Machine learning highlights the deficiency of conventional dosimetric constraints for prevention of high-grade radiation esophagitis in non-small cell lung cancer treated with chemoradiation

•A large cohort to predict radiation esophagitis in lung cancer patients was used.•Modern machine learning models were implemented to predict radiation esophagitis.•Previously published predictors of grade ≥ 3 radiation esophagitis may be unreliable. Radiation esophagitis is a clinically important t...

Full description

Saved in:
Bibliographic Details
Published inClinical and translational radiation oncology Vol. 22; pp. 69 - 75
Main Authors Luna, José Marcio, Chao, Hann-Hsiang, Shinohara, Russel T., Ungar, Lyle H., Cengel, Keith A., Pryma, Daniel A., Chinniah, Chidambaram, Berman, Abigail T., Katz, Sharyn I., Kontos, Despina, Simone, Charles B., Diffenderfer, Eric S.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.05.2020
Elsevier
Subjects
Online AccessGet full text
ISSN2405-6308
2405-6308
DOI10.1016/j.ctro.2020.03.007

Cover

Abstract •A large cohort to predict radiation esophagitis in lung cancer patients was used.•Modern machine learning models were implemented to predict radiation esophagitis.•Previously published predictors of grade ≥ 3 radiation esophagitis may be unreliable. Radiation esophagitis is a clinically important toxicity seen with treatment for locally-advanced non-small cell lung cancer. There is considerable disagreement among prior studies in identifying predictors of radiation esophagitis. We apply machine learning algorithms to identify factors contributing to the development of radiation esophagitis to uncover previously unidentified criteria and more robust dosimetric factors. We used machine learning approaches to identify predictors of grade ≥ 3 radiation esophagitis in a cohort of 202 consecutive locally-advanced non-small cell lung cancer patients treated with definitive chemoradiation from 2008 to 2016. We evaluated 35 clinical features per patient grouped into risk factors, comorbidities, imaging, stage, histology, radiotherapy, chemotherapy and dosimetry. Univariate and multivariate analyses were performed using a panel of 11 machine learning algorithms combined with predictive power assessments. All patients were treated to a median dose of 66.6 Gy at 1.8 Gy per fraction using photon (89.6%) and proton (10.4%) beam therapy, most often with concurrent chemotherapy (86.6%). 11.4% of patients developed grade ≥ 3 radiation esophagitis. On univariate analysis, no individual feature was found to predict radiation esophagitis (AUC range 0.45–0.55, p ≥ 0.07). In multivariate analysis, all machine learning algorithms exhibited poor predictive performance (AUC range 0.46–0.56, p ≥ 0.07). Contemporary machine learning algorithms applied to our modern, relatively large institutional cohort could not identify any reliable predictors of grade ≥ 3 radiation esophagitis. Additional patients are needed, and novel patient-specific and treatment characteristics should be investigated to develop clinically meaningful methods to mitigate this survival altering toxicity.
AbstractList Radiation esophagitis is a clinically important toxicity seen with treatment for locally-advanced non-small cell lung cancer. There is considerable disagreement among prior studies in identifying predictors of radiation esophagitis. We apply machine learning algorithms to identify factors contributing to the development of radiation esophagitis to uncover previously unidentified criteria and more robust dosimetric factors. We used machine learning approaches to identify predictors of grade ≥ 3 radiation esophagitis in a cohort of 202 consecutive locally-advanced non-small cell lung cancer patients treated with definitive chemoradiation from 2008 to 2016. We evaluated 35 clinical features per patient grouped into risk factors, comorbidities, imaging, stage, histology, radiotherapy, chemotherapy and dosimetry. Univariate and multivariate analyses were performed using a panel of 11 machine learning algorithms combined with predictive power assessments. All patients were treated to a median dose of 66.6 Gy at 1.8 Gy per fraction using photon (89.6%) and proton (10.4%) beam therapy, most often with concurrent chemotherapy (86.6%). 11.4% of patients developed grade ≥ 3 radiation esophagitis. On univariate analysis, no individual feature was found to predict radiation esophagitis (AUC range 0.45-0.55, p ≥ 0.07). In multivariate analysis, all machine learning algorithms exhibited poor predictive performance (AUC range 0.46-0.56, p ≥ 0.07). Contemporary machine learning algorithms applied to our modern, relatively large institutional cohort could not identify any reliable predictors of grade ≥ 3 radiation esophagitis. Additional patients are needed, and novel patient-specific and treatment characteristics should be investigated to develop clinically meaningful methods to mitigate this survival altering toxicity.
•A large cohort to predict radiation esophagitis in lung cancer patients was used.•Modern machine learning models were implemented to predict radiation esophagitis.•Previously published predictors of grade ≥ 3 radiation esophagitis may be unreliable. Radiation esophagitis is a clinically important toxicity seen with treatment for locally-advanced non-small cell lung cancer. There is considerable disagreement among prior studies in identifying predictors of radiation esophagitis. We apply machine learning algorithms to identify factors contributing to the development of radiation esophagitis to uncover previously unidentified criteria and more robust dosimetric factors. We used machine learning approaches to identify predictors of grade ≥ 3 radiation esophagitis in a cohort of 202 consecutive locally-advanced non-small cell lung cancer patients treated with definitive chemoradiation from 2008 to 2016. We evaluated 35 clinical features per patient grouped into risk factors, comorbidities, imaging, stage, histology, radiotherapy, chemotherapy and dosimetry. Univariate and multivariate analyses were performed using a panel of 11 machine learning algorithms combined with predictive power assessments. All patients were treated to a median dose of 66.6 Gy at 1.8 Gy per fraction using photon (89.6%) and proton (10.4%) beam therapy, most often with concurrent chemotherapy (86.6%). 11.4% of patients developed grade ≥ 3 radiation esophagitis. On univariate analysis, no individual feature was found to predict radiation esophagitis (AUC range 0.45–0.55, p ≥ 0.07). In multivariate analysis, all machine learning algorithms exhibited poor predictive performance (AUC range 0.46–0.56, p ≥ 0.07). Contemporary machine learning algorithms applied to our modern, relatively large institutional cohort could not identify any reliable predictors of grade ≥ 3 radiation esophagitis. Additional patients are needed, and novel patient-specific and treatment characteristics should be investigated to develop clinically meaningful methods to mitigate this survival altering toxicity.
Background and Purpose: Radiation esophagitis is a clinically important toxicity seen with treatment for locally-advanced non-small cell lung cancer. There is considerable disagreement among prior studies in identifying predictors of radiation esophagitis. We apply machine learning algorithms to identify factors contributing to the development of radiation esophagitis to uncover previously unidentified criteria and more robust dosimetric factors. Materials and Methods: We used machine learning approaches to identify predictors of grade ≥ 3 radiation esophagitis in a cohort of 202 consecutive locally-advanced non-small cell lung cancer patients treated with definitive chemoradiation from 2008 to 2016. We evaluated 35 clinical features per patient grouped into risk factors, comorbidities, imaging, stage, histology, radiotherapy, chemotherapy and dosimetry. Univariate and multivariate analyses were performed using a panel of 11 machine learning algorithms combined with predictive power assessments. Results: All patients were treated to a median dose of 66.6 Gy at 1.8 Gy per fraction using photon (89.6%) and proton (10.4%) beam therapy, most often with concurrent chemotherapy (86.6%). 11.4% of patients developed grade ≥ 3 radiation esophagitis. On univariate analysis, no individual feature was found to predict radiation esophagitis (AUC range 0.45–0.55, p ≥ 0.07). In multivariate analysis, all machine learning algorithms exhibited poor predictive performance (AUC range 0.46–0.56, p ≥ 0.07). Conclusions: Contemporary machine learning algorithms applied to our modern, relatively large institutional cohort could not identify any reliable predictors of grade ≥ 3 radiation esophagitis. Additional patients are needed, and novel patient-specific and treatment characteristics should be investigated to develop clinically meaningful methods to mitigate this survival altering toxicity. Keywords: Radiation esophagitis, Machine learning, Non-small cell lung cancer, Chemoradiation, Radiation-induced toxicity, Intensity-modulated radiation therapy, Proton beam therapy
Radiation esophagitis is a clinically important toxicity seen with treatment for locally-advanced non-small cell lung cancer. There is considerable disagreement among prior studies in identifying predictors of radiation esophagitis. We apply machine learning algorithms to identify factors contributing to the development of radiation esophagitis to uncover previously unidentified criteria and more robust dosimetric factors.BACKGROUND AND PURPOSERadiation esophagitis is a clinically important toxicity seen with treatment for locally-advanced non-small cell lung cancer. There is considerable disagreement among prior studies in identifying predictors of radiation esophagitis. We apply machine learning algorithms to identify factors contributing to the development of radiation esophagitis to uncover previously unidentified criteria and more robust dosimetric factors.We used machine learning approaches to identify predictors of grade ≥ 3 radiation esophagitis in a cohort of 202 consecutive locally-advanced non-small cell lung cancer patients treated with definitive chemoradiation from 2008 to 2016. We evaluated 35 clinical features per patient grouped into risk factors, comorbidities, imaging, stage, histology, radiotherapy, chemotherapy and dosimetry. Univariate and multivariate analyses were performed using a panel of 11 machine learning algorithms combined with predictive power assessments.MATERIALS AND METHODSWe used machine learning approaches to identify predictors of grade ≥ 3 radiation esophagitis in a cohort of 202 consecutive locally-advanced non-small cell lung cancer patients treated with definitive chemoradiation from 2008 to 2016. We evaluated 35 clinical features per patient grouped into risk factors, comorbidities, imaging, stage, histology, radiotherapy, chemotherapy and dosimetry. Univariate and multivariate analyses were performed using a panel of 11 machine learning algorithms combined with predictive power assessments.All patients were treated to a median dose of 66.6 Gy at 1.8 Gy per fraction using photon (89.6%) and proton (10.4%) beam therapy, most often with concurrent chemotherapy (86.6%). 11.4% of patients developed grade ≥ 3 radiation esophagitis. On univariate analysis, no individual feature was found to predict radiation esophagitis (AUC range 0.45-0.55, p ≥ 0.07). In multivariate analysis, all machine learning algorithms exhibited poor predictive performance (AUC range 0.46-0.56, p ≥ 0.07).RESULTSAll patients were treated to a median dose of 66.6 Gy at 1.8 Gy per fraction using photon (89.6%) and proton (10.4%) beam therapy, most often with concurrent chemotherapy (86.6%). 11.4% of patients developed grade ≥ 3 radiation esophagitis. On univariate analysis, no individual feature was found to predict radiation esophagitis (AUC range 0.45-0.55, p ≥ 0.07). In multivariate analysis, all machine learning algorithms exhibited poor predictive performance (AUC range 0.46-0.56, p ≥ 0.07).Contemporary machine learning algorithms applied to our modern, relatively large institutional cohort could not identify any reliable predictors of grade ≥ 3 radiation esophagitis. Additional patients are needed, and novel patient-specific and treatment characteristics should be investigated to develop clinically meaningful methods to mitigate this survival altering toxicity.CONCLUSIONSContemporary machine learning algorithms applied to our modern, relatively large institutional cohort could not identify any reliable predictors of grade ≥ 3 radiation esophagitis. Additional patients are needed, and novel patient-specific and treatment characteristics should be investigated to develop clinically meaningful methods to mitigate this survival altering toxicity.
• A large cohort to predict radiation esophagitis in lung cancer patients was used. • Modern machine learning models were implemented to predict radiation esophagitis. • Previously published predictors of grade ≥ 3 radiation esophagitis may be unreliable.
Author Pryma, Daniel A.
Chao, Hann-Hsiang
Diffenderfer, Eric S.
Kontos, Despina
Katz, Sharyn I.
Simone, Charles B.
Shinohara, Russel T.
Chinniah, Chidambaram
Ungar, Lyle H.
Cengel, Keith A.
Luna, José Marcio
Berman, Abigail T.
AuthorAffiliation c Department of Biostatistics and Epidemiology, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States
d Department of Computer and Information Science, University of Pennsylvania, 3330 Walnut St, Philadelphia, PA 19104, United States
a Department of Radiation Oncology, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
g Department of Radiation Oncology, New York Proton Center, 225 East 126 th St, New York, NY 10035, United States
b Department of Radiation Oncology, Hunter Holmes McGuire Veterans Affairs Medical Center, 1201 Broad Rock Blvd, Richmond, VA 23249, United States
f Albany Medical College, 43 New Scotland Ave, Albany, NY 12208, United States
e Department of Radiology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, United States
AuthorAffiliation_xml – name: c Department of Biostatistics and Epidemiology, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States
– name: a Department of Radiation Oncology, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
– name: f Albany Medical College, 43 New Scotland Ave, Albany, NY 12208, United States
– name: d Department of Computer and Information Science, University of Pennsylvania, 3330 Walnut St, Philadelphia, PA 19104, United States
– name: b Department of Radiation Oncology, Hunter Holmes McGuire Veterans Affairs Medical Center, 1201 Broad Rock Blvd, Richmond, VA 23249, United States
– name: e Department of Radiology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, United States
– name: g Department of Radiation Oncology, New York Proton Center, 225 East 126 th St, New York, NY 10035, United States
Author_xml – sequence: 1
  givenname: José Marcio
  surname: Luna
  fullname: Luna, José Marcio
  email: jose.luna@pennmedicine.upenn.edu
  organization: Department of Radiation Oncology, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
– sequence: 2
  givenname: Hann-Hsiang
  surname: Chao
  fullname: Chao, Hann-Hsiang
  organization: Department of Radiation Oncology, Hunter Holmes McGuire Veterans Affairs Medical Center, 1201 Broad Rock Blvd, Richmond, VA 23249, United States
– sequence: 3
  givenname: Russel T.
  surname: Shinohara
  fullname: Shinohara, Russel T.
  organization: Department of Biostatistics and Epidemiology, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States
– sequence: 4
  givenname: Lyle H.
  surname: Ungar
  fullname: Ungar, Lyle H.
  organization: Department of Computer and Information Science, University of Pennsylvania, 3330 Walnut St, Philadelphia, PA 19104, United States
– sequence: 5
  givenname: Keith A.
  surname: Cengel
  fullname: Cengel, Keith A.
  organization: Department of Radiation Oncology, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
– sequence: 6
  givenname: Daniel A.
  surname: Pryma
  fullname: Pryma, Daniel A.
  organization: Department of Radiology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, United States
– sequence: 7
  givenname: Chidambaram
  surname: Chinniah
  fullname: Chinniah, Chidambaram
  organization: Albany Medical College, 43 New Scotland Ave, Albany, NY 12208, United States
– sequence: 8
  givenname: Abigail T.
  surname: Berman
  fullname: Berman, Abigail T.
  organization: Department of Radiation Oncology, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
– sequence: 9
  givenname: Sharyn I.
  surname: Katz
  fullname: Katz, Sharyn I.
  organization: Department of Radiology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, United States
– sequence: 10
  givenname: Despina
  surname: Kontos
  fullname: Kontos, Despina
  organization: Department of Radiology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, United States
– sequence: 11
  givenname: Charles B.
  surname: Simone
  fullname: Simone, Charles B.
  organization: Department of Radiation Oncology, New York Proton Center, 225 East 126th St, New York, NY 10035, United States
– sequence: 12
  givenname: Eric S.
  surname: Diffenderfer
  fullname: Diffenderfer, Eric S.
  organization: Department of Radiation Oncology, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32274426$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhkeoiJbQF2CBvGQzwWPPFSEkVHGpVMQG1pZjH8-cMGMH2wnqy_FseJIQtV2UhS86Pt9v-5z_eXZmnYUse1nQZUGL-s16qaJ3S0YZXVK-pLR5kl2wklZ5zWl7dmd_nl2GsKaUFm3TVbx6lp1zxpqyZPVF9uerVANaICNIb9H2ZMB-GNOIgcQBiAaDCsGqW-IMUc7uwEZ0Vo5Eu4ATRI9qjofoJdpEGefJxsMxb6Zmybz3UgNJE8p9HILbDLLHiIGgJel7eZjkOBIFaRq36SlKWgWeRA8ygia_MQ5EDTC5k8qL7KmRY4DL47rIfnz6-P3qS37z7fP11YebXFUNi3ltZNdAbWhFwfBWS1WzqqxLA12tU7jsKlNpZQwrOk1XlWa642XB-KqgFUjNF9n1QVc7uRYbj5P0t8JJFPuA872QPqIaQZSmk1wVwCXTpa5pq5pOM2VqXpbQ8FXSen_Q2mxXE2iV6uTleE_0_onFQfRuJ5qCs6Kqk8Dro4B3v7YQopgwzFWTFtw2CMbbtmUFT81eZK_u3nW65J8BUgI7JCjvQvBgTikFFbPRxFrMRhOz0QTlIhktQe0DSGHc92P2wPg4-u6AQurWDsGLsHcXaPSgYionPo6_fYCrES0qOf6E2__BfwEQ_gkG
CitedBy_id crossref_primary_10_17925_OHR_2021_16_2_95
crossref_primary_10_3389_fonc_2021_686950
crossref_primary_10_1186_s40001_023_01041_6
crossref_primary_10_1002_mp_15569
Cites_doi 10.1016/j.cllc.2011.03.026
10.1002/acm2.12415
10.1200/JCO.2009.26.2543
10.1111/j.2517-6161.1958.tb00292.x
10.1016/j.radonc.2019.01.003
10.1007/BF00994018
10.1016/j.ijrobp.2013.07.029
10.1021/ci034160g
10.1016/j.ijrobp.2004.04.051
10.1186/s12916-014-0241-z
10.1016/j.radonc.2019.05.011
10.1016/S1470-2045(14)71207-0
10.1016/j.ijrobp.2003.09.080
10.1016/S0360-3016(02)03937-8
10.1016/j.semradonc.2004.06.003
10.1186/1748-717X-8-122
10.1016/j.radonc.2005.03.021
10.1016/j.radonc.2019.11.018
10.1016/j.ijrobp.2005.03.037
10.1016/j.semradonc.2017.04.009
10.1002/cncr.30870
10.1053/j.seminoncol.2005.03.011
10.1109/TSMCA.2009.2029559
10.1001/jamaoncol.2015.3969
10.21873/anticanres.13139
10.1016/S0360-3016(00)00699-4
10.1016/j.adro.2016.11.003
10.1016/j.ijrobp.2004.06.014
10.1093/jnci/djr325
10.1016/j.tranon.2017.11.005
10.1016/j.ijrobp.2012.01.071
10.1613/jair.953
10.1371/journal.pone.0015807
10.1259/bjr.20150311
10.1016/j.jtho.2015.10.006
10.1016/j.radonc.2005.10.001
10.1016/S0360-3016(99)00163-7
10.1186/s13014-016-0640-8
10.1016/j.radonc.2008.09.010
10.1016/j.chemolab.2015.05.006
ContentType Journal Article
Copyright 2020 The Author(s)
2020 The Author(s).
2020 The Author(s) 2020
Copyright_xml – notice: 2020 The Author(s)
– notice: 2020 The Author(s).
– notice: 2020 The Author(s) 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.ctro.2020.03.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-6308
EndPage 75
ExternalDocumentID oai_doaj_org_article_4f9a3c1e3a2d4d608c79d2cf6344e73b
PMC7132156
32274426
10_1016_j_ctro_2020_03_007
S2405630820300203
Genre Journal Article
GroupedDBID .1-
.FO
0R~
53G
AAEDW
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AFTJW
AIGII
AITUG
AJUYK
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
M~E
O9-
OK1
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
NCXOZ
RIG
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c572t-6fa97e6f050ef38dac625464fe96d6f0495f5dcff219d0b5d2d934123b105ead3
IEDL.DBID DOA
ISSN 2405-6308
IngestDate Wed Aug 27 01:04:16 EDT 2025
Thu Aug 21 14:03:59 EDT 2025
Thu Jul 10 18:47:27 EDT 2025
Mon Jul 21 05:54:22 EDT 2025
Thu Apr 24 23:03:23 EDT 2025
Tue Jul 01 03:24:22 EDT 2025
Fri Feb 23 02:49:18 EST 2024
Tue Aug 26 17:19:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Intensity-modulated radiation therapy
Chemoradiation
Machine learning
Non-small cell lung cancer
Radiation esophagitis
Radiation-induced toxicity
Proton beam therapy
Language English
License This is an open access article under the CC BY-NC-ND license.
2020 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-6fa97e6f050ef38dac625464fe96d6f0495f5dcff219d0b5d2d934123b105ead3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
These authors were responsible for the statistical analyses.
OpenAccessLink https://doaj.org/article/4f9a3c1e3a2d4d608c79d2cf6344e73b
PMID 32274426
PQID 2388821395
PQPubID 23479
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_4f9a3c1e3a2d4d608c79d2cf6344e73b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7132156
proquest_miscellaneous_2388821395
pubmed_primary_32274426
crossref_primary_10_1016_j_ctro_2020_03_007
crossref_citationtrail_10_1016_j_ctro_2020_03_007
elsevier_sciencedirect_doi_10_1016_j_ctro_2020_03_007
elsevier_clinicalkey_doi_10_1016_j_ctro_2020_03_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Clinical and translational radiation oncology
PublicationTitleAlternate Clin Transl Radiat Oncol
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bradley, Deasy, Betzen, El Naqa (b0060) 2004; 58
Palma, Senan, Oberije, Belderbos, De Dios, Bradley (b0045) 2013; 87
Werner-wasik, Paulus, Curran, Byhardt (b0015) 2011; 12
Belderbos, Heemsbergen, Hoogeman, Pengel, Rossi, Lebesque (b0170) 2005; 75
Folch-Fortuny, Arteaga, Ferrer (b0095) 2015; 146
Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. vol. 19. 1984. doi:10.1371/journal.pone.0015807.
Cox (b0110) 1958; 20
Manapov, Sepe, Niyazi, Belka, Friedel, Budach (b0155) 2013; 8
Curran, Paulus, Langer, Komaki, Lee, Hauser (b0040) 2011; 103
Seiffert, Khoshgoftaar, Van Hulse, Napolitano (b0135) 2010; 40
Thor, Deasy, Iyer, Bendau, Fontanella, Apte (b0180) 2019; 138
Brodersen, Ong, Stephan, Buhmann (b0100) 2010
Werner-Wasik, Pequignot, Leeper, Hauck, Curran (b0005) 2000; 48
Hawkins, Boonstra, Hobson, Hayman, Ten, Matuszak (b0195) 2018; 11
Collins, Reitsma, Altman, Moons (b0140) 2015; 13
Huang, Robinson, Molotievschi, Bradley, Deasy, Oh (b0175) 2017; 2
Rose, Rodrigues, Yaremko, Lock, Souza (b0010) 2009; 91
Chapet, Kong, Lee, Hayman, Ten (b0165) 2005; 77
Simone (b0025) 2017; 27
Gomez, Tucker, Martel, Mohan, Balter, Lopez (b0070) 2012; 84
Chawla, Bowyer, Hall, Kegelmeyer (b0145) 2002; 16
Werner-wasik (b0050) 2005
Chao, Valdes, Luna, Heskel, Berman, Solberg (b0210) 2018; 19
Patel, Edelman, Kwok, Krasna, Suntharalingam (b0080) 2004; 60
Mehmood, Sun, Becker, Higgins, Marshall, Le (b0075) 2015; 11
Svetnik, Liaw, Tong, Christopher Culberson, Sheridan, Feuston (b0130) 2003; 43
Movsas, Hu, Sloan, Bradley, Komaki, Masters (b0020) 2016; 2
Chajon, Bellec, Castelli, Corre, Kerjouan, Le Prise (b0150) 2015; 88
Bradley, Paulus, Komaki, Masters, Blumenschein, Schild (b0035) 2015; 16
Bahn, Alber (b0215) 2020; 144
Bradley, Movsas (b0065) 2004; 14
Cortes, Vapnik (b0120) 1995; 20
Singh, Lockett, Bradley (b0090) 2003; 55
Wada, Kishi, Kanayama, Hirata, Ueda, Kawaguchi (b0185) 2019; 39
Machtay, Hsu, Komaki, Sause, Swann, Langer (b0055) 2005; 63
Rwigema, Verma, Lin, Berman, Levin, Evans (b0190) 2017; 123
Auperin, Le Pechoux, Rolland, Curran, Furuse, Fournel (b0030) 2010; 28
Duda, Hart, Stork (b0115) 2001
Ahn, Kahn, Zhou, Yu, Hollis, Shafman (b0160) 2005; 61
Luna, Chao, Diffenderfer, Valdes, Chinniah, Ma (b0205) 2019; 133
Maguire, Sibley, Zhou, Jamieson, Light, Antoine (b0085) 1999; 45
MathWorks. Chapter 23: Classification learner. Stat. Mach. Learn. Toolbox User’s Guid., 2019, p. 1–163.
Giaddui, Chen, Yu, Lin, Ii, Yuan (b0200) 2016; 11
Patel (10.1016/j.ctro.2020.03.007_b0080) 2004; 60
Werner-Wasik (10.1016/j.ctro.2020.03.007_b0005) 2000; 48
Werner-wasik (10.1016/j.ctro.2020.03.007_b0050) 2005
Cortes (10.1016/j.ctro.2020.03.007_b0120) 1995; 20
Rwigema (10.1016/j.ctro.2020.03.007_b0190) 2017; 123
Thor (10.1016/j.ctro.2020.03.007_b0180) 2019; 138
10.1016/j.ctro.2020.03.007_b0105
Chawla (10.1016/j.ctro.2020.03.007_b0145) 2002; 16
Wada (10.1016/j.ctro.2020.03.007_b0185) 2019; 39
10.1016/j.ctro.2020.03.007_b0125
Palma (10.1016/j.ctro.2020.03.007_b0045) 2013; 87
Werner-wasik (10.1016/j.ctro.2020.03.007_b0015) 2011; 12
Cox (10.1016/j.ctro.2020.03.007_b0110) 1958; 20
Bradley (10.1016/j.ctro.2020.03.007_b0060) 2004; 58
Singh (10.1016/j.ctro.2020.03.007_b0090) 2003; 55
Mehmood (10.1016/j.ctro.2020.03.007_b0075) 2015; 11
Hawkins (10.1016/j.ctro.2020.03.007_b0195) 2018; 11
Manapov (10.1016/j.ctro.2020.03.007_b0155) 2013; 8
Bahn (10.1016/j.ctro.2020.03.007_b0215) 2020; 144
Chajon (10.1016/j.ctro.2020.03.007_b0150) 2015; 88
Brodersen (10.1016/j.ctro.2020.03.007_b0100) 2010
Seiffert (10.1016/j.ctro.2020.03.007_b0135) 2010; 40
Collins (10.1016/j.ctro.2020.03.007_b0140) 2015; 13
Ahn (10.1016/j.ctro.2020.03.007_b0160) 2005; 61
Rose (10.1016/j.ctro.2020.03.007_b0010) 2009; 91
Svetnik (10.1016/j.ctro.2020.03.007_b0130) 2003; 43
Duda (10.1016/j.ctro.2020.03.007_b0115) 2001
Luna (10.1016/j.ctro.2020.03.007_b0205) 2019; 133
Folch-Fortuny (10.1016/j.ctro.2020.03.007_b0095) 2015; 146
Machtay (10.1016/j.ctro.2020.03.007_b0055) 2005; 63
Chao (10.1016/j.ctro.2020.03.007_b0210) 2018; 19
Curran (10.1016/j.ctro.2020.03.007_b0040) 2011; 103
Simone (10.1016/j.ctro.2020.03.007_b0025) 2017; 27
Gomez (10.1016/j.ctro.2020.03.007_b0070) 2012; 84
Maguire (10.1016/j.ctro.2020.03.007_b0085) 1999; 45
Bradley (10.1016/j.ctro.2020.03.007_b0065) 2004; 14
Huang (10.1016/j.ctro.2020.03.007_b0175) 2017; 2
Giaddui (10.1016/j.ctro.2020.03.007_b0200) 2016; 11
Movsas (10.1016/j.ctro.2020.03.007_b0020) 2016; 2
Bradley (10.1016/j.ctro.2020.03.007_b0035) 2015; 16
Auperin (10.1016/j.ctro.2020.03.007_b0030) 2010; 28
Belderbos (10.1016/j.ctro.2020.03.007_b0170) 2005; 75
Chapet (10.1016/j.ctro.2020.03.007_b0165) 2005; 77
33553694 - Clin Transl Radiat Oncol. 2021 Jan 29;27:96-97
References_xml – volume: 2
  start-page: 37
  year: 2017
  end-page: 43
  ident: b0175
  article-title: Independent test of a model to predict severe acute esophagitis
  publication-title: Adv Radiat Oncol
– volume: 13
  start-page: 1
  year: 2015
  end-page: 10
  ident: b0140
  article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement
  publication-title: BMC Med
– volume: 63
  start-page: 667
  year: 2005
  end-page: 671
  ident: b0055
  article-title: Effect of overall treatment time on outcomes after concurrent chemoradiation for locally advanced non-small cell lung carcinoma: analysis of the radiation therapy oncology group (RTOG) experience
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 91
  start-page: 282
  year: 2009
  end-page: 287
  ident: b0010
  article-title: Systematic review of dose – volume parameters in the prediction of esophagitis in thoracic radiotherapy
  publication-title: Radiother Oncol
– volume: 28
  start-page: 2181
  year: 2010
  end-page: 2190
  ident: b0030
  article-title: Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer
  publication-title: J Clin Oncol
– volume: 14
  start-page: 280
  year: 2004
  end-page: 286
  ident: b0065
  article-title: Radiation esophagitis: predictive factors and preventive strategies
  publication-title: Semin Radiat Oncol
– volume: 11
  start-page: 213
  year: 2015
  end-page: 221
  ident: b0075
  article-title: Predicting radiation esophagitis using 18 F-FDG PET during chemoradiotherapy for locally advanced non–small cell lung cancer
  publication-title: J Thorac Oncol
– reference: MathWorks. Chapter 23: Classification learner. Stat. Mach. Learn. Toolbox User’s Guid., 2019, p. 1–163.
– volume: 84
  start-page: 1010
  year: 2012
  end-page: 1016
  ident: b0070
  article-title: Predictors of high-grade esophagitis after definitive three-dimensional conformal therapy, intensity-modulated radiation therapy, or proton beam therapy for non-small cell lung cancer
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 144
  start-page: 148
  year: 2020
  end-page: 151
  ident: b0215
  article-title: On the limitations of the area under the ROC curve for NTCP modelling
  publication-title: Radiother Oncol
– volume: 75
  start-page: 157
  year: 2005
  end-page: 164
  ident: b0170
  article-title: Acute esophageal toxicity in non-small cell lung cancer patients after high dose conformal radiotherapy
  publication-title: Radiother Oncol
– volume: 20
  start-page: 215
  year: 1958
  end-page: 242
  ident: b0110
  article-title: The regression analysis of binary sequences
  publication-title: J R Stat Soc Ser B
– volume: 103
  start-page: 1452
  year: 2011
  end-page: 1460
  ident: b0040
  article-title: Sequential vs concurrent chemoradiation for stage III non–small cell lung cancer: randomized phase III trial RTOG 9410
  publication-title: J Natl Cancer Inst
– start-page: 60
  year: 2005
  end-page: 66
  ident: b0050
  article-title: Treatment-related esophagitis
  publication-title: Semin Oncol
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b0145
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J Artif Intell Res
– volume: 16
  start-page: 187
  year: 2015
  end-page: 199
  ident: b0035
  article-title: Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomized two-by-two factorial ph
  publication-title: Lancet Oncol
– volume: 55
  start-page: 337
  year: 2003
  end-page: 341
  ident: b0090
  article-title: Predictors of radiation-induced esophageal toxicity in patients with non-small cell lung cancer treated with three-dimensional conformal radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 60
  start-page: 1106
  year: 2004
  end-page: 1112
  ident: b0080
  article-title: Predictors of acute esophagitis in patients with non-small cell lung carcinoma treated with concurrent chemotherapy and hyperfractionated radiotherapy followed by surgery
  publication-title: Int J Radiat Oncol Biol Phys
– reference: Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. vol. 19. 1984. doi:10.1371/journal.pone.0015807.
– volume: 87
  start-page: 690
  year: 2013
  end-page: 696
  ident: b0045
  article-title: Predicting esophagitis after chemoradiation therapy for non-small cell lung cancer: an individual patient data meta-analysis
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0120
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 88
  start-page: 1
  year: 2015
  end-page: 4
  ident: b0150
  article-title: Simultaneously modulated accelerated radiation therapy reduces severe esophageal toxicity in concomitant chemoradiotherapy of locally advanced non-small-cell lung cancer
  publication-title: Br J Radiol
– volume: 11
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0200
  article-title: Establishing the feasibility of the dosimetric compliance criteria of RTOG 1308: phase III randomized trial comparing overall survival after photon versus proton radiochemotherapy for inoperable stage II-IIIB NSCLC
  publication-title: Radiat Oncol
– volume: 123
  start-page: 4244
  year: 2017
  end-page: 4251
  ident: b0190
  article-title: Prospective study of proton-beam radiation therapy for limited-stage small cell lung cancer
  publication-title: Cancer
– year: 2001
  ident: b0115
  article-title: Pattern classification
– volume: 61
  start-page: 335
  year: 2005
  end-page: 347
  ident: b0160
  article-title: Dosimetric and clinical predictors for radiation-induced esophageal injury
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 11
  start-page: 102
  year: 2018
  end-page: 108
  ident: b0195
  article-title: Prediction of radiation esophagitis in non-small cell lung cancer using clinical factors, dosimetric parameters, and pretreatment cytokine levels
  publication-title: Transl Oncol
– volume: 138
  start-page: 45
  year: 2019
  end-page: 51
  ident: b0180
  article-title: Toward personalized dose-prescription in locally advanced non-small cell lung cancer: validation of published normal tissue complication probability models
  publication-title: Radiother Oncol
– volume: 39
  start-page: 491
  year: 2019
  end-page: 497
  ident: b0185
  article-title: Predictors of acute radiation esophagitis in non-small cell lung cancer patients treated with accelerated hyperfractionated chemoradiotherapy
  publication-title: Anticancer Res
– volume: 146
  start-page: 77
  year: 2015
  end-page: 88
  ident: b0095
  article-title: PCA model building with missing data: new proposals and a comparative study
  publication-title: Chemom Intell Lab Syst
– volume: 133
  start-page: 106
  year: 2019
  end-page: 112
  ident: b0205
  article-title: Predicting radiation pneumonitis in locally advanced stage II–III non-small cell lung cancer using machine learning
  publication-title: Radiother Oncol
– volume: 27
  start-page: 370
  year: 2017
  end-page: 377
  ident: b0025
  article-title: Thoracic radiation normal tissue injury
  publication-title: Semin Radiat Oncol
– volume: 8
  start-page: 1
  year: 2013
  end-page: 4
  ident: b0155
  article-title: Dose-volumetric parameters and prediction of severe acute esophagitis in patients with locally-advanced non small-cell lung cancer treated with neoadjuvant concurrent hyperfractionated-accelerated chemoradiotherapy
  publication-title: Radiat Oncol
– volume: 40
  start-page: 185
  year: 2010
  end-page: 197
  ident: b0135
  article-title: RUSBoost: a hybrid approach to alleviating class imbalance
  publication-title: IEEE Trans Syst Man, Cybern Part ASystems Humans
– volume: 12
  start-page: 245
  year: 2011
  end-page: 251
  ident: b0015
  article-title: Acute esophagitis and late lung toxicity in concurrent chemoradiotherapy trials in patients with locally advanced non-small-cell lung cancer: analysis of the radiation therapy oncology group (RTOG) database
  publication-title: Clin Lung Cancer
– start-page: 3121
  year: 2010
  end-page: 3124
  ident: b0100
  article-title: The balanced accuracy and its posterior distribution
  publication-title: Proc - Int Conf Pattern Recognit
– volume: 45
  start-page: 97
  year: 1999
  end-page: 103
  ident: b0085
  article-title: Clinical and dosimetric predictors of radiation-induced esophageal toxicity
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 77
  start-page: 176
  year: 2005
  end-page: 181
  ident: b0165
  article-title: Normal tissue complication probability modeling for acute esophagitis in patients treated with conformal radiation therapy for non-small cell lung cancer
  publication-title: Radiother Oncol
– volume: 48
  start-page: 689
  year: 2000
  end-page: 696
  ident: b0005
  article-title: Predictors of severe esophagitis include use of concurrent chemotherapy, but not the length of irradiated esophagus: a multivariate analysis of patients with lung cancer treated with nonoperative therapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 2
  start-page: 359
  year: 2016
  end-page: 367
  ident: b0020
  article-title: Quality of life analysis of a radiation dose-escalation study of patients with non-small-cell lung cancer a secondary analysis of the radiation Therapy Oncology Group 0617 randomized clinical trial
  publication-title: JAMA Oncol
– volume: 58
  start-page: 1106
  year: 2004
  end-page: 1113
  ident: b0060
  article-title: Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 43
  start-page: 1947
  year: 2003
  end-page: 1958
  ident: b0130
  article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling
  publication-title: J Chem Inf Comput Sci
– volume: 19
  start-page: 539
  year: 2018
  end-page: 546
  ident: b0210
  article-title: Exploratory analysis using machine learning to predict for chest wall pain in patients with stage I non-small-cell lung cancer treated with stereotactic body radiation therapy
  publication-title: J Appl Clin Med Phys
– volume: 12
  start-page: 245
  year: 2011
  ident: 10.1016/j.ctro.2020.03.007_b0015
  article-title: Acute esophagitis and late lung toxicity in concurrent chemoradiotherapy trials in patients with locally advanced non-small-cell lung cancer: analysis of the radiation therapy oncology group (RTOG) database
  publication-title: Clin Lung Cancer
  doi: 10.1016/j.cllc.2011.03.026
– ident: 10.1016/j.ctro.2020.03.007_b0105
– volume: 19
  start-page: 539
  year: 2018
  ident: 10.1016/j.ctro.2020.03.007_b0210
  article-title: Exploratory analysis using machine learning to predict for chest wall pain in patients with stage I non-small-cell lung cancer treated with stereotactic body radiation therapy
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.12415
– volume: 28
  start-page: 2181
  year: 2010
  ident: 10.1016/j.ctro.2020.03.007_b0030
  article-title: Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2009.26.2543
– volume: 20
  start-page: 215
  year: 1958
  ident: 10.1016/j.ctro.2020.03.007_b0110
  article-title: The regression analysis of binary sequences
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1958.tb00292.x
– volume: 133
  start-page: 106
  year: 2019
  ident: 10.1016/j.ctro.2020.03.007_b0205
  article-title: Predicting radiation pneumonitis in locally advanced stage II–III non-small cell lung cancer using machine learning
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.01.003
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.ctro.2020.03.007_b0120
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 87
  start-page: 690
  year: 2013
  ident: 10.1016/j.ctro.2020.03.007_b0045
  article-title: Predicting esophagitis after chemoradiation therapy for non-small cell lung cancer: an individual patient data meta-analysis
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2013.07.029
– volume: 43
  start-page: 1947
  year: 2003
  ident: 10.1016/j.ctro.2020.03.007_b0130
  article-title: Random forest: a classification and regression tool for compound classification and QSAR modeling
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci034160g
– volume: 60
  start-page: 1106
  year: 2004
  ident: 10.1016/j.ctro.2020.03.007_b0080
  article-title: Predictors of acute esophagitis in patients with non-small cell lung carcinoma treated with concurrent chemotherapy and hyperfractionated radiotherapy followed by surgery
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2004.04.051
– volume: 13
  start-page: 1
  year: 2015
  ident: 10.1016/j.ctro.2020.03.007_b0140
  article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement
  publication-title: BMC Med
  doi: 10.1186/s12916-014-0241-z
– year: 2001
  ident: 10.1016/j.ctro.2020.03.007_b0115
– volume: 138
  start-page: 45
  year: 2019
  ident: 10.1016/j.ctro.2020.03.007_b0180
  article-title: Toward personalized dose-prescription in locally advanced non-small cell lung cancer: validation of published normal tissue complication probability models
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.05.011
– volume: 16
  start-page: 187
  year: 2015
  ident: 10.1016/j.ctro.2020.03.007_b0035
  article-title: Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomized two-by-two factorial ph
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(14)71207-0
– volume: 58
  start-page: 1106
  year: 2004
  ident: 10.1016/j.ctro.2020.03.007_b0060
  article-title: Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2003.09.080
– volume: 55
  start-page: 337
  year: 2003
  ident: 10.1016/j.ctro.2020.03.007_b0090
  article-title: Predictors of radiation-induced esophageal toxicity in patients with non-small cell lung cancer treated with three-dimensional conformal radiotherapy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(02)03937-8
– volume: 14
  start-page: 280
  year: 2004
  ident: 10.1016/j.ctro.2020.03.007_b0065
  article-title: Radiation esophagitis: predictive factors and preventive strategies
  publication-title: Semin Radiat Oncol
  doi: 10.1016/j.semradonc.2004.06.003
– volume: 8
  start-page: 1
  year: 2013
  ident: 10.1016/j.ctro.2020.03.007_b0155
  article-title: Dose-volumetric parameters and prediction of severe acute esophagitis in patients with locally-advanced non small-cell lung cancer treated with neoadjuvant concurrent hyperfractionated-accelerated chemoradiotherapy
  publication-title: Radiat Oncol
  doi: 10.1186/1748-717X-8-122
– volume: 75
  start-page: 157
  year: 2005
  ident: 10.1016/j.ctro.2020.03.007_b0170
  article-title: Acute esophageal toxicity in non-small cell lung cancer patients after high dose conformal radiotherapy
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2005.03.021
– volume: 144
  start-page: 148
  year: 2020
  ident: 10.1016/j.ctro.2020.03.007_b0215
  article-title: On the limitations of the area under the ROC curve for NTCP modelling
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.11.018
– volume: 63
  start-page: 667
  year: 2005
  ident: 10.1016/j.ctro.2020.03.007_b0055
  article-title: Effect of overall treatment time on outcomes after concurrent chemoradiation for locally advanced non-small cell lung carcinoma: analysis of the radiation therapy oncology group (RTOG) experience
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2005.03.037
– volume: 27
  start-page: 370
  year: 2017
  ident: 10.1016/j.ctro.2020.03.007_b0025
  article-title: Thoracic radiation normal tissue injury
  publication-title: Semin Radiat Oncol
  doi: 10.1016/j.semradonc.2017.04.009
– volume: 123
  start-page: 4244
  year: 2017
  ident: 10.1016/j.ctro.2020.03.007_b0190
  article-title: Prospective study of proton-beam radiation therapy for limited-stage small cell lung cancer
  publication-title: Cancer
  doi: 10.1002/cncr.30870
– start-page: 60
  year: 2005
  ident: 10.1016/j.ctro.2020.03.007_b0050
  article-title: Treatment-related esophagitis
  publication-title: Semin Oncol
  doi: 10.1053/j.seminoncol.2005.03.011
– volume: 40
  start-page: 185
  year: 2010
  ident: 10.1016/j.ctro.2020.03.007_b0135
  article-title: RUSBoost: a hybrid approach to alleviating class imbalance
  publication-title: IEEE Trans Syst Man, Cybern Part ASystems Humans
  doi: 10.1109/TSMCA.2009.2029559
– volume: 2
  start-page: 359
  year: 2016
  ident: 10.1016/j.ctro.2020.03.007_b0020
  article-title: Quality of life analysis of a radiation dose-escalation study of patients with non-small-cell lung cancer a secondary analysis of the radiation Therapy Oncology Group 0617 randomized clinical trial
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2015.3969
– volume: 39
  start-page: 491
  year: 2019
  ident: 10.1016/j.ctro.2020.03.007_b0185
  article-title: Predictors of acute radiation esophagitis in non-small cell lung cancer patients treated with accelerated hyperfractionated chemoradiotherapy
  publication-title: Anticancer Res
  doi: 10.21873/anticanres.13139
– volume: 48
  start-page: 689
  year: 2000
  ident: 10.1016/j.ctro.2020.03.007_b0005
  article-title: Predictors of severe esophagitis include use of concurrent chemotherapy, but not the length of irradiated esophagus: a multivariate analysis of patients with lung cancer treated with nonoperative therapy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(00)00699-4
– volume: 2
  start-page: 37
  year: 2017
  ident: 10.1016/j.ctro.2020.03.007_b0175
  article-title: Independent test of a model to predict severe acute esophagitis
  publication-title: Adv Radiat Oncol
  doi: 10.1016/j.adro.2016.11.003
– volume: 61
  start-page: 335
  year: 2005
  ident: 10.1016/j.ctro.2020.03.007_b0160
  article-title: Dosimetric and clinical predictors for radiation-induced esophageal injury
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2004.06.014
– volume: 103
  start-page: 1452
  year: 2011
  ident: 10.1016/j.ctro.2020.03.007_b0040
  article-title: Sequential vs concurrent chemoradiation for stage III non–small cell lung cancer: randomized phase III trial RTOG 9410
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djr325
– volume: 11
  start-page: 102
  year: 2018
  ident: 10.1016/j.ctro.2020.03.007_b0195
  article-title: Prediction of radiation esophagitis in non-small cell lung cancer using clinical factors, dosimetric parameters, and pretreatment cytokine levels
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2017.11.005
– volume: 84
  start-page: 1010
  year: 2012
  ident: 10.1016/j.ctro.2020.03.007_b0070
  article-title: Predictors of high-grade esophagitis after definitive three-dimensional conformal therapy, intensity-modulated radiation therapy, or proton beam therapy for non-small cell lung cancer
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2012.01.071
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.ctro.2020.03.007_b0145
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– ident: 10.1016/j.ctro.2020.03.007_b0125
  doi: 10.1371/journal.pone.0015807
– volume: 88
  start-page: 1
  year: 2015
  ident: 10.1016/j.ctro.2020.03.007_b0150
  article-title: Simultaneously modulated accelerated radiation therapy reduces severe esophageal toxicity in concomitant chemoradiotherapy of locally advanced non-small-cell lung cancer
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20150311
– volume: 11
  start-page: 213
  year: 2015
  ident: 10.1016/j.ctro.2020.03.007_b0075
  article-title: Predicting radiation esophagitis using 18 F-FDG PET during chemoradiotherapy for locally advanced non–small cell lung cancer
  publication-title: J Thorac Oncol
  doi: 10.1016/j.jtho.2015.10.006
– volume: 77
  start-page: 176
  year: 2005
  ident: 10.1016/j.ctro.2020.03.007_b0165
  article-title: Normal tissue complication probability modeling for acute esophagitis in patients treated with conformal radiation therapy for non-small cell lung cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2005.10.001
– volume: 45
  start-page: 97
  year: 1999
  ident: 10.1016/j.ctro.2020.03.007_b0085
  article-title: Clinical and dosimetric predictors of radiation-induced esophageal toxicity
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(99)00163-7
– volume: 11
  start-page: 1
  year: 2016
  ident: 10.1016/j.ctro.2020.03.007_b0200
  article-title: Establishing the feasibility of the dosimetric compliance criteria of RTOG 1308: phase III randomized trial comparing overall survival after photon versus proton radiochemotherapy for inoperable stage II-IIIB NSCLC
  publication-title: Radiat Oncol
  doi: 10.1186/s13014-016-0640-8
– volume: 91
  start-page: 282
  year: 2009
  ident: 10.1016/j.ctro.2020.03.007_b0010
  article-title: Systematic review of dose – volume parameters in the prediction of esophagitis in thoracic radiotherapy
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2008.09.010
– volume: 146
  start-page: 77
  year: 2015
  ident: 10.1016/j.ctro.2020.03.007_b0095
  article-title: PCA model building with missing data: new proposals and a comparative study
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2015.05.006
– start-page: 3121
  year: 2010
  ident: 10.1016/j.ctro.2020.03.007_b0100
  article-title: The balanced accuracy and its posterior distribution
  publication-title: Proc - Int Conf Pattern Recognit
– reference: 33553694 - Clin Transl Radiat Oncol. 2021 Jan 29;27:96-97
SSID ssj0001879535
Score 2.1901312
Snippet •A large cohort to predict radiation esophagitis in lung cancer patients was used.•Modern machine learning models were implemented to predict radiation...
Radiation esophagitis is a clinically important toxicity seen with treatment for locally-advanced non-small cell lung cancer. There is considerable...
• A large cohort to predict radiation esophagitis in lung cancer patients was used. • Modern machine learning models were implemented to predict radiation...
Background and Purpose: Radiation esophagitis is a clinically important toxicity seen with treatment for locally-advanced non-small cell lung cancer. There is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 69
SubjectTerms Chemoradiation
Intensity-modulated radiation therapy
Machine learning
Non-small cell lung cancer
Proton beam therapy
Radiation esophagitis
Radiation-induced toxicity
Title Machine learning highlights the deficiency of conventional dosimetric constraints for prevention of high-grade radiation esophagitis in non-small cell lung cancer treated with chemoradiation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2405630820300203
https://dx.doi.org/10.1016/j.ctro.2020.03.007
https://www.ncbi.nlm.nih.gov/pubmed/32274426
https://www.proquest.com/docview/2388821395
https://pubmed.ncbi.nlm.nih.gov/PMC7132156
https://doaj.org/article/4f9a3c1e3a2d4d608c79d2cf6344e73b
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQHhAXxJsuCzISN2ThxI4THxfEaoVUTqy0N8vxoxSlyarp_j1-GzPOQw1IuxdulRunsf115htn_A0hH0rhOISyglnnKyZjFpmu6sC0Kmpdgb-yNe53rL-ryyv57bq4Pir1hTlhgzzwMHGfZNRWuCwIm3vpFa9cqX3uohJShlLUaH255kfBVNpdwRraqbomeKyCKcGr8cTMkNyFBWYgOMz5oHBaLrxSEu9fOKd_yeffOZRHTuniCXk8skl6PoziKXkQ2mfk4Xp8X_6c_F6nXMlAx-IQG4ryxA0G5D0F6kd9QAUJPH5Ju0iPU9Cp7_rtDuttOWzvUy0J6AUkl96Muk9di73wlmyztz7QPSodpPaA5RHsBhWT6LalbdeyfmebhuKbAtqAiaEOAbenKdU9eIo7whQgtOvmu7wgVxdff3y5ZGPFBuaKMj8wFa0ug4q84CGKylunUG9fxqCVh2aIxmLhXYxgJz2vC597DW40FzXQPMC0eElO4IHCa0Izq3lUtlJe1pLX8CHGEF3QlU8VPVckm1bMuFHOHGeiMVPe2i-Dq2xwlQ0XBlZ5RT7OfW4GMY87r_6MQJivRCHu1ADwNCM8zX3wXBExwchMZ13BOsONtnf-dDH3GpnQwHDu7fd-QqoBM4EratvQ3fYGmBnEUkD3ixV5NSB3HhjY9FICU1uRcoHpxciX37Tbn0mKvMwEcEZ1-j-m6g15hEMZsknPyMlhfxveAuM71O_Sn_sPcndZpQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+highlights+the+deficiency+of+conventional+dosimetric+constraints+for+prevention+of+high-grade+radiation+esophagitis+in+non-small+cell+lung+cancer+treated+with+chemoradiation&rft.jtitle=Clinical+and+translational+radiation+oncology&rft.au=Luna%2C+Jos%C3%A9+Marcio&rft.au=Chao%2C+Hann-Hsiang&rft.au=Shinohara%2C+Russel+T.&rft.au=Ungar%2C+Lyle+H.&rft.date=2020-05-01&rft.pub=Elsevier+B.V&rft.issn=2405-6308&rft.eissn=2405-6308&rft.volume=22&rft.spage=69&rft.epage=75&rft_id=info:doi/10.1016%2Fj.ctro.2020.03.007&rft.externalDocID=S2405630820300203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-6308&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-6308&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-6308&client=summon