Early clinical experience with a total body irradiation technique using field-in-field beams and on-line image guidance
Total body irradiation (TBI) is a treatment used in the conditioning of patients prior to hematopoietic stem cell transplantation. We developed an extended-distance TBI technique using a conventional linac with multi-leaf collimator to deliver a homogeneous dose, and spare critical organs. Patients...
Saved in:
Published in | Physics and imaging in radiation oncology Vol. 16; pp. 12 - 17 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2405-6316 2405-6316 |
DOI | 10.1016/j.phro.2020.09.004 |
Cover
Abstract | Total body irradiation (TBI) is a treatment used in the conditioning of patients prior to hematopoietic stem cell transplantation. We developed an extended-distance TBI technique using a conventional linac with multi-leaf collimator to deliver a homogeneous dose, and spare critical organs.
Patients were treated either in lateral recumbent or in supine position depending on the dose level. A conventional linac was used with the patient midline at 350 cm from the beam source. A series of beams was prepared manually using a 3D treatment planning system (TPS) aiming to improve dose homogeneity, spare the organs at risk and facilitate accurate patient positioning. An optimized dose calculation model for extended-distance treatments was developed using phantom measurements. During treatment, in-vivo dosimetry was performed using electronic dosimeters, and accurate positioning was verified using a mobile megavoltage imager. We analyzed dose volume histogram parameters for 19 patients, and in-vivo measurements for 46 delivered treatment fractions.
Optimization of the dose calculation model for TBI improved dose calculation by 2.1% at the beam axis, and 17% at the field edge. Treatment planning dose objectives and constraints were met for 16 of 19 patients. Results of in-vivo dosimetry were within the set limitations (±10%) with mean deviations of 3.7% posterior of the lungs and 0.6% for the abdomen.
We developed a TBI treatment technique using a conventional linac and TPS that can reliably be used in the conditioning regimen of patients prior to stem cell transplantation. |
---|---|
AbstractList | Background and purpose: Total body irradiation (TBI) is a treatment used in the conditioning of patients prior to hematopoietic stem cell transplantation. We developed an extended-distance TBI technique using a conventional linac with multi-leaf collimator to deliver a homogeneous dose, and spare critical organs. Materials and methods: Patients were treated either in lateral recumbent or in supine position depending on the dose level. A conventional linac was used with the patient midline at 350 cm from the beam source. A series of beams was prepared manually using a 3D treatment planning system (TPS) aiming to improve dose homogeneity, spare the organs at risk and facilitate accurate patient positioning. An optimized dose calculation model for extended-distance treatments was developed using phantom measurements. During treatment, in-vivo dosimetry was performed using electronic dosimeters, and accurate positioning was verified using a mobile megavoltage imager. We analyzed dose volume histogram parameters for 19 patients, and in-vivo measurements for 46 delivered treatment fractions. Results: Optimization of the dose calculation model for TBI improved dose calculation by 2.1% at the beam axis, and 17% at the field edge. Treatment planning dose objectives and constraints were met for 16 of 19 patients. Results of in-vivo dosimetry were within the set limitations (±10%) with mean deviations of 3.7% posterior of the lungs and 0.6% for the abdomen. Conclusions: We developed a TBI treatment technique using a conventional linac and TPS that can reliably be used in the conditioning regimen of patients prior to stem cell transplantation. Total body irradiation (TBI) is a treatment used in the conditioning of patients prior to hematopoietic stem cell transplantation. We developed an extended-distance TBI technique using a conventional linac with multi-leaf collimator to deliver a homogeneous dose, and spare critical organs. Patients were treated either in lateral recumbent or in supine position depending on the dose level. A conventional linac was used with the patient midline at 350 cm from the beam source. A series of beams was prepared manually using a 3D treatment planning system (TPS) aiming to improve dose homogeneity, spare the organs at risk and facilitate accurate patient positioning. An optimized dose calculation model for extended-distance treatments was developed using phantom measurements. During treatment, in-vivo dosimetry was performed using electronic dosimeters, and accurate positioning was verified using a mobile megavoltage imager. We analyzed dose volume histogram parameters for 19 patients, and in-vivo measurements for 46 delivered treatment fractions. Optimization of the dose calculation model for TBI improved dose calculation by 2.1% at the beam axis, and 17% at the field edge. Treatment planning dose objectives and constraints were met for 16 of 19 patients. Results of in-vivo dosimetry were within the set limitations (±10%) with mean deviations of 3.7% posterior of the lungs and 0.6% for the abdomen. We developed a TBI treatment technique using a conventional linac and TPS that can reliably be used in the conditioning regimen of patients prior to stem cell transplantation. Total body irradiation (TBI) is a treatment used in the conditioning of patients prior to hematopoietic stem cell transplantation. We developed an extended-distance TBI technique using a conventional linac with multi-leaf collimator to deliver a homogeneous dose, and spare critical organs.BACKGROUND AND PURPOSETotal body irradiation (TBI) is a treatment used in the conditioning of patients prior to hematopoietic stem cell transplantation. We developed an extended-distance TBI technique using a conventional linac with multi-leaf collimator to deliver a homogeneous dose, and spare critical organs.Patients were treated either in lateral recumbent or in supine position depending on the dose level. A conventional linac was used with the patient midline at 350 cm from the beam source. A series of beams was prepared manually using a 3D treatment planning system (TPS) aiming to improve dose homogeneity, spare the organs at risk and facilitate accurate patient positioning. An optimized dose calculation model for extended-distance treatments was developed using phantom measurements. During treatment, in-vivo dosimetry was performed using electronic dosimeters, and accurate positioning was verified using a mobile megavoltage imager. We analyzed dose volume histogram parameters for 19 patients, and in-vivo measurements for 46 delivered treatment fractions.MATERIALS AND METHODSPatients were treated either in lateral recumbent or in supine position depending on the dose level. A conventional linac was used with the patient midline at 350 cm from the beam source. A series of beams was prepared manually using a 3D treatment planning system (TPS) aiming to improve dose homogeneity, spare the organs at risk and facilitate accurate patient positioning. An optimized dose calculation model for extended-distance treatments was developed using phantom measurements. During treatment, in-vivo dosimetry was performed using electronic dosimeters, and accurate positioning was verified using a mobile megavoltage imager. We analyzed dose volume histogram parameters for 19 patients, and in-vivo measurements for 46 delivered treatment fractions.Optimization of the dose calculation model for TBI improved dose calculation by 2.1% at the beam axis, and 17% at the field edge. Treatment planning dose objectives and constraints were met for 16 of 19 patients. Results of in-vivo dosimetry were within the set limitations (±10%) with mean deviations of 3.7% posterior of the lungs and 0.6% for the abdomen.RESULTSOptimization of the dose calculation model for TBI improved dose calculation by 2.1% at the beam axis, and 17% at the field edge. Treatment planning dose objectives and constraints were met for 16 of 19 patients. Results of in-vivo dosimetry were within the set limitations (±10%) with mean deviations of 3.7% posterior of the lungs and 0.6% for the abdomen.We developed a TBI treatment technique using a conventional linac and TPS that can reliably be used in the conditioning regimen of patients prior to stem cell transplantation.CONCLUSIONSWe developed a TBI treatment technique using a conventional linac and TPS that can reliably be used in the conditioning regimen of patients prior to stem cell transplantation. |
Author | Verwegen, Drean van Kollenburg, Peter G.M. van Leeuwen, Ruud G.H. van der Maazen, Richard W.M. Swinkels, Marc |
Author_xml | – sequence: 1 givenname: Ruud G.H. surname: van Leeuwen fullname: van Leeuwen, Ruud G.H. email: ruud.vanleeuwen@radboudumc.nl – sequence: 2 givenname: Drean surname: Verwegen fullname: Verwegen, Drean – sequence: 3 givenname: Peter G.M. surname: van Kollenburg fullname: van Kollenburg, Peter G.M. – sequence: 4 givenname: Marc surname: Swinkels fullname: Swinkels, Marc – sequence: 5 givenname: Richard W.M. surname: van der Maazen fullname: van der Maazen, Richard W.M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33458337$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhleoiJbSP8AB-chlgz_W612EkKqqQKVKXOBszdqzicPGDrbTkn-PmzSo7aGcPLLnfWY8876ujnzwWFVvGZ0xytoPy9l6EcOMU05ntJ9R2ryoTnhDZd0K1h49iI-rs5SWlFKueiEFfVUdC9HITgh1Ut1eQpy2xEzOOwMTwT9rjA69QXLr8oIAySGX-yHYLXExgnWQXfAko1l493uDZJOcn5PR4WRr5-tdQAaEVSLgLQm-LnAkbgVzJPONs1Dob6qXI0wJz-7P0-rnl8sfF9_q6-9fry7Or2sjFc-1BEDWw2CtlJKDkJ1UFErvcjBD3zSd6kZmLRigSjLWjtQCcMU540YJK8RpdbXn2gBLvY6li7jVAZzeXYQ41xCzMxNqUGZgrew4K-OhoxhwNLaVPY6CQ9tgYX3es9abYYXWoM8RpkfQxy_eLfQ83GjVUdWyvgDe3wNiKJNLWa9cMjhN4DFskuaN6pRSgjYl9d3DWv-KHDZXErp9gokhpYijNi7vVlNKu0kzqu98osuni0_0nU807TXdsfkT6YH-rOjTXoRlWzcOo05m5xPrIppcxumel398Ij9Y7hdu_yf-C_n_7C0 |
CitedBy_id | crossref_primary_10_3389_fonc_2022_1046168 crossref_primary_10_3389_fped_2021_774348 crossref_primary_10_4103_jmp_jmp_103_22 crossref_primary_10_4103_jmp_jmp_137_21 crossref_primary_10_1259_bjr_20220650 crossref_primary_10_1002_acm2_13865 |
Cites_doi | 10.1182/blood.V81.8.2187.2187 10.1038/sj.bjc.6601751 10.1016/S0360-3016(96)85011-5 10.1182/blood-2014-02-514778 10.1016/0360-3016(81)90131-0 10.1002/cncr.28768 10.1016/j.ijrobp.2011.10.045 10.1016/j.ijrobp.2007.07.2334 10.1118/1.3171688 10.1118/1.598418 10.1200/JCO.2000.18.5.981 10.1016/j.jmir.2015.09.007 10.1002/acm2.12257 10.1163/156855902760262736 10.1016/S1053-4296(05)80036-0 10.1120/jacmp.v17i2.5913 10.1016/j.ijrobp.2018.04.071 10.1016/S0360-3016(98)00068-6 10.1016/S0360-3016(02)03039-0 10.1007/s00066-005-1405-8 10.1016/j.tipsro.2019.05.002 10.1016/j.radonc.2018.08.005 |
ContentType | Journal Article |
Copyright | 2020 The Authors 2020 The Authors. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: 2020 The Authors. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.phro.2020.09.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2405-6316 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_a7cb1658213340f3befcd659ef32a64e PMC7807619 33458337 10_1016_j_phro_2020_09_004 S2405631620300531 |
Genre | Journal Article |
GroupedDBID | .1- .FO 0R~ AAEDW AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADVLN AEUPX AFJKZ AFPUW AFRHN AFTJW AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ M41 M~E O9- OK1 ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH NCXOZ RIG AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c572t-5aae19abdd5552a358570a5835bcb944878f1ddaca075116f0daa272212c73d33 |
IEDL.DBID | DOA |
ISSN | 2405-6316 |
IngestDate | Mon Sep 08 19:52:06 EDT 2025 Thu Aug 21 13:49:27 EDT 2025 Fri Jul 11 03:38:31 EDT 2025 Mon Jul 21 05:26:37 EDT 2025 Thu Apr 24 22:57:02 EDT 2025 Tue Jul 01 04:17:54 EDT 2025 Thu Jul 20 20:16:25 EDT 2023 Tue Aug 26 17:19:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY license. 2020 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c572t-5aae19abdd5552a358570a5835bcb944878f1ddaca075116f0daa272212c73d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/a7cb1658213340f3befcd659ef32a64e |
PMID | 33458337 |
PQID | 2478777304 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a7cb1658213340f3befcd659ef32a64e pubmedcentral_primary_oai_pubmedcentral_nih_gov_7807619 proquest_miscellaneous_2478777304 pubmed_primary_33458337 crossref_citationtrail_10_1016_j_phro_2020_09_004 crossref_primary_10_1016_j_phro_2020_09_004 elsevier_sciencedirect_doi_10_1016_j_phro_2020_09_004 elsevier_clinicalkey_doi_10_1016_j_phro_2020_09_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 2020-Oct 20201001 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Physics and imaging in radiation oncology |
PublicationTitleAlternate | Phys Imaging Radiat Oncol |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Lamichhane, Patel, Studenski (b0090) 2016; 17 Bloemen-van Gurp, Mijnheer, Verschueren, Lambin (b0080) 2007; 69 Peters, Taylor, Turner (b0095) 2017; 46 Blume, Kopecky, Henslee-Downey, Forman, Stiff, LeMaistre (b0015) 1993; 81 Borg, Hughes, Horvath, Rice, Thomas (b0055) 2002; 54 Gyurkocza, Sandmaier (b0005) 2014; 124 Belkacémi, Ozsahin, Pène, Rio, Laporte, Leblond (b0065) 1996; 35 Daskalov, Löffler, Williamson (b0120) 1998; 25 Onal, Sonmez, Arslan, Sonmez, Efe, Oymak (b0100) 2012; 83 Wong, Filippi, Dabaja, Yahalom, Specht (b0010) 2018; 101 Ozsahin, Pene, Cosset, Laugier (b0060) 1994; 4 Girinsky, Benhamou, Bourhis, Dhermain, Guillot-Valls, Ganansia (b0045) 2000; 18 Beyzadeoglu, Dirican, Oysul, Arpaci, Pak (b0070) 2002; 32 Symons, Morrison, Parry, Woodings, Zissiadis (b0115) 2018; 19 Fog, Hansen, Kjær-Kristoffersen, Berlon, Petersen, Mandeville (b0105) 2019; 10 Igaki, Karasawa, Sakamaki, Saito, Nakagawa, Ohtomo (b0050) 2005; 181 Aristei, Aversa, Chionne, Martelli, Latini (b0025) 1998; 41 Lavallee, Gingras, Chretien, Aubin, Cote, Beaulieu (b0085) 2009; 36 Carruthers, Wallington (b0040) 2004; 90 Van DJ, Galvin JM, Glasgow GP, Podgorsak EB. The physical aspects of total and half body photon irradiation; a report of task group 29 Radiation therapy committee American Association of Physicists in Medicine; 1986. Giebel, Miszczyk, Slosarek, Moukhtari, Ciceri, Esteve (b0020) 2014; 120 Van Dyk, Keane, Kan, Rider, Fryer (b0030) 1981; 7 Springer, Hammer, Winkler, Track, Huppert, Böhm (b0110) 2016 Tas, Durmus, Okumus, Uzel, Gokce, Goksoy (b0125) 2018; 129 Labar, Bogdanic, Nemet, Mrsic, Vrtar, Grgic-Markulin (b0035) 1992; 9 Fog (10.1016/j.phro.2020.09.004_b0105) 2019; 10 Girinsky (10.1016/j.phro.2020.09.004_b0045) 2000; 18 Onal (10.1016/j.phro.2020.09.004_b0100) 2012; 83 Igaki (10.1016/j.phro.2020.09.004_b0050) 2005; 181 Van Dyk (10.1016/j.phro.2020.09.004_b0030) 1981; 7 Giebel (10.1016/j.phro.2020.09.004_b0020) 2014; 120 Lamichhane (10.1016/j.phro.2020.09.004_b0090) 2016; 17 Lavallee (10.1016/j.phro.2020.09.004_b0085) 2009; 36 Ozsahin (10.1016/j.phro.2020.09.004_b0060) 1994; 4 Beyzadeoglu (10.1016/j.phro.2020.09.004_b0070) 2002; 32 Aristei (10.1016/j.phro.2020.09.004_b0025) 1998; 41 Tas (10.1016/j.phro.2020.09.004_b0125) 2018; 129 Gyurkocza (10.1016/j.phro.2020.09.004_b0005) 2014; 124 Daskalov (10.1016/j.phro.2020.09.004_b0120) 1998; 25 Symons (10.1016/j.phro.2020.09.004_b0115) 2018; 19 Springer (10.1016/j.phro.2020.09.004_b0110) 2016 Peters (10.1016/j.phro.2020.09.004_b0095) 2017; 46 Belkacémi (10.1016/j.phro.2020.09.004_b0065) 1996; 35 Carruthers (10.1016/j.phro.2020.09.004_b0040) 2004; 90 Blume (10.1016/j.phro.2020.09.004_b0015) 1993; 81 Bloemen-van Gurp (10.1016/j.phro.2020.09.004_b0080) 2007; 69 Borg (10.1016/j.phro.2020.09.004_b0055) 2002; 54 10.1016/j.phro.2020.09.004_b0075 Labar (10.1016/j.phro.2020.09.004_b0035) 1992; 9 Wong (10.1016/j.phro.2020.09.004_b0010) 2018; 101 |
References_xml | – volume: 9 start-page: 343 year: 1992 end-page: 347 ident: b0035 article-title: Total body irradiation with or without lung shielding for allogeneic bone marrow transplantation publication-title: Bone Marrow Transplant – volume: 181 start-page: 704 year: 2005 end-page: 708 ident: b0050 article-title: Renal dysfunction after total-body irradiation: significance of selective renal shielding blocks publication-title: Strahlentherapie Und Onkol – volume: 32 start-page: 25 year: 2002 end-page: 30 ident: b0070 article-title: Evaluation of fractionated total body irradiation and dose rate on cataractogenesis in bone marrow transplantation publication-title: Haematologia (Budap) – volume: 81 start-page: 2187 year: 1993 end-page: 2193 ident: b0015 article-title: A prospective randomized comparison of total body irradiation-etoposide versus busulfan-cyclophosphamide as preparatory regimens for bone marrow transplantation in patients with leukemia who were not in first remission: a Southwest Oncology Group study publication-title: Blood – volume: 69 start-page: 1297 year: 2007 end-page: 1304 ident: b0080 article-title: Total body irradiation, toward optimal individual delivery: dose evaluation with metal oxide field effect transistors, thermoluminescence detectors, and a treatment planning system publication-title: Int J Radiat Oncol Biol Phys – volume: 18 start-page: 981 year: 2000 end-page: 986 ident: b0045 article-title: Prospective randomized comparison of single-dose versus hyperfractionated total-body irradiation in patients with hematologic malignancies publication-title: J Clin Oncol – volume: 10 start-page: 1 year: 2019 end-page: 7 ident: b0105 article-title: A step and shoot intensity modulated technique for total body irradiation publication-title: Tech Innov Patient Support Radiat Oncol – volume: 54 start-page: 1165 year: 2002 end-page: 1173 ident: b0055 article-title: Renal toxicity after total body irradiation publication-title: Int J Radiat Oncol Biol Phys – volume: 120 start-page: 2760 year: 2014 end-page: 2765 ident: b0020 article-title: Extreme heterogeneity of myeloablative total body irradiation techniques in clinical practice: a survey of the acute leukemia working party of the european group for blood and marrow transplantation publication-title: Cancer – volume: 124 start-page: 344 year: 2014 end-page: 353 ident: b0005 article-title: Conditioning regimens for hematopoietic cell transplantation: one size does not fit all publication-title: Blood – volume: 25 start-page: 2200 year: 1998 end-page: 2208 ident: b0120 article-title: Monte Carlo-aided dosimetry of a new high dose-rate brachytherapy source publication-title: Med Phys – volume: 90 start-page: 2080 year: 2004 end-page: 2084 ident: b0040 article-title: Total body irradiation and pneumonitis risk: a review of outcomes publication-title: Br J Cancer – reference: Van DJ, Galvin JM, Glasgow GP, Podgorsak EB. The physical aspects of total and half body photon irradiation; a report of task group 29 Radiation therapy committee American Association of Physicists in Medicine; 1986. – volume: 36 start-page: 3844 year: 2009 end-page: 3855 ident: b0085 article-title: Commissioning and evaluation of an extended SSD photon model for PINNACLE3: an application to total body irradiation publication-title: Med Phys – volume: 46 start-page: 442 year: 2017 end-page: 449 ident: b0095 article-title: An evidence-based review of total body irradiation publication-title: J Med Imaging Radiat Sci – volume: 41 start-page: 651 year: 1998 end-page: 657 ident: b0025 article-title: Interstitial pneumonitis in acute leukemia patients submitted to T- depleted matched and mismatched bone marrow transplantation publication-title: Int J Radiat Oncol Biol Phys – volume: 19 start-page: 103 year: 2018 end-page: 110 ident: b0115 article-title: Volumetric modulated arc therapy for total body irradiation: a feasibility study using Pinnacle treatment planning system and Elekta Agility linac publication-title: J Appl Clin Med Phys – volume: 129 start-page: 527 year: 2018 end-page: 533 ident: b0125 article-title: Total-body irradiation using linac-based volumetric modulated arc therapy: Its clinical accuracy, feasibility and reliability publication-title: Radiother Oncol – volume: 83 start-page: 1641 year: 2012 end-page: 1648 ident: b0100 article-title: Evaluation of field-in-field technique for total body irradiation publication-title: Int J Radiat Oncol Biol Phys – volume: 35 start-page: 53 year: 1996 end-page: 60 ident: b0065 article-title: Cataractogenesis after total body irradiation publication-title: Int J Radiat Oncol Biol Phys – start-page: 1 year: 2016 end-page: 9 ident: b0110 article-title: Total body irradiation with volumetric modulated arc therapy: dosimetric data and first clinical experience publication-title: Radiat Oncol – volume: 101 start-page: 521 year: 2018 end-page: 529 ident: b0010 article-title: Total body irradiation: guidelines from the international lymphoma radiation oncology group (ILROG) publication-title: Int J Radiat Oncol Biol Phys – volume: 7 start-page: 461 year: 1981 end-page: 467 ident: b0030 article-title: Radiation pneumonitis following large single dose irradiation: a re-evaluation based on absolute dose to lung publication-title: Int J Radiat Oncol Biol Phys – volume: 4 start-page: 95 year: 1994 end-page: 102 ident: b0060 article-title: Morbidity after total body irradiation publication-title: Semin Radiat Oncol – volume: 17 start-page: 63 year: 2016 end-page: 73 ident: b0090 article-title: Going the distance: validation of Acuros and AAA at an extended SSD of 400 cm publication-title: J Appl Clin Med Phys – ident: 10.1016/j.phro.2020.09.004_b0075 – volume: 81 start-page: 2187 year: 1993 ident: 10.1016/j.phro.2020.09.004_b0015 article-title: A prospective randomized comparison of total body irradiation-etoposide versus busulfan-cyclophosphamide as preparatory regimens for bone marrow transplantation in patients with leukemia who were not in first remission: a Southwest Oncology Group study publication-title: Blood doi: 10.1182/blood.V81.8.2187.2187 – volume: 90 start-page: 2080 year: 2004 ident: 10.1016/j.phro.2020.09.004_b0040 article-title: Total body irradiation and pneumonitis risk: a review of outcomes publication-title: Br J Cancer doi: 10.1038/sj.bjc.6601751 – volume: 35 start-page: 53 year: 1996 ident: 10.1016/j.phro.2020.09.004_b0065 article-title: Cataractogenesis after total body irradiation publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(96)85011-5 – volume: 124 start-page: 344 year: 2014 ident: 10.1016/j.phro.2020.09.004_b0005 article-title: Conditioning regimens for hematopoietic cell transplantation: one size does not fit all publication-title: Blood doi: 10.1182/blood-2014-02-514778 – volume: 7 start-page: 461 year: 1981 ident: 10.1016/j.phro.2020.09.004_b0030 article-title: Radiation pneumonitis following large single dose irradiation: a re-evaluation based on absolute dose to lung publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/0360-3016(81)90131-0 – start-page: 1 year: 2016 ident: 10.1016/j.phro.2020.09.004_b0110 article-title: Total body irradiation with volumetric modulated arc therapy: dosimetric data and first clinical experience publication-title: Radiat Oncol – volume: 120 start-page: 2760 year: 2014 ident: 10.1016/j.phro.2020.09.004_b0020 article-title: Extreme heterogeneity of myeloablative total body irradiation techniques in clinical practice: a survey of the acute leukemia working party of the european group for blood and marrow transplantation publication-title: Cancer doi: 10.1002/cncr.28768 – volume: 83 start-page: 1641 year: 2012 ident: 10.1016/j.phro.2020.09.004_b0100 article-title: Evaluation of field-in-field technique for total body irradiation publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2011.10.045 – volume: 69 start-page: 1297 year: 2007 ident: 10.1016/j.phro.2020.09.004_b0080 article-title: Total body irradiation, toward optimal individual delivery: dose evaluation with metal oxide field effect transistors, thermoluminescence detectors, and a treatment planning system publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2007.07.2334 – volume: 36 start-page: 3844 year: 2009 ident: 10.1016/j.phro.2020.09.004_b0085 article-title: Commissioning and evaluation of an extended SSD photon model for PINNACLE3: an application to total body irradiation publication-title: Med Phys doi: 10.1118/1.3171688 – volume: 25 start-page: 2200 year: 1998 ident: 10.1016/j.phro.2020.09.004_b0120 article-title: Monte Carlo-aided dosimetry of a new high dose-rate brachytherapy source publication-title: Med Phys doi: 10.1118/1.598418 – volume: 9 start-page: 343 year: 1992 ident: 10.1016/j.phro.2020.09.004_b0035 article-title: Total body irradiation with or without lung shielding for allogeneic bone marrow transplantation publication-title: Bone Marrow Transplant – volume: 18 start-page: 981 year: 2000 ident: 10.1016/j.phro.2020.09.004_b0045 article-title: Prospective randomized comparison of single-dose versus hyperfractionated total-body irradiation in patients with hematologic malignancies publication-title: J Clin Oncol doi: 10.1200/JCO.2000.18.5.981 – volume: 46 start-page: 442 year: 2017 ident: 10.1016/j.phro.2020.09.004_b0095 article-title: An evidence-based review of total body irradiation publication-title: J Med Imaging Radiat Sci doi: 10.1016/j.jmir.2015.09.007 – volume: 19 start-page: 103 year: 2018 ident: 10.1016/j.phro.2020.09.004_b0115 article-title: Volumetric modulated arc therapy for total body irradiation: a feasibility study using Pinnacle treatment planning system and Elekta Agility linac publication-title: J Appl Clin Med Phys doi: 10.1002/acm2.12257 – volume: 32 start-page: 25 year: 2002 ident: 10.1016/j.phro.2020.09.004_b0070 article-title: Evaluation of fractionated total body irradiation and dose rate on cataractogenesis in bone marrow transplantation publication-title: Haematologia (Budap) doi: 10.1163/156855902760262736 – volume: 4 start-page: 95 year: 1994 ident: 10.1016/j.phro.2020.09.004_b0060 article-title: Morbidity after total body irradiation publication-title: Semin Radiat Oncol doi: 10.1016/S1053-4296(05)80036-0 – volume: 17 start-page: 63 year: 2016 ident: 10.1016/j.phro.2020.09.004_b0090 article-title: Going the distance: validation of Acuros and AAA at an extended SSD of 400 cm publication-title: J Appl Clin Med Phys doi: 10.1120/jacmp.v17i2.5913 – volume: 101 start-page: 521 year: 2018 ident: 10.1016/j.phro.2020.09.004_b0010 article-title: Total body irradiation: guidelines from the international lymphoma radiation oncology group (ILROG) publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2018.04.071 – volume: 41 start-page: 651 year: 1998 ident: 10.1016/j.phro.2020.09.004_b0025 article-title: Interstitial pneumonitis in acute leukemia patients submitted to T- depleted matched and mismatched bone marrow transplantation publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(98)00068-6 – volume: 54 start-page: 1165 year: 2002 ident: 10.1016/j.phro.2020.09.004_b0055 article-title: Renal toxicity after total body irradiation publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(02)03039-0 – volume: 181 start-page: 704 year: 2005 ident: 10.1016/j.phro.2020.09.004_b0050 article-title: Renal dysfunction after total-body irradiation: significance of selective renal shielding blocks publication-title: Strahlentherapie Und Onkol doi: 10.1007/s00066-005-1405-8 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.phro.2020.09.004_b0105 article-title: A step and shoot intensity modulated technique for total body irradiation publication-title: Tech Innov Patient Support Radiat Oncol doi: 10.1016/j.tipsro.2019.05.002 – volume: 129 start-page: 527 year: 2018 ident: 10.1016/j.phro.2020.09.004_b0125 article-title: Total-body irradiation using linac-based volumetric modulated arc therapy: Its clinical accuracy, feasibility and reliability publication-title: Radiother Oncol doi: 10.1016/j.radonc.2018.08.005 |
SSID | ssj0002793530 |
Score | 2.1680121 |
Snippet | Total body irradiation (TBI) is a treatment used in the conditioning of patients prior to hematopoietic stem cell transplantation. We developed an... Background and purpose: Total body irradiation (TBI) is a treatment used in the conditioning of patients prior to hematopoietic stem cell transplantation. We... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12 |
SubjectTerms | Original |
Title | Early clinical experience with a total body irradiation technique using field-in-field beams and on-line image guidance |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2405631620300531 https://dx.doi.org/10.1016/j.phro.2020.09.004 https://www.ncbi.nlm.nih.gov/pubmed/33458337 https://www.proquest.com/docview/2478777304 https://pubmed.ncbi.nlm.nih.gov/PMC7807619 https://doaj.org/article/a7cb1658213340f3befcd659ef32a64e |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDxUXRHkuhcpI3JBFHMf25gioVYVUTlTqzRo_UlLRpNruCvHvmXEe2qVSe-EWJXYSeyYzn-OZbxj7ADb6SssooDRKoPUrRa2jFFF6qOpQRZ0o3_nsuzk9r75d6IutUl8UEzbQAw8T9wls8NJQOqdSVdEon5oQja5To0owVSLrW9TF1mLqKm-n1UrnQiPosbQwSpoxY2YI7sKJosy_ssgkp2OVtskrZfL-Hed0F3z-G0O55ZROnrInI5rkn4dRHLBHqXvG9s_G_fLn7HfmL-ZT-iNPM7Expx-wHPi6R_TNfR__8Ha1IqICkhSfqV05BcZf8hzoJtpO5APuE1zfcugi7ztBQJW312iY-OWmjaRGL9j5yfGPr6diLLUggrblWmiAJGvwMWqtS1CaeO9BIzzzwde4hLPLRsYIARBiSGmaIgKUtkTHF6yKSr1ke13fpdeMF9qrgD5OV8T-Vlfe6GiClA0so4kgF0xOU-3CyENO5TB-uSng7MqReByJxxW1Q_Es2Me5z83AwnFv6y8kwbklMWjnE6hXbtQr95BeLZia5O8mKaFZxRu19z5az71GCDNAkwf7vZ9UzOH3TZs20KV-c-tKYk-yaIexzatB5eaB4ZtT0pxdMLujjDsj373StT8zh7hd5h9Yb_7HVB2yxzSUIcTxLdtbrzbpHUK1tT_KX-VfF8c8Nw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+clinical+experience+with+a+total+body+irradiation+technique+using+field-in-field+beams+and+on-line+image+guidance&rft.jtitle=Physics+and+imaging+in+radiation+oncology&rft.au=Ruud+G.H.+van+Leeuwen&rft.au=Drean+Verwegen&rft.au=Peter+G.M.+van+Kollenburg&rft.au=Marc+Swinkels&rft.date=2020-10-01&rft.pub=Elsevier&rft.issn=2405-6316&rft.eissn=2405-6316&rft.volume=16&rft.spage=12&rft.epage=17&rft_id=info:doi/10.1016%2Fj.phro.2020.09.004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7cb1658213340f3befcd659ef32a64e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-6316&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-6316&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-6316&client=summon |