during mental arithmetic
  publication-title: Science
  doi: 10.1126/science.1171599
– volume: 15
  start-page: 777
  year: 2002
  ident: 10.1016/j.neuroimage.2013.03.008_bb0030
  article-title: VIBES: a variational inference engine for Bayesian networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 131
  start-page: 681
  year: 2008
  ident: 10.1016/j.neuroimage.2013.03.008_bb0215
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 13
  start-page: 3133
  year: 2012
  ident: 10.1016/j.neuroimage.2013.03.008_bb0045
  article-title: Bayesian mixed-effects inference on classification performance in hierarchical data sets
  publication-title: J. Mach. Learn. Res.
– volume: 458
  start-page: 632
  year: 2009
  ident: 10.1016/j.neuroimage.2013.03.008_bb0175
  article-title: Decoding reveals the contents of visual working memory in early visual areas
  publication-title: Nature
  doi: 10.1038/nature07832
– start-page: 1137
  year: 1995
  ident: 10.1016/j.neuroimage.2013.03.008_bb0225
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
– start-page: 3121
  year: 2010
  ident: 10.1016/j.neuroimage.2013.03.008_bb0050
  article-title: The balanced accuracy and its posterior distribution
– volume: 63
  start-page: 697
  year: 2009
  ident: 10.1016/j.neuroimage.2013.03.008_bb0200
  article-title: Recollection, familiarity, and cortical reinstatement: a multivoxel pattern analysis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.08.011
– volume: 22
  start-page: 1157
  year: 2004
  ident: 10.1016/j.neuroimage.2013.03.008_bb0285
  article-title: Comparing dynamic causal models
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.026
– volume: 45
  start-page: S199
  year: 2009
  ident: 10.1016/j.neuroimage.2013.03.008_bb0295
  article-title: Machine learning classifiers and fMRI: a tutorial overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.11.007
– volume: 38
  start-page: 387
  year: 2007
  ident: 10.1016/j.neuroimage.2013.03.008_bb0320
  article-title: Comparing hemodynamic models with DCM
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.040
– volume: 56
  start-page: 476
  year: 2011
  ident: 10.1016/j.neuroimage.2013.03.008_bb0290
  article-title: Information mapping with pattern classifiers: a comparative study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.026
– volume: 10
  start-page: 1
  year: 1999
  ident: 10.1016/j.neuroimage.2013.03.008_bb0120
  article-title: How many subjects constitute a study?
  publication-title: Neuroimage
  doi: 10.1006/nimg.1999.0439
– year: 1995
  ident: 10.1016/j.neuroimage.2013.03.008_bb0255
  article-title: Ensemble learning and evidence maximization
– volume: 20
  start-page: 544
  year: 2010
  ident: 10.1016/j.neuroimage.2013.03.008_bb0070
  article-title: Decoding individual episodic memory traces in the human hippocampus
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.01.053
– volume: 56
  start-page: 387
  year: 2011
  ident: 10.1016/j.neuroimage.2013.03.008_bb0245
  article-title: Introduction to machine learning for brain imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.004
– volume: 20
  start-page: 1052
  year: 2003
  ident: 10.1016/j.neuroimage.2013.03.008_bb0015
  article-title: General multilevel linear modeling for group analysis in fMRI
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00435-X
– start-page: 4263
  year: 2010
  ident: 10.1016/j.neuroimage.2013.03.008_bb0055
  article-title: The binormal assumption on precision-recall curves
– volume: 15
  start-page: 814
  year: 2011
  ident: 10.1016/j.neuroimage.2013.03.008_bb0035
  article-title: Single-trial analysis and classification of ERP components—a tutorial
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.048
– volume: 7
  start-page: S754
  year: 1998
  ident: 10.1016/j.neuroimage.2013.03.008_bb0190
  article-title: Generalisability, random effects and population inference. Fourth Int Conf on Functional Mapping of the Human Brain
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(18)31587-8
– volume: 24
  start-page: 244
  year: 2005
  ident: 10.1016/j.neuroimage.2013.03.008_bb0140
  article-title: Mixed-effects and fMRI studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.08.055
SSID ssj0009148
Score 2.2535627
Snippet Multivariate classification algorithms are powerful tools for predicting cognitive or pathophysiological states from neuroimaging data. Assessing the utility...
SourceID unpaywall
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 345
SubjectTerms Accuracy
Algorithms
Balanced accuracy
Bayes Theorem
Bayesian inference
Behavior
Biological and medical sciences
Brain - physiology
Brain Mapping - methods
Brain research
Classification
Estimates
Fixed effects
Fundamental and applied biological sciences. Psychology
Group studies
Humans
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging
Medical imaging
Models, Neurological
Normal-binomial
Performance evaluation
Population
Random effects
Software
Studies
Variational Bayes
Vertebrates: nervous system and sense organs
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Egw9EfBtfRPAam01288CTig8EvfjA27JJNhBpY7Et6sXf7kyySRVUCkJP7Q5sJzM732S-mQU4oIEmPIzRv1UeOtz3MifRcegkKqXwnVGzJ7EtboLLe371KB6n4LTphSFapTn76zO9Oq3NNx2jzU6_KDq3iAww3GC-4VPgqfrIOQ_pFoPDjzHNI2a8bocTvkOrDZun5nhVMyOLHnoukbx8M-70txC10FcDVFxe33jxEySdh9lR2Vfvr6rb_RKmzpdg0eBL-7j-C8swpcsVmLk2FfRVuHjA5Ni8ALRP1LumJkq7V7zpzDHcDrtomgBtRLR2SviaCEWVlD2oiYdrcH9-dnd66ZjLFJxUhN7QifKMYyxGtBIIL0hYFgme8DTmmUtD2hLBcgRfIhHaw4RZp5qJnDPMNpTwNTq2vw7T5XOpN8Hmgoq1iG10hs8yUrGOM46OLJh2hauYBWGjP5maSeN04UVXNpSyJznWvCTNSxc_bmQBayX79bSNCWTi5hHJppsUzz-JIWEC2aNW9pvVTSi9980i2i17VP0MIm7BTmMi0hwNA8mCAO0QUVVowX77Mzo1VWpUqZ9HuMbnMWJfzIX_WCOoiooZO-5joza_8QZ8QRVY1wKvtceJFbr1L6Vsw5xX3RhCHMkdmB6-jPQu4rZhslc55ic4fj8p
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS9xAEB_0BB8U67tRKxH8Gskmu3nQT7ZoRVBa6Il-WjbJBk7PeHh3-PjrO5PsxlqqXIX7dpljMzs7-5ub38wA7FFDEx6neL5VGXs8DAov02nsZSqn67ugYk9iW5xFx11-ciEupsC3tTAv8vc1D6vu69i7wdNFRKzQtCSdhplIIPruwEz37MfBZZ3UFKGXsHqWB_NpBKGILXnnrZ967Ub6MFBD1FPZDLj4FwJdgLlxNVCP96rf_-NWOvoIP-37NGSU6_3xKNvPn_5q9fg_L7wEiwaiugeNTS3DlK5WYPbUJOFX4fs5xtfmP0T3q3rUVIfp3vQedOEZeojbs3WELoJiNyeITpykWsodNtzFNegeHf76duyZeQxejpoceUlZcLzOEfBEIogyViSCZzxPeeFTn7dMsBLxm8iEDjDm1rlmouQMAxYlQo2-IVyHTnVb6U_gckH5XoRHukBzSFSq04KjLxBM-8JXzIHY7onMTbNympnRl5aVdiWf9SRJT9LHj584wFrJQdOwYwKZ1G67tAWp6EIl7s0Esl9aWQNaGjAyofTOCytrlxxQAjVKuAPb1uyk8S5DyaII7RyBWezAbvs1-gVK9qhK347xmZCneAgwnH7jGUGJWAz6cR0bjUk_LyAUlMT1HQhaG59YoZvvEdqC-aCeNULsym3ojO7G-jMivlG2Yw75b1EOTyI
  priority: 102
  providerName: Unpaywall
Title Variational Bayesian mixed-effects inference for classification studies
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913002371
https://dx.doi.org/10.1016/j.neuroimage.2013.03.008
https://www.ncbi.nlm.nih.gov/pubmed/23507390
https://www.proquest.com/docview/1668112447
https://www.proquest.com/docview/1349095899
https://www.proquest.com/docview/1500762108
https://doi.org/10.1016/j.neuroimage.2013.03.008
UnpaywallVersion publishedVersion
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9NAEB_uWvCBiM8zepYIfl3NJrt5ICK94876CuWwUj-FTXYDPXpptS16X_zbnUk2qYIehdJ8aKYsk5md32Z-MwPwnBqaiChB_1ZlxETga5abJGK5Kih8ayr2JLZFGo4m4v1UTvcgbWthiFbZ7on1Rq0XBb0jf8nDMOYUjKI3y2-MpkZRdrUdoaHsaAX9um4xtg99nzpj9aB_dJKOz7ZteLloiuNkwPDvEsvtaRhfdQfJ2QX6MVG-Atv89H8B69ZSrVCNZTP_4l8A9SZc31RLdflDzed_BK3TO3Dbok132JjHXdgz1T249snm0-_D2y94VLavA90jdWmopNK9mP00mlmmhztrSwJdxLduQWib6EW1lLtqaIgPYHJ68vl4xOxoBVbIyF-zuNQCIzNil1D6Yc51LEUuikRoj1q25ZKXCMVkLo2Px2dTGC5LwfHsoWRg0M2Dh9CrFpV5BK6QlLpFpGM0PtlYJSbRAt1acuNJT3EHolZ_WWH7jtP4i3nWEszOs63mM9J85uHHix3gneSy6b2xg0zSPqKsrS3F3TDDALGD7KtO1uKPBlfsKD34yyK6JfuUCw1j4cBhayKZ3ShW2dasHXjW_YwuTnkbVZnFBu8JRIJIGE_GV9wjKaeKJo_rOGjMb7uAQFI-1nPA7-xxZ4U-vnrVT-CGXw8IIUrkIfTW3zfmKcK0dT6A_Re_OH5H02gA_eHx2ccxXd99GKUD65d4naTj4dff6_hBFA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qC7Yi4rfRWiPoYzC72c0HUsRq69W2h0hb-rZushu4cs2d3h31_jn_NmeSTU5By70U7u0yYZidnflN5gvgFQ00EUmG91uXSSAiboLcZkmQ64Lct6FmT6q26Me9E_H5TJ6twK-2F4bKKlubWBtqMyroG_kbFscpI2eUvBt_D2hrFGVX2xUa2q1WMNv1iDHX2HFg55cYwk229z_ieb_mfG_3-EMvcFsGgkImfBqkpRHopNCNx5LHOTOpFLkoMmFCml6WS1YiKpG5tBwjSVtYJkvBEIZrGVnU-AjfewPWRCQyDP7Wdnb7X74uxv4y0TTjyShA9jNXS9RUmNUTKwcXaDeoxCxyw1b_5yBvj_UEj61s9m38CxDfgvVZNdbzSz0c_uEk9-7CHYdu_feNOt6DFVvdh5tHLn__AD6dYmjuPj_6O3puqYXTvxj8tCZwlSX-oG1B9BFP-wWheypnqqn8SVP2-BBOrkXIj2C1GlX2CfhCUqoYkZU1qEmpzmxmBJoRyWwoQ808SFr5qcLNOad1G0PVFrSdq4XkFUlehfgLUw9YRzluZn0sQZO1R6TaXla0vgod0hK0bztah3caHLMk9dZfGtGxzCn3GqfCg81WRZQzTBO1uEYevOz-RpNCeSJd2dEMn0FVRuSNkfgVz0jK4XJGfDxu1G_BQCQp_xt6wDt9XFqgT6_m-gWs946PDtXhfv_gGWzwejkJlWNuwur0x8w-R4g4zbfcPfTh23Vf_d_Y9XSW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQ0QQnwTGCNI8Ggtdux8CCEEjLIxmHhgqG-ekzhSUZcW2mr0X-Ov4y6xU5Bg6sukvjUXWfZ9_Jz73R3AM2poItMc7dvUKZOxqFhh85QVpqTwXVGxJ7EtjpL9Y_lhqIYb8MvXwhCt0vvE1lFXk5K-ke_yJMk4BaN0t3a0iM97g1fT74wmSFGm1Y_T6FTk0C7P8Po2e3mwh2f9XIjBuy9v95mbMMBKlYo5y-pKYoDCEJ4okRS8ypQsZJnLKqLOZYXiNSISVSgr8BZpS8tVLTlCcKNii9oe43svweU0jnOiE6bDdNXwl8uuDE_FDBeeOxZRxy1re1WOTtFjELksdm1W_xcar0_NDA-s7iZt_AsKX4Mri2ZqlmdmPP4jPA5uwg2Ha8PXnSLegg3b3IatTy5zfwfef8VLufvwGL4xS0vFm-Hp6KetmOOUhCNffBgikg5LwvVEZGqlwllHeLwLxxeyxfdgs5k09gGEUlGSGDGVrVCHMpPbvJLoQBS3kYoMDyD1-6dL1-GcBm2MtaeyfdOrnde08zrCX5QFwHvJadflYw2Z3B-R9lWs6Hc1hqI1ZF_0sg7pdAhmTemdvzSiX7KgrGuSyQC2vYpo55JmemVAATzt_0ZnQhki09jJAp-JZY6YG-_g5zyjKHsrOK3jfqd-qwXEijK_UQCi18e1N_Th-at-Alto8PrjwdHhI7gq2qkkxMPchs35j4V9jNhwXuy0RhjCyUVb_W-VTHIw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS9xAEB_0BB8U67tRKxH8Gskmu3nQT7ZoRVBa6Il-WjbJBk7PeHh3-PjrO5PsxlqqXIX7dpljMzs7-5ub38wA7FFDEx6neL5VGXs8DAov02nsZSqn67ugYk9iW5xFx11-ciEupsC3tTAv8vc1D6vu69i7wdNFRKzQtCSdhplIIPruwEz37MfBZZ3UFKGXsHqWB_NpBKGILXnnrZ967Ub6MFBD1FPZDLj4FwJdgLlxNVCP96rf_-NWOvoIP-37NGSU6_3xKNvPn_5q9fg_L7wEiwaiugeNTS3DlK5WYPbUJOFX4fs5xtfmP0T3q3rUVIfp3vQedOEZeojbs3WELoJiNyeITpykWsodNtzFNegeHf76duyZeQxejpoceUlZcLzOEfBEIogyViSCZzxPeeFTn7dMsBLxm8iEDjDm1rlmouQMAxYlQo2-IVyHTnVb6U_gckH5XoRHukBzSFSq04KjLxBM-8JXzIHY7onMTbNympnRl5aVdiWf9SRJT9LHj584wFrJQdOwYwKZ1G67tAWp6EIl7s0Esl9aWQNaGjAyofTOCytrlxxQAjVKuAPb1uyk8S5DyaII7RyBWezAbvs1-gVK9qhK347xmZCneAgwnH7jGUGJWAz6cR0bjUk_LyAUlMT1HQhaG59YoZvvEdqC-aCeNULsym3ojO7G-jMivlG2Yw75b1EOTyI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Bayesian+mixed-effects+inference+for+classification+studies&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Brodersen%2C+Kay+H&rft.au=Daunizeau%2C+Jean&rft.au=Mathys%2C+Christoph&rft.au=Chumbley%2C+Justin+R&rft.date=2013-08-01&rft.eissn=1095-9572&rft.volume=76&rft.spage=345&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.03.008&rft_id=info%3Apmid%2F23507390&rft.externalDocID=23507390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon